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Abstract. A measure of quality of a control system is a quantitative exten-
sion of the classical binary notion of controllability. In this article we study
the quality of linear control systems from a frame-theoretic perspective. We
demonstrate that all LTI systems naturally generate a frame on their state
space, and that three standard measures of quality involving the trace, mini-
mum eigenvalue, and the determinant of the controllability Gramian achieve
their optimum values when this generated frame is tight. Motivated by this,
and in view of some recent developments in frame-theoretic signal processing,
we propose a natural measure of quality for continuous time LTI systems based
on a measure of tightness of the frame generated by it and then discuss some
properties of this frame-theoretic measure of quality.

1. Introduction

Let n and m be positive integers, and consider a linear time-invariant (LTI)
system

(1) 9xptq “ Axptq ` Buptq for t P R,
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where A P R
nˆn and B P R

nˆm are given and fixed matrices. Let τ ą 0 denote
the time horizon of the system (1) for the control objectives that follow, and let Uτ

denote the set of control maps u : r0, τ s ÝÑ R
m that are square integrable. The

reachability matrix C and the reachable space R of LTI system (1) are defined by:

C ≔
`

B AB ¨ ¨ ¨ An´1B
˘

,

R ≔ imagepCq.

Recall that the control system (1) is controllable in the classical sense if, given any
preassigned points of x̄, x̂ P R

n, there exists a control u P Uτ that can transfer the
states of the system (1) from xp0q “ x̄ to xpτq “ x̂. It is known that the LTI
system (1) is controllable if and only if the matrix C is of rank n. Of course, there
are analogues of controllability for nonlinear and stochastic systems, and each of
these notions provides a certificate of whether the corresponding control system,
locally or globally, is controllable or not.

In our everyday lives, in addition to knowing whether a control system is control-
lable or not, it is also important to understand how controllable or how good is the
control system. Indeed, a person intending to purchase a car typically test-drives
several models within the budget, and in addition to its efficiency, the ease of ma-
neuverability of the car, its ability to handle tight corners at various speeds, etc.,
during the test-drives become important factors in arriving at the final selection.
Similarly, a surgeon performing a robot-assisted surgery would naturally prefer the
instruments to be as amenable but as precise as possible in order to maximize the
success of the operation. However, no assessment of the “extent” of controllability
of a given control system is provided by the classical ideas, and in this article we
propose a natural and fundamental technique to do precisely that.

Intuitively speaking, any measure of controllability of systems should involve
some important and innate characteristics of the system such as the average control
energy or the control effort required to perform a certain class of manoeuvres,
robustness to a class of disturbances, the ability to control the system with a class
of sparse controls, etc. We shall observe below that such intuitive ideas are justified,
and indeed, they are natural. Our measure of controllability relies on the theory of
frames, an extremely popular topic in signal processing, and unifies and sheds new
light on a plethora of controllability measures that have appeared in the literature so
far. Indeed, we select several measures of controllability that have been proposed
across several decades in [MW72], [Lio94], [PZB14], [SCL16], [ZC17], and unify
and derive new insights into all of them under a single umbrella framework. This
particular ability to collect such diverse ideas under one umbrella points strongly
to the fundamental character of our framework. In order to ensure a clean and
simple exposition we shall limit our discussion to the context of LTI systems as in
(1) above, and refer to our controllability measure as a Measure Of Quality (MOQ)
of an LTI control system.

A few words about frames are in order. Frames are, roughly speaking, overcom-
plete bases of Hilbert spaces. The property of overcompleteness ensures that the
representation of vectors in terms of frames (as opposed to bases) leads to strong
robustness properties of such representations that are useful in signal processing.
The study of frames was initiated by Duffin and Schaeffer [DS52] and expanded
greatly by work of Daubechies et al. in [DGM86]. A particular class of frames,
namely, tight frames, are of great importance in signal processing. Tight frames
are minimizers of a certain potential function [BF03, CFK`06], they possess sev-
eral desirable properties. For example, representations of vectors in terms of tight
frames exhibit better resilience to noise and quantization [SPK`06, ZYZF16]; tight
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frames are also known to be good for representing signals sparsely, and are the
ℓ2-optimal dictionaries for representing vectors that are uniformly distributed over
spheres [SC17b, Proposition 2.13, p. 10]. The results in the sequel will demonstrate
that the theory of tight frames lead to important useful consequences in control
theory, in particular, in the context of quantifying controllability of LTI systems.

The rest of the article unfolds as follows. In §2 we introduce the basic definitions
associated with LTI systems with an emphasis on the underlying frame-theoretic
aspects. In particular, we show how a controllable LTI system naturally gives rise
to a frame on it’s state space. In §3 we review the minimum energy optimal control
problem for LTI systems. We then discuss three classical MOQs motivated by the
minimum energy control problem that have appeared in literature before. In §4 we
present our first contribution: we show that all the three classical MOQs introduced
earlier attain their optimal value precisely when the frame generated by the LTI
system is tight. In §5, motivated by the results obtained in the preceding section,
we propose a new measure of quality for LTI systems based on how tight the frame
generated by the LTI system is. We then discuss some properties of the proposed
frame-theoretic measure of quality.

