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Abstract

We propose two policy gradient algorithms for solv-

ing the problem of control in an off-policy reinforce-

ment learning (RL) context. Both algorithms incorpo-

rate a smoothed functional (SF) based gradient estima-

tion scheme. The first algorithm is a straightforward

combination of importance sampling-based off-policy

evaluation with SF-based gradient estimation. The

second algorithm, inspired by the stochastic variance-

reduced gradient (SVRG) algorithm, incorporates vari-

ance reduction in the update iteration. For both algo-

rithms, we derive non-asymptotic bounds that establish

convergence to an approximate stationary point. From

these results, we infer that the first algorithm converges

at a rate that is comparable to the well-known REIN-

FORCE algorithm in an off-policy RL context, while

the second algorithm exhibits an improved rate of con-

vergence.

1 Introduction

In a reinforcement learning (RL) problem, an agent

learns to achieve a goal through interactions with an

environment. The interactions between the agent and

the environment are represented as a Markov decision

process (MDP). The agent interacts with the environ-

ment through actions, and as a response the environment

changes its state and provides a reward. The goal of the

agent is to maximize the cumulative reward over time

by learning an optimal policy to choose actions.

We consider the problem of control in an off-policy

RL setting, where the agent aims to learn an optimal

*nithiav@cse.iitm.ac.in
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policy using the data collected by executing an ex-

ploratory policy called behavior policy. Off-policy RL

is useful in practical scenarios where the system may

not allow execution of any policy other than a fixed be-

havior policy. While the behavior policy may not be

optimal, it can be exploratory, and aids in the search for

the optimal policy.

Policy gradient algorithms [39, 38, 25, 20, 7, 31, 40,

42, 1] are a popular approach for solving MDPs. In a

few special cases such as linear systems with quadratic

cost, policy gradient algorithms can be shown to be

globally convergent [4, 13, 28]. In the general case, the

usual convergence guarantees for a policy gradient al-

gorithm are to a stationary point of the underlying value

function (cf. [31, 42]). In [26, 1, 5], the authors an-

alyze policy gradient methods in the idealized setting

where the gradient information is made directly avail-

able, while we consider a typical off-policy RL setting

where the gradient of the objective has to estimated

from a sample path of the behavior policy. Most of

the previous works use the likelihood ratio method, pro-

posed in [33], see [15, 16] for an introduction. This ap-

proach for estimating the policy gradient was first used

in a policy optimization context in the REINFORCE

algorithm [39]. REINFORCE style gradient estimate

methods are analyzed in [41, 23]. While [41] uses

log barrier regularization, [23] analyzes a natural and

variance-reduced counterparts of the policy gradient al-

gorithm. The likelihood ratio method leads to unbiased

estimates of the policy gradient.

An alternative approach for gradient estimation is the

simultaneous perturbation method, see [8] for a text-

book introduction. This method is based on finite dif-

ferences, and results in a biased estimate of the policy

gradient. A popular algorithm in this class is simul-

taneous perturbation stochastic approximation (SPSA),

proposed in [36]. Using the classic finite difference
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type estimate of the policy gradient, i.e., a scheme that

perturbs each co-ordinate separately, would require 2d
function measurements, where d is the dimension of the

policy parameter. On the other hand, the SPSA scheme

used random perturbations, e.g., a vector of independent

Rademacher random variables (r.v.s), to simultaneously

perturb all co-ordinates, and this scheme would work

with two function measurements, irrespective of the di-

mension. SPSA has been used in a policy gradient al-

gorithm in [7, 6]. Smoothed functional (SF) [21, 29] is

another simultaneous perturbation method, where one

could employ a vector of independent standard Gaus-

sian r.v.s as random perturbations.

In this paper, we propose two policy gradient algo-

rithms for off-policy control. For the purpose of pol-

icy evaluation, both algorithms use the importance sam-

pling ratios — a standard scheme for unbiased off-

policy evaluation. Unlike previous works on off-policy

RL, our algorithms incorporate a SF-based gradient es-

timate scheme. We use the two function measurements

variant of SF, which is equivalent to evaluating two per-

turbed policies. In an on-policy RL setting, SF-based

approach may be restrictive owing to the fact that run-

ning two system trajectories corresponding to two per-

turbed policies may not feasible in some practical ap-

plications. On the other hand, using a SF-based policy

gradient scheme does not run into practical difficulties

in an off-policy RL context, since the system is simu-

lated using a single behavior policy.

The first algorithm, henceforth referred to as OffP-

SF, is a straightforward combination of importance

sampling-based off-policy evaluation with SF-based

gradient estimation. The second algorithm is inspired

by the SVRG algorithm, which was proposed in [19]

for optimizing finite ‘strongly convex’ sum of smooth

functions, and later adapted to a non-convex optimiza-

tion setting (cf. [32, 2]). This algorithm, referred to as

OffP-SF-SVRG, is the variance-reduced variant of the

OffP-SF algorithm. To the best of our knowledge, a

variance-reduced policy gradient algorithm inspired by

SVRG has not been proposed/analyzed in an off-policy

RL context in the literature, while SVRG has been ex-

plored in the context of on-policy RL in [31, 40]. Re-

cent work in [24] explores variance reduction in an off-

policy context inspired by a momentum-based method

[10].

In this paper, we focus on the non-asymptotic per-

formance of the proposed algorithms. The results

for policy gradient methods employing simultaneous

perturbation-based gradient estimates are asymptotic in

nature (cf. [7, 6]). On the other hand, using ideas from

zeroth-order optimization, policy gradient methods with

REINFORCE style gradient estimates have been shown

to converge to an ǫ-stationary point (see Definition 1

below) in the non-asymptotic regime. In this paper,

we study policy gradient algorithms with the simultane-

ous perturbation approach, and derive non-asymptotic

bounds for these algorithms — see Table 1 for a sum-

mary of our bounds in terms of iteration complexity,

which is the number of policy gradient iterations re-

quired to find an ǫ-stationary point. The primary con-

clusions from our non-asymptotic analysis are as fol-

lows: (i) After N iterations of OffP-SF, the value func-

tion gradient at a suitably chosen iterate, say θR, satis-

fies an order O( 1√
N
) bound on E||∇J(θR)||2; (ii) The

corresponding bound for OffP-SF-SVRG is of the order

O( 1
N ).

Table 1: Iteration complexity for our proposed algo-

rithms, and the off-policy variant of REINFORCE. Here

iteration complexity denotes the number of iterations re-

quired to find an ǫ-stationary point (see Definition 1).

Algorithm Iteration complexity

REINFORCE
O(1/ǫ2)

(off-policy variant1)

OffP-SF O(1/ǫ2)

OffP-SF-SVRG O(1/ǫ)

Our bounds have a few advantages over those in the

literature for zeroth-order optimization and on-policy

RL using policy gradient algorithms. To elaborate, the

closest result to the non-asymptotic bound for offP-

SF is Corollary 3.3 of [18]. For setting the step-

size/perturbation constant in this result, one requires

knowledge of quantities that are typically unknown in

an RL setting. On the other hand, our non-asymptotic

bound features a universal step-size/perturbation con-

stant. In arriving at this result, we depart from the ar-

gument employed in the proof of Corollary 3.3 of [18].

Our bound for OffP-SF in Corollary 1 is comparable to

the one provided in Corollary 4.4 in [42], as both results

are on the size of the gradient of the objective J at a suit-

ably chosen policy iterate. We employ smoothed func-

tional based gradient estimation, while the authors in

[42] use a REINFORCE style gradient estimate. Their

result is for a diminishing step-size, while we employ

a constant step-size. Next, the gradient estimates un-

derlying the SVRG-based on-policy RL algorithms in

1This variant uses importance sampling ratios for off-policy eval-

uation, and the likelihood ratio method for gradient estimation.
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[31, 40] use the likelihood ratio method, which result in

unbiased estimates. On the other hand, our OffP-SF-

SVRG algorithm employs smoothed functional-based

gradient estimates, which are biased in nature. Through

a careful handling of the bias terms in several steps of

the proof, we are able to obtain an order O( 1
N ) bound

for the OffP-SF-SVRG algorithm. The corresponding

results for on-policy SVRG algorithm in [31, 40] fea-

tures additional terms — see the discussion below The-

orem 3 for more details.

In [11, 43, 44], the authors propose actor-critic al-

gorithms in an off-policy RL setting. In compari-

son, we do not incorporate function approximation in

our proposed algorithms, and hence, a direct compar-

ison is not feasible. Nevertheless, we mention that

the algorithms in these references involve at least two

timescales, and to the best of our knowledge, there are

no non-asymptotic bounds for two timescale stochastic

approximation, with a non-linear update iteration (as in

the case of the actor update in the aforementioned ref-

erences). In contrast, our algorithms operate on a sin-

gle timescale, facilitating a non-asymptotic analysis. In

[23], the authors establish global convergence results for

natural and variance-reduced counterparts of the policy

gradient algorithm, with REINFORCE style gradient

estimates. These results are under an assumption that

the underlying policy parameterization is sufficiently

rich. In contrast, we study local convergence properties

of the vanilla and variance-reduced variants of the pol-

icy gradient algorithm, with smoothed functional-based

gradient estimates. Finally, our non-asymptotic bound

for OffP-SF-SVRG shows improved dependence on the

number of iterations, as compared to the bound in [24],

where the authors analyze a momentum-based variance

reduced policy gradient scheme in an off-policy context.

