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a b s t r a c t

This paper is devoted to the controllability of a general linear hyperbolic system in one space dimension
using boundary controls on one side. Under precise and generic assumptions on the boundary
conditions on the other side, we previously established the optimal time for the null and the exact
controllability for this system for a generic source term. In this work, we prove the null-controllability
for any time greater than the optimal time and for any source term. Similar results for the exact
controllability are also discussed.
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1. Introduction and statement of the main result

Linear hyperbolic systems in one dimensional space are fre-
quently used in modeling of many systems such as traffic flow,
heat exchangers, and fluids in open channels. The stability and
boundary stabilization of these hyperbolic systems have been
studied intensively in the literature, see, e.g., [1] and the refer-
ences therein. In this paper, we are concerned about the optimal
time for the null-controllability using boundary controls on one
side. More precisely, we consider the system

@tw(t, x) = ⌃(x)@xw(t, x) + C(x)w(t, x)
for (t, x) 2 R+ ⇥ (0, 1). (1.1)

Here w = (w1, . . . , wn)T : R+ ⇥ (0, 1) ! Rn (n � 2), ⌃ and C are
(n⇥n) real matrix-valued functions defined in [0, 1]. As usual, see
e.g. [2], we assume that, may be after a linear change of variables
w ! R(x)w, ⌃(x) is of the form

⌃(x) = diag
�
��1(x), . . . ,��k(x),

�k+1(x), . . . , �n(x)
�
, (1.2)

where, with n = m + k,

� �1(x) < · · · < ��k(x) < 0

⇤ Corresponding author.
E-mail addresses: coron@ann.jussieu.fr (J.-M. Coron),

hoai-minh.nguyen@epfl.ch (H.-M. Nguyen).
1 The authors are partially supported by ANR, France Finite4SoS ANR-15-

CE23-0007.

< �k+1(x) < · · · < �k+m(x). (1.3)

Throughout the paper, we assume that

�i is Lipschitz on [0, 1] for 1  i  n (1.4)

and

C 2 [L
1(0, 1)]n⇥n. (1.5)

We are interested in the following type of boundary conditions
and boundary controls. The boundary conditions at x = 0 are
given by

w�(t, 0) = Bw+(t, 0) for t � 0, (1.6)

where w� = (w1, . . . , wk)T and w+ = (wk+1, . . . , wk+m)T, for
some given (k ⇥ m) real, constant matrix B, and the boundary
controls at x = 1 are

w+(t, 1) = W (t) for t � 0, (1.7)

where W = (Wk+1, . . . ,Wk+m)T are controls.
Let us recall that the control system (1.1), (1.6), and (1.7) is

null-controllable (resp. exactly controllable) at the time T > 0
if, for every initial data w0 : (0, 1) ! Rn in [L2(0, 1)]n (resp.
for every initial data w0 : (0, 1) ! Rn in [L2(0, 1)]n and for
every (final) state wT : (0, 1) ! Rn in [L2(0, 1)]n), there is a
control W : (0, T ) ! Rm in [L2(0, T )]m such that the solution
of (1.1), (1.6), and (1.7) satisfying w(0, x) = w0(x) vanishes (resp.
reaches wT ) at the time T : w(T , x) = 0 (resp. w(T , x) = wT (x)).
Throughout this paper, we consider broad solutions in L

2 with
respect to t and x for an initial data in L

2(0, 1) as in [2, Definition
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3.1]. In particular, the solutions belong to C([0, T ]; [L2(0, 1)]n)
and C([0, 1]; [L2(0, T )]n). The well-posedness for broad solutions
was given in [2, Lemma 3.2]. In fact, in [2, Definition 3.1] and
[2, Lemma 3.2], bounded broad solutions with respect to t and x

for an initial data in [L1(0, 1)]n are considered, nevertheless, the
extension for L2-setting is quite straightforward (see also [3]).

Set

⌧i :=

Z 1

0

1
�i(⇠ )

d⇠ for 1  i  n, (1.8)

and

Topt :=

8
>><

>>:

max
�

⌧1 + ⌧m+1, . . . , ⌧k + ⌧m+k,

⌧k+1
 

if m � k,

max
�

⌧k+1�m + ⌧k+1, ⌧k+2�m + ⌧k+2,

. . . , ⌧k + ⌧k+m

 
if m < k.

(1.9)

In this paper, we are mainly concerned about the optimal time
for the null controllability of (1.1), (1.6), and (1.7) for k � m � 1.
The null-controllability was known from [4, Section 5] for the
time ⌧k + ⌧k+1 without any assumption on B (see also [5–8] for
feedback controls using backstepping). In our previous work [2],
we established the null controllability of (1.1), (1.6), and (1.7)
at the optimal time Topt with B 2 B defined in (1.10), for a
generic C , i.e. for � C with � 2 R outside a discrete subset of
� 2 R. When C ⌘ 0, we also show that there exists a linear

time independent feedback which yields the null-controllability at
the time Topt . Similar results for the exact controllability at Topt

were also established there (see Section 3 for a discussion). The
optimality of Topt even for C ⌘ 0 was also discussed in [2]. It is
worth noting that there are choices of constants ⌃ , B, and C when
m = 2 and k � 2 so that the system is not null-controllable at
the time Topt [2, part 2 of Theorem 1] (see also [4, pages 559–
561]). It is easy to see that B is an open subset of the set of (real)
k ⇥ m matrices and the Hausdorff dimension of its complement
is min{k,m � 1}.