Notation. We employ standard notations in this article. The set of positive in-
tegers is denoted by N, the real numbers by R. For any positive integer ν and
a vector x in R

ν , we let xJ denote its transpose and ‖x‖ its standard Euclidean
norm. We work with several different inner products in the sequel, and as a rule we
distinguish the inner product on a vector space X as x¨, ¨yX , with the exception of

the standard inner product xv, v1y “ vJv1 on R
ν that we leave without a subscript

to avoid notational clutter. The norm induced by x¨, ¨yX on X is denoted by } ¨ }X ,
once again with the exception of the standard Euclidean norm on R

ν . For a matrix
M with real entries, imagepMq is its column space and trpMq is its trace. The set of
ν ˆν symmetric positive definite and non-negative definite matrices are denoted by
R

νˆν
`` and R

νˆν
` , respectively. The ν ˆ ν identity matrix will be denoted by Iν . For

us ℓ2pRνq stands for the Hilbert space of square summable sequences taking values

in R
ν , i.e., ℓ2pRνq ≔

!

α “ pαiqiPN

ˇ

ˇ

ˇ
αi P R

ν for each i and
ř`8

j“1 ‖αj‖
2 ă `8

)

,

equipped with the inner product xα, α1yℓ2pRνq ≔
ř`8

i“1 xαi, α1
iy.

2. Frame theory and Linear systems

We recall the basic definitions related to frames in finite-dimensional Hilbert
spaces:

Definition 1 ([Chr16, §1.1]). For a Hilbert space Hn of dimension n and with an
inner product x¨, ¨yHn

, a finite or countable collection of vectors pviqiPI Ă Hn is said
to be a frame of Hn if there exist constants 0 ă c ď C such that

c ‖v‖
2

Hn
ď

ÿ

iPI

∣

∣xvi, vyHn

∣

∣

2 ď C ‖v‖
2

Hn
for all v P Hn.

A frame is said to be tight if c “ C.

We emphasize that the index set I in Definition 1 can be finite or countably
infinite. Elementary arguments show that a countably infinite collection of vectors
pviqiPI of vectors is a frame of Hn if and only if it is square summable and spans
Hn. However, for a finite collection of vectors to constitute a frame, it suffices that
they span Hn.
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Figure 1. Examples of Frames in R
2. The red vectors in both

figures constitute frames of R2. The frame constituted by the red
vectors in figure (A) is tight.

Intuitively, a frame is tight when the collection of vectors constituting the frame
are as spread out in space as possible. For instance, consider the two sets of red
vectors in R

2, each containing three elements as shown in Figure 1. Clearly, both
these sets span R

2 and therefore constitute frames of R2. However, the red-coloured
vectors in Figure 1 (A) are much more spread out than those in Figure 1 (B). In
Figure 1 (B) the green-coloured vector is more or less aligned with all the three
vectors of the frame and a large value of C is obtained if the sum given in Definition
1 is computed with v as the green-coloured vector. On the other hand, the blue-
coloured vector in Figure 1 (B) is almost orthogonal to all vectors of the frame,
which leads to a small value of c when the same computation is done with v as the
blue-coloured vector, thus resulting in a large gap between the values of c and C.
The same green and blue-coloured vectors shown in Figure 1 (A) however are more
or less equally aligned with respect to the frame vectors, and so one expects the
gap in c and C to be much lesser. In fact, the red-coloured frame in Figure 1 (A)
is tight.

In the subsequent discussions in this article, we will almost exclusively deal with
countably infinite frames and henceforth will use N as the index set instead of I.

Definition 2. For a given frame pviqiPN,

˝ the analysis operator is defined by

Hn Q v ÞÝÑ TpviqiPN
pvq ≔

`

xvi, vyHn

˘

iPN
P ℓ2pRq,

˝ the synthesis operator (which is the adjoint of the analysis operator) is defined
by

ℓ2pRq Q a ÞÝÑ T ˚
pviqiPN

paq ≔
`8
ÿ

i“1

aivi P Hn,

˝ the frame operator is defined by

Hn Q v ÞÝÑ GpviqiPN
pvq ≔

`8
ÿ

i“1

xvi, vyHn
vi P Hn,

which is the composition of the synthesis and the analysis operators (in that
order).

It can be shown that whenever a sequence pviqiPN of vectors constitute a frame,
the constants c and C are the smallest and the largest eigenvalues respectively of
the corresponding frame operator. Thus, we see that whenever a frame is tight, the
smallest and the largest eigenvalues of the corresponding frame operator are equal,
which implies that all the eigenvalues are identical. Since the frame operator is self
adjoint, we conclude that a frame is tight if and only if its frame operator is an
appropriate multiple of the identity operator.
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With this much background on frames, we recall that set of admissible controls
in (1) is

Uτ “
"

u : r0, τ s ÝÑ R
m

ˇ

ˇ

ˇ

ˇ

ż τ

0

‖uptq‖2
dt ă `8

*

;

it is a vector space, and is equipped with the natural inner product

Uτ ˆ Uτ Q pu1, u2q ÞÝÑ xu1, u2y
Uτ
≔

ż τ

0

xu1ptq, u2ptqy dt,

with respect to which Uτ becomes a separable Hilbert space, for which the following
assertions are classical:

Proposition 3 ([Cla13, Theorem 7.18, p. 139]). If peiqiPN is a countable orthonor-
mal basis of the Hilbert space Uτ , then for any u P Uτ we have

u “
`8
ÿ

i“1

xei, uy
Uτ

ei,

where the convergence is understood in the sense of the norm, and

‖u‖
2

Uτ
≔ xu, uy

Uτ
“

`8
ÿ

i“1

∣

∣xei, uy
Uτ

∣

∣

2
.