The rest of the paper is organized as follows: Sec-

tion 2 describes the off-policy control problem. Sec-

tion 3 introduces our algorithms, namely OffP-SF and

OffP-SF-SVRG. Section 4 presents the non-asymptotic

bounds for our algorithms. Section 5 provides detailed

proofs of convergence. Finally, Section 7 provides the

concluding remarks.

2 Problem formulation

We consider an MDP with a state space S, and an

action space A, both assumed to be finite. We operate

in an episodic setting with a random episode length T ∈
N. At time t ∈ {0, . . . , T − 1}, the MDP is in state St,

and transitions to state St+1 by an action At chosen by a

behavior policy b, and receives a reward Rt+1 ∈ R. We

assume the rewards are bounded, the start state S0 is

fixed. We also assume a special state 0 as a termination

state.

LetΘ be a compact and convex subset ofRd. We con-

sider parameterized stochastic target policies {πθ, θ ∈
Θ}, where πθ(a | s) = P{At = a |St = s, θt = θ}. As

an example, one may use an exponential softmax distri-

bution, i.e.,

πθ(a |s) =
exp (h(s, a, θ))∑
b∈A

exp (h(s, b, θ))
,

where h : S × A × Θ → R is a parameterized user

defined function (cf. Chapter 13 of [37]). We assume

that each policy in the parameterized class Θ, and the

behavior policy are proper (see (A3)).

We assume that the MDP trajectory terminates under

πθ w.p. 1, ∀θ ∈ Θ. The goal here is to find θ∗ such that

θ∗ ∈ argmaxθ∈ΘJ(θ), (1)

where J(θ) is the value function, and is defined as

J(θ) = Eπθ

[
T−1∑

t=0

γtRt+1

]
, (2)

where γ ∈ (0, 1] is the discount factor.

3 Off-policy gradient algorithms

A gradient-based algorithm for solving (1) would in-

volve the following update iteration:

θk+1 = ΠΘ(θk + αk∇J(θk)), (3)

where θ0 is set arbitrarily, and ∇ is with respect to θ. In

the above, the step-size αk ∈ (0, 1], and ΠΘ : Rd → Θ
is an operator that projects on to Θ. The projection

is required to ensure stability of the iterates in (3),

and is common in the analysis of policy gradient al-

gorithms (cf. [7]). As an example, one may define

Θ =
∏d

i=1[θ
i
min, θ

i
max]. Then, the projection opera-

tor ΠΘ(θ) = [Π1
Θ(θ

1), · · · ,Πd
Θ(θ

d)], where Πi
Θ(θ

i) =
min(max(θimin, θ

i), θimax), i ∈ {1 . . . d}. It is easy to

see that such a projection operation is computationally

inexpensive.

We describe two algorithms for solving (1) below.

3.1 OffP-SF

In an off-policy setting, the distribution of data

(states/actions seen along a sample path) follows the

behavior policy. The off-policy evaluation problem is

to learn the value of a target policy, which is different
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from the behavior one. A standard off-policy evaluation

scheme is per-decision importance sampling (see Sec-

tion 5.9 of [37]). Here, one scales the objective by the

likelihood ratio of the target policy, say πθ to the be-

havior policy, say b at the current state. More precisely,

we generate m episodes using b and estimate J(θ) as

follows:

Ĵm(θ)=
1

m

m∑

n=1

Tn−1∑

t=0

γtRn
t+1

(
t∏

i=0

πθ(A
n
i |Sn

i )

b(An
i |Sn

i )

)
. (4)

In the above, T n is the length of the nth episode, and

Rn
t+1 is the reward at time t+1. Also Sn

i is the state,

and An
i is the action taken at time i of the nth episode.

For estimating the gradient ∇J(·), we employ the es-

timation scheme from [21, 29]. The idea here is to form

a smoothed functional, denoted by Jµ, of the value J(·),
and use ∇Jµ as a proxy for ∇J . To be more precise, the

smoothed functional Jµ(θ) is defined by

Jµ(θ) = Eu∈Bd [J(θ + µu)] , (5)

where µ ∈ (0, 1] is the smoothing parameter, and u is

sampled uniformly at random from a unit ball Bd =
{x ∈ Rd | ‖x‖ ≤ 1}. Here ‖·‖ denotes the d-

dimensional Euclidean norm.

We estimate the gradient using two randomly per-

turbed policies (cf. [22, 34]). We favor the ‘balanced’

estimate based on two random perturbations instead of

a one-sided estimate because the bound on the second

moment of the balanced estimate exhibits a linear de-

pendence on the underlying dimension d (see Lemma

8), while the corresponding dependence in an one-sided

estimate is quadratic in d (see Proposition 7.6 of [17]).

We perturb the policy parameter θ by adding and sub-

tracting a scalar multiple of a random unit vector v. The

perturbed policy parameters lie in the set Θ′ defined as

follows:

Θ′ = {θ′ : ‖θ′ − θ‖ ≤ 1, θ ∈ Θ}. (6)

In order to control the variance, we average the gradi-

ent estimate over n random unit vectors. The estimate

∇̂n,µĴm(θ) of the gradient ∇J(.) is formed as follows:

∇̂n,µĴm(θ)=
d

n

n∑

i=1

Ĵm(θ + µvi)−Ĵm(θ − µvi)

2µ
vi,

(7)

where ∀i, vi is sampled uniformly at random from a unit

sphere Sd−1 = {x ∈ Rd | ‖x‖ = 1}.

We collect m sample paths using the behavior policy

b, and use this data to estimate the value associated with

the 2n perturbed policies in (7).

Algorithm 1 OffP-SF

1: Input: Parameterized form of target policy π and

behavior policy b, iteration limit N , step-sizes

{αk}, perturbation constants {µk}, batch size m,

{nk}, and probability mass function (pmf) PR(·)
supported on {1, · · · , N};

2: Initialize: Target policy parameter θ1 ∈ Rd, and

the discount factor γ ∈ (0, 1];
3: for k = 0, . . . , N − 1 do

4: for j = 1, . . . ,m do

5: Get (Sj
0 , A

j
0, R

j
1,· · ·, Sj

Tj−1, A
j
Tj−1, R

j
Tj
) ∼ b;

6: end for

7: for i = 1, . . . , nk do

8: Get [v1i , . . . , v
d
i ] ∈ S

d−1;

9: Use (4) to estimate Ĵm(θk ± µkvi);
10: end for

11: Use (7) to estimate ∇̂nk,µk
Ĵm(θk);

12: Use (8) to calculate θk+1;

13: end for

14: Output: Policy θR where R ∼ PR.

We solve (1) using the following update iteration:

θk+1 = ΠΘ(θk + αk∇̂nk,µk
Ĵm(θk)). (8)

Algorithm 1 presents the pseudocode of OffP-SF al-

gorithm, with the following ingredients: (i) a gradient

ascent update according to (8); (ii) a SF-based gradient

estimation scheme; and (iii) an importance sampling-

based policy evaluation scheme.

3.2 OffP-SF-SVRG

Our second algorithm is a modification of the Algo-

rithm 1 that incorporates the concept of variance reduc-

tion seen in SVRG algorithms [19, 32]. The principle

of variance reduction underlying the SVRG algorithm

has been explored in the context of on-policy RL in

[31, 40]. The gradient estimates underlying the algo-

rithms in the aforementioned references use the likeli-

hood ratio method, which results in unbiased estimates.

On the other hand, we employ SF-based gradient esti-

mates, which are biased in nature.

We use nested update iterations to solve (1). Our al-

gorithm maintains an outer loop over s, and an inner

loop over k. Our policy parameters are of the form θsk,

where θ00 is set arbitrarily.

In the outer loop, we sample m episodes using the be-

havior policy b. We use a reference point θ̃s ∈ Θ, which

is initialized to θ00 , and is updated as θ̃s+1 = θsm. We

calculate Ĵm(θ̃s) and ∇̂n,µĴm(θ̃s) using (4) and (7) re-

spectively. Also ∀j ∈ {1, · · · ,m}, we calculate Ĵj(θ̃s)
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and ∇̂n,µĴ
j(θ̃s), where

Ĵj(θ) =

T j−1∑

t=0

γtRj
t+1

(
t∏

i=0

πθ(A
j
i |S

j
i )

b(Aj
i |S

j
i )

)
, (9)

and

∇̂n,µĴ
j(θ) =

d

n

n∑

i=1

Ĵj(θ + µvi)− Ĵj(θ − µvi)

2µ
vi.

(10)

In the above, ∀i, vi is sampled uniformly at random

from a unit sphere Sd−1.

In the inner loop, we pick a sample j uniformly

at random from {1, · · · ,m} and calculate Ĵj(θsk) and

∇̂n,µĴ
j(θsk) using (9) and (10) respectively.

We update the policy parameters as follows:

θsk+1 = ΠΘ(θ
s
k + αgsk), (11)

where

gsk = ∇̂n,µĴ
j(θsk)− ∇̂n,µĴ

j(θ̃s) + ∇̂n,µĴm(θ̃s).
(12)

Algorithm 2 presents the pseudocode of OffP-SF-

SVRG algorithm.

