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a b s t r a c t

We consider output trajectory tracking for a class of uncertain nonlinear systems whose internal
dynamics may be modelled by infinite-dimensional systems which are bounded-input, bounded-output
stable. We describe under which conditions these systems belong to an abstract class for which funnel
control is known to be feasible. As an illustrative example, we show that for a system whose internal
dynamics are modelled by a transport equation, which is not exponentially stable, we obtain prescribed
performance of the tracking error.
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1. Introduction

We study output trajectory tracking for uncertain nonlinear
systems by funnel control. As a crucial assumption, we require
that the internal dynamics of the system, typically arising from a
partial differential equation (PDE) in our framework, are bounded-
input, bounded-output (BIBO) stable.

Funnel control has been developed in [1] for systems with
relative degree one, see also the survey [2]. The funnel con-
troller is a low-complexity model-free output-error feedback of
high-gain type; it is an adaptive controller since the gain is
adapted to the actual needed value by a time-varying (non-
dynamic) adaptation scheme. Note that no asymptotic tracking
is pursued, but a prescribed tracking performance is guaranteed
over the whole time interval. The funnel controller proved to
be the appropriate tool for tracking problems in various applica-
tions, such as temperature control of chemical reactor models [3],
control of industrial servo-systems [4] and underactuated multi-
body systems [5], speed control of wind turbine systems [6,7],
DC-link power flow control [8], voltage and current control of
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electrical circuits [9], oxygenation control during artificial venti-
lation therapy [10] and adaptive cruise control [11,12].

A funnel controller for a large class of systems described by
functional differential equations with arbitrary relative degree
has been developed recently in [13]. While this abstract class
appears to allow for fairly general infinite-dimensional systems,
cf. also Section 2, it is in fact not clear which types of PDE systems
are encompassed. As a first result, it was shown in [14] that the
linearized model of a moving water tank, where sloshing effects
appear, belongs to the aforementioned system class. On the other
hand, not even every linear, infinite-dimensional system has a
well-defined (integer-valued) relative degree: In that case, results
as in [1,13] cannot be applied. Instead, the feasibility of funnel
control has to be investigated directly for the (nonlinear) closed-
loop system, see [15] for a boundary controlled heat equation
and [16] for a general class of boundary control systems.

The present paper is devoted to systems which have a rel-
ative degree, but in the presence of internal dynamics that are
modelled by a PDE system. Motivated by the observation that
several relevant systems of the aforementioned form belong to
the class introduced in [13], we develop a general system class
containing PDE models for which funnel control is feasible; this
result is presented in Section 3. We show that the class of systems
for which a Byrnes–Isidori form exists, see [17], is contained in
this new system class. As an example, we consider a system
internally driven by a transport equation and illustrate the funnel
controller by a simulation in Section 4. Some conclusions are
given in Section 5.
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1.1. Nomenclature and basic concepts

Throughout this article, we use the following notation: N
denotes the natural numbers, N0 = N ∪ {0}, and R≥0 = [0, ∞).
We use the notation Cω = { λ ∈ C | Re λ > ω } for ω ∈ R. With
Lp(I;Rn) we denote the Lebesgue space of all measurable and pth
power integrable functions f : I → Rn, where I ⊆ R is an
interval and p ∈ [1, ∞); L∞(I;Rn) denotes the Lebesgue space
of all measurable and essentially bounded functions f : I →

Rn. We write ∥ · ∥∞ for ∥ · ∥L∞(R≥0;Rn). By L∞

loc(I;R
n) we denote

the set of measurable and locally essentially bounded functions
f : I → Rn and by W k,p(I;Rn), k ∈ N0, the Sobolev space of
k-times weakly differentiable functions f : I → Rn such that
f , . . . , f (k) ∈ Lp(I;Rn). For an open set V ⊆ Rm we denote by
Ck(V ;Rn) the set of k-times continuously differentiable functions
f : V → Rn, k ∈ N0 ∪ {∞} where C(V ;Rn) := C0(V ;Rn). The
set of all real-valued Borel measures with bounded total variation
is denoted by M(R≥0) and the total variation by ∥f ∥M(R≥0) for
f ∈ M(R≥0); we refer to the textbook [18] for more details. By
L(X ;Y), where X ,Y are Hilbert spaces, we denote the set of all
bounded linear operators A : X → Y .

Let X be a real Hilbert space and recall that a C0-semigroup
(T (t))t≥0 on X is a L(X ;X )-valued map satisfying T (0) = IX and
T (t + s) = T (t)T (s), s, t ≥ 0, where IX denotes the identity
operator, and t ↦→ T (t)x is continuous for every x ∈ X . C0-
semigroups are characterized by their generator A, which is a, not
necessarily bounded, operator on X .

Furthermore, recall the space X−1, see e.g. [19, Sec. 2.10],
which should be thought of as an abstract Sobolev space with
negative index.1 If A : D(A) ⊆ X → X is a densely defined
operator with ρ(A) ̸= ∅, where ρ(A) denotes the resolvent set
of A, then for any β ∈ ρ(A) we denote by X−1 the completion of
X with respect to the norm

∥x∥X−1 = ∥(βI − A)−1x∥X , x ∈ X .

Then the norms generated as above for different β ∈ ρ(A) are
equivalent and, in particular, X−1 is independent of the choice
of β . If A generates a C0-semigroup (T (t))t≥0 in X , then the latter
has a unique extension to a semigroup (T−1(t))t≥0 in X−1, which
is given by

T−1(t) = (βI − A−1)T (t), t ≥ 0,

where (βI −A−1) ∈ L(X ;X−1) is a surjective isometry. Therefore,
A−1 is the generator of the semigroup (T−1(t))t≥0.

The notion of admissible operators is well-known in infinite-
dimensional linear systems theory with unbounded control and
observation operators, as present in boundary control, see e.g.
[19], and is motivated by interpreting a PDE on a larger space
in order to define solutions. Let U,X ,Y be real Hilbert spaces
and A as above such that it generates a C0-semigroup (T (t))t≥0
on X . Then we recall that B ∈ L(U;X−1) is a Lp-admissible control
operator (for (T (t))t≥0), with p ∈ [1, ∞], if for all t ≥ 0 and all
u ∈ Lp([0, t];U) we have

Φtu :=

∫ t

0
T−1(t − s)Bu(s) ds ∈ X .

By a closed graph theorem argument this property implies that,
for any t ≥ 0, the operator Φt is bounded from Lp([0, t];U) to X .