Conversely, given any sequence α ≔ pαiqiPN P ℓ2pRq, the series
ř`8

i“1 αiei converges

to some element u P Uτ such that αi “ xei, uy
Uτ

for each i and ‖u‖
2

Uτ
“

ř`8
i“1 α2

i .

For the linear system (1) we define the end-point mapping at time τ by

(2) Uτ Q u ÞÝÑ Eτ puq ≔
ż τ

0

epτ´tqABuptq dt P R
n.

It is well known that the image under the end-point map of any element u P Uτ

is precisely the state to which the LTI system (1) is transferred at time τ by the
control signal t ÞÝÑ uptq when initialized at the origin of the state space R

n at time
0. The map Eτ is, clearly, a continuous linear map from the Hilbert space Uτ into
R

n. We now establish that for a countable orthonormal basis peiqiPN of Uτ , the
sequence of vectors

`

Eτ peiq
˘

iPN
constitutes a frame of R

n if and only if the LTI

system (1) is controllable:

Theorem 4. Let peiqiPN be any orthonormal basis of Uτ , and let us define

(3) vi ≔ Eτ peiq for i P N.

If u P Uτ , then

(4) Eτ puq “
`8
ÿ

i“1

xei, uy
Uτ

vi.

Moreover, the sequence pviqiPN Ă R
n satisfies the following properties:

(i)
ř`8

i“1 ‖vi‖
2 ă `8,

(ii) there exists C ą 0 such that
ř`8

i“1|xvi, vy|
2 ď C}v}2 for all v P R

n, and

(iii) the linear operator GpviqiPN
(as defined in Definition 2) is continuous.

Furthermore, pviqiPN is a frame of Rn if and only if the LTI system (1) is control-
lable.

Proof. We observe that since Eτ : Uτ ÝÑ R
n is a continuous linear map, the

property (4) follows at once.
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We start with (i). Continuity of the end point map Eτ ensures the existence of
a well-defined linear adjoint map E˚

τ : Rn ÝÑ Uτ that satisfies

xE˚
τ pvq, uy

Uτ
“ xv, Eτ puqy for all v P R

n and u P Uτ .

We immediately observe that

trpE˚
τ Eτ q “

`8
ÿ

i“1

xei, E˚
τ Eτ peiqy

Uτ

“
`8
ÿ

i“1

xEτ peiq, Eτ peiqy

“
`8
ÿ

i“1

}vi}2,

and moreover it is easily verified that:

trpE˚
τ Eτ q “ trpEτ E˚

τ q.

However, since Eτ E˚
τ is a linear transformation on a finite dimensional Hilbert

space, we obtain the following

`8
ÿ

i“1

‖vi‖
2 “ trpE˚

τ Eτ q “ trpEτ E˚
τ q ă 8.

This proves (i).

(ii) follows immediately from the Cauchy-Bunyakovsky-Schwartz inequality:

`8
ÿ

i“1

|xvi, vy|2 ď
ˆ`8

ÿ

i“1

}vi}2

˙

}v}2.

We establish (iii) by showing that for each v P R
n the infinite sum in the defini-

tion of GpviqiPN
is absolutely summable and hence convergent to a well-defined limit

in R
n. Indeed, by continuity of the norm and the Cauchy-Bunyakovsky-Schwarz

inequality,
∥

∥

∥

∥

∥

`8
ÿ

i“1

xvi, vy vi

∥

∥

∥

∥

∥

ď
`8
ÿ

i“1

‖v‖ ‖vi‖
2 “ ‖v‖

ˆ`8
ÿ

i“1

‖vi‖
2

˙

,

which shows continuity of the map GpviqiPN
.

We prove the final statement by recalling our earlier observation that a sequence
of vectors is a frame of R

n if and only if the sequence is square summable and
they span R

n. We conclude that the LTI system (1) is controllable if and only if
spanpviqiPN “ R

n as asserted. �

3. Optimal Control and the Classical MOQs

We define the control effort J : Uτ ÝÑ R of a control u P Uτ to be

Jpuq ≔
ż τ

0

xuptq, uptqy dt.

This particular control effort is of great practical relevance since it is the energy
required to drive the system with the control t ÞÝÑ uptq. It is, therefore, quite
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natural to minimize this control effort. For a given x P R
n we consider the following

optimal control problem:

(5)

#

minimize
uPUτ

Jpuq

subject to ET puq “ x.

The optimal control problem (5) is well-studied in classical optimal control theory,
and its solution can be described analytically in terms of the controllability Gramian
at time τ defined by

(6) GpA,B,τq ≔

ż τ

0

etABBJetAJ

dt.

Classical results [Cla13, Chapter 22] guarantee that there exists a unique solution
of (5) under controllability of (1), and the optimal control ux and the optimal cost
Jx that solve (8) are given by

(7)
uxptq “ BJepτ´tqAJ

G´1
pA,B,τqx for t P r0, τ s, and

Jx “
A

x, G´1
pA,B,τqx

E

.

Remark 5. The similarity in our notation between the controllability Gramian and
the frame operator is intentional, the motivation for which we shall see clearly in
Proposition 6 below.

From Proposition 3 we recall that every control u P Uτ is uniquely determined a
sequence in ℓ2pRq. Therefore, in view of (4), we recast the optimal control problem
(5) completely in terms of the sequences in ℓ2pRq that describe the respective control
functions.

(8)

$

’

’

’

’

&

’

’

’

’

%

minimize
aPℓ2pRq

`8
ÿ

i“1

a2
i

subject to
`8
ÿ

i“1

aivi “ x,

which is equivalent to

(9)

$

&

%

minimize
aPℓ2pRq

xa, ayℓ2pRq

subject to T ˚
pviqiPN

paq “ x.