In this work, we prove the null-controllability of (1.1), (1.6),
and (1.7) for any time greater than Topt and form � k � 1 without
the generic requirement. Here is the main result of our paper:

Theorem 1. Let k � m � 1, and set

B : =
�
B 2 Rk⇥m

; such that (1.11) holds

for 1  i  min{k,m � 1}
 
, (1.10)

where

the i ⇥ i matrix formed from the last i

columns and rows of B is invertible. (1.11)

Assume that B 2 B. The control system (1.1), (1.6), and (1.7) is

null-controllable at any time T > Topt .

To our knowledge, the null-controllability result of Theorem 1
in the case m < k with general m and k is new. The sharpest
known result on the time to obtain the null-controllability is
⌧k + ⌧k+1. When m = k, Theorem 1 can be derived from the
exact controllable result in [9] under the additional assumption
that (1.11) holds for i = k (see Section 3 for a discussion). The
starting point of our analysis is the backstepping approach. More
precisely, as in [2] (see also [10] and the references therein for
prior works), we make the following change of variables

u(t, x) = w(t, x) �

Z
x

0
K (x, y)w(t, y) dy.

Here the kernel K : T =
�
(x, y) 2 (0, 1)2; 0 < y < x

 
! Rn is

chosen such that u satisfies

@tu(t, x) = ⌃(x)@xu(t, x) + S(x)u(t, 0)

for (t, x) 2 (0, T ) ⇥ (0, 1), (1.12)

where S 2 [L1(0, 1)]n⇥n has the structure

S =

✓
0k,k S�+

0m,k S++

◆
, (1.13)

with

(S++)pq = 0 for 1  q  p,

S�+ 2 [L1(0, 1)]k⇥m and S++ 2 [L1(0, 1)]m⇥m. Here and in what
follows, 0i,j denotes the zero matrix of size i ⇥ j for i, j 2 N, and
Mpq denotes the (p, q)-component of a matrix M . It is shown in
[2, Proposition 3.5] that the null-controllability of (1.1), (1.6), and
(1.7) at the time T can be derived from the null-controllability at
the time T of (1.12) equipped the boundary condition at x = 0

u�(t, 0) = Bu+(t, 0) for t � 0, (1.14)

and the boundary controls at x = 1

u+(t, 1) = U(t) for t � 0 where U is the control. (1.15)

To establish the null-controllability for u, we use the Hilbert
uniqueness method which involves crucially a compactness type
result in Lemma 4 with its roots in [2].

The backstepping approach for the control of partial differen-
tial equations was pioneered by Miroslav Krstic and his coauthors
(see [11] for a concise introduction). The use of backstepping
method to obtain the null-controllability for hyperbolic systems
in one dimension was initiated in [7] for the case m = k =

1. This approach has been developed later on for more general
m and k in [5,6,8]. In the case n = 2 and for a special ⌃ , a
similar change of variables was considered by Russell [4, Sec-
tion 4] to obtain a canonical form. The backstepping method is
now frequently used for various control problems modeling by
partial differential equations in one dimension. For example, it
has been also used to stabilize the wave equation [12–14], the
parabolic equations in [15,16], nonlinear parabolic equations [17],
and to obtain the null-controllability of the heat equation [18].
The standard backstepping approach relies on the Volterra trans-
form of the second kind. It is worth noting that, in some situa-
tions, more general transformations have to be considered as for
Korteweg–de Vries equations [19], Kuramoto–Sivashinsky equa-
tions [20], Schrödinger’s equation [21], and hyperbolic equations
with internal controls [22].

The rest of the paper is organized as follows: In Section 2,
we establish Theorem 1. The exact controllability is discussed in
Section 3.

2. Optimal time for the null-controllability

In this section, we study the null-controllability of (1.12) and
(1.14) under the control law (1.15). The main result of this sec-
tion, which implies Theorem 1 by [2, Proposition 3.5], is:

Theorem 2. Let k � m � 1 and assume that B 2 B. System (1.12)
and (1.14) under the control law (1.15) is null-controllable at any

time T > Topt .

The rest of this section contains two sections. In the first
section, we present some lemmas used in the proof of Theorem 2.
The proof of Theorem 2 is given in the second section.

2.1. Some useful lemmas

Fix T > 0. Define
FT : [L2(0, T )]m ! [L2(0, 1)]n

U 7! u(T , ·),
2
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where u is the solution of the system (1.12)–(1.15) with u(t =

0, ·) = 0.
In what follows, we denote

⌃�(x) = diag(��1(x), . . . ,��k(x)),

⌃+(x) = diag(�k+1(x), . . . , �k+m(x)).
We begin with

Lemma 1. We have, for V 2 [L2(0, 1)]n,

F⇤

T
(V ) = ⌃+(1)v+(·, 1) in (0, T ),

where v is the unique solution of the system

@tv(t, x) = ⌃(x)@xv(t, x) + ⌃ 0(x)v(t, x)
for (t, x) 2 (�1, T ) ⇥ (0, 1), (2.1)

with, for t < T ,

v�(t, 1) = 0, (2.2)

⌃+(0)v+(t, 0) = �B
T⌃�(0)v�(t, 0)

+

Z 1

0
S
T
�+

(x)v�(t, x) + S
T
++

(x)v+(t, x) dx, (2.3)

and

v(t = T , ·) = V in (0, 1). (2.4)

Throughout this paper, h·, ·i denotes the Euclidean scalar prod-
uct in the Euclidean space and h·, ·i

L2(a,b) denotes the scalar prod-
uct in [L2(a, b)]` for a < b and ` � 1.