4 Main results

We make the following assumptions for the sake of

analysis:

(A1). For any a ∈ A and s ∈ S, log πθ(a |s) exists, and

is twice continuously differentiable w.r.t. θ ∈ Θ′, where

Θ′ is defined in (6).

(A2). For every θ ∈ Θ′, the target policy πθ is abso-

lutely continuous with respect to the behavior policy b.
i.e.,

∀θ ∈ Θ′, b(a |s)=0 ⇒ πθ(a |s)=0, ∀a ∈ A, ∀s ∈ S.

(A3). The behavior policy b, and the class of target poli-

cies {πθ, θ ∈ Θ′} are proper, i.e., there exists a positive

constant M s.t.

∀θ ∈ Θ′, max
s∈S

P (SM 6= 0 | S0 = s, πθ) < 1, and

max
s∈S

P (SM 6= 0 | S0 = s, b) < 1.

An assumption like (A1) is common to the analy-

sis of policy gradient algorithms (cf. [31, 40]), while

Algorithm 2 OffP-SF-SVRG

1: Input: Parameterized form of target policy π and

behavior policy b, iteration limit S, step-size α,

perturbation constant µ, batch sizes m,n, and a

joint pmf PQR(·, ·) supported on {1, · · · , S} and

{1, · · · ,m}respectively;

2: Initialize: Target policy parameter θ̃0 = θ00 ∈ Rd,

and the discount factor γ ∈ (0, 1];
3: for s = 0, . . . , S − 1 do

4: for j = 1, . . . ,m do

5: Get (Sj
0 , A

j
0, R

j
1,· · ·, Sj

Tj−1, A
j
Tj−1, R

j
Tj
) ∼ b;

6: end for

7: for i = 1, . . . , n do

8: Get [v1i , . . . , v
d
i ] ∈ S

d−1;

9: for j = 1, . . . ,m do

10: Use (9) to estimate Ĵj(θ̃s ± µvi);
11: end for

12: Use (4) to estimate Ĵm(θ̃s ± µvi);
13: end for

14: for j = 1, . . . ,m do

15: Use (10) to estimate ∇̂n,µĴ
j(θ̃s);

16: end for

17: Use (7) to estimate ∇̂n,µĴm(θ̃s);
18: for k = 0, . . . ,m− 1 do

19: Get j ∈ [1,m] uniformly and at random.

20: for i = 1, . . . , n do

21: Use (9) to estimate Ĵj(θsk ± µvi);
22: end for

23: Use (10) to estimate ∇̂n,µĴ
j(θsk);

24: Use (12) to calculate gsk;

25: Use (11) to calculate θsk+1;

26: end for

27: θ̃s+1 = θs+1
0 = θsm;

28: end for

29: Output: Policy θQR where Q,R ∼ PQR.

(A2) is a standard requirements for off-policy evalu-

ation. Further, (A3) is a common requirement in the

analysis of episodic MDPs, see Chapter 2 of [3]. From

(A1) and (A2), we have πθ(a|s) > 0 and b(a|s) > 0,

∀θ ∈ Rd, ∀a ∈ A, and ∀s ∈ S. In other words, we con-

sider policies that place a positive mass on every action

in any state.

The objective J is not necessarily convex in a typi-

cal RL setting, and hence, several previous works (cf.

[42, 31, 40, 35]) adopt convergence to an approximate

stationary point, which is defined below.

Definition 1. (ǫ-stationary point) Let θR be the output

of an algorithm. Then, θR is called an ǫ-stationary point

of problem (1), if E ‖∇J (θR)‖2 ≤ ǫ.

5



The non-asymptotic bounds for Algorithms 1–2

that we present below establish convergence to an ǫ-
stationary point.

For the non-asymptotic analysis, we rewrite the up-

date rule in (8) as follows:

θk+1 = θk + αkPΘ(θk, ∇̂nk,µk
Ĵmk

(θk), αk), (13)

where

PΘ(θ, f(θ), α) =
1

α
[ΠΘ(θ + αf(θ)) − θ] . (14)

Theorem 1 (OffP-SF: Non-asymptotic bound). As-

sume (A1)–(A3). Let PR(k) = P(R = k) = αk∑N−1

k=0
αk

,

∀N ∈ N, and J∗ = maxθ∈Θ J(θ). Then,

E

[
‖PΘ(θR,∇J(θR), αR)‖2

]

≤ (J∗ − J(θ0)) +
dL2

2

∑N−1
k=0 αkµk∑N−1

k=0 αk

+

2dL3

c0

∑N−1
k=0

α2

k

nk
+ 2

√
dL2

√
c0

∑N−1
k=0

αk√
nk∑N−1

k=0 αk

, (15)

where c0 is an absolute positive constant, and L is the

Lipschitz constant of J as well as ∇J (see Lemma 4 in

Section 5 below).

Proof. See Section 5.

The result above holds for any choice of step-sizes

{αk}, perturbation constants {µk}, and batch sizes m,

{nk}. We specialize the bound in (15) for a particular

choice of the aforementioned parameters in the corol-

lary below.

Corollary 1 (OffP-SF: Non-asymptotic bound). Let

∀k, αk = c1√
N

, µk = c2√
N

, nk = c3N , and m < ∞
for some absolute constants c1, c2, c3 > 0. Then, under

conditions of Theorem 1, we have

E

[
‖PΘ(θR,∇J(θR), αR)‖2

]

≤ (J∗ − J(θ0)) + c′L2(d+
√
d)√

N
+

c′′dL3

N
√
N

,

for some constants c′, c′′ > 0.

Proof. See Section 5.

Remark 1. Ignoring the error due to projection, i.e.,

assuming PΘ(θR,∇J(θR), αR) = ∇J(θR), the bound

above can be read as follows: after N iterations of (3),

offP-SF returns an iterate that satisfies E ‖∇J(θR)‖2 =

O
(

1√
N

)
. The closest result in a zeroth-order smooth

non-convex optimization context is Corollary 3.3 of

[18]. In comparison to this result, our bound has a few

advantages. First, the step-size in Corollary 1 is set us-

ing a universal constant, while they require the knowl-

edge of the smoothness parameter L. Second, the per-

turbation constant in Corollary 1 is set using a univer-

sal constant, while the corresponding choice in [18] re-

quires the knowledge of J∗−J(θ0). In a typical RL set-

ting, one could possibly approximate L, but J∗ − J(θ0)
is usually unknown.

In REINFORCE, which is a well-known policy gra-

dient algorithm, the gradient estimation scheme is based

on the likelihood ratio method. In principle, one could

employ importance sampling-based policy evaluation

together with a REINFORCE style gradient estimate.

Theorem 2 (REINFORCE (off-policy variant):

Non-asymptotic bound). Assume (A1)–(A3). Let

P(R = k) = α∑N−1

k=0
α

, ∀N ∈ N, J∗ = maxθ∈Θ J(θ),

and α = 1√
N

. Then,

E

[
‖PΘ(θR,∇J(θR), α)‖2

]

≤ (J∗ − J(θ0)) +
L3

2√
N

+ L2

Remark 2. It is apparent that the result that we derived

in Corollary 1 is comparable to REINFORCE in an off-

policy RL framework, which lets us conclude that SF-

based gradient estimation is a viable alternative to the

likelihood ratio method.

Now, we present a non-asymptotic bound for Algo-

rithm 2. For the analysis, we rewrite the update rule in

(11) as follows:

θsk+1 = θsk + αPΘ(θk, g
s
k, α), (16)

where PΘ(·, ·, ·) is as defined in (14).

Theorem 3 (OffP-SF-SVRG: Non-asymptotic bound).

Assume (A1)–(A3). Let PQR(s, k) = P(Q = s,R =
k) = α∑S−1

s=0

∑m−1

k=0
α

, ∀(S,m) ∈ N × N, and J∗ =

maxθ∈Θ J(θ). Let α = 1
4dL , µ = 1√

Sm
, and n = Sm2.

Then,

E

[∥∥∥PΘ(θ
Q
R ,∇J(θQR), α)

∥∥∥
2
]

≤ 4dL
(
J∗ − J(θ00)

)

Sm
+

L2
(
15c0d

2 + 40ed+ 2e
)

10c0Sm
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+
20dL2(8 + e) + L2(5 + e)

5c0Sm2
, (17)

where c0 is an absolute positive constant, e is the Eu-

ler’s number, and L is the Lipschitz constant of J as

well as ∇J .

Proof. See Section 5.

Remark 3. As mentioned earlier, SVRG has been em-

ployed in an on-policy RL context in [31, 40]. Un-

like these works, we operate in an off-policy RL setting,

and more importantly, use a biased gradient estimation

scheme that is based on the idea of smoothed function-

als. Through a careful handling of the bias terms in sev-

eral steps of the proof, we are able to obtain an order

O( 1
Sm ) bound for the OffP-SF-SVRG algorithm. The

bound in [31] is of the form O(1/Sm) + O(1/n) +
O(1/B), where B is the mini-batch size used for av-

eraging in their inner-loop. In comparison, we obtain

an order O(1/Sm) without additional terms, and our

algorithm does not require simulation of system tra-

jectories for mini-batching owing to the fact that we

operate in the off-policy setting. In other words, the

on-policy setting of [31, 40] implies n system trajec-

tories are simulated in the outer loop, while we obtain

an n-sample average of the gradient estimate using off-

policy evaluation. Next, the bound in [40] is of the form

O(1/Sm)+O(1/n), while our bound is without the ad-

ditional O(1/n) term, since we can choose n = Sm2

without requiring additional simulations.