The equivalence between the problems (5) and (9) gives us the following result:

Proposition 6. If pviqiPN is the frame in R
n generated according to (3) by the LTI

system (1) at time τ , then

(10) GpviqiPN
“ GpA,B,τq.

Proof. Since both GpviqiPN
and GpA,B,τq are symmetric positive definite matrices, it

is enough to show that
A

x, G´1
pviqiPN

x
E

“
A

x, G´1
pA,B,τqx

E

for all x P R
n,

for then a standard argument involving the polarization identity suffices to conclude
that

A

x, G´1
pviqiPN

y
E

“
A

x, G´1
pA,B,τqy

E

for all x, y P R
n,
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which in turn implies the assertion immediately.1 To this end, we already know
that

for every x P R
n Jx “

A

x, G´1
pA,B,τqx

E

,

so that it suffices now to verify that

Jx “
A

x, G´1
pviqiPN

x
E

.

Since the problems (5) and (9) are equivalent, we conclude that Jx is the optimum
value achieved in (9) as well. It is a classical result (see, e.g., [Lue97, Section 6.11])

that
A

x,
`

TpviqiPN
T ˚

pviqiPN

˘´1
x

E

is the optimum value achieved in the problem (9). In

view of the fact that
`

TpviqiPN
T ˚

pviqiPN

˘

“ GpviqiPN
, we conclude that (10) holds. �

Remark 7. The equality in (10) is true even if the sequence of vectors pviqiPN is
not a frame of R

n. Let x P R
n be arbitrary, and define r0, 1s Q t ÞÝÑ zptq ≔

`

BJepτ´tqAJ

x
˘

. Clearly, z P Uτ . We observe that

GpA,B,τqx “
ż τ

0

epτ´tqAB
`

BJepτ´tqAJ

x
˘

dt

“ Eτ pzq “
`8
ÿ

i“0

xei, zy
Uτ

Eτ peiq

“
`8
ÿ

i“1

xei, zy
Uτ

vi,

and by definition we have

xei, zy
Uτ

“
ż τ

0

`

BJepτ´tqAJ

x
˘J

eiptq dt “ xx, Eτ peiqy “ xx, viy “ xvi, xy .

Collecting the equalities above we get

GpA,B,τqx “
`8
ÿ

i“0

xvi, xy vi “ GpviqiPN
x.

The equality in (7) tells us that the minimum control effort required to transfer
the LTI system (1) is completely determined by its controllability Gramian. The
following three MOQs proposed in [MW72] are based on this fact:

(i) tr
`

G´1
pA,B,τq

˘

: This quantity is proportional to the average optimal control

effort needed to transfer the system state from origin (i.e., x0 “ 0) to a random
point that is uniformly distributed on the unit sphere. In fact,

1

n
tr

`

G´1
pA,B,τq

˘

“
ş

}x}“1

A

x, G´1
pA,B,τqx

E

dx
ş

}x}“1
xx, xy dx

.

(ii) λ´1
min

`

GpA,B,τq

˘

: This quantity gives the maximum control effort needed to
transfer the system state from origin to any point on the unit sphere, which
easily follows from the fact that

λ´1
min

`

GpA,B,τq

˘

“ λmax

`

G´1
pA,B,τq

˘

“ max
}x}“1

A

x, G´1
pA,B,τqx

E

.

1Recall that the polarization identity states that xx, Ayy ` xy, Axy “ 1

2

`

xx ` y, Apx ` yqy `

xx ´ y, Apx ´ yqy
˘

for all x, y P R
ν and any matrix A P R

νˆν . If A is symmetric, then xx, Ayy “
xy, Axy, which shows that xx, Ayy “ 0 whenever xx ` y, Apx ` yqy “ xx ´ y, Apx ´ yqy “ 0. It
follows at once that if A, B P R

νˆν are two symmetric matrices and xx, Axy “ xx, Bxy for x P R
ν ,

then A “ B.
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(iii) det
`

GpA,B,τq

˘

: This quantity is proportional to the volume of the ellipsoid
containing points to which the system state can be transferred to from the
origin using at most unit control effort. Indeed,

Vol
´

tx P R
n |

A

x, G´1
pA,B,τqx

E

ď 1u
¯

9
b

detpGpA,B,τqq.

The LTI system (1) is controllable if and only if the Gramian GpA,B,τq is invert-

ible. So tr
`

G´1
pA,B,τq

˘

is well-defined only when the system is controllable. Similarly,

λ´1
min

`

GpA,B,τq

˘

attains a finite value and det
`

GpA,B,τq

˘

has a non-zero value if and
only if the system is controllable. Therefore all the three quantities defined above
give significant information regarding the minimum energy state transfer problem
and can be used to clearly distinguish between controllable and uncontrollable sys-
tems. So it is reasonable to say that all three of the values given above are valid
measures of quality of the LTI system (1). In view of this fact, from now on we will
refer to the above three MOQs as the classical MOQs. Since all properties of the
LTI system (1) that we are interested in this article are determined completely by
the frame pviqiPN, including the definition of the classical MOQs, we will use the
terms MOQ of the LTI system (1) and MOQ of the frame generated by the LTI
system interchangeably. We mention that the three classical MOQs are generally
not correlated in any way; one could increase any one of them arbitrarily while
keeping the value of the other fixed. We would also like to point out that to define
the classical MOQ (ii), unlike (i) and (iii), we do not require any notion of a volume
on the state space. Hence it can be readily extended with some minor modifications
to the case of infinite dimensional linear systems. We refer the reader to [Lio94] for
a discussion on such an extension.