Proof. We have

hU,F⇤

T
V i

L2(0,T )

=hFTU, V i
L2(0,1) = hu(T , ·), v(T , ·)i

L2(0,1)

=

Z
T

0
@thu(t, ·), v(t, ·)iL2(0,1) dt

=

Z
T

0
h@tu(t, ·), v(t, ·)iL2(0,1) + hu(t, ·), @tv(t, ·)iL2(0,1) dt

=

Z
T

0

Z 1

0
h⌃(x)@xu(t, x) + S(x)u(t, 0), v(t, x)i

+ hu(t, x), @tv(t, x)i dx dt by (1.12).

An integration by parts yields
Z

T

0

Z 1

0
h⌃(x)@xu(t, x), v(t, x)i dx dt

=

Z
T

0

Z 1

0
�h⌃ 0(x)v(t, x) + ⌃(x)@xv(t, x), u(t, x)i dt

+

Z
T

0
hu(t, 1), ⌃(1)v(t, 1)i �

Z
T

0
hu(t, 0), ⌃(0)v(t, 0)i dt.

Using the conditions on u at x = 0 and x = 1 (see (1.14) and
(1.15)), and (2.2), we have
Z

T

0
hu(t, 1), ⌃(1)v(t, 1)i �

Z
T

0
hu(t, 0), ⌃(0)v(t, 0)i dt

=

Z
T

0
h⌃+v+, u+i(t, 1) dt

�

Z
T

0
hB

T⌃�v� + ⌃+v+, u+i(t, 0) dt.

We then obtain

hU,F⇤

T
V i =

Z
T

0

Z 1

0
hS(x)u(t, 0), v(t, x)i

+

Z
T

0
h⌃+v+, u+i(t, 1) dt

�

Z
T

0
hB

T⌃�v� + ⌃+v+, u+i(t, 0) dt.

Using the boundary condition (2.3), we obtain

hU,F⇤

T
V i

L2(0,T ) =

Z
T

0
h⌃+v+, u+i(t, 1) dt,

which implies the conclusion. ⇤
Similarly, we have the following result whose proof is omitted.

Lemma 2. Let T > 0 and u0 2 [L2(0, 1)]n. Assume that u is the

unique solution of (1.12) and (1.14) with u(t = 0, ·) = u0 and

u+(·, 0) = 0 for t > 0. Then, for V 2 [L2(0, 1)]n, we have

Z 1

0
hu(T , x), V (x)i dx =

Z 1

0
hu0(x), v(0, x)i dx,

where v is the solution of (2.1)–(2.4).

Combining Lemmas 1 and 2, making a translation in time, and
applying the Hilbert uniqueness method (see e.g. [23, Chapter 2]),
we obtain

Lemma 3. Let T > 0. System (1.12)–(1.15) is null controllable at

the time T if and only if, for some positive constant C,

Z 0

�T

|v+(t, 1)|2 dt � C

Z 1

0
|v(�T , x)|2 dx 8 V 2 [L

2(0, 1)]n, (2.5)

where v is the unique solution of the system

@tv(t, x) = ⌃(x)@xv(t, x) + ⌃ 0(x)v(t, x)
for (t, x) 2 (�1, 0) ⇥ (0, 1), (2.6)

with, t < 0,

v�(t, 1) = 0, (2.7)

⌃+(0)v+(t, 0) = �B
T⌃�(0)v�(t, 0)

+

Z 1

0
S
T
�+

(x)v�(t, x) + S
T
++

(x)v+(t, x) dx, (2.8)

and

v(t = 0, ·) = V in (0, 1). (2.9)

Finally, we establish a compactness type result which is one
of the key ingredients in the proof of Theorem 2.

Lemma 4. Let k � m � 1, B 2 B, and T � Topt . Assume that (vN )
is a sequence of solutions of (2.6)–(2.8) (with vN (0, ·) in [L2(0, 1)]n)
such that

sup
N

kvN (�T , ·)k
L2(0,1) < +1, (2.10)

lim
N!+1

kvN,+(·, 1)kL2(�T ,0) = 0. (2.11)

We have, up to a subsequence,

vN (�T , ·) converges in [L
2(0, 1)]n, (2.12)

and the limit V 2 [L2(0, 1)]n satisfies the equation

V = KV , (2.13)

for some compact operator K from [L2(0, 1)]n into itself. Moreover,

K depends only on ⌃ , S, and B; in particular, K is independent of T .

3
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Fig. 1. The geometry associated to Lemma 4 when ⌃ is constant and 1  `  m.