An operator C ∈ L(D(A);Y) is called Lp-admissible observation
operator (for (T (t))t≥0), if for some (and hence all) t ≥ 0 the
mapping

Ψt : D(A) → Lp([0, t],Y), x ↦→ CT (·)x

1 This space is sometimes referred to as rigged Hilbert space.

can be extended to a bounded operator from X to Lp([0, t],Y) —
this extension will again be denoted by Ψt .

Both admissibility notions are combined in the stronger con-
cept of well-posedness: Let (A, B, C) represent a system where A
is the generator of a C0-semigroup, B is a L2-admissible control
operator and C is a L2-admissible observation operator in the
sense described above. If for some ω ∈ R the transfer function
H : Cω → L(U,Y), which is uniquely determined (up to a
constant) by

1
s2 − s1

(H(s1) − H(s2)) = C
(
(s1I − A)−1(s2I − A)−1)B

for all s1, s2 ∈ Cω, s1 ̸= s2, exists and is proper, that is
sups∈Cω

∥H(s)∥ < ∞, then we say that (A, B, C) is well-posed.
We remark that well-posedness is usually defined differently, but
equivalently, see [20]. If limRe s→∞ H(s)v exists for any v ∈ U , then
the system (A, B, C) is called regular.

1.2. System class

In the remainder of the present paper we consider abstract
differential equations of the form

y(r)(t) = f
(
d(t), T (y, ẏ, . . . , y(r−1))(t)

)
+ Γ

(
d(t), T (y, ẏ, . . . , y(r−1))(t)

)
u(t)

y|[−h,0] = y0 ∈ W r−1,∞([−h, 0];Rm),

(1)

where h ≥ 0 is the ‘‘memory’’ of the system,2 r ∈ N is the relative
degree, and

(N1) the disturbance satisfies d ∈ L∞(R≥0;Rp), p ∈ N;
(N2) f ∈ C(Rp

× Rq
;Rm), q ∈ N;

(N3) the high-frequency gain matrix function Γ ∈ C(Rp
×

Rq
;Rm×m) satisfies Γ (d, η) + Γ (d, η)⊤ > 0 for all (d, η) ∈

Rp
× Rq;

(N4) T : C([−h, ∞);Rrm) → L∞

loc(R≥0;Rq) is an operator with the
following properties:

(a) T maps bounded trajectories to bounded trajectories,
i.e, for all c1 > 0, there exists c2 > 0 such that for all
ζ ∈ C([−h, ∞);Rrm),

sup
t∈[−h,∞)

∥ζ (t)∥ ≤ c1 ⇒ sup
t≥0

∥T (ζ )(t)∥ ≤ c2,

(b) T is causal, i.e, for all t ≥ 0 and all ζ , ξ ∈ C([−h, ∞);
Rrm),

ζ |[−h,t)= ξ |[−h,t)⇒ T (ζ )|[0,t)
a.e.
= T (ξ )|[0,t).

(c) T is locally Lipschitz continuous in the following sense:
for all t ≥ 0 and all ξ ∈ C([−h, t];Rrm) there exist
τ , δ, c > 0 such that, for all ζ1, ζ2 ∈ C([−h, ∞);Rrm)
with ζi|[−h,t]= ξ and ∥ζi(s) − ξ (t)∥ < δ for all s ∈

[t, t + τ ] and i = 1, 2, we have(T (ζ1) − T (ζ2)) |[t,t+τ ]


∞

≤ c
(ζ1 − ζ2)|[t,t+τ ]


∞

.

In [1,13,21–23] it is shown that the class of systems (1) encom-
passes linear and nonlinear systems with strict relative degree r
and BIBO stable internal dynamics. The operator T allows for
infinite-dimensional (linear) systems, systems with hysteretic ef-
fects or nonlinear delay elements, and combinations thereof. Note
that T is typically the solution operator corresponding to a (par-
tial) differential equation which describes the internal dynamics
of the system. The linear infinite-dimensional systems that are

2 Here, ‘‘h = 0’’ means that the initial values y(0), ẏ(0), . . ., y(r−1)(0) are
prescribed.
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considered in [1,23] are in a special Byrnes–Isidori form that
is discussed in detail in [17]. While the internal dynamics in
these systems is allowed to correspond to a C0-semigroup, all
other operators are assumed to be bounded and to satisfy ad-
ditional restrictive conditions. In contrast to this, in the present
paper we consider nonlinear equations which, in particular, in-
volve unbounded operators. This complements and generalizes
the findings in [14].

1.3. Control objective

The objective is to design a derivative output error feedback
of the form

u(t) = G
(
t, e(t), ė(t), . . . , e(r−1)(t)

)
,

where yref ∈ W r,∞(R≥0;Rm) is a reference signal, which applied
to (1) results in a closed-loop system where the tracking error
e(t) = y(t) − yref(t) evolves within a prescribed performance
funnel

Fϕ :=
{
(t, e) ∈ R≥0 × Rm

⏐⏐ ϕ(t)∥e∥ < 1
}
, (2)

which is determined by a function ϕ belonging to

Φr :=

⎧⎨⎩ ϕ ∈ Cr (R≥0;R)

⏐⏐⏐⏐⏐⏐
ϕ, ϕ̇, . . . , ϕ(r) are bounded,
ϕ(τ ) > 0 for all τ > 0,
and lim infτ→∞ ϕ(τ ) > 0

⎫⎬⎭ .

Furthermore, all signals u, e, ė, . . . , e(r−1) should remain bounded.
The funnel boundary is given by 1/ϕ, see Fig. 1. The case

ϕ(0) = 0 is explicitly allowed and puts no restriction on the initial
value since ϕ(0)∥e(0)∥ < 1; in this case the funnel boundary 1/ϕ
has a pole at t = 0.