4. Optimization of the classical MOQs

In this section we find what the orientation of the frame vectors generated by an
LTI system should be so that the LTI system is best in terms of each of the three
classical MOQs mentioned above. In other words, we minimize the three classical
MOQs with respect to the frame vectors subject to the constraint that the length
of each of the frame vector is kept fixed.

Let pαiqiPN be a sequence satisfying

(11)

$

’

&

’

%

αi ą 0 for each i,

pαiqiPN is non-increasing,
ř`8

i“1 αi ă `8, and

α1 ď 1
n

ř`8
i“1 αi “: β.

In order to find the optimal orientation of the vectors of the frame, we optimize
the three objective functions tr

`

G´1
pviqiPN

˘

, λ´1
min

`

GpviqiPN

˘

and det
`

GpviqiPN

˘

, subject

to the constraint that the lengths of the vectors are fixed, i.e., xvi, viy “ αi for all
i P N. Thus, we have the following three optimization problems:

(12)

$

’

’

&

’

’

%

minimize
pviqiPN

trpG´1
pv1,...,vK qq

subject to xvi, viy “ αi for all i P N,

spanpviqiPN “ R
n,

(13)

$

’

’

&

’

’

%

minimize
pviqiPN

λ´1
minpGpviqiPN

q

subject to xvi, viy “ αi for all i P N,

spanpviqiPN “ R
n,
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and

(14)

$

’

’

&

’

’

%

maximize
pviqiPN

detpGpviqiPN
q

subject to xvi, viy “ αi for all i P N,

spanpviqiPN “ R
n.

Surprisingly, all the three problems (12), (13) and (14) have unique optimizers
and they coincide, which is the content of the following theorem:

Theorem 8. The optimal values of the three optimization problems (12), (13) and

(14) are attained when GpviqiPN
“ G˚ “ βIn, where β ≔ 1

n

ř`8
i“1 αi. Moreover, G˚

is the unique optimizer of each of these problems.

A proof of Theorem 8 is given at the end of this section. In all the above three
problems, even though the optimization is carried out over the frame vectors pviqiPN,
the objective function in each of these problems depend only on the frame operator
and not on the vectors themselves. We will observe in the discussion below that
the constraints can also be recast completely in terms of the frame operator. We
start by recalling the following definition of majorization:

Definition 9. Consider a non-increasing finite sequence λ ≔ pλ1, . . . , λnq and for
K P N Y t`8u a sequence α “ pαiqK

i“1, with positive real numbers as their entries.
We define the relation λ ą α if the following two conditions hold:

(15)

$

’

’

’

’

&

’

’

’

’

%

m
ÿ

i“1

λi ě
m
ÿ

i“1

αi for all m “ 1, . . . , n ´ 1, and

n
ÿ

i“1

λi “
K
ÿ

i“1

αi.

The conditions in (15) are analogues of the standard majorization conditions
[MOA11, Chapter 1]. The following version of the Schur-Horn theorem establishes
a connection between the preceding majorization relation and frame operators cor-
responding to given frames.

Lemma 10. [AMRS07, Theorem 4.7] For any given sequence α “ pαiqiPN of posi-
tive real numbers satisfying (11) and a symmetric and non-negative definite matrix
G P R

nˆn
`` with N Y t`8u Q K ě n, the following statements are equivalent:

˝ There exists a sequence of vectors pviqiPN Ă R
n such that G “ GpviqiPN

and
xvi, viy “ αi for all i “ 1, 2, . . . , K.

˝ λpGq ą α.

Lemma 10 states that the mapping

(16) ℓ2pRnq Q pviqiPN ÞÝÑ GpviqiPN
P R

nˆn
` ,

establishes a correspondence between the sequence of vectors pviqiPN that are fea-
sible for the optimization problems (12), (13) and (14), and the set of positive
definite matrices G P R

nˆn
` such that λpGq ą α. The objective functions in each of

those problems are also clearly invariant under the mapping (16). Consequently, we
can recast the problems (12), (13), (14) into, respectively, the following equivalent
problems over positive definite matrices:

(17)

$

&

%

minimize
G P R

nˆn

``

trpG´1q

subject to λpGq ą α,
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(18)

$

&

%

minimize
G P R

nˆn

``

λminpGq´1

subject to λpGq ą α,

(19)

$

&

%

minimize
G P R

nˆn

``

detpGq

subject to λpGq ą α.

We now demonstrate one by one that the unique optimizer of the problems (17),
(18), and (19) is G˚

≔ βIn.

Lemma 11. Given a sequence α “ pαiqiPN of real numbers satisfying (11), G˚
≔

βIn is the unique optimizer of the optimization problem (17), where β is the constant
defined in Theorem 8.

Proof. Let us consider the following optimization problem:

(20)

$

&

%

minimize
G P R

nˆn

``

trpG´1q

subject to trpGq “ nβ.

The optimization problem (20) is the same as the problem in [SC17b, (22), p. 17]
with ΣV “ In, and its unique solution is given in [SC17b, (25)]. Therefore, from
[SC17b] we conclude that G˚ is the unique optimal solution to the problem (20).

It remains to establish an equivalence between (20) and (17). From (15) we know
that if λpGq ą α, then

trpGq “
n

ÿ

i“1

λi “
`8
ÿ

i“1

αi.

