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Abstract

This paper is concerned with a Stackelberg stochastic differential game, where the systems
are driven by stochastic differential equation (SDE for short), in which the control enters the
randomly disturbed coefficients (drift and diffusion). The control region is postulated to be
convex. By making use of the first-order adjoint equation (backward stochastic differential
equation, BSDE for short), we are able to establish the Pontryagin’s maximum principle for
the leader’s global Stackelberg solution, within adapted open-loop structure and closed-loop
memoryless information one, respectively, where the term global indicates that the leader’s
domination over the entire game duration. Since the follower’s adjoint equation turns out to
be a BSDE, the leader will be confronted with a control problem where the state equation is
a kind of fully coupled forward-backward stochastic differential equation (FBSDE for short).

As an application, we study a class of linear-quadratic (LQ for short) Stackelberg games
in which the control process is constrained in a closed convex subset Γ of full space Rm.
The state equations are represented by a class of fully coupled FBSDEs with projection
operators on Γ. By means of monotonicity condition method, the existence and uniqueness
of such FBSDEs are obtained. When the control domain is full space, we derive the resulting
backward stochastic Riccati equations.

AMS subject classifications: 93E20, 60H15, 60H30.
Key words: Forward-backward stochastic differential equation, Linear-quadratic game, Mono-
tonic condition, Maximum principle, Projection operator, Stackelberg differential game, Stochas-
tic Riccati equation.

1 Introduction

H. von Stackelberg [1] first introduced a hierarchical solution for markets with leaders and
followers in 1934 in order to obtain optimal strategies in competitive economics, which is now
known as the Stackelberg equilibrium. The Stackelberg game is also know as the leader-follower
game, whose economic background can be derived from some markets where certain companies
have advantages of domination over others. Stackelberg strategies are rational and optimal
solutions for both two players. A Stackelberg game can be described briefly as follows: the
leader first announces his/her strategy at the beginning of the game. Based on the knowledge
of the leader’s action, the follower, makes an instantaneous reaction by optimizing his/her own

∗L. Zhang acknowledges the financial support partly by the National Nature Science Foundation of China(Grant
No. 11701040, 11871010 &61871058) and the Fundamental Research Funds for the Central Universities (No.
2019XD-A11). E-mail: xiaoquan51011@163.com.
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performance index. Then, by anticipating the optimal response of the follower, the leader will
select an optimal action to optimize his/her cost functional on the rational reaction curve of
the follower. Therefore, one player must make a decision after the other player’s decision is
made. The leader’s optimal action and the follower’s rational response constitute a Stackelberg
solution.

Since its nice structure and background in economy, there have been a great deal of substan-
tial works along this research direction. For instance, the leader-follower’s feature can be applied
in many fields, such as the newsvendor/wholesaler problem (Øksendal et al. [2]), the optimal
reinsurance problem (Chen and Shen [3]), the operations management and marketing channel
problem (Li and Sethi [4]) and the principal-agent/optimal contract problem (Cvitanić and
Zhang [5]). Particularly, the feedback and adapted feedback information structures have been
employed in treating supply chain management, marketing channel management, and economics
problems in [6, 7, 8, 9, 10, 11] (for more information see reference therein). Besides, the cele-
brated Pontryagin’s maximum principle for stochastic differential games within the framework
of BSDE can be found in Wang and Yu [12, 13] and Yu [14].

We state a few of them related our work. First, Castanon and Athans [15] considered an
LQ stochastic dynamic Stackelberg strategies in the early, and obtained a feedback Stackelberg
solution for two-person nonzero sum game. Yong [16] studied an indefinite LQ leader-follower
stochastic differential game with random coefficients and control-dependent diffusion. The re-
lated Riccati equations for the follower and for the leader are derived sequentially to obtain
the state feedback representation of the open-loop Stackelberg equilibrium points, moreover the
sufficient conditions for their solvability with deterministic coefficients are given in the special
case. Başar et al. [17] introduced the notion of mixed leadership in nonzero-sum differential
games where one player could act as both leader and follower, depending on the control variable.
Øksendal et al. [2] investigated a general stochastic Stackelberg differential game with delayed
information, established the maximum principle, and applied it to continuous-time newsvendor
problems. Bensoussan et al. [18] introduced several global solution concepts in terms of the
players’ information patterns, and derived the maximum principle by means of FBSDEs for
the leader’s global Stackelberg solution under the adapted open-loop and adapted closed-loop
memoryless information structure (details see below) with non-controlled diffusion term. Mean-
while they investigate the LQ case where the weight matrices in the cost functionals are positive
definite and controls do not entre into the diffusion term of the state equation. Mukaidani and
Xu [19] considered the Stackelberg games for linear stochastic systems driven by Itô differential
equations with multiple followers. The Stackelberg strategies, obtained by using sets of cross-
coupled algebraic nonlinear matrix equations, are developed under two different settings: the
followers act either cooperatively to attain Pareto optimality or non-cooperatively to arrive at
a Nash equilibrium. Li and Yu [20] provided the solvability of a coupled FBSDEs under a mul-
tilevel self-similar domination-monotonicity structure, then it is employed to characterize the
unique equilibrium of an LQ generalized Stackelberg stochastic differential game with hierarchy
in a closed form. Huang et al. [21] studied a controlled linear-quadratic-Gaussian large popula-
tion system combining major leader, minor leaders and minor followers. The Stackelberg-Nash-
Cournot (SNC for short) approximate equilibrium is obtained by means of the combination of a
major-minor mean-field game and a leader-follower Stackelberg game, besides the feedback form
of the SNC approximate equilibrium strategy is constructed through coupled Riccati equations.