An important property is that each performance funnel Fϕ

with ϕ ∈ Φr is bounded away from zero, because boundedness
of ϕ implies existence of λ > 0 such that 1/ϕ(t) ≥ λ for all t > 0.
The funnel boundary is not necessarily monotonically decreasing
and there are situations, like in the presence of periodic distur-
bances, where widening the funnel over some later time interval
might be beneficial. For typical choices of funnel boundaries see
e.g. [24, Sec. 3.2].

2. Funnel control

It was shown in [13] that the funnel controller

u(t) = −kr−1(t) er−1(t),
e0(t) = e(t) = y(t) − yref(t),
e1(t) = ė0(t) + k0(t) e0(t),
e2(t) = ė1(t) + k1(t) e1(t),

...

er−1(t) = ėr−2(t) + kr−2(t) er−2(t),

ki(t) =
1

1 − ϕi(t)2∥ei(t)∥2 , i = 0, . . . , r − 1,

(3)

where

ϕ0 ∈ Φr , ϕ1 ∈ Φr−1, . . . , ϕr−1 ∈ Φ1, (4)

achieves the control objective described in Section 1.3 for any
system which belongs to the class (1). We stress that while
the derivatives ė0, . . . , ėr−2 appear in (3), they only serve as
short-hand notations and may be resolved in terms of the track-
ing error, the funnel functions and the derivatives of these,
cf. [13, Rem. 2.1].

The existence of solutions of the initial value problem resulting
from the application of the funnel controller (3) to a system (1)

Fig. 1. Error evolution in a funnel Fϕ with boundary 1/ϕ(t).

must be treated carefully. By a solution of (3), (1) on [−h, ω) we
mean a function y ∈ Cr−1([−h, ω);Rm), ω ∈ (0, ∞], with y|[−h,0]=

y0 such that y(r−1)
|[0,ω) is weakly differentiable and satisfies the

differential equation in (1) with u defined in (3) for almost all
t ∈ [0, ω); y is called maximal, if it has no right extension that
is also a solution. Existence of solutions of functional differential
equations has been investigated in [1] for instance.

The following result is from [13]. Note that in [13] a slightly
stronger version of conditions (N3) and (N4) (c) is used. However,
the proof does not change; in particular, regarding (N4) (c), the
existence part of the proof in [13] relies on a result from [22]
where the version from the present paper is used.

Theorem 2.1. Consider a system (1) with properties (N1)–(N4) for
some r ∈ N and h ≥ 0. Let yref ∈ W r,∞(R≥0;Rm), ϕ0, . . . , ϕr−1 as
in (4) and y0 ∈ W r−1,∞([−h, 0];Rm) be an initial condition such
that e0, . . . , er−1 defined in (3) satisfy

ϕi(0)∥ei(0)∥ < 1 for i = 0, . . . , r − 1.

Then the funnel controller (3) applied to (1) yields an initial-value
problem which has a solution, and every solution can be extended to
a maximal solution y : [−h, ω) → Rm, ω ∈ (0, ∞], which has the
following properties:

(i) The solution is global, i.e., ω = ∞.
(ii) The input u : R≥0 → Rm, the gain functions k0, . . . , kr−1 :

R≥0 → R and y, ẏ, . . . , y(r−1)
: R≥0 → Rm are bounded.

(iii) The functions e0, . . . , er−1 : R≥0 → Rm evolve in their
respective performance funnels and are uniformly bounded
away from the funnel boundaries in the sense

∀ i = 0, . . . , r − 1 ∃ εi > 0 ∀ t > 0 : ∥ei(t)∥ ≤ ϕi(t)−1
− εi.

While the class of functional differential equations (1) appears
to be rather general and funnel control is feasible for these
systems by Theorem 2.1, it is not clear exactly which kind of
systems that contain PDEs are encompassed by the class (1).
The operator T , which describes the internal dynamics, is able
to model a broad class of PDE systems, as we will show in
the following example which motivates the introduction of the
operator class in Section 3.

Example 2.2. Consider the following system whose internal
dynamics are described by a transport equation, that is

ẏ(t) = z(t, 0) + γ u(t)
∂z
∂t

(t, ξ ) = c
∂z
∂ξ

(t, ξ ) + h(ξ )y(t),

z(0, ξ ) = 0,

(5)

for (t, ξ ) ∈ (0, ∞) × [0, ∞), where c > 0 and h ∈ M(R≥0) is a
Borel measure of bounded total variation. It is well-known that
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the second and third equations in (5) constitute a regular well-
posed linear system (A, B, C) on X = L2(R≥0;R) with input y(t)
and output z(t, 0), the so-called shift-realization of the Laplace
transform L(h), see e.g. [25,26]. More precisely, with A = c ∂

∂ξ
,

(By)(ξ ) = h(ξ )y and Cz = z(0), the PDE is considered on the
abstract Sobolev space X−1 to appropriately interpret the term
h(ξ )y(t) and the solutions are mild solutions3 in general.

Also note that the generated (left-) shift-semigroup is not
exponentially stable. In particular, the Laplace transform L(h)
of the measure h is defined on the closed right half-plane and
bounded analytic on this domain. Moreover, the impulse response
of the PDE equals h. More precisely, for sufficiently smooth y we
have the representation

z(t, 0) = (h ∗ y)(t) =

∫ t

0
y(t − s) dh(s).

Therefore, the first equation in (5) formally reads

ẏ(t) = (h ∗ y)(t) + γ u(t), (6)

which is an integral–differential Volterra equation. Also note that
for the following simple cases

• h = δ0, we obtain a finite-dimensional linear system:

ẏ(t) = y(t) + γ u(t);

• h = δt0 , t0 > 0, we obtain a delay differential equation:

ẏ(t) =

{
y(t − t0) + γ u(t), t ≥ t0,
γ u(t), 0 ≤ t < t0.

Another typical case is that h(ξ ) = f (ξ )dξ with f ∈ L1(R≥0;R),
i.e., h is represented by its L1-density with respect to the Lebesgue
measure. If additionally f ∈ L2(R≥0;R), then the input opera-
tor B = h of the PDE is bounded.