Therefore, the optimum value of (20) is at most equal to the optimum value of (17)
(if it exists) since (20) involves minimization of the trace MOQ over a larger set of
positive definite matrices. However, observe that λpG˚q ą α, since

m
ÿ

i“1

λi “ mβ “ m

n

`8
ÿ

i“1

αi ě
m
ÿ

i“1

αi, and

n
ÿ

i“1

λi “ nβ “
`8
ÿ

i“1

αi,

which shows that G˚ is also feasible for (17). Together with our earlier observation
that trpG˚q is at most equal to the optimum value of (17), this implies that G˚ is
an optimizer of (17). Since G˚ is the unique optimizer of (20), it is also the unique
optimizer of (17), completing our proof. �

Lemma 12. Given a sequence α “ pαiqiPN of real numbers satisfying (11), G˚
≔

βIn is the unique optimizer of the optimization problem (18), where β is the constant
defined in Theorem 8.

Proof. Both the objective function and the feasible set in (18) are determined com-
pletely by the set of eigenvalues pλ1, . . . , λnq of G. Therefore, we consider the
following optimization problem that is equivalent to (18):

(21)

$

’

&

’

%

minimize
λią0

i“1,...,n

`

mintλ1, . . . , λnu
˘´1

subject to λ ą α.
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For every sequence pλ1, . . . , λnq that is feasible for the optimization problem (21),

we see that
řn

i“1 λi “ ř`8
i“1 αi “ nβ. Therefore,

mintλ1, . . . , λnu ď β,

which implies that
`

mintλ1, . . . , λnu
˘´1 ě β´1.

Therefore, the value β´1 is at most equal to the optimal value (if it exists) of the
optimization problem (21). Let us define λ˚

i ≔ β for all i “ 1, 2, . . . , n. We observed
in the proof of Lemma 11 that

(22) pλ˚
1 , . . . , λ˚

nq ą α.

We also know that

(23)
`

mintλ˚
1 , . . . , λ˚

nu
˘´1 “ β´1.

This means that pλ˚
1 , . . . , λ˚

nq is feasible for the optimization problem (21), and

together with our earlier observation that
`

mintλ˚
1 , . . . , λ˚

nu
˘´1

is at most equal to
the optimal value of (21), this implies that pλ˚

1 , . . . , λ˚
nq is an optimizer of (21). It

is easily seen that pλ˚
1 , . . . , λ˚

nq is the unique sequence of positive real numbers that
satisfies both (22) and (23). Therefore, pλ˚

1 , . . . , λ˚
nq is the unique optimizer of (21).

In view of the equivalence between the optimization problems (18) and (21), we
conclude that a matrix G is an optimizer of (18) if and only if

(24) λipGq “ β for all i “ 1, 2, . . . , n.

It is well-known that G “ βIn is the only positive definite matrix that satisfies (24),
and, consequently, G˚ “ βIn is the unique optimizer of (18). �

Lemma 13. Given a sequence α “ pαiqiPN of real numbers satisfying (11), G˚
≔

βIn is the unique optimizer of the optimization problem (19), where β is the constant
defined in Theorem 8.

Proof. Once again, the objective function in (19) depends only on the eigenvalues
of G, and so the problem can be recast as the following equivalent one:

(25)

$

’

’

&

’

’

%

minimize
λią0

i“1,...,n

n
ź

i“1

λi

subject to λ ą α.

By the arithmetic mean – geometric mean inequality we know that for any sequence
pλ1, . . . , λnq of positive numbers,

n
ź

i“1

λi ď
´

řn

i“1 λi

n

¯n

ď βn.

Therefore, the value βn is at least equal to the optimal value of the optimization
problem (25) (if it exists). Let us define λ˚

i ≔ β for all i “ 1, 2, . . . , n. We observed
in the proof of Lemma 11 that

(26) pλ˚
1 , . . . , λ˚

nq ą α.

We also know that

(27)
n

ź

i“1

λ˚
i “

´

řn

i“1 λ˚
i

n

¯n

“ βn.

This means that pλ˚
1 , . . . , λ˚

nq is feasible for the optimization problem (25). Together
with our earlier observation that

śn

i“1 λi is at most equal to the optimal value of
(25), this implies that pλ˚

1 , . . . , λ˚
nq is an optimizer of (25). As remarked earlier,
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pλ˚
1 , . . . , λ˚

nq is the unique sequence of positive real numbers that satisfies both (26)
and (27). Therefore, pλ˚

1 , . . . , λ˚
nq is the unique optimizer of (25).

In view of the equivalence between the optimization problems (19) and (25), we
conclude that a matrix G is an optimizer of (18) if and only if

(28) λipGq “ β for all i “ 1, 2, . . . , n.

Since G˚ “ βIn is the only matrix that satisfies (28), it is the unique optimizer of
(19). �

Proof of Theorem 8. The assertion follows from Lemmas 11, 12, and 13. �

5. Frame-theoretic MOQ

We have seen in the preceding section that all the three classical MOQs attain
their optimal value precisely when the frame generated by the LTI system is tight.
In addition, we discussed in the introduction how tight frames posses several ad-
ditional desirable properties for representation of generic vectors. Thus, a measure
of tightness of the frame pviqiPN, where the vectors vi are defined by (3), is a valid
measure of quality of the LTI system (1).

Definition 14. We define the quantity

ηpA, B, T q ≔
tr

`

GpA,B,τq

˘

b

tr
`

G2
pA,B,τq

˘

,

which measures the extent of tightness of the frame generated by the LTI system
(1), as a measure of the quality of (1). In the subsequent discussions we will refer
to the MOQ defined in Definition 14 as the frame-theoretic MOQ.