In this paper, we shall study the Stackelberg games under two stochastic settings (taken
from Benssousan et al. [18]). The first one is adapted open-loop (AOL) which can be states in
summary as follows: given the strategy u claimed by the leader at the beginning of the game,
the follower wants to minimize his cost functional J2(u; v) associated with the leader’s strategy
u on the whole duration of the game. His optimal response v∗ will be an adapted process such
that J2(u; v

∗ (u)) ≤ J2(u; v (u)). The leader makes an instantaneous reaction u∗ by optimizing

2



his/her performance index on the rational reaction curve of the follower, i.e., J1(u
∗; v∗ (u∗)) ≤

J1(u; v
∗ (u)), anticipating the follower’s optimal response v∗. The pair (u∗, v∗) is called an AOL

solution of the Stackelberg game. The other one, adapted closed-loop memoryless (ACLM),
comparing with AOL, the leader’s strategy and the follower’s response strategy depend on the
state (feedback form), which turns the control problem into a non-standard one. For leader’s each
strategy u made in advanced, the follower would like to seek his optimal response v∗ such that
J2(u; v

∗ (u)) ≤ J2(u; v (u)). Then, by taking the rational response of the follower into account,
the leader, of course, pick an action u∗ such that J1(u

∗; v∗ (u∗)) ≤ J1(u; v
∗ (u)). The pair (u∗, v∗)

is called an ACLM solution of the Stackelberg game.
To summarize the above, we see that the novelty of the formulation in this paper is the

following:

• Comparing with Bensoussan et al. [18], our diffusion term in stochastic system allows to
depend on control variable. As we shall see Section 2 below, due to this nice structure
of our control system, on the one hand, the adjoint equation for leader becomes more
general no matter of AOL or ACLM cases; on the other hand, the related stochastic Riccati
equation for the follower and the leader considered simultaneously by putting the follower’s
Hamiltonian system as the leader’s state equation will turn into a standard backward
stochastic Riccati equation (see Tang [22]). Moreover, under certain assumptions, the
stochastic Riccati equation admits a unique solution. For a general case, namely, non-
convex control set, see Section 4.

• We focus on the LQ Stackelberg game with the control constrained in a closed convex set
Γ of full space: Γ ⊂ R

m. One of the motivations to study the LQ problems with con-
trol constraint arises naturally from mathematical finance. For instance, the no-shorting
constraint1 in portfolio selection leads to the LQ control with positive control (Γ = R

m
+ ,

the positive orthant). Moreover, since the general market accessibility constraint, it also
promises interesting to investigate the LQ control with more general closed convex cone
constraint (see [23]). As a response, this paper investigates the LQ Stackelberg game
with general closed convex control constraint. The control constraint will bring some new
features here: (1) The related Hamitonian system is no longer linear, and it becomes a
class of nonlinear FBSDEs with projection operator. (2) Due to the nonlinearity, the stan-
dard Riccati equation with feedback control is no longer valid to represent the open-loop
solution to the two-person leader-follower stochastic differential game.

The rest of the paper is organized as follows. Section 2 is devoted to presenting the maximum
principle for a Stackelberg game of follower and leader under the AOL information pattern
with convex control input, which is well known (cf. [24]). Based on previous result, we study
Stackelberg games under the ACLM information pattern, and establish the maximum principle
for the leader’s optimal strategy, together with some other preliminary results. In section 3,
as applications, linear quadratic Stackelberg games under the AOL and ACLM information

1Short sales have so many risks that make it unsuitable for a novice investor. For starters, there is theoretically
no limit to the investor’s possible loss if the stock price rises instead of declines. A stock can only fall to zero,
resulting in a 100% loss for a long investor, but there is no limit to how high a stock can theoretically go. A short
seller who has not covered his or her position with a stop-loss buyback order can suffer tremendous losses if the
stock price runs higher. For example, consider a company that becomes embroiled in scandal when its stock is
trading at $70 per share. An investor sees an opportunity to make a quick profit and sells the stock short at $65.
But then the company is able to quickly exonerate itself from the accusations by coming up with tangible proof to
the contrary. The stock price quickly rises to $80 a share, leaving the investor with a loss of $15 per share for the
moment. If the stock continues to rise, so do the investor’s losses. Besides, short selling also involves significant
expenses. There are the costs of borrowing the security to sell, the interest payable on the margin account that
holds it, and trading commissions, etc.
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patterns are investigated, respectively. For former case, on the one hand, we prove the the
existence and uniqueness of the solution to the associated Hamiltonian system for follower with
projection operator; On the other hand, we show the existence and uniqueness of the solution
to the associated stochastic Riccati equation under certain assumptions. For the latter case, we
merely derive the associated Riccati equation which consists of a kind of complex FBSDEs, due
to the quadratic and irregular feature. Some conclusions and unsolved issues for future research
are displayed in Section 4. Some proof and discussion are displayed in Appendix.

2 Preliminaries

Throughout this paper, we denote by R
n the space of n-dimensional Euclidean space, by R

n×d

the space the matrices with order n×d. Let (Ω,F , {Ft}t≥0, P ) be a complete filtered probability
space on which a 1-dimensional standard Brownian motion W (·) is defined, with {Ft}t≥0 being
its natural filtration, augmented by all the P -null sets.