We may now observe that (6) belongs to the system class (1),
if we define the operator

T (y) := h ∗ y, y ∈ C(R≥0;R).

As h has bounded total variation, it follows that T is a bounded
operator from C(R≥0;R)∩L∞(R≥0;R) to L∞(R≥0;R) and hence it
is straightforward to check that T satisfies condition (N4).

3. A class of operators for funnel control

Motivated by Example 2.2, in this section we develop a de-
scription for a class of operators T which include certain linear
PDEs and satisfy condition (N4). The aforementioned PDEs may
either be coupled with a nonlinear observation operator which
satisfies a certain growth bound, or it may be coupled with a lin-
ear observation operator which is possibly unbounded, but with
respect to which the system is regular well-posed. In both cases
we additionally require that the overall system is BIBO stable.
For the linear observation operator, this is true if, for instance,
the inverse Laplace transform of the corresponding transfer func-
tion defines a Borel measure with bounded total variation. This
structure is illustrated in Fig. 2.

We give a precise definition of the operator class in the fol-
lowing.

Definition 3.1. Let h ≥ 0 and ℓ, q ∈ N. Then T ℓ,q
h is defined as

the set of all operators

T : C([−h, ∞);Rℓ) → L∞

loc(R≥0;Rq)

3 See e.g. [19] for a definition of the mild solution.

Fig. 2. Structure of an operator T ∈ T ℓ,q
h .

which, for any ζ ∈ C([−h, ∞);Rℓ), are given by

T (ζ )(t) = F
(
T̃ (ζ )(t), S(x)(t), (Cx)(t)

)
, t ≥ 0,

where x, for some x0 ∈ D(A), is the mild solution of the PDE

ẋ(t) = Ax(t) + Bζ (t), x(0) = x0, (7)

where

(P1) A generates a bounded C0-semigroup in a real Hilbert space
X and B ∈ L(Rℓ

; X−1), C ∈ L(D(A);Rq3 ) are operators such
that (A, B, C) is a regular well-posed linear system which
additionally is BIBO stable, i.e., the operator

L∞((0, ∞);Rℓ) → L∞((0, ∞);Rq3 ), f ↦→ L−1(H) ∗ f

is bounded, where H : C0 → Cq3×ℓ denotes the transfer
function of (A, B, C).

(P2) F ∈ C1(Rq1 × Rq2 × Rq3;Rq);
(P3) T̃ : C([−h, ∞);Rℓ) → L∞

loc(R≥0;Rq1 ) satisfies condition (N4)
in Section 1.2 with ℓ = rm;

(P4) S : X → Rq2 is a (possibly nonlinear) operator which
satisfies that for all x ∈ X and all ρ > 0 there exists L > 0
such that for all x1, x2 ∈ X with ∥xi − x∥X < ρ, i = 1, 2, we
have

∥S(x1) − S(x2)∥ ≤ L∥S(x1 − x2)∥.

Furthermore, S is such that (7) is BIBO stable w.r.t. S, i.e.,
there exists γ ∈ C1(R≥0;R) such that for all ζ ∈ C([−h, ∞);
Rℓ) the mild solution of (7) satisfies

∀ t ≥ 0 : ∥S
(
x(t)

)
∥ ≤ γ (∥ζ |[−h,t]∥∞);

Remark 3.2.

(i) We note that any operator T as given in Definition 3.1
with the properties (P1)–(P1) is indeed well-defined from
C([−h, ∞);Rℓ) to L∞

loc(R≥0;Rq).
(ii) We emphasize that the assumption of BIBO stability of (7)

as in (P4) is quite weak. Provided that S is sufficiently nice,
then a sufficient condition for this is input-to-state stabil-
ity [27]. This concept was studied extensively for nonlinear
systems, see [28], and for systems containing PDEs it is
investigated in [29,30]. However, the state of an input-to-
state stable system converges to zero whenever the input
is zero, which is not required for BIBO stable systems
considered here.
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(iii) Note that the assumption of BIBO stability in (P1) essen-
tially reduces to showing that the inverse Laplace trans-
form hij = L−1(Hij) is a Borel measure on R≥0 with
bounded total variation for all i = 1, . . . , q3 and j =

1, . . . , ℓ, i.e., hij ∈ M(R≥0). Recall that there exist bounded,
shift-invariant operators on L∞((0, ∞);R) defined as the
convolution with a tempered distribution, which is not
contained in M(R≥0), see [18, Sec. 2.5.4].

In the following main result we show that any operator which
belongs to the class T ℓ,q

h satisfies the condition (N4) in Section 1.2.

Theorem 3.3. Any T ∈ T ℓ,q
h satisfies condition (N4) in Section 1.2.

Proof. Step 1: We show property (N4) (a). To this end, observe
that by continuity of F it suffices to show this for the maps
ζ ↦→ T̃ (ζ ), ζ ↦→ S(x) and ζ ↦→ Cx; recall that x as in (7) depends
on ζ . By (P3), T̃ satisfies (N4) (a) and by (P4) we have

∥S(x(t))∥ ≤ γ (∥ζ∥∞)

for all t ≥ 0 and all bounded ζ ∈ C([−h, ∞);Rℓ). It remains
to show that Cx is bounded. By (P1) the system (A, B, C) is reg-
ular and well-posed, from which it follows by the variation of
constants formula, see e.g. [31], that

Cx(·) = CTA(·)x0 + (h ∗ ζ )(·),

where (TA(t))t≥0 is the C0-semigroup generated by A and h =

L−1(H) is the inverse Laplace transform of the transfer func-
tion H : C0 → Cq3×ℓ. By Assumption (P1) there exists Ch > 0
such that ∥h ∗ ζ∥∞ ≤ Ch∥ζ∥∞ and thus, for all t ≥ 0,

∥Cx(t)∥ ≤ ∥CTA(t)x0∥ + ∥(h ∗ ζ )(t)∥
≤ ∥C∥L(D(A);Rq3 )∥ATA(t)x0∥X + Ch∥ζ∥∞

= ∥C∥L(D(A);Rq3 )∥TA(t)Ax0∥X + Ch∥ζ∥∞

≤ ∥C∥L(D(A);Rq3 )∥TA(t)∥L(X)∥Ax0∥X + Ch∥ζ∥∞

≤ M∥C∥L(D(A);Rq3 )∥Ax0∥X + Ch∥ζ∥∞,

where we have used that x0 ∈ D(A) and (TA(t))t≥0 is bounded,
that is, M = supt≥0 ∥TA(t)∥L(X;X) < ∞. Thus,

∥Cx(·)∥∞ ≤ M∥C∥L(D(A);Rq3 )∥Ax0∥X + Ch∥ζ∥∞.