Proof. Set, for 0  `  m � 1,

⇢` = �T + ⌧k+`+1,

and denote ⇢m = �T . Use the characteristic method and the
diagonal form of (2.6), and take into account (2.7) and (2.11).
Since ⌃ is Lipschitz, one can check that (see Fig. 1): for 1  ` 

m,

(A1) for 1  j  k � m + `,

vN,j = 0 in (�T , ⇢`�1) ⇥ (0, 1), (2.14)

(A2) for k + ` + 1  j  k + m,

lim
N!+1

kvN,jkL2(⇢`,⇢`�1) = 0, (2.15)

(A3) for t 2 (⇢`, ⇢`�1) and for k + ` + 1  j  k + m,

lim
N!+1

kvN,j(t, ·)kL2(0,1) = 0. (2.16)

We have, by (2.8), that for t 2 (�T , 0),

⌃+(0)vN,+(t, 0) = �B
T⌃�(0)vN,�(t, 0)

+

Z 1

0
S
T
�+

(x)vN,�(t, x) + S
T
++

(x)vN,+(t, x) dx. (2.17)

Denote, for 1  `  m,

VN,` = (vN,k�m+`+1, . . . , vN,k)T,

WN,` = (vN,k+1, . . . , vN,k+`)T,
and set, for 1  `  m,

D̂` =

n
(t, s) : t 2 (⇢`, ⇢`�1), ⇢m  s  t

o

and

D` =

n
(t, s) : t 2 (⇢`, ⇢`�1), t  s  ⇢0

o
.

Let 1  `  m�1. Consider the last (m�`) equations of (2.17)
for t 2 (⇢`, ⇢`�1). Multiply the system by the inverse of the matrix
given in (1.11) with i = m � `. Using (A1), one can ignore the
contribution of vN,j(t, 0) and vN,j(t, ·) for 1  j  k�m+ `. View
vN,j(·, 0) and vN,j(t, ·) with k+`+1  j  k+m as perturbations.
Applying the characteristic method and taking into account the
diagonal form of (2.6), we obtain the following relation between

VN,`(·, 0) and WN,`(·, 0): for t 2 (⇢`, ⇢`�1),

VN,`(t, 0) =

Z
t

⇢m

G`(t, s)VN,`(s, 0) ds

+

Z ⇢0

t

H`(t, s)WN,`(s) ds + FN,`(t), (2.18)

for some G` 2
⇥
L
1(D̂`)

⇤(m�`)⇥(m�`) and H` 2⇥
L
1(D`)

⇤(m�`)⇥` which depend only on ⌃ , B, and S, and for some
FN,` 2 [L2(⇢`, ⇢`�1)]m�` which depends only on ⌃ , B, and S, and
vN,j(·, 0) and vN,j(t, ·) for t 2 (⇢`, ⇢`�1) with k+`+1  j  k+m.
Moreover, by (A2) and (A3), one obtains

FN,` ! 0 in [L2(⇢`, ⇢`�1)]m�` as N ! +1.

Let 1  `  m. Consider the first ` equations of (2.17) for
t 2 (⇢`, ⇢`�1). Since (ST

++
)pq = 0 for p  q  m by (1.13), vN,k+j

with j � l does not appear in the integral terms of the first `
equations of (2.17). Using (A1), one can ignore the contribution
of vN,j(t, 0) and vN,j(t, ·) for 1  j  k � m + `. Applying the
characteristic method and taking into account the diagonal form
of (2.6), we have

WN,`(t, 0) = Q`VN,`(t, 0) +

Z
t

⇢m

L`(t, s)VN,`(s, 0) ds

+

Z ⇢0

t

M`(t, s)WN,`�1(s, 0) ds. (2.19)

for some constant Q` 2 R`⇥(m�`), for some L` 2
⇥
L
1(D̂`)

⇤`⇥(m�`)

and M` 2
⇥
L
1(D`)

⇤`⇥(`�1), all depending only on ⌃ , B, and S. In
the case ` = m, (2.19) is understood in the sense that the first
two terms on the RHS are 0.

We are now in the position to derive the conclusion. We have,
by the characteristic method and the diagonal form of (2.6),

(i) vN,�(�T , ·) = 0 in (0, 1);
(ii) the information of vN,+(�T , ·) in (0, 1) is encoded by the

information of vN,k+1(·, 0) on (⇢m, ⇢0), of
vN,k+2(·, 0) on (⇢m, ⇢1), . . . , of vN,k+m(·, 0) on (⇢m, ⇢m�1);

(iii) Using (2.18) for ` = m � 1, one can solve VN,m�1(t, 0) for
t 2 (⇢m�1, ⇢m�2) as a function of WN,m�1(·, 0) and FN,m�1(·)
in (⇢m�1, ⇢m�2), and VN,m�1(·, 0) in (⇢m, ⇢m�1). Continue the
process with ` = m�2, then with ` = m�3, . . . , and finally
with ` = 1. Note that, by (A1),

vN,k�m+`+1(·, 0) = 0 in (⇢m, ⇢`). for 0  `  m � 1.

One thus can solve

VN,1(·, 0) 2 L
2(⇢2, ⇢0) ⇥ · · · ⇥ L

2(⇢m, ⇢0)

as a function of WN,m�1(·, 0)
2 L

2(⇢m, ⇢0) ⇥ · · · ⇥ L
2(⇢m, ⇢m�2) and FN,j(·) with j =

1, . . . ,m, and one has

VN,1(·, 0) = K1WN,m�1(·, 0) + gN .

where gN 2 L
2(⇢2, ⇢0) ⇥ · · · ⇥ L

2(⇢m, ⇢0) converges to 0 in
the corresponding L

2-norm and K1 is a compact operator
depending only on ⌃ , S and B.