We now introduce the following spaces of processes:

S2(0, T ;Rn) ,

{
R
n-valued Ft-adapted process φ(t); E

[
sup

0≤t≤T

|φt|
2

]
<∞

}
,

M2(0, T ;Rn) ,

{
R
n-valued Ft-adapted process ϕ(t); E

[∫ T

0
|ϕt|

2 dt

]
<∞

}
,

and denote N 2 [0, T ] = S2(0, T ;Rn) × S2(0, T ;Rn) × M2(0, T ;Rn). Clearly, N 2 [0, T ] forms a
Banach space.

Consider the following:
{

dx (t) = b (t, x (t) , u (t) , v (t)) dt+ σ (t, x (t) , u (t) , v (t)) dW (t) ,
x (0) = x0 ∈ R

n,
(1)

where and (u (·) , v (·)) denotes the decisions of the leader and the follower, with values in subsets
U and V in some closed convex subset Γ1 and Γ2 of full space R

m1 and R
m2 , respectively.

The cost functionals for the leader and the follower to minimize are given, respectively, as
follows:

J1 (u, v) = E

[∫ T

0
l1 (t, x (t) , u (t) , v (t)) dt+Φ1 (x (T ))

]
(2)

and

J2 (u, v) = E

[∫ T

0
l2 (t, x (t) , u (t) , v (t)) dt+Φ2 (x (T ))

]
. (3)

The coefficients b and σ in (1), and li and Φi, i = 1, 2 in the cost functionals (2) and (3) are
specified as follows:

b : Ω× [0, T ]× R
n × R

m1 × R
m2 → R

n, P × B
(
R
n+m1+m2

)
/B (Rn) measurable,

σ : Ω× [0, T ]× R
n × R

m1 × R
m2 → R

n×d, P × B
(
R
n+m1+m2

)
/B (Rn) measurable,

li : Ω× [0, T ]× R
n × R

m1 × R
m2 → R, P × B (Rn)× B (Γ1)× B (Γ2) /B (R) measurable,

Φi : Ω× R
n → R, FT×B (Rn) /B (R) measurable.

Letting ϕ (t, x, u, v) = b (t, x, u, v) , σ (t, x, u, v) , li (t, x, u, v) , Φi, i = 1, 2, we give the standing
assumptions of our paper:

(A1) We postulate throughout the paper that ϕ and its first and second derivatives are uni-
formly Lipschitz with respect to (x, u, v) and ϕ (·, x, u, v) ∈ M2, for (x, u, v) ∈ R

n×R
m1 ×

R
m2 .
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In this paper, we focus on the players’ information structures η as follows:
(a) adapted open-loop (AOL): η (t) = {x0,Ft}, t ∈ [0, T ] ,
(b) adapted closed-loop memoryless (ACLM): η (t) = {x0, x (t) ,Ft}, t ∈ [0, T ] .

2.1 AOL information structure

For the AOL information structure, the admissible strategy spaces for the leader and the follower
are denoted by

U =

{
u

∣∣∣∣u : Ω× [0, T ] → Γ1 is Ft-adapted satisfying E

[∫ T

0
|u (t)|2 dt

]
<∞

}
,

V =

{
v

∣∣∣∣v : Ω×[0, T ]×U → Γ2, for u ∈ U , v (·, u) is Ft-adapted satisfying E

[∫ T

0
|v (t)|2 dt

]
<∞

}
.

Remark 2.1 Since the initial state x0 is commonly known by both players, x0 is suppressed.

Under the AOL information pattern, we first establish a maximum principle for optimal
control of the follower, whenever given the leader’s strategy u ∈ U .
Problem (AOL-F) Fix u ∈ U . Seek an admissible control v∗ (·) ∈ V such that

J2 (u, v
∗) = inf

v(·)∈V
J2 (u, v)

subject to (1).
Define the Hamiltonian function:

H2 (t, x, u, v, p2, q2) = 〈p2, b (t, x, u, v)〉+ 〈q2, σ (t, x, u, v)〉+ l2 (t, x, u, v) ,

∀ (t, x, u, v, p2, q2) ∈ [0, T ]× R
n × R

m1 × R
m2 × R

n × R
n.

Then the maximum principle2 (cf. [25]) says that if we assume that v∗ (·) ∈ V is an optimal
control, there exists a unique adapted solution (p2 (·) , q2 (·)) ∈ S2(0, T ;Rn) × M2(0, T ;Rn×d)
such that





dx (t) = b (t, x (t) , u (t) , v∗ (t)) dt+ σ (t, x (t) , u (t) , v∗ (t)) dW (t) ,

−dp2 (t) = ∂
∂x

H2 (t, x (t) , u (t) , v
∗ (t) , p2 (t) , q2 (t)) dt− q2 (t) dW (t) ,

x (0) = x0, p2 (T ) =
∂
∂x

Φ2 (x (T )) ,

(4)

and
v∗ (t, x (t) , u (t) , p2 (t) , q2 (t)) = arg min

v∈Γ2

H2 (t, x (t) , u (t) , v, p2 (t) , q2 (t)) . (5)

We suppose that, the function v∗ (t, x, u, p2, q2) is uniquely defined and is uniformly Lips-
chitz continuous with respect to (x, u, p2, q2) and continuously differentiable3. Now inserting
v∗ (t, x, u, p2, q2) into (4), we formulate the optimal control problem for leader.
Problem (AOL-L) Seek an admissible control u∗ (·) ∈ U such that

J1 (u
∗, v∗) = inf

u(·)∈U
J1 (u, v

∗)

2Since the control region is closed and convex, the first-order adjoint equation is needed. For general case,
that is, compact control domain, the second-order adjoint equation must be introduced (see [25] and [26] for more
details).