Remark 4. In [24], the authors explore an alternative

approach to variance reduction of a policy gradient al-

gorithm in an off-policy context. The authors obtain a

non-asymptotic bound of the order O
(
1/T 2/3

)
, where

T is the number of iterations of the policy gradient al-

gorithm. In comparison, we obtain an improved bound

of O (1/T ) in Theorem 3 above.

5 Convergence analysis

5.1 Proofs for OffP-SF

Our analysis proceeds through a sequence of lemmas.

We begin with a result that is well-known in the context

of off-policy RL (cf. Chapter 5 of [37]). We have pro-

vided the proof for the sake of completeness.

Lemma 1. Eb

[
Ĵm(θ)

]
= J(θ).

Proof. Notice that

Eb

[
Ĵm(θ)

]

= Eb

[
1

m

m∑

n=1

Tn−1∑

t=0

γtRn
t+1

(
t∏

i=0

πθ(A
n
i |Sn

i )

b(An
i |Sn

i )

)]

=
1

m

m∑

n=1

Eb

[
Tn−1∑

t=0

γtRn
t+1

(
t∏

i=0

πθ(A
n
i |Sn

i )

b(An
i |Sn

i )

)]

=
1

m

m∑

n=1

Eπθ

[
Tn−1∑

t=0

γtRn
t+1

]
= J(θ).

Lemma 2. Θ′ = {θ′ : ‖θ′−θ‖ ≤ 1, θ ∈ Θ} is compact.

Proof. Since Θ is compact, ∃θc ∈ Θ, and r ∈ R such

that Θ ⊆ B(θc, r), where B(θc, r) is an open ball cen-

tered at θc with radius r. The set B[θc, r+1] is a closed

and bounded subset of Rd, and hence compact. It is easy

to see that Θ′ ⊆ B[θc, r + 1]. Using the fact that Θ is

closed, and the definition of Θ′, it is easy to see that Θ′

is closed. Since every closed subset of a compact set is

compact, Θ′ is compact.

Lemma 3. For any m ≥ 1, there exists a constant L >
0 such that the following conditions hold w.p. 1 for any

θ1, θ2 ∈ Θ′:

‖Ĵm(θ1)− Ĵm(θ2)‖ ≤ L‖θ1 − θ2‖,
‖∇Ĵm(θ1)−∇Ĵm(θ2)‖ ≤ L‖θ1 − θ2‖.

Proof. For any twice differentiable function f : Rn →
R

+ \ {0}, the Hessian ∇2f(·) can be defined as

∇2f(x)=f(x)
[
∇2log f(x)+∇log f(x)∇ log f(x)⊤

]
.

Using the above equation and (A1), we obtain

∇2
t∏

i=0

πθ(Ai |Si)

=

(
t∏

i=0

πθ(Ai |Si)

)[
∇2 log

t∏

i=0

πθ(Ai |Si)

+

[
∇ log

t∏

i=0

πθ(Ai |Si)

][
∇ log

t∏

i=0

πθ(Ai |Si)

]⊤


=

(
t∏

i=0

πθ(Ai |Si)

)[
t∑

i=0

∇2 log πθ(Ai |Si)

+

[
t∑

i=0

∇ log πθ(Ai |Si)

][
t∑

i=0

∇ log πθ(Ai |Si)

]⊤
 .

(18)
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From (4), we obtain

∇2Ĵm(θ)

=
1

m

m∑

n=1

Tn−1∑

t=0

γtRn
t+1

(
t∏

i=0

1

b(An
i |Sn

i )

)

×∇2

(
t∏

i=0

πθ(A
n
i |Sn

i )

)

=
1

m

m∑

n=1

Tn−1∑

t=0

γtRn
t+1

(
t∏

i=0

πθ(A
n
i |Sn

i )

b(An
i |Sn

i )

)

×
[

t∑

i=0

∇2 log πθ(A
n
i |Sn

i )

+

[
t∑

i=0

∇ log πθ(A
n
i |Sn

i )

][
t∑

i=0

∇ log πθ(A
n
i |Sn

i )

]⊤
 ,

where the last equality follows from (18). Observe that

the RHS above is a finite sum of continuous functions,

since ∇2 log πθ(· | ·) is continuous w.r.t θ (see (A1)), the

rewards Rn
t+1 are bounded, the policy b is proper (see

(A3)), and m is finite. Thus, ∇2Ĵm(θ) is continuous

which in turn implies ∇Ĵm(θ) is continuous. Further,

since Θ′ is compact, from Lemma 2, we have

‖∇2Ĵm(θ)‖ ≤ ‖∇2Ĵm(θ)‖F ≤ L1, and

‖∇Ĵm(θ)‖ ≤ L2, ∀θ ∈ Θ′,

for some constants L1, L2 < ∞. In the above, ‖A‖ and

‖A‖F denote the operator and Frobenius norm of a d×d
matrix A.

Let L = max(L1, L2). Then the result follows by

Lemma 1.2.2 in [30].

Lemma 4. J(θ) and ∇J(θ) are L-Lipschitz w.r.t. θ ∈
Θ′.

Proof. Notice that

‖J(θ1)− J(θ2)‖

=
∥∥∥Eb

[
Ĵm(θ1)

]
− Eb

[
Ĵm(θ2)

]∥∥∥ (from Lemma 1)

≤ Eb

[∥∥∥Ĵm(θ1)− Ĵm(θ2)
∥∥∥
]

≤ L ‖θ1 − θ2‖ , (from Lemma 3).

This proves the first claim. For the second claim, notice

that

‖∇J(θ1)−∇J(θ2)‖

=
∥∥∥∇Eb

[
Ĵm(θ1)

]
−∇Eb

[
Ĵm(θ2)

]∥∥∥ (from Lemma 1)

=
∥∥∥Eb

[
∇Ĵm(θ1)

]
− Eb

[
∇Ĵm(θ2)

]∥∥∥ (19)

≤ Eb

[∥∥∥∇Ĵm(θ1)−∇Ĵm(θ2)
∥∥∥
]

≤ L ‖θ1−θ2‖ , (from Lemma 3).

In the above, the equality in (19) follows by an ap-

plication of the dominated convergence theorem to in-

terchange the differentiation and integration operations.

For this application, we use the following facts:

(i) Eb

[
Ĵm(θ)

]
< ∞ holds for any θ ∈ Rd be-

cause the state and actions spaces are finite, the re-

wards are bounded, πθ(a|s) > 0 and b(a|s) > 0,

∀θ ∈ Rd, ∀a ∈ A, and ∀s ∈ S (from (A1) and (A2)),

and P (SM 6= 0 | S0, b) < 1 from (A3);

(ii) ‖∇Ĵm(θ)‖ ≤ L from Lemma 3; and

(iii) Eb [L] < ∞ since the state as well as action spaces

are finite, and P (SM 6= 0 | S0, b) < 1 from (A3).

Next, we recall a result from [14], which will be used

to establish unbiasedness of the gradient estimate in (7).

Lemma 5. ∇Jµ(θ) = Ev∈Sd−1

[
d
µJ(θ + µv)v

]
.

Proof. See Lemma 2.1 in [14].

Lemma 6. ∇Jµ(θ) = E

[
∇̂n,µĴm(θ) | θ

]
.

Proof. We follow the technique from [34].

E

[
∇̂n,µĴm(θ) | θ

]

= Eb,v1:n

[
∇̂n,µĴm(θ)

]
= Eb

[
Ev1:n

[
∇̂n,µĴm(θ)

]]

= Eb

[
d

n
Ev1:n

[
n∑

i=1

Ĵm(θ+µvi)− Ĵm(θ−µvi)

2µ
vi

]]

=
d

2µ
Eb

[
Ev

[(
Ĵm(θ + µv)− Ĵm(θ − µv)

)
v
]]

=
d

2µ
Ev

[
Eb

[(
Ĵm(θ + µv)− Ĵm(θ − µv)

)
v
]]

=
d

2µ
Ev [(J(θ + µv)− J(θ − µv)) v]

(from Lemma 1)

=
d

2µ
Ev [J(θ + µv)v] + Ev [J(θ + µ(−v))(−v)]

=
d

µ
Ev [J(θ + µv)v]

(since v has symmetric distribution)

= ∇Jµ(θ), (from Lemma 5).
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The claim below bounds the bias in the gradient esti-

mate in (7), and can be inferred from [17]. For the sake

of completeness, we provide the detailed proof.

Lemma 7. ‖∇Jµ(θ) −∇J(θ)‖ ≤ µdL
2 .

Proof. Notice that

‖∇Jµ(θ)−∇J(θ)‖

=

∥∥∥∥Ev

[
d

µ
J(θ + µv)v

]
−∇J(θ)

∥∥∥∥ (from Lemma 5)

=

∥∥∥∥Ev

[
d

µ
J(θ + µv)v

]
− d

µ
J(θ)Ev [v]

− d

µ
〈∇J(θ), µEv

[
vv⊤

]
〉
∥∥∥∥

(since Ev∈Sd−1 [v] = 0 and Ev∈Sd−1

[
vv⊤

]
= 1d×d

d ,

cf. Theorem 2.7 in [12])

=
d

µ
‖Ev [J(θ + µv)v − J(θ)v − 〈∇J(θ), µv〉v]‖

≤ d

µ
Ev [‖J(θ + µv)− J(θ)− 〈∇J(θ), µv〉‖ ‖v‖]

≤ d

µ
Ev [‖J(θ + µv)− J(θ)− 〈∇J(θ), µv〉‖]

(since v ∈ Sd−1, ‖v‖ = 1)

≤ d

µ
Ev

[
L

2
µ2 ‖v‖2

]
(from Lemma 4)

≤ µdL

2
, (since v ∈ Sd−1, ‖v‖ = 1).