The conclusion now follows from (2.19) applied to 1  `  m

noting that the first two terms on the RHS of (2.19) are 0 if ` = m.
The proof is complete. ⇤

Remark 1. The assumption (ST
++

)pq = 0 for p  q  m

is essentially not necessary for the proof of Lemma 6. Without
this condition, there is an error term in (2.19) which goes to
0 in [L2(⇢`, ⇢`�1)]` as N ! +1 thanks to (A2) and (A3). The
conclusion then follows similarly.

4
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2.2. Proof of Theorem 2

The arguments are in the spirit of [24,25] (see also [26,27]).
For T > Topt , set

YT :=

n
V 2 L

2(0, 1) : V is the limit in L
2(0, 1) of

some subsequence of solutions
�
vN (�T , ·)

�

of (2.6)–(2.8) such that (2.10) and (2.11) hold
o

. (2.20)

It is clear that YT is a vectorial space. Moreover, by (2.13) and the
compact property of K, we have

dim YT  C, (2.21)

for some positive constant C independent of T .
We next show that

YT2 ⇢ YT1 for Topt < T1 < T2. (2.22)

Indeed, let V 2 YT2 . There exists a sequence of solutions (vN ) of
(2.6)–(2.8) such that
⇢

vN (�T2, ·) ! V in L
2(0, 1),

limN!+1 kvN,+(·, 1)kL2(�T2,0) = 0. (2.23)

By considering the sequence vN (· � ⌧ , ·) with ⌧ = T2 � T1, we
derive that V 2 YT1 .

By Lemma 3, to obtain the null-controllability at the time
T > Topt , it suffices to prove (2.5) by contradiction. Assume that
there exists a sequence of solutions (vN ) of (2.6)–(2.8) such that

N

Z 0

�T

|vN,+(t, 1)|2 dt 

Z 1

0
|vN (�T , x)|2 dx = 1. (2.24)

By (2.12), up to a subsequence, vN (�T , ·) converges in L
2(0, 1) to

a limit V . It is clear that kVk
L2(0,1) = 1; in particular, V 6= 0.

Consequently,

YT 6= {0}. (2.25)

By (2.21), (2.22), and (2.25), there exist Topt < T1 < T2 < T

such that

dim YT1 = dim YT2 6= 0.

We claim that, for V 2 YT1 ,

⌃@xV + ⌃ 0
V is an element in YT1 . (2.26)

Indeed, since YT1 = YT2 , by the definition of YT2 , there exists a
sequence of solutions (vN ) of (2.6)–(2.8) such that
⇢

limN!+1 kvN,+(·, 1)kL2(�T2,0) = 0,
V = limN!+1 vN (�T2, ·) in L

2(0, 1). (2.27)

Using (2.22), one may assume that T2�T1 is small. We claim that,
for t 2 (�T2, �T1],

sup
N

kvN (t, ·)kL2(0,1) < +1. (2.28)

Noting that ⌃ and ⌃ 0 are diagonal, we have, by the characteristic
method, for t 2 (�T2, �Topt )

vN,�(t, ·) = 0 in (0, 1). (2.29)

Using the characteristic method again, we also have, for t 2

(�T2, �T1],

kvN,+(t, ·)kL2(0,1)  C

⇣
kvN,+(�T2, ·)kL2(0,1)

+kvN,+(·, 1)kL2(�T2,t)

⌘
. (2.30)

We derive from (2.27) that

sup
N

kvN,+(t, ·)kL2(0,1) < +1. (2.31)

Combining (2.29) and (2.31) yields (2.28).
Using (2.12), without loss of generality, one may assume that

vN (�T1, ·) ! V̂ in L
2(0, 1) for some V̂ 2 L

2(0, 1).

Let v̂ be the unique solution of the system

@t v̂(t, x) = ⌃(x)@xv̂(t, x) + ⌃ 0(x)v̂(t, x)
for (t, x) 2 (�1, �T1) ⇥ (0, 1), (2.32)

with, for t < �T1,

v̂�(t, 1) = 0, (2.33)

⌃+(0)v̂+(t, 0) = �B
T⌃�(0)v̂�(t, 0)

+

Z 1

0
S
T
�+

(x)v̂�(t, x) + S
T
++

(x)v̂+(t, x) dx, (2.34)

and

v̂(t = �T1, ·) = V̂ . (2.35)

One then has, for ⌧ < �T1,

vN ! v̂ in C
0�

[⌧ , �T1]; L
2(0, 1)

�
. (2.36)

In particular, by (2.22), we have

v̂(t, ·) 2 YT1 for t 2 [�T2, �T1) (2.37)

and

V = v̂(�T2, ·) in (0, 1).

Since, in the distributional sense and hence in YT1 ,

@t v̂(�T2, ·) = lim
"!0+

1
"

h
v̂(�T2 + ", ·) � v̂(�T2, ·)

i
,

and, for " > 0 small,
1
"

h
v̂(�T2 + ", ·) � v̂(�T2, ·)

i
2 YT1 by (2.37),

one derives that

⌃@xv̂(�T2, ·) + ⌃ 0v̂(�T2, ·) 2 YT1 ,

which implies (2.26). In particular, YT1 ⇢ H
1(0, 1).