3In fact, we will see later in Section 3, in the framework of linear quadratic, whenever the control domain is
closed and convex, by convex analysis, there indeed exists a unique optimal control in the form of projector.
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subject to





dx (t) = b (t, x (t) , u (t) , v∗ (t, x (t) , u (t) , p2 (t) , q2 (t))) dt
+σ (t, x (t) , u (t) , v∗ (t, x (t) , u (t) , p2 (t) , q2 (t))) dW (t) ,

−dp2 (t) = ∂
∂x

H2 (t, x (t) , u (t) , v
∗ (t, x (t) , u (t) , p2 (t) , q2 (t)) , p2 (t) , q2 (t)) dt

−q2 (t) dW (t) ,

x (0) = x0, p2 (T ) =
∂
∂x

Φ2 (x (T )) .

(6)

Remark 2.2 From Problem (AOL-L), reader maybe realize that one of the motivations to focus
on fully coupled FBSDEs comes from stochastic Stackelberg differential games. In the literature,
to treat fully coupled FBSDEs, Antonelli first provided a counterexample (see [27]) showing that
the Lipschitz condition is not enough for the existence of FBSDEs in an arbitrarily large time
duration. Thereby, more assumptions are essentially needed. To the best of our knowledge,
there exist two approaches to deal with such FBSDEs. The first one is purely probabilistic (see
[27, 28, 29]) under the monotone conditions; The second one concerns a kind of so called “four-
steps scheme” method (combination of the methods of partial differential equation and probability
or stochastic optimal control). Several major applications in mathematical finance have been
made (see [30, 29]). It is now very clear that certain important problems in mathematical
economics and mathematical finance, especially in the optimization problem, are formulated to
be fully coupled FBSDEs (see [31]).

Clearly, for given u (·) ∈ U , FBSDEs (6) are fully coupled (while FBSDEs (3.2) in Bensoussan
et al. [18] are partially coupled). In order to make the leader’s problem well-posed, we proposed
some conditions, mainly taken from Hu and Peng [28] (see also Peng and Wu [29]) to guarantee
that FBSDEs (6) admit a unique adapted solution.

For Λ1 =
(
x1, p12, q

1
2

)
∈ R

n × R
n × R

n, Λ2 =
(
x2, p22, q

2
2

)
∈ R

n × R
n × R

n,

[
Λ1,Λ2

]
=
〈
x1, x2

〉
+
〈
p12, p

2
2

〉
+
〈
q12, q

2
2

〉
,

Let

f2 (t, u, x, p2, q2) =
∂

∂x
H2 (t, x, u, v

∗ (t, x, u, p2, q2) , p2, q2)

For Λ = (x, p2, q2) ∈ R
n × R

n × R
n,

F (t, u,Λ) = (f2 (t, u,Λ) , b (t, u,Λ) , σ (t, u,Λ)) .

We assume

(A2) For each Λ = (x, p2, q2) ∈ R
n × R

n × R
n, F (t, u,Λ) ∈ M2 (0, T ;Rn × R

n × R
n) , and for

each x ∈ R
n, ∂

∂x
Φ2 (x) ∈ L2 (Ω,FT ;R

n) ; there exists a constant c1 > 0, such that

∣∣F
(
t, u,Λ1

)
− F

(
t, u,Λ2

)∣∣ ≤ c1
∣∣Λ1 − Λ2

∣∣ , Λi ∈ R
n × R

n × R
n, i = 1, 2

and ∣∣∣∣
∂

∂x
Φ2 (x1)−

∂

∂x
Φ2 (x2)

∣∣∣∣ ≤ c1 |x1 − x2| , P -a.s. x1, x2 ∈ R
n.

(A3) There exists a constant c2 > 0, such that

[
F
(
t, u,Λ1

)
− F

(
t, u,Λ2

)
,Λ1 − Λ2

]
≤ −c2

∣∣Λ1 − Λ2
∣∣2 ,Λi ∈ R

n × R
n × R

n, i = 1, 2

and 〈
∂

∂x
Φ2 (x1)−

∂

∂x
Φ2 (x2) , x1 − x2

〉
≥ c2 |x1 − x2| , P -a.s. x1, x2 ∈ R

n.
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Under (A2)-(A3), FBSDEs (6) have a unique adapted solution for u ∈ U . Next, we will
establish a maximum principle for leader’s optimal control. Since the control domain is convex,
the first adjoint equation is needed.

Proposition 2.1 Suppose that the Assumptions (A2)-(A3) hold. Let u∗ (·) is an optimal strat-
egy for the leader. Then there exists a unique adapted solution
(k (·) , p1 (·) , q1 (·)) ∈ M2 (0, T ;Rn × R

n ×R
n) , such that

u∗ (t) = argmin
u∈U

H1 (t, u, x (t) , k (t) , p1 (·) , p2 (·) , q1 (·) , q2 (·)) ,

where

H1 (t, u, x, k, p1, p2, q1, q2) = 〈p1, b (t, x, u, v
∗ (t, x, u, p2, q2))〉

〈q1, σ (t, x, u, v
∗ (t, x, u, p2, q2))〉

+l1 (t, x, u, v
∗ (t, x, u, p2, q2))