Lemma 8. E

[∥∥∥∇̂n,µĴm(θ)
∥∥∥
2
]
≤ 4dL2

c0n
, for some ab-

solute constant c0 > 0.

Proof. Our proof proceeds in a similar manner to [34].

From Lemma 3, we obtain

∥∥∥Ĵm(θ + µv1)− Ĵm(θ + µv2)
∥∥∥ ≤ Lµ ‖v1 − v2‖ .

(20)

Let f : Sd−1 → R be an M−Lipschitz function.

Then,

P

(∣∣∣∣f −
∫

Sd−1

fdP

∣∣∣∣ > ǫ

)
≤ 4e

−c0ǫ
2d

M2 , (21)

where c0 > 0 is an absolute constant [see 27, Appendix

V.2].

From (20) and (21), we obtain

P

(∣∣∣Ĵm(θ + µv)− Ev∈Sd−1

[
Ĵm(θ + µv)

]∣∣∣ > ǫ
)

≤ 4e
−c0ǫ

2d

µ2L2 . (22)

Using (22), we obtain

Ev∈Sd−1

[(
Ĵm(θ + µv)− Ev∈Sd−1

[
Ĵm(θ + µv)

])2]

=

∫ ∞

0

P

(∣∣∣Ĵm(θ + µv)− Ev∈Sd−1

[
Ĵm(θ + µv)

]∣∣∣

>
√
ǫ
)
dǫ

≤
∫ ∞

0

4e
−c0ǫd

µ2L2 dǫ ≤ 4L2µ2

c0d
. (23)

Now,

Ev1:n

[∥∥∥∇̂n,µĴm(θ)
∥∥∥
2
]

= Ev1:n



∥∥∥∥∥
d

n

n∑

i=1

Ĵm(θ + µvi)− Ĵm(θ − µvi)

2µ
vi

∥∥∥∥∥

2



(from (7))

≤ d2

n2

n∑

i=1

Ev



∥∥∥∥∥
Ĵm(θ + µv)− Ĵm(θ − µv)

2µ
v

∥∥∥∥∥

2



≤ d2

4µ2n
Ev

[(
Ĵm(θ + µv)− Ĵm(θ − µv)

)2
‖v‖2

]

≤ d2

4µ2n
Ev

[(
Ĵm(θ + µv)− Ĵm(θ − µv)

)2]

(since v ∈ Sd−1, ‖v‖ = 1)

≤ d2

4µ2n

(
Ev

[((
Ĵm(θ + µv)− Ev

[
Ĵm(θ + µv)

])

−
(
Ĵm(θ − µv)− Ev

[
Ĵm(θ + µv)

]))2])

≤ d2

2µ2n

(
Ev

[(
Ĵm(θ + µv)− Ev

[
Ĵm(θ + µv)

])2]

+Ev

[(
Ĵm(θ + µ(−v))− Ev

[
Ĵm(θ + µv)

])2])

(since (a− b)2 ≤ 2a2 + 2b2)

≤ d2

µ2n
Ev

[(
Ĵm(θ + µv)− Ev

[
Ĵm(θ + µv)

])2]

(since v has symmetric distribution)

≤ d2

µ2n

(
4L2µ2

c0d

)
(from (23))

≤ 4dL2

c0n
. (24)

Using (24) we obtain,

E

[∥∥∥∇̂n,µĴm(θ)
∥∥∥
2
]
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= Eθ

[
Eb

[
Ev1:n

[∥∥∥∇̂n,µĴm(θ)
∥∥∥
2
]]]

≤ 4dL2

c0n
.

Lemma 9. For some absolute constant c0 > 0,

E

[∥∥∥∇̂n,µĴm(θ) − E

[
∇̂n,µĴm(θ) | θ

]∥∥∥
2
]
≤ 4dL2

c0n
.

Proof. Notice that

E

[∥∥∥∇̂n,µĴm(θ)− E

[
∇̂n,µĴm(θ) | θ

]∥∥∥
2
]

=
d∑

i=1

E

[(
∇̂i

n,µĴm(θ)− E

[
∇̂i

n,µĴm(θ) | θ
])2]

≤
d∑

i=1

E

[(
∇̂i

n,µĴm(θ)
)2]

= E

[∥∥∥∇̂n,µĴm(θ)
∥∥∥
2
]

(since E[(X − E[X |Y ])2] ≤ E[X2])

≤ 4dL2

c0n
, (from Lemma 8).

The claim below is well-known in the context of pro-

jections on to convex sets. We have provided the proof

for the sake of completeness.

Lemma 10. The projection operator PΘ defined in (14)

satisfies

(i) ‖PΘ(θ, f(θ), α)‖ ≤ ‖f(θ)‖ ,
(ii) ‖PΘ(θ, f(θ), α) − PΘ(θ, g(θ), α)‖

≤ ‖f(θ)− g(θ)‖ , and

(iii) 〈f(θ),PΘ(θ, f(θ), α)〉 ≥ ‖PΘ(θ, f(θ), α)‖2 .

Proof.

(i) ‖PΘ(θ, f(θ), α)‖

=
1

α
‖ΠΘ(θ + αf(θ)) − θ‖ (from (14))

≤ 1

α
‖θ + αf(θ) − θ‖ = ‖f(θ)‖ ,

(since ‖ΠΘ(x)− y‖ ≤ ‖x− y‖ , ∀y ∈ Θ).

(ii) ‖PΘ(θ, f(θ), α) − PΘ(θ, g(θ), α)‖

=

∥∥∥∥
1

α
[ΠΘ(θ + αf(θ)) − θ]

− 1

α
[ΠΘ(θ + αg(θ))− θ]

∥∥∥∥ (from (14))

=
1

α
‖ΠΘ(θ + αf(θ)) −ΠΘ(θ + αg(θ))‖

≤ 1

α
‖θ + αf(θ)− θ + αg(θ)‖

(since ‖ΠΘ(x)−ΠΘ(y)‖ ≤ ‖x− y‖ , ∀x, y)

≤ ‖f(θ)− g(θ)‖ .

(iii) 〈f(θ),PΘ(θ, f(θ), α)〉 − ‖PΘ(θ, f(θ), α)‖2

= 〈f(θ),PΘ(θ, f(θ), α)〉
− 〈PΘ(θ, f(θ), α),PΘ(θ, f(θ), α)〉

= 〈f(θ)− PΘ(θ, f(θ), α),PΘ(θ, f(θ), α)〉

=

〈
f(θ)− 1

α
[ΠΘ(θ + αf(θ)) − θ] ,

1

α
[ΠΘ(θ + αf(θ)) − θ]

〉

= − 1

α2
〈ΠΘ(θ + αf(θ)) − (θ + αf(θ)),

ΠΘ(θ + αf(θ))− θ〉 ≥ 0,
(since 〈ΠΘ(x) − x,ΠΘ(x) − y〉 ≤ 0, ∀y ∈ Θ).

Proof of Theorem 1. Using the fundamental theorem

of calculus, we obtain

J(θk)− J(θk+1)

= 〈∇J(θk), θk − θk+1〉

+

∫ 1

0

〈∇J(θk+1 + τ(θk − θk+1))−∇J(θk),

θk − θk+1〉 dτ
≤ 〈∇J(θk), θk − θk+1〉

+

∫ 1

0

‖∇J(θk+1 + τ(θk − θk+1))−∇J(θk)‖

‖θk − θk+1‖ dτ (Cauchy–Schwarz inequality)

≤ 〈∇J(θk), θk − θk+1〉

+ L ‖θk − θk+1‖2
∫ 1

0

(1− τ)dτ (from Lemma 4)

≤ 〈∇J(θk), θk − θk+1〉+
L

2
‖θk − θk+1‖2

≤ αk

〈
∇J(θk),−PΘ(θk, ∇̂nk,µk

Ĵmk
(θk), αk)

〉

+
Lα2

k

2

∥∥∥PΘ(θk, ∇̂nk,µk
Ĵmk

(θk), αk)
∥∥∥
2

(from (13))

≤ αk 〈∇J(θk),PΘ(θk,∇J(θk), αk)

−PΘ(θk, ∇̂nk,µk
Ĵmk

(θk), αk)
〉

− αk 〈∇J(θk),PΘ(θk,∇J(θk), αk)〉

+
Lα2

k

2

∥∥∥PΘ(θk, ∇̂nk,µk
Ĵmk

(θk), αk)
∥∥∥
2

10



≤ αk ‖∇J(θk)‖
∥∥∥∇J(θk)− ∇̂nk,µk

Ĵmk
(θk)

∥∥∥

− αk ‖PΘ(θk,∇J(θk), αk)‖2

+
Lα2

k

2

∥∥∥∇̂nk,µk
Ĵmk

(θk)
∥∥∥
2

(from Lemma 10)