Step 2: We show property (N4) (b). This is a straightforward
consequence of the definition of T̃ .

Step 3: We show property (N4) (c). Fix t ≥ 0 and ξ ∈

C([−h, t];Rℓ). Let τ̃ , δ̃, c̃ be the constants given by property (N4)
(c) of T̃ . Set τ := τ̃ and δ := δ̃. Further let ζi ∈ C([−h, ∞);Rℓ)
with ζi|[−h,t]= ξ and ∥ζi(s)−ξ (t)∥ < δ for all s ∈ [t, t+τ ] and i =

1, 2. Let xi denote the mild solution of (7) corresponding to ζi for
i = 1, 2. Then, by linearity, x1−x2 is the mild solution correspond-
ing to ζ1 − ζ2. Let x̃ denote the mild solution of (7) corresponding
to ξ̃ defined by ξ̃ |[−h,t]= ξ and ξ̃ |[t,∞)≡ ξ (t). Then, since by well-
posedness of (A, B, C) the operator B is L2-admissible, we have for
all s ∈ [t, t + τ ] that

∥xi(s) − x̃(t)∥X ≤ ∥Φt+τ

(
(ζi − ξ (t))|[t,s]

)
∥X < δ∥Φt+τ∥.

Now let L be the constant given by (P4) for x = x̃(t) and ρ =

δ∥Φt+τ∥, and further set

L2 := L · sup
s∈[0,2δ]

|γ ′(s)|.

Therefore, we find that for all s ∈ [t, t + τ ]

∥S(x1(s)) − S(x2(s))∥ ≤ L∥S
(
x1 − x2

)
(s)∥ ≤ Lγ (∥

(
ζ1 − ζ2

)
|[−h,s]∥∞)

≤ L2∥
(
ζ1 − ζ2

)
|[t,t+τ ]∥∞.

Furthermore, by linearity and (P1) we have

∥Cx1(s) − Cx2(s)∥ = ∥(h ∗ (ζ1 − ζ2))(s)∥ ≤ Ch∥
(
ζ1 − ζ2

)
|[t,t+τ ]∥∞

for all s ∈ [t, t + τ ]. Now define ĉ := c̃ + L2 + Ch and

L3 := sup

⎧⎨⎩ ∥F ′(z)∥

⏐⏐⏐⏐⏐⏐
z −

⎛⎝T̃ (ξ̃ )(t)
S(x̃)(t)
Cx̃(t)

⎞⎠ ≤ ĉδ

⎫⎬⎭
and set c := ĉL3. Then we have

∥T (ζ1)(s) − T (ζ2)(s)∥ ≤ c∥
(
ζ1 − ζ2

)
|[t,t+τ ]∥∞

for all s ∈ [t, t+τ ] and this finishes the proof of the theorem. □

It is a consequence of Theorem 3.3 that the operator T defined
in Example 2.2 satisfies T ∈ T 1,1

0 . As an additional example, note
that it is implicitly shown in [14] that the operator associated
with the internal dynamics of a linearized model of a moving
water tank system belongs to the class T ℓ,q

h . In fact, there it is
shown that (P1) is satisfied since the transfer function belongs to
the Callier–Desoer class, cf. [32, Sec. 7.1].

Concluding this section, we consider a class of linear infinite
dimensional systems, which can be transformed into a Byrnes–
Isidori form, which was introduced in [17]:

ẋ(t) = Ax(t) + bu(t), t ≥ 0,
y(t) = ⟨x(t), c⟩ ,

(8)

where (A, b, c) satisfy, for some r ∈ N, the assumptions

(A1) A : D(A) ⊆ H → H is the generator of a C0-semigroup
(T (t))t≥0 in a real Hilbert space H with inner product ⟨·, ·⟩,

(A2) b ∈ D(Ar ) and c ∈ D
(
(A∗)r

)
,

(A3) γ := ⟨Ar−1b, c⟩ ̸= 0 and ⟨Ajb, c⟩ = 0 for all j = 0, . . . , r−2.

We show that the systems (8) belong to the class of systems (1),
provided the internal dynamics satisfy a certain BIBO stability
assumption. To this end, observe that by [17, Thm. 2.6], system (8)
can be rewritten as

y(r)(t) =

r−1∑
i=0

Piy(i)(t) + Sη(t) + γ u(t),

η̇(t) = Qη(t) + Ry(t), η(0) = η0,

where Pi ∈ R for i = 0, . . . , r − 1, S ∈ L(Ĥ;R), R ∈ L(R; Ĥ)
and Q : D(Q ) ⊆ Ĥ → Ĥ is the generator of a C0-semigroup
on Ĥ , where Ĥ is some real Hilbert space, and η0

∈ D(Q ). As a
BIBO stability assumption we impose that the transfer function
H(s) = S(sI − Q )−1R has inverse Laplace transform which is a
Borel measure with bounded total variation.

We may now define the operator T by

T (ζ ) := Sη, ζ ∈ C(R≥0;R),

where η is the mild solution of η̇(t) = Qη(t) + Rζ (t) with
η(0) = η0. It is clear that R is a L2-admissible control operator, S is
a L2-admissible observation operator and the system (Q , R, S) is
well-posed and regular. Since assumptions (P2)–(P4) are trivially
satisfied in our case, it thus follows that T ∈ T 1,1

0 .
As a consequence, the class of infinite-dimensional systems (8)

is indeed contained in the system class (1). Moreover, the class of
operators T ℓ,q

h in particular covers operators coming from linear
PDE systems as above, but also allows for much more general
(and even nonlinear) equations.