−〈k, f2 (t, u, x, p2, q2)〉

and 



dk (t) = − ∂
∂p2

H1dt−
∂
∂q2

H1dW (t) ,

dp1 (t) = ∂
∂x

H1dt+ q1 (t) dW (t) ,

k (0) = 0, p1 (T ) = − ∂2

∂x2Φ2 (x (T )) k (T ) +
∂
∂x

Φ1 (x (T )) ,

(7)

where

∂

∂p2
H1 =

(
∂b

∂v

∂v∗

∂p2

)⊤

p1 +

(
∂σ

∂v

∂v∗

∂p2

)⊤

q1 +

(
∂v∗

∂p2

)⊤ ∂l1
∂v

−
∂b

∂x
k −

n∑

i=1

ki

(
∂v∗

∂p2

)⊤ ∂

∂v

(
∂b

∂xi

)⊤

p2

−

(
∂2l2
∂v∂x

∂v∗

∂p2

)⊤

k −
n∑

i=1

ki

(
∂v∗

∂p2

)⊤ ∂

∂v

(
∂σ

∂xi

)⊤

q2,

∂

∂q2
H1 =

(
∂b

∂v

∂v∗

∂q2

)⊤

p1 +

(
∂σ

∂v

∂v∗

∂q2

)⊤

q1 +

(
∂v∗

∂q2

)⊤ ∂l1
∂v

−
n∑

i=1

ki

(
∂v∗

∂q2

)⊤ ∂

∂v

(
∂b

∂xi

)⊤

p2

−
∂σ

∂x
k −

n∑

i=1

ki

(
∂v∗

∂q2

)⊤ ∂

∂v

(
∂σ

∂xi

)⊤

q2 −

(
∂2l2
∂v∂x

∂v∗

∂q2

)⊤

k,

∂

∂x
H1 =

(
∂b

∂x

)⊤

p1 +

(
∂b

∂v

∂v∗

∂x

)⊤

p1 +

(
∂σ

∂x

)⊤

q1 +

(
∂σ

∂v

∂v∗

∂x

)⊤

q1

+
∂l1
∂x

+

(
∂v∗

∂x

)⊤ ∂l1
∂v

−
n∑

i=1

ki

[
∂

∂x

(
∂b

∂xi

)⊤

+

(
∂v∗

∂x2

)⊤ ∂

∂v

(
∂b

∂xi

)⊤
]
p2

−
n∑

i=1

ki

[
∂

∂x

(
∂σ

∂xi

)⊤

+

(
∂v∗

∂x2

)⊤ ∂

∂v

(
∂σ

∂xi

)⊤
]
q2

−

(
∂2l2
∂x2

+
∂2l2
∂x∂v

∂v∗

∂x

)⊤

k.
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2.2 ACLM information structure

For the ACLM information structure, the admissible strategy spaces for the leader and the
follower are denoted by

U =

{
u|u : Ω× [0, T ]× R

n → Γ1 is Ft-adapted for any x ∈ R
n, u (t, x) is continuously

differentiable in x for any (t, x) ∈ Ω× [0, T ] satisfying

∣∣∣∣
∂u

∂x

∣∣∣∣ < K

}
,

V = {v |: Ω× [0, T ]× R
n × U → Γ2 is Ft-adapted for any x ∈ R

n and u ∈ U } .

Now consider the following,
Problem (ACLM-F) For any u ∈ U , seek an admissible control v∗ (·) ∈ V such that

J2 (u, v
∗) = inf

v(·)∈V
J2 (u, v)

subject to

{
dx (t) = b (t, x (t) , u (t, x (t)) , v) dt+ σ (t, x (t) , u (t, x (t)) , v) dW (t) ,
x (0) = x0.

(8)

Once again, then the maximum principle (cf. [25]) states that if we assume that v∗ (·) ∈ V
is an optimal control, there exists a unique adapted solution (p2 (·) , q2 (·)) ∈ S2(0, T ;Rn) ×
M2(0, T ;Rn×d) such that

{
−dp2 (t) = ∂

∂x
H2 (t, x (t) , u (t, x (t)) , v (t) , p2 (t) , q2 (t)) dt− q2 (t) dW (t) ,

p2 (T ) = ∂
∂x

Φ2 (x (T )) ,
(9)

with

∂

∂x
H2 (t, x (t) , u (t, x (t)) , v (t) , p2 (t) , q2 (t))

=

(
∂b

∂x
+
∂b

∂u

∂u

∂x

)⊤

p2 +

(
∂σ

∂x
+
∂σ

∂u

∂u

∂x

)⊤

q2

+
∂l2
∂x

+

(
∂u

∂x

)⊤ ∂l2
∂u

and
v∗ (t, x (t) , u, p2 (t) , q2 (t)) = arg min

v∈Γ2

H2 (t, x (t) , u (t, x (t)) , v, p2 (t) , q2 (t)) . (10)

We now postulate that for any leader’s strategy u ∈ U , there exists a unique strategy v∗ for the
follower that minimizes his cost functional J2 and that (10) yields v∗ (t) = v∗ (t, x (t) , u, p2 (t) , q2 (t)).
Then, taking into account the follower’s optimal response, the leader will be taken action by
solving the optimal control problem:

J1 (u
∗, v∗) = inf

v(·)∈V
J1 (u, v

∗) (11)

subject to





dx (t) = b (t, x (t) , u (t, x (t)) , v∗ (t)) dt+ σ (t, x (t) , u (t, x (t)) , v∗ (t)) dW (t) ,

−dp2 (t) = ∂
∂x

H2 (t, x (t) , u (t) , v
∗ (t) , p2 (t) , q2 (t)) dt− q2 (t) dW (t) ,

x (0) = x0, p2 (T ) =
∂
∂x
Φ2 (x (T )) ,

(12)
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with

∂

∂x
H2 (t, x (t) , u (t, x (t)) , v

∗ (t) , p2 (t) , q2 (t))

=

(
∂b

∂x
+
∂b

∂u

∂u

∂x

)⊤

p2 +

(
∂σ

∂x
+
∂σ

∂u

∂u

∂x

)⊤

q2

+
∂l2
∂x

+

(
∂u

∂x

)⊤ ∂l2
∂u

.