≤ Lαk

∥∥∥∇J(θk)− ∇̂nk,µk
Ĵmk

(θk)
∥∥∥

− αk ‖PΘ(θk,∇J(θk), αk)‖2

+
Lα2

k

2

∥∥∥∇̂nk,µk
Ĵmk

(θk)
∥∥∥
2

(from Lemma 4)

≤ Lαk ‖∇J(θk)−∇Jµk
(θk)‖

+ Lαk

∥∥∥∇Jµk
(θk)− ∇̂nk,µk

Ĵmk
(θk)

∥∥∥

− αk ‖PΘ(θk,∇J(θk), αk)‖2

+
Lα2

k

2

∥∥∥∇̂nk,µk
Ĵmk

(θk)
∥∥∥
2

≤ dL2

2
αkµk + Lαk

∥∥∥∇Jµk
(θk)− ∇̂nk,µk

Ĵmk
(θk)

∥∥∥

− αk ‖PΘ(θk,∇J(θk), αk)‖2

+
Lα2

k

2

∥∥∥∇̂nk,µk
Ĵmk

(θk)
∥∥∥
2

, (25)

where the final inequality follows from Lemma 7. Sum-

ming up (25) for k = 0, . . . , N − 1, we obtain

N−1∑

k=0

αk ‖PΘ(θk,∇J(θk), αk)‖2

≤ (J(θN )− J(θ0)) +
dL2

2

N−1∑

k=0

αkµk

+ L

N−1∑

k=0

αk

∥∥∥∇Jµk
(θk)− ∇̂nk,µk

Ĵmk
(θk)

∥∥∥

+
L

2

N−1∑

k=0

α2
k

∥∥∥∇̂nk,µk
Ĵmk

(θk)
∥∥∥
2

≤ (J∗ − J(θ0)) +
dL2

2

N−1∑

k=0

αkµk

+ L

N−1∑

k=0

αk

∥∥∥∇Jµk
(θk)− ∇̂nk,µk

Ĵmk
(θk)

∥∥∥

+
L

2

N−1∑

k=0

α2
k

∥∥∥∇̂nk,µk
Ĵmk

(θk)
∥∥∥
2

. (26)

Taking expectations on both sides of (26), we obtain

N−1∑

k=0

αkE

[
‖PΘ(θk,∇J(θk), αk)‖2

]

≤ (J∗ − J(θ0)) +
dL2

2

N−1∑

k=0

αkµk

+ L

N−1∑

k=0

αkE

[∥∥∥∇Jµk
(θk)− ∇̂nk,µk

Ĵmk
(θk)

∥∥∥
]

+
L

2

N−1∑

k=0

α2
kE

[∥∥∥∇̂nk,µk
Ĵmk

(θk)
∥∥∥
2
]

≤ (J∗ − J(θ0)) +
dL2

2

N−1∑

k=0

αkµk +
2dL3

c0

N−1∑

k=0

α2
k

nk

+ L
N−1∑

k=0

αkE

[∥∥∥∇̂nk,µk
Ĵmk

(θk)

−E

[
∇̂nk,µk

Ĵmk
(θk) | θk

]∥∥∥
]

(from Lemmas 6 and 8)

≤ (J∗ − J(θ0)) +
dL2

2

N−1∑

k=0

αkµk +
2dL3

c0

N−1∑

k=0

α2
k

nk

+ L

N−1∑

k=0

αk

(
E

[∥∥∥∇̂nk,µk
Ĵmk

(θk)

−E

[
∇̂nk,µk

Ĵmk
(θk) | θk

]∥∥∥
2
]) 1

2

≤ (J∗ − J(θ0)) +
dL2

2

N−1∑

k=0

αkµk +
2dL3

c0

N−1∑

k=0

α2
k

nk

+
2
√
dL2

√
c0

N−1∑

k=0

αk√
nk

, (from Lemma 9).

Since P(R = k) = αk∑N−1

k=0
αk

, we obtain

E

[
‖PΘ(θR,∇J(θR), αR)‖2

]

=

N−1∑
k=0

αkE

[
‖PΘ(θk,∇J(θk), αk)‖2

]

∑N−1
k=0 αk

≤ (J∗ − J(θ0)) +
dL2

2

∑N−1
k=0 αkµk∑N−1

k=0 αk

+

2dL3

c0

∑N−1
k=0

α2

k

nk
+ 2

√
dL2

√
c0

∑N−1
k=0

αk√
nk∑N−1

k=0 αk

.

Proof of Corollary 1. In (15), we substitute αk = c1√
N

,

µk = c2√
N

, and nk = c3N , ∀k, for some absolute con-

stants c1, c2, c3 > 0, to obtain

E

[
‖PΘ(θR,∇J(θR), αR)‖2

]

11



≤ (J∗ − J(θ0)) + c′L2(d+
√
d)√

N
+

c′′dL3

N
√
N

,

for some constants c′, c′′ > 0.

5.2 Proofs for OffP-SF-SVRG

Lemma 11. Eb

[
Ĵj(θ)

]
= J(θ), ∀j.

Proof. Notice that

Eb

[
Ĵj(θ)

]
= E

[1,m]∼b
j∈[1,m]



T j−1∑

t=0

γtRj
t+1

(
t∏

i=0

πθ(A
j
i |S

j
i )

b(Aj
i |S

j
i )

)


= E
[1,m]∼πθ

j∈[1,m]



T j−1∑

t=0

γtRj
t+1


 = J(θ).

Note that Lemmas 4, 6 hold for OffP-SF-SVRG,

and the proof follows by using Lemma 11 in place of

Lemma 1.

Lemma 12.

E

[∥∥∥∇̂n,µĴ
j(θ1)− ∇̂n,µĴ

j(θ2)
∥∥∥
2
]

≤ d2L2

µ2n
E

[
‖θ1 − θ2‖2

]
.

Proof. Notice that

E

[∥∥∥∇̂n,µĴ
j(θ1)− ∇̂n,µĴ

j(θ2)
∥∥∥
2
]

≤ d2

4µ2n2

n∑

i=1

E

[∥∥∥Ĵj(θ1 + µvi)− Ĵj(θ2 + µvi)

+Ĵj(θ2 − µvi)− Ĵj(θ1 − µvi)
∥∥∥
2

‖vi‖2
]

≤ d2

4µ2n
E

[∥∥∥Ĵj(θ1 + µv)− Ĵj(θ2 + µv)

+Ĵj(θ2 − µv)− Ĵj(θ1 − µv)
∥∥∥
2
]

(since ‖v‖ = 1)

≤ d2

2µ2n

[
E

[∥∥∥Ĵj(θ1 + µv)− Ĵj(θ2 + µv)
∥∥∥
2
]

+E

[∥∥∥Ĵj(θ2 − µv)− Ĵj(θ1 − µv)
∥∥∥
2
]]

≤ d2L2

µ2n
E

[
‖θ1 − θ2‖2

]
, (by Lemma 3 with m=1).

Lemma 13. ∇̂n,µĴm(θ) = Ej∈[1,m]

[
∇̂n,µĴ

j(θ)
]
.

Proof. Notice that

∇̂n,µĴm(θ) =
d

n

n∑

i=1

Ĵm(θ + µvi)− Ĵm(θ − µvi)

2µ
vi

=
1

m

m∑

j=1

d

n

n∑

i=1

Ĵj(θ + µvi)− Ĵj(θ − µvi)

2µ
vi

(from (4) and (9))

= E
j∈[1,m]

[
d

n

n∑

i=1

Ĵj(θ + µvi)− Ĵj(θ − µvi)

2µ
vi

]

= E
j∈[1,m]

[
∇̂n,µĴ

j(θ)
]
, (from (10)).

Lemma 14. E [gsk] = E

[
∇̂n,µĴ

j(θsk)
]
.

Proof. Notice that

E [gsk]

= E

[
∇̂n,µĴ

j(θsk)− ∇̂n,µĴ
j(θ̃s) + ∇̂n,µĴm(θ̃s)

]

(from (12))

= E

[
∇̂n,µĴ

j(θsk)
]

+ E

[
E

j∈[1,m]

[
∇̂n,µĴm(θ̃s)− ∇̂n,µĴ

j(θ̃s)
]]

= E

[
∇̂n,µĴ

j(θsk)
]

(from Lemma 13).

Lemma 15. For some absolute constant c0 > 0,

E

[
‖gsk‖

2
]
≤ 2d2L2

µ2n
E

[∥∥∥θsk − θ̃s
∥∥∥
2
]
+

8dL2

c0n
.

Proof. Notice that

E

[
‖gsk‖

2
]

= E

[∥∥∥∇̂n,µĴ
j(θsk)− ∇̂n,µĴ

j(θ̃s) + ∇̂n,µĴm(θ̃s)
∥∥∥
2
]

≤ 2E

[∥∥∥∇̂n,µĴ
j(θsk)− ∇̂n,µĴ

j(θ̃s)
∥∥∥
2
]

+ 2E

[∥∥∥∇̂n,µĴm(θ̃s)
∥∥∥
2
]

≤ 2d2L2

µ2n
E

[∥∥∥θsk − θ̃s
∥∥∥
2
]
+

8dL2

c0n
,

(from Lemmas 8 and 12).
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Lemma 16. For some absolute constant c0 > 0,

E

[
‖gsk −∇J(θsk)‖2

]

≤ 2d2L2

µ2n
E

[∥∥∥θsk − θ̃s
∥∥∥
2
]
+ µ2d2L2 +

16dL2

c0n
.