Recall that YT1 is real and of finite dimension. Consider its
natural extension as a complex vectorial space and still denote
its extension by YT1 . Define

A : YT1 ! YT1
V 7! ⌃@xV + ⌃ 0

V .

From the definition of YT1 , it is clear that, for V 2 YT1 ,

V�(1) = 0 (2.38)

and

⌃+(0)V+(0) = �B
T⌃�(0)V�(0)

+

Z 1

0
S
T
�+

(x)V�(x) + S
T
++

(x)V+(x) dx. (2.39)

Since YT1 6= {0} and YT1 is of finite dimension, there exists � 2 C
and V 2 YT1 \ {0} such that

AV = �V .

Set

v(t, x) = e
�t
V (x) in (�1, 0) ⇥ (0, 1).

5
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Using (2.38) and (2.39), one can verify that v(t, x) satisfies (2.6)–
(2.8). Using (2.38) and applying the characteristic method, one
deduces that

v�(t, ·) = 0 in (0, 1) for t < �⌧k. (2.40)

From (2.8), we then obtain, for t < �⌧k,

⌃+(0)v+(t, 0) =

Z 1

0
S
T
++

(x)v+(t, x) dx. (2.41)

Using the structure of S++, we then have

vk+1(t, 0) = 0 for t < �⌧k.

By the characteristic method, this in turn implies that, for t <
�⌧k � ⌧k+1.

vk+1(t, ·) = 0 in (0, 1).

Similarly, we have, for t < �⌧k � ⌧k+1 � ⌧k+2,

vk+2(t, ·) = 0 in (0, 1)

. . . , and for t < �⌧k � ⌧k+1 � · · · � ⌧k+m,

vk+m(t, ·) = 0 in (0, 1).

Then v(t, ·) = 0 in (0, 1) for t < �⌧k�⌧k+1� · · ·�⌧k+m. It follows
that V = 0 which contradicts the fact V 6= 0. Thus (2.5) holds and
the null-controllability is valid for T > Topt . ⇤

3. Optimal time for the exact controllability

This section is on the exact controllability of (1.1), (1.6), and
(1.7) for m � k � 1. We give two new proofs, one in the spirit
of the proof of Theorem 1 and one is derived from Theorem 1, of
the following result due to Hu and Olive [9].

Theorem 3. Assume that m � k � 1. Set

Be :=
�
B 2 Rk⇥m

; such that (1.11) holds for 1  i  k

 
,

Assume that B 2 Be. The control system (1.1), (1.6), and (1.7) is

exactly controllable at any time T > Topt .

The exact controllability of (1.1), (1.6), and (1.7) for m � k has
been investigated intensively in the literature. Whenm = k under
a similar condition, this exact controllability was considered in
[4, Theorem 3.2]. In the linear case with m � k and C ⌘

0, the exact controllability was obtained by Weck [28]. In the
quasilinear case with m � k, the exact controllability was derived
in [29, Theorem 3.2] (see also [30]) for m � k and for the time
⌧k + ⌧k+1 under a condition which is equivalent to the fact that
(1.11) holds for 1  i  k. The result was improved when C = 0
in [10] when the time of control is max{⌧k+1, ⌧k+⌧m+1} involving
backstepping. The exact controllability of (1.1), (1.6), and (1.7)
at the time Topt was recently established in [2] for a generic C ,
i.e., for � C with � 2 R outside a discrete subset of � 2 R
using the backstepping approach. The generic condition of C is
not required for C with small L1-norm by the same approach.
It is worth noting that Be is an open subset of the set of (real)
k ⇥ m matrices and the Hausdorff dimension of its complement
is k. The generic condition is then removed recently in [9] by a
different approach. The optimal time for B 62 Be was discussed
in [2, Proposition 1.6] (see also [9]).

In this section, we first show how to adapt the approach
for Theorem 1 to derive Theorem 3. As in the study of the
null-controllability, it suffices, by [2, Proposition 3.1], to establish

Theorem 4. Let m � k � 1 and assume that B 2 Be. System

(1.12)–(1.14) under the control law (1.15) is exactly controllable at

any time T > Topt .

Fig. 2. The geometry associated to Lemma 6 when ⌃ is constant and 1  j  k.

As a consequence of Lemma 1, by the Hilbert uniqueness
principle, see, e.g., [23, Chapter 2], we have

Lemma 5. Let T > 0. System (1.12)–(1.15) is exactly controllable

at the time T if and only if, for some positive constant C,

Z 0

�T

|v+(t, 1)|2 dt � C

Z 1

0
|v(0, x)|2 dx 8 V 2 [L

2(0, 1)]n, (3.1)

for all solution v of (2.6)–(2.8).

As a variant of Lemma 4, we establish

Lemma 6. Let m � k � 1, B 2 Be, and T � Topt . Assume that (vN )
be a sequence of solutions of (2.6)–(2.8) such that

⇢
supN kvN (0, ·)kL2(0,1) < +1,

limN!+1 kvN,+(·, 1)kL2(0,T ) = 0. (3.2)

We have, up to a subsequence,

vN (0, ·) converges in L
2(0, 1), (3.3)

and the limit V 2 [L2(0, 1)]n satisfies the equation

V = KeV , (3.4)

for some compact operator Ke from [L2(0, 1)]n into itself. Moreover,

Ke depends only on ⌃ , S, and B; in particular, Ke is independent of T .