We assume that the follower has a unique optimal response strategy v∗ for every strategy
u ∈ U of the leader. Similarly, we further suppose that the leader’s problem is well-posed, i.e.,
for each u ∈ U , there exists a unique triple (x (·) , p2 (·) , q2 (·)) ∈ N 2 [0, T ] that solves FBSDEs
(12). Clearly, the appearance of the derivative ∂u

∂x
of the strategy u in (12) leads to in a non-

standard optimal control problem for the leader. Employing the idea from Bensoussan et al.
[18], we first transform the original issue to a standard stochastic optimal control problem, and
subsequently establish the equivalence between the two in the sense that they coincide with the
same optimal trajectory and cost.

Let us introduce the following optimal control problem:

J (u∗1, u
∗
2) = min

(u1(·),u2(·))
J1 (u, v)

= E

[∫ T

0
l1 (t, x (t) , u2 (t)x (t) + u1 (t) , µ

∗ (t)) dt+Φ1 (x (T ))

]
, (13)

where
µ∗ (t) = v∗ (t, x (t) , u2 (t)x (t) + u1 (t) , p2 (t) , q2 (t)) ,

subject to




dx (t) = b (t, x (t) , u2 (t) x (t) + u1 (t) , µ
∗ (t)) dt

+σ (t, x (t) , u2 (t) x (t) + u1 (t) , µ
∗ (t)) dW (t) ,

−dp2 (t) = ∂
∂x

H2 (t, x (t) , u2 (t) x (t) + u1 (t) , µ
∗ (t) , p2 (t) , q2 (t)) dt− q2 (t) dW (t) ,

x (0) = x0, p2 (T ) =
∂
∂x

Φ2 (x (T )) ,
(14)

with

∂

∂x
H2 (t, x, u2x+ u1, µ

∗, p2, q2) =

(
∂b

∂x
+
∂b

∂u
u2

)⊤

p2 +

(
∂σ

∂x
+
∂σ

∂u
u2

)⊤

q2

−
∂l2
∂x

− u⊤2
∂l2
∂u

.

where u2 and u1 are adapted control processes with values in R
m1 and the ball BK(Rm1×n) with

radius K in R
m1 , respectively. We assume that the coefficients ∂

∂x
H2 (t, x, u2x+ u1, µ

∗, p2, q2) ,

b, σ and ∂
∂x

Φ2 (x) satisfy the monotone condition (A1)-(A2). Thus, the problem (13)-(14) is
well-posed.

Theorem 2.1 Assume that the above coefficients of the problem (13)-(14) satisfy the mono-
tone conditions. Let u∗ ∈ U be an optimal solution to the leader’s problem (11)-(12) with
the corresponding state trajectory (x̄ (·) , p̄2 (·) , q̄2 (·)) ∈ N 2 [0, T ], then there exists a triple
(χ (·) , p1 (·) , q1 (·)) ∈ N 2 [0, T ] such that

(
u∗ (t, x̄ (t))−

∂u∗ (t, x̄ (t))

∂x
x̄ (t) ,

∂u∗ (t, x̄ (t))

∂x

)

= arg min
(u1,u2)∈Rm1×BK(Rm1×n)

H3 (t, u1, u2, x̄ (t) , χ (t) , p1 (t) , q1 (t) , p̄2 (t) , q̄2 (t))
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subject to 



dχ (t) = − ∂
∂p2

H3dt−
∂
∂q2

H3dW (t)

dp1 (t) = ∂
∂x

H3dt+ q1 (t) dW (t) ,

χ (0) = 0, p1 (T ) = −∂2Φ2(x̄(T ))
∂x2 χ (T ) + ∂Φ1(x̄(T ))

∂x
,

(15)

where

H3 (t, u1, u2, x̄, χ, p1, q1, p̄2, q̄2)

= 〈p1, b (t, x, u2x+ u1 (t) , v
∗ (t, x, u2x+ u1, p2, q2))〉

+ 〈q1, σ (t, x, u2x+ u1 (t) , v
∗ (t, x, u2x+ u1, p2, q2))〉

−

〈
χ,

∂

∂x
H2 (t, x, u2x+ u1, µ

∗, p2, q2)

〉

+l1 (t, x, u2x+ u1, v
∗ (t, x, u2x+ u1, p2, q2)) .

Here ∂
∂p2

H3,
∂
∂q2

H3,
∂
∂x

H3 are evaluated at the point

(
t, u∗ (t, x̄ (t))−

∂u∗ (t, x̄ (t))

∂x
x̄ (t) ,

∂u∗ (t, x̄ (t))

∂x
, x̄ (t) , χ (t) , p1 (t) , q1 (t) , p̄2 (t) , q̄2 (t)

)
.