Proof. Notice that

E

[
‖gsk −∇J(θsk)‖2

]

= E

[∥∥∥∇̂n,µĴ
j(θsk)− ∇̂n,µĴ

j(θ̃s)

+∇̂n,µĴm(θ̃s)−∇J(θsk)
∥∥∥
2
]

≤ 2E
[∥∥∥
[
∇̂n,µĴ

j(θsk)− ∇̂n,µĴ
j(θ̃s)

]

− E
j∈[1,m]

[
∇̂n,µĴ

j(θsk)− ∇̂n,µĴ
j(θ̃s)

]∥∥∥∥
2
]

+ 2E

[∥∥∥∥ E
j∈[1,m]

[
∇̂n,µĴ

j(θsk)
]
−∇J(θsk)

∥∥∥∥
2
]

(from Lemma 13)

≤ 2E

[∥∥∥∇̂n,µĴ
j(θsk)− ∇̂n,µĴ

j(θ̃s)
∥∥∥
2
]

+ 2E




∥∥∥∥∥∥
1

m

m∑

j=1

∇̂n,µĴ
j(θsk)−∇J(θsk)

∥∥∥∥∥∥

2



(since E[‖X − E[X |Y ]‖2] ≤ E[‖X‖2])

≤ 2E

[∥∥∥∇̂n,µĴ
j(θsk)− ∇̂n,µĴ

j(θ̃s)
∥∥∥
2
]

+
2

m

m∑

j=1

E

[∥∥∥∇̂n,µĴ
j(θsk)−∇J(θsk)

∥∥∥
2
]

(since ‖∑m
i=1 Xi‖2 ≤ m

∑m
i=1‖Xi‖2)

≤ 2d2L2

µ2n
E

[∥∥∥θsk − θ̃s
∥∥∥
2
]

+
4

m

m∑

j=1

E

[∥∥∥∇̂n,µĴ
j(θsk)− E

[
∇̂n,µĴ

j(θsk)|θsk
]∥∥∥

2
]

+
4

m

m∑

j=1

E

[
‖∇Jµ(θ

s
k)−∇J(θsk)‖

2
]

(from Lemma 12 and Lemma 6 with m=1)

≤ 2d2L2

µ2n
E

[∥∥∥θsk − θ̃s
∥∥∥
2
]

+
4

m

m∑

j=1

E

[∥∥∥∇̂n,µĴ
j(θsk)

∥∥∥
2
]

+
4

m

m∑

j=1

E

[
‖∇Jµ(θ

s
k)−∇J(θsk)‖

2
]

(since E[‖X − E[X |Y ]‖2] ≤ E[‖X‖2])

≤ 2d2L2

µ2n
E

[∥∥∥θsk − θ̃s
∥∥∥
2
]
+ µ2d2L2 +

16dL2

c0n
,

(from Lemma 7 and Lemma 8 with m=1).

Proof of Theorem 3. By using a completely parallel ar-

gument to the initial passage in the proof of Theorem 1

leading up to (25), we obtain

J(θsk)− J(θsk+1)

≤ α 〈∇J(θsk),PΘ(θ
s
k,∇J(θsk), α)− PΘ(θ

s
k, g

s
k, α)〉

− α 〈∇J(θsk),PΘ(θ
s
k,∇J(θsk), α)〉

+
Lα2

2
‖PΘ(θ

s
k, g

s
k, α)‖2

≤ α

2
‖∇J(θsk)‖2 +

α

2
‖∇J(θsk)− gsk‖2

− α ‖PΘ(θ
s
k,∇J(θsk), α)‖2

+
Lα2

2
‖gsk‖2 (from Lemma 10)

≤ 3α

2
‖∇J(θsk)− gsk‖2 +

(
Lα2

2
+ α

)
‖gsk‖2

− α ‖PΘ(θ
s
k,∇J(θsk), α)‖2 . (27)

Taking expectations on both sides of (27), we obtain

E
[
J(θsk+1)

]

≥ E [J(θsk)] + αE
[
‖PΘ(θ

s
k,∇J(θsk), α)‖2

]

− 3α

2
E

[
‖∇J(θsk)− gsk‖

2
]

−
(
Lα2

2
+ α

)
E

[
‖gsk‖

2
]

≥ E [J(θsk)] + αE
[
‖PΘ(θk,∇J(θk), α)‖2

]

−
(
5αd2L2

µ2n
+

α2d2L3

µ2n

)
E

[∥∥∥θsk − θ̃s
∥∥∥
2
]

− 3αµ2d2L2

2
−
(
α2L

2
+ 4α

)
8dL2

c0n
, (28)

where the final inequality follows from Lemmas 15–16.

Now,

E

[∥∥∥θsk+1 − θ̃s
∥∥∥
2
]
= E

[∥∥∥ΠΘ(θ
s
k + αgsk)− θ̃s

∥∥∥
2
]

≤ E

[∥∥∥θsk + αgsk − θ̃s
∥∥∥
2
]
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≤ E

[∥∥∥θsk − θ̃s
∥∥∥
2

+ α2 ‖gsk‖2 + 2α
〈
θsk − θ̃s, gsk

〉]

≤ E

[∥∥∥θsk − θ̃s
∥∥∥
2
]
+ 2αE

[〈
θsk − θ̃s, ∇̂n,µĴ

j(θsk)
〉]

+ α2
E

[
‖gsk‖2

]
(from Lemma 14)

≤ E

[∥∥∥θsk − θ̃s
∥∥∥
2
]
+ α2

E

[
‖gsk‖2

]

+
α

2αm
E

[∥∥∥θsk − θ̃s
∥∥∥
2
]
+ 2α2mE

[∥∥∥∇̂n,µĴ
j(θsk)

∥∥∥
2
]

(since 〈a, b〉 ≤ ‖a‖2

2β + ‖b‖2β
2 , β > 0)

≤
(
1 +

1

2m

)
E

[∥∥∥θsk − θ̃s
∥∥∥
2
]
+ α2

E

[
‖gsk‖

2
]

+ 2α2mE

[∥∥∥∇̂n,µĴ
j(θsk)

∥∥∥
2
]

≤
(
1 +

1

2m
+

2α2d2L2

µ2n

)
E

[∥∥∥θsk − θ̃s
∥∥∥
2
]

+
8α2dL2(1 +m)

c0n
, (29)

where the final inquality follows from Lemma 15 and

the result in Lemma 8 with m = 1. Let

Rs
k = E [J(θsk)]− bkE

[∥∥∥θsk − θ̃s
∥∥∥
2
]
. (30)

Now,

Rs
k+1

≥ E [J(θsk)] + αE
[
‖PΘ(θ

s
k,∇J(θsk), α)‖2

]

−
(
5αd2L2

µ2n
+

α2d2L3

µ2n

)
E

[∥∥∥θsk − θ̃s
∥∥∥
2
]

− 3αµ2d2L2

2
−
(
Lα2

2
+ 4α

)
8dL2

c0n

− bk+1E

[∥∥∥θsk+1 − θ̃s
∥∥∥
2
]

(from (28))

≥ E [J(θsk)] + αE
[
‖PΘ(θ

s
k,∇J(θsk), α)‖2

]

−
(
5αd2L2

µ2n
+

α2d2L3

µ2n
+ bk+1

(
1 +

1

2m

+
2α2d2L2

µ2n

))
E

[∥∥∥θsk − θ̃s
∥∥∥
2
]

−
(
Lα2

2
+ 4α+ bk+1α

2(1 +m)

)
8dL2

c0n

− 3αµ2d2L2

2
, (from (29)).

(31)

Let

bk =

{
x+ bk+1 (1 + y) for k ∈ {0,m− 1}
0 for k ≥ m

(32)

where

x =
5αd2L2

µ2n
+

α2d2L3

µ2n
, y =

1

2m
+

2α2d2L2

µ2n
.

By solving the recursion (32), we obtain

bk =
x

y

(
(1 + y)

m−k − 1
)
. (33)

It is easy to see that

bk ≤ b0 ≤ x

y
(1 + y)

m
, ∀k. (34)

From (31), (32) and (34) we obtain

αE
[
‖PΘ(θ

s
k,∇J(θsk), α)‖

2
]

≤ Rs
k+1 − R

s
k +

3αµ2d2L2

2

+

(
Lα2

2
+ 4α+ b0α

2(1 +m)

)
8dL2

c0n
. (35)

Now, from (30) we obtain

Rs
m = E [J(θsm)]− bmE

[∥∥∥θsm − θ̃s
∥∥∥
2
]

= E [J(θsm)] = E

[
J(θ̃s+1)

]
, (from 32)

Rs
0 = E [J(θs0)]− b0E

[∥∥∥θs0 − θ̃s
∥∥∥
2
]

= E [J(θs0)] = E

[
J(θ̃s)

]
, (since θs0 = θ̃s),

(36)

Summing up (35) from k = 0, · · · ,m− 1, we obtain

m−1∑

k=0

αE
[
‖PΘ(θ

s
k,∇J(θsk), α)‖2

]

≤ Rs
m −Rs

0 +
3αµ2d2L2m

2

+

(
Lα2

2
+ 4α+ b0α

2(1 +m)

)
8dL2m

c0n

≤ E

[
J(θ̃s+1)

]
− E

[
J(θ̃s)

]
+

3αµ2d2L2m

2

+

(
Lα2

2
+ 4α+ b0α

2(1 +m)

)
8dL2m

c0n
,

(from 36).
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Summing the RHS above from s = 0, · · · , S − 1, we

obtain

S−1∑

s=0

m−1∑

k=0

αE
[
‖PΘ(θ

s
k,∇J(θsk), α)‖2

]

≤ E

[
J(θ̃S)

]
− E

[
J(θ̃0)

]
+

3αµ2d2L2Sm

2

+

(
Lα2

2
+ 4α+ b0α

2(1 +m)

)
8dL2Sm

c0n
. (37)

From the definition of α, µ, and n in the theorem

statement, we have

y =
1

2m
+

1

8m
≤ 1

m
,
x

y
= 2dL+

L

10
, and

b0 ≤
(
2dL+

L

10

)
(1 + 1/m)m ≤

(
2dL+

L

10

)
e.