Recall that for A1, A2 P R
nˆn,

(29) xA1, A2y
Rnˆn ≔ trpAJ

1 A2q
defines an inner product on R

nˆn under which it is a Hilbert space. Since GpA,B,τq

is symmetric, we have

tr
`

GpA,B,τq

˘

“ tr
`

IJ
n GpA,B,τq

˘

“
@

GpA,B,τq, In

D

Rnˆn
, and

tr
`

G2
pA,B,τq

˘

“ tr
`

GJ
pA,B,τqGpA,B,τq

˘

“
@

GpA,B,τq, GpA,B,τq

D

Rnˆn
,

which in turn implies that

ηpA, B, τq “
@

GpA,B,τq, In

D

Rnˆn

b

@

GpA,B,τq, GpA,B,τq

D

Rnˆn

.(30)

We had remarked in Definition 14 that the frame-theoretic MOQ η is a measure
of tightness of the frame generated by the LTI system. From (30) we can see
immediately that η is simply a multiple of the cosine of the angle that the Gramian
GpA,B,τq makes with the identity matrix In in the Hilbert space R

nˆn equipped
with the inner product (29). Therefore, a higher value of the frame-theoretic MOQ
η implies that GpA,B,τq is more aligned with the identity matrix, which in turn
means that the corresponding frame generated by the LTI system is tighter. In
particular, this means the higher the value of the frame-theoretic MOQ, the better
the LTI system is.

The following proposition provides some connections between the classical notion
of controllability and certain properties of the frame-theoretic MOQ η.
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Proposition 15. Consider the LTI system (1). With ηpA, B, τq being the frame-
theoretic MOQ defined in Definition 14, we have the following:

(i) For all τ ą 0,

(31) ηpA, B, τq ď
?

n,

and equality holds in (31) if and only if the frame pviqiPN generated by (1) at
time τ according to (3) is tight.

(ii) If ηpA, B, τq ą
?

d for some positive integer d ď n, then the dimension of the
reachable subspace at time τ is greater than d. In particular, if ηpA, B, τq ą?

n ´ 1, then (1) is controllable.

Proof. In view of (30), the inequality (31) in Proposition 15 is just a consequence
of the Cauchy-Schwartz inequality. To see this, observe that

ηpA, B, τq “
@

GpA,B,τq, In

D

b

@

GpA,B,τq, GpA,B,τq

D

ď
a

xIn, Iny “
?

n.

Since inequality (31) is simply the Cauchy-Schwartz inequality applied to the matri-
ces GpA,B,τq and In, equality holds if and only if GpA,B,τq “ λIn, and this happens
exactly when the frame pviqiPN is tight. This proves the property (i).

At this point we take a slight detour to observe that inequality (31) can be stated
in a more general sense. Let pviqiPN be a sequence of square summable elements
from an n dimensional Hilbert space Hn, not necessarily constituting a frame. From
[CL08, Lemma 1, p. 7] we see that

(32)

tr
`

G2
pviqiPN

˘

“
`8
ÿ

i“1

`8
ÿ

j“1

|xvi, vjy|
2
, and

tr
`

GpviqiPN

˘

“
`8
ÿ

i“1

‖vi‖
2

.

We then define the Normalized Frame Potential (NFP) of the frame pviqiPN by

(33) NFP
`

pviqiPN

˘

≔

ř`8
i“1

ř`8
j“1|xvi, vjy|

2

`
ř`8

i“1 ‖vi‖
2 ˘2

.

Observe that by (32) and (33),

(34)
tr

`

GpviqiPN

˘

b

tr
`

G2
pviqiPN

˘

“ 1
b

NFP
`

pviqiPN

˘

,

and this along with (31) tells us that

(35) NFP
`

pviqiPN

˘

ě 1

n
.

a fact that has been proved independently in [CFK`06]. We emphasize here that
inequality (35) states that the NFP of a sequence of vectors is greater than or equal
to the inverse of the dimension of the Hilbert space it belongs to. The Normal-
ized Frame Potential has a clear physical interpretation outlined in [CFK`06] and
[BF03].

We shall now prove the property (ii) by contradiction: Suppose that (ii) is false,

that is, assume that ηpA, B, τq ą
?

d for some positive integer d ď n, and that the
dimension of the reachable subspace at time τ is at most equal to d. This means
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that dim
`

spanpviqiPN

˘

ď d, where pviqiPN is the frame generated by the LTI system
(1) according to (3). However, spanpviqiPN endowed with the inner product induced
from R

n is a Hilbert space in its own right, and pviqiPN is a subset of this Hilbert
space. By its definition in Equation (33), the NFP of pviqiPN as a subset of Rn and
that as a subset of spanpviqiPN are equal. Applying the inequality (35) to pviqiPN as
a subset of spanpviqiPN, we get

NFP
`

pviqiPN

˘

ě 1

dim
`

spanpviqiPN

˘ ě 1

d
,

and along with (34) this implies that

ηpA, B, τq ď
?

d.

This is a contradiction of our starting hypothesis, which proves the property (ii). �

We now discuss some features of the frame-theoretic MOQ that distinguish it
from the three classical MOQs.