4. Simulation

We revisit Example 2.2 and illustrate our results by a simula-
tion of the funnel controller (3) for system (5). For the simulation
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Fig. 3. Simulation of the funnel controller (3) for the system (5).

we have chosen h(ξ ) = f (ξ )dξ with f (ξ ) = e−ξ/
√

ξ , which is
integrable but not square integrable on R≥0. Furthermore, we use
the parameters c = γ = 1 and the reference signal

yref(t) = cos t, t ≥ 0.

The initial value is chosen as y(0) = 0 and for the controller (3)
we chose the funnel function

ϕ(t) =
(
2e−2t

+ 0.1
)−1

, t ≥ 0.

Clearly, the initial error lies within the funnel boundaries as
required in Theorem 2.1. Furthermore, by Theorem 3.3 the op-
erator T satisfies (N4) and hence funnel control is feasible.

The PDE is solved using explicit finite differences with a grid
in t with M = 1000 points for the interval [0, T ], where T = 15,
and a grid in ξ with N = ⌊M(b− a)/(αT )⌋ points for α = 0.4 and

a = 0, b = 10. The method has been implemented in Python and
the simulation results are shown in Fig. 3.

It can be seen that even in the presence of infinite-dimensional
internal dynamics which are not exponentially stable a prescribed
performance of the tracking error can be achieved with the funnel
controller (3). At the same time the input generated by the
controller is bounded with a very good performance.

5. Conclusion

In the present paper we considered the question which classes
of systems with infinite-dimensional internal dynamics are en-
compassed by the abstract system class (1) for which funnel
control is feasible by Theorem 2.1. We have defined a class of
operators T ℓ,q

h , which model the internal dynamics of the system,
that encompass BIBO stable linear and nonlinear PDEs. The corre-
sponding nonlinear observation operators are assumed to satisfy
a certain growth bound, while the linear observation operator
may be unbounded. For the latter we additionally assumed that
the resulting system is regular and well-posed such that the in-
verse Laplace transform of its transfer function defines a measure
with bounded total variation. In Theorem 3.3 we have proved
that any operator belonging to T ℓ,q

h satisfies the conditions of the
system class (1).

Several extensions of the operator class T ℓ,q
h and Theorem 2.1

may be investigated in future research. In particular, extensions
to nonlinear PDE systems with unbounded observation operators
are of interest as well as systems with infinite-dimensional input
and output spaces which do not have an integer-valued relative
degree.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

References

[1] A. Ilchmann, E.P. Ryan, C.J. Sangwin, Tracking with prescribed transient
behaviour, ESAIM Control Optim. Calc. Var. 7 (2002) 471–493.

[2] A. Ilchmann, E.P. Ryan, High-gain control without identification: a survey,
GAMM Mitt. 31 (2008) 115–125.

[3] A. Ilchmann, S. Trenn, Input constrained funnel control with applications
to chemical reactor models, Syst. Control Lett. 53 (2004) 361–375.

[4] C.M. Hackl, Non-Identifier Based Adaptive Control in Mechatronics–Theory
and Application, in: Lecture Notes in Control and Information Sciences, vol.
466, Springer-Verlag, Cham, Switzerland, 2017.

[5] T. Berger, S. Otto, T. Reis, R. Seifried, Combined open-loop and funnel
control for underactuated multibody systems, Nonlinear Dynam. 95 (2019)
1977–1998.

[6] C.M. Hackl, Funnel control for wind turbine systems, in: Proc. 2014 IEEE
Int. Conf. Contr. Appl., Antibes, France, 2014, pp. 1377–1382.

[7] C.M. Hackl, Speed funnel control with disturbance observer for wind
turbine systems with elastic shaft, in: Proc. 54th IEEE Conf. Decis. Control,
Osaka, Japan, 2015, pp. 12005–2012.

[8] A. Senfelds, A. Paugurs, Electrical drive DC link power flow control with
adaptive approach, in: Proc. 55th Int. Sci. Conf. Power Electr. Engg. Riga
Techn. Univ. Riga, Latvia, 2014, pp. 30–33.

[9] T. Berger, T. Reis, Zero dynamics and funnel control for linear electrical
circuits, J. Franklin Inst. 351 (2014) 5099–5132.

[10] A. Pomprapa, S.R. Alfocea, B.J. Göbel, S. Leonhardt, Funnel control for
oxygenation during artificial ventilation therapy, in: Proceedings of the
19th IFAC World Congress, Cape Town, South Africa, 2014, pp. 6575–6580.

[11] T. Berger, A.L. Rauert, A universal model-free and safe adaptive cruise
control mechanism, in: Proceedings of the MTNS 2018, Hong Kong, 2018,
pp. 925–932.

[12] T. Berger, A.L. Rauert, Funnel cruise control, 2019, (submitted for
publication), Preprint available at arXiv: https://arxiv.org/abs/1907.04120.

[13] T. Berger, H.H. Lê, T. Reis, Funnel control for nonlinear systems with known
strict relative degree, Automatica 87 (2018) 345–357.