Using the bound on b0 in (37), we have

S−1∑

s=0

m−1∑

k=0

αE
[
‖PΘ(θ

s
k,∇J(θsk), α)‖

2
]

≤ E

[
J(θ̃S)

]
− E

[
J(θ̃0)

]
+

3dL

8

+

(
1 +

1

32d
+

(20d+ 1) e(1 +m)

160d

)
8L

c0m
. (38)

Since P(Q = s,R = k) = α∑S−1

s=0

∑m−1

k=0
α

, we obtain

E

[∥∥∥PΘ(θ
Q
R ,∇J(θQR), α)

∥∥∥
2
]

=

∑S−1
s=0

∑m−1
k=0 αE

[
‖PΘ(θ

s
k,∇J(θsk), α)‖

2
]

∑S−1
s=0

∑m−1
k=0 α

≤ 4dL
(
J∗ − J(θ00)

)

Sm
+

L2
(
15c0d

2 + 40ed+ 2e
)

10c0Sm

+
20dL2(8 + e) + L2(5 + e)

5c0Sm2
. (39)

5.3 Proofs for REINFORCE (off-policy variant)

Proof of Theorem 2. The REINFORCE (off-policy

variant) algorithm solves the following update iterate

θk+1 = ΠΘ(θk + α∇̂J(θ)), (40)

where ∇̂J(θ) is defined as below:

∇̂J(θ) =
1

m

m∑

n=1

[
Tn−1∑

t=0

∇ log πθ(A
n
t | Sn

t )

(
t∏

i=0

πθ(A
n
i | Sn

i )

b(An
i | Sn

i )

)(
Tn−1∑

i=t

γiRn
i+1

)]

(41)

The policy gradient estimate ∇̂J(θ) is an unbiased

estimate of ∇J(θ), where

∇J(θ)

= Eπθ

[(
T−1∑

t=0

∇ log πθ(At | St)

)(
T−1∑

t=0

γtRt+1

)]

= Eb

[(
T−1∏

t=0

πθ(At | St)

b(At | St)

)

(
T−1∑

t=0

∇ log πθ(At | St)

)(
T−1∑

t=0

γtRt+1

)]

= Eb

[
T−1∑

t=0

∇ log πθ(At | St)

(
t∏

i=0

πθ(Ai | Si)

b(Ai | Si)

)(
T−1∑

i=t

γiRi+1

)]
, (42)

and

Eb

[
∇̂J(θ)

]

= Eb

[
1

m

m∑

n=1

[
Tn−1∑

t=0

∇ log πθ(A
n
t | Sn

t )

(
t∏

i=0

πθ(A
n
i | Sn

i )

b(An
i | Sn

i )

)(
Tn−1∑

i=t

γiRn
i+1

)]]

= Eb

[
T−1∑

t=0

∇ log πθ(At | St)

(
t∏

i=0

πθ(Ai | Si)

b(Ai | Si)

)

(
T−1∑

i=t

γiRi+1

)]
= ∇J(θ) (43)

Now,

∇Ĵm(θ)

= ∇
[
Tn−1∑

t=0

γt 1

m

m∑

n=1

Rn
t+1

(
t∏

i=0

πθ(A
n
i |Sn

i )

b(An
i |Sn

i )

)]

=
Tn−1∑

t=0

γt 1

m

m∑

n=1

Rn
t+1

(
t∏

i=0

πθ(A
n
i |Sn

i )

b(An
i |Sn

i )

)

(
t∑

i=0

∇ log πθ(A
n
i | Sn

i )

)

=
1

m

m∑

n=1

[
Tn−1∑

t=0

∇ log πθ(A
n
t | Sn

t )
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(
t∏

i=0

πθ(A
n
i | Sn

i )

b(An
i | Sn

i )

)(
Tn−1∑

i=t

γiRn
i+1

)]

= ∇̂J(θ) (44)

It is easy to see that ∇J(θ) is L-Lipschitz w.r.t θ and∥∥∥∇̂J(θ)
∥∥∥ ≤ L using (43), (44) and Lemmas 3 and 4.

By using a completely parallel argument to the initial

passage in the proof of Theorem 1 leading up to (25),

we obtain

J(θk)− J(θk+1)

≤ Lα
∥∥∥∇J(θk)− ∇̂J(θk)

∥∥∥+ Lα2

2

∥∥∥∇̂J(θk)
∥∥∥
2

− α ‖PΘ(θk,∇J(θk), α)‖2 . (45)

Summing up (45) from k = 0, · · · , N − 1, we obtain

N−1∑

k=0

α ‖PΘ(θk,∇J(θk), α)‖2

≤ (J∗ − J(θ0)) + Lα

N−1∑

k=0

∥∥∥∇J(θk)− ∇̂J(θk)
∥∥∥

+
Lα2

2

N−1∑

k=0

∥∥∥∇̂J(θk)
∥∥∥
2

. (46)

Taking expectations on both sides of (46), we obtain

N−1∑

k=0

αE
[
‖PΘ(θk,∇J(θk), α)‖2

]

≤ (J∗ − J(θ0)) +
Lα2

2

N−1∑

k=0

E

[∥∥∥∇̂J(θk)
∥∥∥
2
]

+ Lα

N−1∑

k=0

E

[∥∥∥∇J(θk)− ∇̂J(θk)
∥∥∥
]

(from (43))

≤ (J∗ − J(θ0)) +
Lα2

2

N−1∑

k=0

E

[∥∥∥∇̂J(θk)
∥∥∥
2
]

+ Lα

N−1∑

k=0

(
E

[∥∥∥Eb

[
∇̂J(θk)

]
− ∇̂J(θk)

∥∥∥
2
]) 1

2

(from (43))

≤ (J∗ − J(θ0)) +
Lα2

2

N−1∑

k=0

E

[∥∥∥∇̂J(θk)
∥∥∥
2
]

+ Lα
N−1∑

k=0

(
E

[∥∥∥∇̂J(θk)
∥∥∥
2
]) 1

2

(since E[(X − E[X |Y ])2]) ≤ E[X2])

≤ (J∗ − J(θ0)) +
L3

2
α2N + L2αN (47)

Since P(R = k) = α∑N−1

k=0
α

, we obtain

E

[
‖PΘ(θR,∇J(θR), α)‖2

]

=

N−1∑
k=0

αE
[
‖PΘ(θk,∇J(θk), α)‖2

]

∑N−1
k=0 α

≤ (J∗ − J(θ0)) +
L3

2 α2N + L2αN
∑N−1

k=0 α
.

Since α = 1√
N

, we obtain

E

[
‖PΘ(θR,∇J(θR), α)‖2

]

≤ (J∗ − J(θ0)) +
L3

2√
N

+ L2.

6 Simulation analysis

We conducted experiments on an control problem

called CartPole from OpenAI Gym toolkit [9]. The

problem is to balance a pole which is attached to a mov-

ing cart. The state space is continuous and each state is

a quadruple (cart position, cart velocity, pole angle, pole

velocity at tip) and the action space is discrete (push cart

to the left and push cart to the right). We fixed the ini-

tial state. The problem is reset to the initial state either

after 200 steps, the pole tilt more than 15 degrees from

vertical, or the cart moves more than 2.4 units from the

centre. We receive a reward of +1 for each timestep in

which the pole is upright.

We have used the samples collected using an ǫ-greedy

behavior policy and a target policy which follows an

exponential softmax distribution. We have compared

the performance of OffP-SF, OffP-SF-SVRG and RE-

INFORCE (off-policy variant)algorithms. In Figure 1

we plot the performance of the aforementioned algo-

rithms.

7 Conclusions and future work

We proposed two policy gradient algorithms for off-

policy control in a RL context. Both algorithms in-

corporated a smoothed functional scheme for gradient

estimation. For both algorithms, we provided non-

asymptotic bounds that establish convergence to an ap-

proximate stationary point.
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Figure 1: CartPole with fixed initial state
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As future work, it would be interesting to study

the global convergence properties of our algorithms

under additional assumptions such as those used in

[41, 42]. An orthogonal research direction is to incorpo-

rate feature-based representations and function approx-

imation together with smoothed functional gradient es-

timation, and study the non-asymptotic performance of

the resulting actor-critic algorithms. Another direction

of future work is to check if our algorithms are globally

convergent under additional assumptions such as those

in [23].
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