For reader’s convenience, we present a brief proof as follows:

Proof. Obviously, from the definitions of the optimal costs J and J1 associated with problems
(11) and (13), we have J1 ≤ J . Besides, based on u∗ of problem (11), we are able to structure
a pair of control processes (u∗1, u

∗
2) for problem (13) as follows:

u∗1 (t) = u∗ (t, x̄ (t))−
∂u∗ (t, x̄ (t))

∂x
x̄ (t) , (16)

u∗2 (t) =
∂u∗ (t, x̄ (t))

∂x
. (17)

Employing these controls (16)-(17), the FBSDEs (14) admit the same solution as that of (12)
with the optimal strategy u∗ from which we derive

u∗ (t, x̄ (t)) = u∗2 (t) x̄ (t) + u∗1 (t) .

Consequently, J = J1 and the above constructed (u∗1, u
∗
2) is an optimal control for problem

(13), leading to the same state trajectory (χ (·) , p1 (·) , q1 (·)) . From the above arguments we
state that (

u∗1 (t) = u∗ (t, x̄ (t))− ∂u∗(t,x̄(t))
∂x

x̄ (t) , u∗2 (t) =
∂u∗(t,x̄(t))

∂x

)

is indeed an optimal control for problem (13), whenever u∗ is a solution for problem (11) with
the corresponding forward state x̄ (t) . Therefore, we can establish the maximum principle for
problem (11) of the leader via substituting (16)-(17) into the necessary conditions satisfied by
the optimal control for problem (13). �

Remark 2.3 Note that whenever u doesn’t contain the state x, we claim that Stackelberg solu-
tion is reduced to the AOL Stackelberg solution, and thus the maximum principle for both cases
coincides.
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3 Application to linear quadratic Stackelberg games

In this section, the theoretical result obtained in Section 2 will be applied to study linear
quadratic Stackelberg games under the AOL and ACLM information structures, respectively.
Yong [16] derives stochastic Riccati equations for the follower and the leader sequentially with
random coefficients and diffusion term of the state equation depending on controls, and the
weight matrices in the cost functionals are not necessarily positive definite. To be precise, the
follower gives his Riccati equation for any given strategy of the leader. Then the leader solves
his problem involving a system of FBSDEs, whose coefficients depend on the solution of the
follower’s Riccati equation. Finally, a further analysis of the state feedback representation of
the leader’s optimal strategy provides the leader’s Riccati equation. Under certain conditions,
the solvability of the leader’s Riccati equation in the case of deterministic coefficients is also
discussed.

In contrast to Yong [16], we consider the similar system under convex control constraint .
The systems will contain the projection operators which makes the system nonlinear (classical
Riccati approach fails). When supposing the control set is full space, we may let the follower’s
Hamiltonian system as the leader’s controlled state equation, and consequently, the state feed-
back representation of the AOL Stackelberg solution can be represented simultaneously for the
leader and the follower. As a result, the corresponding Riccati equation is different from that in
[16]. Moreover, by means of a linear transformation to a standard stochastic Riccati equation,
we also prove that under certain conditions there exists a unique solution to the Riccati equation
with stochastic coefficients studied by Tang [22]. For a linear quadratic Stackelberg game under
the ACLM case, we will see that the follower’s Hamiltonian system is no longer linear, and
that keeps us from deriving a Riccati equation if we handel the same way as in the AOL case.
Instead, we postulate that the forward variable χ is linear with respect to the original state x,
and then derive a kind of new but extremely complex FBSDEs which plays the same role as the
Riccati equation in the AOL case.

3.1 The AOL fashion

To this end, let us introduce the state equation and the cost functional for leader and follower,
respectively:





dx (t) = [A (t)x (t) +B1 (t)u (t) +B2 (t) v (t)] dt
+ [C (t) x (t) +D1 (t)u (t) +D2 (t) v (t)] dW (t) ,

x (0) = x0 ∈ R
n.

(18)

The cost functionals for the leader and the follower to minimize are given, respectively, as follows:

J1 (u, v) =
1

2
E

[∫ T

0
[(〈Q1 (t) x (t) , x (t)〉+ 〈R1 (t) u (t) , u (t)〉)] dt+ 〈Φ1x (T ) , x (T )〉

]
(19)

and

J2 (u, v) =
1

2
E

[∫ T

0
(〈Q2 (t)x (t) , x (t)〉+ 〈R2 (t) v (t) , v (t)〉) dt+ 〈Φ2x (T ) , x (T )〉

]
. (20)

We make the following three assumptions on the coefficients of the above problem.
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(H1) Suppose that the matrix processes

A : Ω× [0, T ] → R
n×n,

B1 : Ω× [0, T ] → R
n×m1 ,

B2 : Ω× [0, T ] → R
n×m2 ,

C : Ω× [0, T ] → R
n×n,

D1 : Ω× [0, T ] → R
n×m1 ,

D2 : Ω× [0, T ] → R
n×m2 ,

Q1 : Ω× [0, T ] → R
n×n,

Q2 : Ω× [0, T ] → R
n×n,

R1 : Ω× [0, T ] → R
m1×m1 ,

R2 : Ω× [0, T ] → R
m2×m2 ,

and the random matrices Φ1,Φ2 : Ω → R
n are uniformly bounded and {Ft, 0 ≤ t ≤ T}}-

adapted or FT -measurable.

(H2) Suppose that the state weighting matrix process Q1 and Q2 are a.s. a.e. symmetric and
nonnegative. Also suppose that the terminal state weighting random matrix Φ1 and Φ2

are a.s. symmetric and nonnegative.

(H3) Suppose that the control weighting matrix process R1 and R2 are a.s. a.e. symmetric
and uniformly positive.