http://refhub.elsevier.com/S0167-6911(20)30059-1/sb1
http://refhub.elsevier.com/S0167-6911(20)30059-1/sb1
http://refhub.elsevier.com/S0167-6911(20)30059-1/sb1
http://refhub.elsevier.com/S0167-6911(20)30059-1/sb2
http://refhub.elsevier.com/S0167-6911(20)30059-1/sb2
http://refhub.elsevier.com/S0167-6911(20)30059-1/sb2
http://refhub.elsevier.com/S0167-6911(20)30059-1/sb3
http://refhub.elsevier.com/S0167-6911(20)30059-1/sb3
http://refhub.elsevier.com/S0167-6911(20)30059-1/sb3
http://refhub.elsevier.com/S0167-6911(20)30059-1/sb4
http://refhub.elsevier.com/S0167-6911(20)30059-1/sb4
http://refhub.elsevier.com/S0167-6911(20)30059-1/sb4
http://refhub.elsevier.com/S0167-6911(20)30059-1/sb4
http://refhub.elsevier.com/S0167-6911(20)30059-1/sb4
http://refhub.elsevier.com/S0167-6911(20)30059-1/sb5
http://refhub.elsevier.com/S0167-6911(20)30059-1/sb5
http://refhub.elsevier.com/S0167-6911(20)30059-1/sb5
http://refhub.elsevier.com/S0167-6911(20)30059-1/sb5
http://refhub.elsevier.com/S0167-6911(20)30059-1/sb5
http://refhub.elsevier.com/S0167-6911(20)30059-1/sb6
http://refhub.elsevier.com/S0167-6911(20)30059-1/sb6
http://refhub.elsevier.com/S0167-6911(20)30059-1/sb6
http://refhub.elsevier.com/S0167-6911(20)30059-1/sb9
http://refhub.elsevier.com/S0167-6911(20)30059-1/sb9
http://refhub.elsevier.com/S0167-6911(20)30059-1/sb9
http://refhub.elsevier.com/S0167-6911(20)30059-1/sb12
http://refhub.elsevier.com/S0167-6911(20)30059-1/sb12
http://refhub.elsevier.com/S0167-6911(20)30059-1/sb12
https://arxiv.org/abs/1907.04120
http://refhub.elsevier.com/S0167-6911(20)30059-1/sb13
http://refhub.elsevier.com/S0167-6911(20)30059-1/sb13
http://refhub.elsevier.com/S0167-6911(20)30059-1/sb13


T. Berger, M. Puche and F.L. Schwenninger / Systems & Control Letters 139 (2020) 104678 7

[14] T. Berger, M. Puche, F.L. Schwenninger, Funnel control for a moving water
tank, 2019, (submitted for publication), Preprint available at arXiv: https:
//arxiv.org/abs/1902.00586.

[15] T. Reis, T. Selig, Funnel control for the boundary controlled heat equation,
SIAM J. Control Optim. 53 (2015) 547–574.

[16] M. Puche, T. Reis, F.L. Schwenninger, Funnel control for boundary control
systems, 2019, (submitted for publication), Preprint available at arXiv:
https://arxiv.org/abs/1903.03599.

[17] A. Ilchmann, T. Selig, C. Trunk, The Byrnes-Isidori form for infinite-
dimensional systems, SIAM J. Control Optim. 54 (2016) 1504–1534.

[18] L. Grafakos, Classical Fourier Analysis, third ed., in: Graduate Texts in
Mathematics, vol. 249, Springer-Verlag, New York, 2014.

[19] M. Tucsnak, G. Weiss, Observation and control for operator semigroups,
in: Birkhäuser Advanced Texts Basler Lehrbücher, Birkhäuser, Basel, 2009.

[20] R.F. Curtain, G. Weiss, Well posedness of triples of operators (in the sense
of linear systems theory), in: F. Kappel, K. Kunisch, W. Schappacher (Eds.),
Control and Estimation of Distributed Parameter Systems, Birkhäuser,
Basel, 1989, pp. 41–59.

[21] C.M. Hackl, N. Hopfe, A. Ilchmann, M. Mueller, S. Trenn, Funnel control
for systems with relative degree two, SIAM J. Control Optim. 51 (2013)
965–995.

[22] A. Ilchmann, E.P. Ryan, Performance funnels and tracking control, Internat.
J. Control 82 (2009) 1828–1840.

[23] A. Ilchmann, E.P. Ryan, P. Townsend, Tracking with prescribed transient
behavior for nonlinear systems of known relative degree, SIAM J. Control
Optim. 46 (2007) 210–230.

[24] A. Ilchmann, Decentralized tracking of interconnected systems, in: K.
Hüper, J. Trumpf (Eds.), Mathematical System Theory - Festschrift in Honor
of Uwe Helmke on the Occasion of His Sixtieth Birthday, CreateSpace, 2013,
pp. 229–245.

[25] J.W. Helton, Systems with infinite-dimensional state space: the Hilbert
space approach, Proc. IEEE 64 (1976) 145–160.

[26] Y. Yamamoto, Realization theory of infinite dimensional linear systems,
parts I, II, Math. Syst. Theory 15 (1981) 55–77, 169–190.

[27] E.D. Sontag, Smooth stabilization implies coprime factorization, IEEE Trans.
Autom. Control 34 (1989) 435–443.

[28] E.D. Sontag, Input to state stability: basic concepts and results, in: P. Nistri,
G. Stefani (Eds.), Nonlinear and Optimal Control Theory, in: Lecture Notes
in Mathematics, vol. 1932, Springer-Verlag, Berlin, 2008, pp. 163–220.

[29] B. Jacob, R. Nabiullin, J.R. Partington, F.L. Schwenninger, Infinite-
dimensional input-to-state stability and Orlicz spaces, SIAM J. Control
Optim. 56 (2018) 868–889.

[30] A. Mironchenko, F.R. Wirth, Characterizations of input-to-state stability
for infinite-dimensional systems, IEEE Trans. Autom. Control 63 (2018)
1602–1617.

[31] M. Tucsnak, G. Weiss, Well-posed systems – the LTI case and beyond,
Automatica 50 (2007) 1757–1779.