Proof. Denote ⌧0 = 0. Use the characteristic and diagonal form
of (2.6), and take into account (2.7) and the limit in (3.2). Since
⌃ is Lipschitz, one can check that, for 1  j  k (see Fig. 2):

(B1) for 1  `  j � 1,

vN,` = 0 in (�T , �⌧j�1) ⇥ (0, 1), (3.5)

(B2) for m + j  `  m + k,

lim
N!+1

kvN,`kL2(�⌧j,�⌧j�1) = 0, (3.6)

(B3) for t 2 (�⌧j, �⌧j�1) and for m + j  `  m + k,

lim
N!+1

kvN,`(t, ·)kL2(0,1) = 0. (3.7)

We have, by (2.8), for �T < t < 0,

⌃+(0)vN,+(t, 0) = �B
T⌃�(0)vN,�(t, 0)

+

Z 1

0
S
T
�+

(x)vN,�(t, x) + S
T
++

(x)vN,+(t, x) dx. (3.8)

6
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Denote, for 1  j  k,

V
e

N,j = (vN,j, . . . , vN,k)T,

W
e

N,j = (vN,k+1, . . . , vN,m+j�1)T,
and set, for 1  j  k,

D̂e

j
:=

n
(t, s) : t 2 (�⌧j, �⌧j�1), t  s  0

o
,

and

De

j
:=

n
(t, s) : t 2 (�⌧j, �⌧j�1), �⌧k  s  t

o
.

When m = k and j = 1, We

N,1 is irrelevant.
Let 1  j  k. Consider the last (k� j+1) equations of (3.8) for

t 2 (�⌧j, �⌧j�1). Multiply the system by the inverse of the matrix
given in (1.11) with i = k � j + 1. Using (B1), one can ignore the
contribution of vN,` for 1  `  j�1. View vN,`(t, ·) for x 2 (0, 1)
and for t 2 (�⌧j, �⌧j�1), and vN,`(·, 0) for t 2 (�⌧j, �⌧j�1) with
m + j  `  k + m as perturbations. Using the characteristic
and the diagonal form of (2.6), we obtain the following relation
between V

e

N,j(·, 0) and W
e

N,j(·, 0): for t 2 (�⌧j, �⌧j�1),

V
e

N,j(t, 0) =

Z
t

�⌧k

G
e

j
(t, s)Ve

N,j(s, 0) ds

+

Z 0

t

H
e

j
(t, s)We

N,j(s, 0) ds + F
e

N,j(t), (3.9)

for some G
e

j
2 [L1(De

j
)](k�j+1)⇥(k�j+1) and

H
e

j
2 [L1(D̂e

j
)](k�j+1)⇥(m�k+j�1) and which depends only on ⌃ , S,

and B, and for some F
e

N,j 2 [L2(�⌧j, �⌧j�1)]k�j+1, which depends
only on ⌃ , S, and B, and vN,+. Moreover, by (B2) and (B3),

F
e

N,j ! 0 in L
2(�⌧j, �⌧j�1) as N ! +1. (3.10)

When k = m and j = 1, the second term on the RHS of (3.9) is
understood by 0.

Let 1  j  k. Consider the first (m�k+j�1) equations of (3.8)
for t 2 (�⌧j, �⌧j�1). Since (ST

++
)pq = 0 for p  q  m by (1.13),

vN,k+` with ` � m�k+ j�1 does not appear in the integral terms
of the first (m�k+ j�1) equations of (2.17), which is equivalent
to the fact that vN,` with ` � m + j � 1 does not appear in the
integral term of the first (m � k + j � 1) equations of (2.17). We
have, by (B1), for t 2 (�⌧j, �⌧j�1),

W
e

N,j(t, 0) = Q
e

j
V

e

N,j(t, 0) +

Z
t

�⌧k

L
e

j
(t, s)Ve

N,j(s, 0) ds

+

Z 0

t

M
e

`(t, s)W
e

N,j�1(s, 0) ds. (3.11)

for some constant Q
e

j
2 R(m�k+j�1)⇥(k�j+1), for some

L
e

j
2 [L1(De

j
)](m�k+j�1)⇥(k�j+1), and for some M

e

j
2

[L1(D̂j)](m�k+j�1)⇥(m�k+j�2), all depending only on ⌃ , B, and S.
When k = m and j = 1, (3.11) is irrelevant.

We are ready to derive the conclusion. Using (3.11) with j =

1, one can solve W
e

N,1(t, 0) as a function of V
e

N,1(t, 0) for t 2

(�⌧1, �⌧0) = (�⌧1, 0) (if m = k, then this is irrelevant). Continue
the process with j = 2, then j = 3, . . . , finally with j = k. We
thus obtain

W
e

N,k 2 [L
2(�⌧k, �⌧0)]m�k

⇥ L
2(�⌧k, �⌧1) ⇥

. . . ⇥ L
2(�⌧k, �⌧k�1)

as a linear continuous function of V
e

N,k 2 L
2(�⌧1, 0) ⇥ · · · ⇥

L
2(�⌧k, 0). The conclusion now follows from (3.9) after noting
that, by the characteristic method and the diagonal form of (2.6),

• limN!0 vN,+(0, ·) = 0 in [L2(0, 1)]m.