Remark 16. When the LTI system (1) is uncontrollable, both tr
`

G´1
pA,B,τq

˘

and

λ´1
min

`

GpA,B,τq

˘

are undefined, and det
`

GpA,B,τq

˘

is zero. This means that as far
as the three classical MOQs are concerned, all uncontrollable systems are equally
bad. On the one hand and in contrast to the classical MOQs, the frame-theoretic
MOQ η has the unique ability to distinguish between uncontrollable systems. In
addition, the property (ii) of Proposition 15 says that if the frame-theoretic MOQ
is larger than a certain value, the dimension of the reachable subspace is guaranteed
to be larger than a precise corresponding value. Therefore, increasing the frame-
theoretic MOQ leads to an increase in the rank of the reachable subspace even if
the system under consideration is uncontrollable. On the other hand, one drawback
of the frame-theoretic MOQ η is that it cannot distinguish between controllable
and uncontrollable systems completely. Indeed, even though the property (ii) of
Proposition 15 says that if ηpA, B, τq is greater than

?
n ´ 1, then the system is

controllable, it is possible that the system is controllable but ηpA, B, τq ď
?

n ´ 1.

Remark 17. All three classical MOQs are increasingly hard to compute as the
dimension n of the state space increases. However, once the Gramian GpA,B,τq

is known, evaluating the frame-theoretic MOQ η involves very little computation.
Indeed, since GpA,B,τq is symmetric, tr

`

G2
pA,B,τq

˘

is simply the sum of squares of

entries of GpA,B,τq and therefore, computing this involves just n2 multiplications and

as many additions. Computing tr
`

GpA,B,τq

˘

involves summing n diagonal entries

of GpA,B,τq. In total, consequently, all one needs is n2 number of multiplications,

pn2 `nq number of additions, and one square-root operation to compute the frame-
theoretic MOQ. Of course, computing the Gramian itself requires the evaluation of
the integral (6), which may be difficult for large scale systems. However, in the case
where the system matrix A is asymptotically stable, the infinite horizon Gramian

(36) GpA,Bq ≔

ż `8

0

etABBJetAJ

dt

is well-defined, and can be computed easily by solving the Lyapunov equation

(37) AGpA,Bq ` GpA,BqA
J ` BBJ “ 0.

There are efficient numerical algorithms available for solving the Lyapunov equa-
tion, even for large scale systems.

Remark 18. We mention that quantity tr
`

GpA,B,τq

˘

, which is similar to our frame-
theoretic MOQ, has appeared in the literature before; see, e.g., [PZB14, SCL16,
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ZC17]. However, in these articles the usage of tr
`

GpA,B,τq

˘

as a measure of quality
was mainly motivated by two factors:

(i) the observation that

(38)
tr

`

G´1
pA,B,τq

˘

n
ě n

tr
`

GpA,B,τq

˘ ,

and

(ii) the fact that tr
`

GpA,B,τq

˘

is submodular as a function of the columns of the B

matrix.

The inequality (38) suggests that tr
`

GpA,B,τq

˘

is inversely related to tr
`

G´1
pA,B,τq

˘

;

increasing tr
`

GpA,B,τq

˘

can potentially lead to a decrease in tr
`

G´1
pA,B,τq

˘

. This is,

however, only a heuristic, and it has been observed that increasing the trace of the
Gramian need not ensure controllability and often leads to a poor choice of system
(see, e.g., [PZB14, Section 5]).

Remark 19. Often an engineer is faced with the task of selecting the columns of the
matrix B of a particular system with fixed system matrix A from a given finite set
of vectors. In this situation, it is desirable to do so by maximizing some measure of
quality of the resulting system. Since the set of possible choices is finite, this leads
to a combinatorial optimization problem, and for large scale systems such problems
may not be tractable. In such cases, submodularity 2 is a property that plays an
important role in combinatorial optimization similar to that of convexity in contin-
uous optimization. In the presence of the property of submodularity, there exists
efficient numerical algorithms with proven performance guarantees that can solve
large scale combinatorial optimization problems. We refer the reader to [SCL16]
for more details on submodularity and its consequences on measures of quality.
We mention here that the frame-theoretic MOQ does not posses the property of
submodularity.

Remark 20. All of the theory developed in this article, including the measure of
quality defined in this section can verbatim be extended to the case of discrete time
LTI systems of the form

xpt ` 1q “ Axptq ` Buptq for t “ 0, 1, 2, . . .

In fact, we initiated the study of frame-theoretic measures of quality in the context
of discrete time linear systems in [SC17a]. In this case, the set of control profiles at
horizon τ P N is the set of τ -tuples of elements in R

m, identified with R
mˆτ . One

can endow this vector space of control profile with an inner product similar to that
defined in (29) by replacing the integral with a sum. The minimum control effort
problem can now be defined analogously and the definition of the controllability
Gramian changes to

GpA,B,τq ≔

τ´1
ÿ

t“0

AtBBJpAJqt.

In the case of stable systems, the infinite horizon Gramian is well-defined as

GpA,Bq ≔

`8
ÿ

t“0

AtBBJpAJqt.

2Let V be a given finite set. A set function f : 2V Ñ R is called submodular if for all subsets
A Ă B Ă V and all elements s R B, it holds that fpA Y tsuq ´ fpAq ě fpB Y tsuq ´ fpBq. In the
context of the discussion in Remark 19, the set V is the finite set of possible choices for columns
of the matrix B, and the MOQ is called submodular if it is submodular as a function on the finite
set of choices of columns for the B matrix.
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The infinite horizon Gramian can be computed with relative ease as the solution of
the equation

GpA,Bq ´ AGpA,BqA
J “ BBJ.
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