[32] R.F. Curtain, H. Zwart, An Introduction to Infinite-Dimensional Linear
Systems Theory, in: Texts in Applied Mathematics, vol. 21, Springer-Verlag,
New York, 1995.

http://refhub.elsevier.com/S0167-6911(20)30059-1/sb14
http://refhub.elsevier.com/S0167-6911(20)30059-1/sb14
http://refhub.elsevier.com/S0167-6911(20)30059-1/sb14
https://arxiv.org/abs/1902.00586
http://refhub.elsevier.com/S0167-6911(20)30059-1/sb14
https://arxiv.org/abs/1902.00586
http://refhub.elsevier.com/S0167-6911(20)30059-1/sb14
https://arxiv.org/abs/1902.00586
http://refhub.elsevier.com/S0167-6911(20)30059-1/sb15
http://refhub.elsevier.com/S0167-6911(20)30059-1/sb15
http://refhub.elsevier.com/S0167-6911(20)30059-1/sb15
http://refhub.elsevier.com/S0167-6911(20)30059-1/sb16
http://refhub.elsevier.com/S0167-6911(20)30059-1/sb16
http://refhub.elsevier.com/S0167-6911(20)30059-1/sb16
http://refhub.elsevier.com/S0167-6911(20)30059-1/sb16
http://refhub.elsevier.com/S0167-6911(20)30059-1/sb16
https://arxiv.org/abs/1903.03599
http://refhub.elsevier.com/S0167-6911(20)30059-1/sb17
http://refhub.elsevier.com/S0167-6911(20)30059-1/sb17
http://refhub.elsevier.com/S0167-6911(20)30059-1/sb17
http://refhub.elsevier.com/S0167-6911(20)30059-1/sb18
http://refhub.elsevier.com/S0167-6911(20)30059-1/sb18
http://refhub.elsevier.com/S0167-6911(20)30059-1/sb18
http://refhub.elsevier.com/S0167-6911(20)30059-1/sb19
http://refhub.elsevier.com/S0167-6911(20)30059-1/sb19
http://refhub.elsevier.com/S0167-6911(20)30059-1/sb19
http://refhub.elsevier.com/S0167-6911(20)30059-1/sb20
http://refhub.elsevier.com/S0167-6911(20)30059-1/sb20
http://refhub.elsevier.com/S0167-6911(20)30059-1/sb20
http://refhub.elsevier.com/S0167-6911(20)30059-1/sb20
http://refhub.elsevier.com/S0167-6911(20)30059-1/sb20
http://refhub.elsevier.com/S0167-6911(20)30059-1/sb20
http://refhub.elsevier.com/S0167-6911(20)30059-1/sb20
http://refhub.elsevier.com/S0167-6911(20)30059-1/sb21
http://refhub.elsevier.com/S0167-6911(20)30059-1/sb21
http://refhub.elsevier.com/S0167-6911(20)30059-1/sb21
http://refhub.elsevier.com/S0167-6911(20)30059-1/sb21
http://refhub.elsevier.com/S0167-6911(20)30059-1/sb21
http://refhub.elsevier.com/S0167-6911(20)30059-1/sb22
http://refhub.elsevier.com/S0167-6911(20)30059-1/sb22
http://refhub.elsevier.com/S0167-6911(20)30059-1/sb22
http://refhub.elsevier.com/S0167-6911(20)30059-1/sb23
http://refhub.elsevier.com/S0167-6911(20)30059-1/sb23
http://refhub.elsevier.com/S0167-6911(20)30059-1/sb23
http://refhub.elsevier.com/S0167-6911(20)30059-1/sb23
http://refhub.elsevier.com/S0167-6911(20)30059-1/sb23
http://refhub.elsevier.com/S0167-6911(20)30059-1/sb24
http://refhub.elsevier.com/S0167-6911(20)30059-1/sb24
http://refhub.elsevier.com/S0167-6911(20)30059-1/sb24
http://refhub.elsevier.com/S0167-6911(20)30059-1/sb24
http://refhub.elsevier.com/S0167-6911(20)30059-1/sb24
http://refhub.elsevier.com/S0167-6911(20)30059-1/sb24
http://refhub.elsevier.com/S0167-6911(20)30059-1/sb24
http://refhub.elsevier.com/S0167-6911(20)30059-1/sb25
http://refhub.elsevier.com/S0167-6911(20)30059-1/sb25
http://refhub.elsevier.com/S0167-6911(20)30059-1/sb25
http://refhub.elsevier.com/S0167-6911(20)30059-1/sb26
http://refhub.elsevier.com/S0167-6911(20)30059-1/sb26
http://refhub.elsevier.com/S0167-6911(20)30059-1/sb26
http://refhub.elsevier.com/S0167-6911(20)30059-1/sb27
http://refhub.elsevier.com/S0167-6911(20)30059-1/sb27
http://refhub.elsevier.com/S0167-6911(20)30059-1/sb27
http://refhub.elsevier.com/S0167-6911(20)30059-1/sb28
http://refhub.elsevier.com/S0167-6911(20)30059-1/sb28
http://refhub.elsevier.com/S0167-6911(20)30059-1/sb28
http://refhub.elsevier.com/S0167-6911(20)30059-1/sb28
http://refhub.elsevier.com/S0167-6911(20)30059-1/sb28
http://refhub.elsevier.com/S0167-6911(20)30059-1/sb29
http://refhub.elsevier.com/S0167-6911(20)30059-1/sb29
http://refhub.elsevier.com/S0167-6911(20)30059-1/sb29
http://refhub.elsevier.com/S0167-6911(20)30059-1/sb29
http://refhub.elsevier.com/S0167-6911(20)30059-1/sb29
http://refhub.elsevier.com/S0167-6911(20)30059-1/sb30
http://refhub.elsevier.com/S0167-6911(20)30059-1/sb30
http://refhub.elsevier.com/S0167-6911(20)30059-1/sb30
http://refhub.elsevier.com/S0167-6911(20)30059-1/sb30
http://refhub.elsevier.com/S0167-6911(20)30059-1/sb30
http://refhub.elsevier.com/S0167-6911(20)30059-1/sb31
http://refhub.elsevier.com/S0167-6911(20)30059-1/sb31
http://refhub.elsevier.com/S0167-6911(20)30059-1/sb31
http://refhub.elsevier.com/S0167-6911(20)30059-1/sb32
http://refhub.elsevier.com/S0167-6911(20)30059-1/sb32
http://refhub.elsevier.com/S0167-6911(20)30059-1/sb32
http://refhub.elsevier.com/S0167-6911(20)30059-1/sb32
http://refhub.elsevier.com/S0167-6911(20)30059-1/sb32

	Funnel control in the presence of infinite-dimensional internal dynamics
	Introduction
	Nomenclature and basic concepts
	System class
	Control objective

	Funnel control
	A class of operators for funnel control
	Simulation
	Conclusion
	Declaration of competing interest
	References