• the information of vN,�(0, ·) is encoded by the information
of vN,1(·, 0) on (�⌧1, 0), of vN,2(·, 0) on (�⌧2, 0), . . . , of
vN,k(·, 0) on (�⌧k, 0).

The proof is complete. ⇤

Remark 2. The assumption (ST
++

)pq = 0 for p  q  m is
essentially not necessary for the proof of Lemma 6. Without this
condition, there is an error term in (3.11) which goes to 0 in
[L2(�⌧j, �⌧j�1)]m�k+j�1 as N ! +1 thanks to (B2) and (B3). The
conclusion then follows similarly.

We are ready to give the

Proof of Theorem 4. The proof of Theorem 4 is similar to the
one of Theorem 3. For T > Topt , set

Y
e

T
:=

n
V 2 L

2(0, 1) : V is the limit in L
2(0, 1) of

some subsequence of solutions
�
vN (0, ·)

�

of (2.6)–(2.8) such that (3.2) holds
o

. (3.12)

As in Theorem 2, Y e

T
is a vectorial space of finite dimension and

there exist Topt < T1 < T2 < T such that

dim Y
e

T1
= dim Y

e

T2
.

Fix such T1 and T2. By Lemma 5, it suffices to prove (3.1) by
contradiction. Assume that (3.1) does not hold. Then, as in the
proof Theorem 2, there exist � 2 C and V 2 Y

e

T1
\ {0} such that

⌃@xV + ⌃ 0
V = �V .

Set

v(t, x) = e
�t
V (x) in (�1, 0) ⇥ (0, 1). (3.13)

As in the proof of Theorem 2, one can verify that v(·, ·) satisfies
(2.6)–(2.8). Applying the characteristic method, one deduces that

v�(t, ·) = 0 for t < �⌧k. (3.14)

As in the proof of Theorem 2, we also have

v(t, ·) = 0 in (0, 1) for t < �⌧k � ⌧k+1 � · · · � ⌧k+m. (3.15)

It follows that V = 0 which contradicts the fact V 6= 0. Thus (3.1)
holds and the exact-controllability is valid for T > Topt . ⇤

We next give

The second proof of Theorem 3. The second proof of Theorem 3
can be also deduced from Theorem 1. Indeed, consider first the
case m = k. By making a change of variables

ew(t, x) = w(T � t, x) for t 2 (0, T ), x 2 (0, 1).

Then

ew�(t, 0) =eB�1ew+(t, 0),

with ew�(t, ·) = (w2k, . . . , wk+1)T(T � t, ·), and ew+(t, ·) =

(wk, . . . , w1)T(T � t, ·), andeBij = Bpq with p = k� i and q = k� j.
Note that the i ⇥ i matrix formed from the first i columns and
rows ofeB is invertible. Using Gaussian elimination method, one
can find (k ⇥ k) matrices T1, . . . , TN such that

TN . . . T1eB = U,

where U is a (k⇥k) upper triangular matrix, and Ti (1  i  N) is
the matrix given by the operation which replaces a row p by itself
plus a multiple of a row q for some 1  q < p  N . It follows
that
eB�1

= U
�1

TN . . . T1.

7
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One can check that U�1 is an invertible, upper triangular matrix
and TN . . . T1 is an invertible, lower triangular matrix. It follows
that the i ⇥ i matrix formed from the last i columns and rows of
eB�1 is the product of the matrix formed from the last i columns
and rows of U�1 and the matrix formed from the last i columns
and rows of TN . . . T1. Therefore,eB�1 2 B. One can also check that
the exact controllability of the system for w(·, ·) at the time T

is equivalent to the null-controllability of the system for ew(·, ·)
at the same time and the conclusion of Theorem 3 follows from
Theorem 1. The case m > k can be obtained from the case m = k

as follows. Consider ŵ(·, ·) the solution of the system

@tŵ = ⌃̂(x)@xŵ(t, x) + Ĉ(x)ŵ(t, x),

ŵ�(t, 0) = B̂ŵ+(t, 0), and ŵ+(t, 1) are controls.
Here

⌃̂ = diag(��̂1, . . . ,��̂m, �̂m+1, . . . �̂2m),

with �̂j = �(1 + m � k � j)"�1 for 1  j  m � k with positive
small ", �̂j = �j�(m�k) if m � k + 1  j  m, and �̂j+m = �j+k for
1  j  m,

Ĉ(x) =

✓
0m�k,m�k 0m�k,n

0n,m�k C(x)

◆
,

and

B̂ =

✓
Im�k 0m�k,m

0m�k,m B

◆
,

where I` denotes the identity matrix of size ` ⇥ ` for ` � 1.
Recall that 0i,j denotes the zero matrix of size i ⇥ j for i, j, ` � 1.
Then the exact controllability of w at the time T can be derived
from the exact controllability of ŵ at the same time. One then can
deduce the conclusion of Theorem 3 from the case m = k using
Theorem 1 by noting that the optimal time for the system of ŵ
converges to the optimal time for the system of w as " ! 0+. ⇤
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