The Hamiltonian function can be expressed by

H2 (t, x, u, v, p2, q2) = 〈p2, A (t) x+B1 (t)u+B2 (t) v〉

+ 〈q2, C (t) x+D1 (t)u+D2 (t) v〉

+
1

2
[〈Q2 (t)x, x〉+ 〈R2 (t) v, v〉] ,

∀ (t, x, u, v, p2, q2) ∈ [0, T ]× R
n × R

m1 × R
m2 × R

n ×R
n. (21)

The adjoint equation (p2 (·) , q2 (·)) ∈ S2(0, T ;Rn)×M2(0, T ;Rn×d) such that

{
−dp2 (t) =

(
A⊤ (t) p2 (t) + C⊤ (t) q2 (t)−Q2 (t)x (t)

)
dt− q2 (t)W (t) ,

x (0) = x0, p2 (T ) = −Φ2x (T ) .
(22)

Since Γ2 is a closed convex set, then maximum principle reads as the following local form

〈
−
∂H2

∂v
(t, x (t) , u (t) , v∗ (t) , p2 (t) , q2 (t)) , v − v∗ (t)

〉
≤ 0, ∀v ∈ Γ2, a.e. t ∈ [0, T ], P-a.s.

(23)
Hereafter, time argument is suppressed in case when no confusion occurs.

Noticing (21), then (23) yields that

〈
−B⊤

2 p2 −D⊤
2 q2 −R2v

∗ (t) , v − v∗ (t)
〉
≤ 0, for all v ∈ Γ2, a.e. t ∈ [0, T ], P -a.s.

or equivalently (noticing R2 > 0),

〈
R

1

2

2 [−R
−1
2 (B⊤

2 p2 +D⊤
2 q2)− v∗ (t)], R

1

2

2 (v − v∗ (t))

〉
≤ 0, ∀v ∈ Γ2, a.e. t ∈ [0, T ], P -a.s. (24)
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As R2(·) > 0, we take the following norm on Γ2 ⊂ R
m2 (which is equivalent to its Euclidean

norm)

‖x‖2R2
= 〈〈x, x〉〉 :=

〈
R

1

2

2 x,R
1

2

2 x

〉
,

and by the well-known results of convex analysis, we obtain that (24) is equivalent to

v∗(t) = PΓ2
[−R−1

2 (t)(B⊤
2 (t)p2(t) +D⊤

2 (t)q2(t))], a.e. t ∈ [0, T ], P -a.s.,

where PΓ2
(·) is the projection mapping from R

m2 to its closed convex subset Γ2 under the norm
‖ · ‖R2

. For more details, see Appendix. From now on, we denote

ϕ2(t, p, q) := PΓ2
[−R−1

2 (t)(B⊤
2 (t)p +D⊤

2 (t)q)].

The follower’s optimal strategy as follows:

v∗ (t) = ϕ2(t, p1 (t) , q1 (t)) := PΓ2
[−R−1

2 (t)(B⊤
2 (t)p2 (t) +D⊤

2 (t)q2 (t))].

Now, we focus on the leader’s problem. Her/His aim is to seek an optimal control u∗ (·) such
that

J1 (u
∗, v∗) = inf

u(·)∈U
J1 (u, v

∗)

subject to





dx (t) = [A (t)x (t) +B1 (t)u (t) +B2 (t)ϕ2(t, p2 (t) , q2 (t))] dt
+ [C (t)x (t) +D1 (t) u (t) +D2 (t)ϕ2(t, p2 (t) , q2 (t))] dW (t) ,

−dp2 (t) =
[
A⊤ (t) p2 (t) + C⊤ (t) q2 (t) +Q2 (t)x (t)

]
dt− q2 (t)W (t) ,

x (0) = x0, p2 (T ) = Φ2x (T ) .

(25)

Obviously, FBSDEs (25) are fully coupled, which contains a nonlinear term ϕ2(t, p2 (t) , q2 (t)).
Nonetheless, under certain assumptions, we are able to prove the existence and uniqueness of
such equations.

Theorem 3.1 Assume that (H1)-(H3) are in force. Then, for any given u (·) ∈ U , FBSDEs
(25) admit a unique adapted solution (x (·) , p2 (·) , q2 (·)) ∈ N 2 [0, T ] .

The proof can be found in the Appendix 4.

Remark 3.1 Due to the nonlinearity of (25), the classical approach of Riccati equation is not
applicable in this case. Moreover, the methodology developed in Hu and Zhou [23] can not applied
directly. On the one hand, the control domain there is postulated to be a closed cone involving the
original point. From (5.2) in [23], we know that the optimal feedback control can be expressed as
control process multiplying by the state variable. On the other hand, note that the liner system
(18) is non-homogeneous linear equation, which doesn’t satisfy the framework in [23] since the
equations (5.24) and (5.25) in Hu and Zhou [23] can be represented explicitly. However, in our
paper, we have two controls simultaneously, whose system, of course, is non-homogeneous.

Now we are ready to find the optimal control for leader. The leader’s problem is well-posed
since for every u (·) ∈ U , the FBSDEs (25) admits a unique solution. From Proposition 2.1, it
is easy to derive the leader’s optimal strategy as follows:

u∗ (t) = ϕ1(t, p1 (t) , q1 (t)) := PΓ1
[−R−1

1 (t)(B⊤
1 (t)p1 (t) +D⊤

1 (t)q1 (t))],
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where 



dk (t) = − ∂
∂p2

H1dt−
∂
∂q2

H1dW (t)

dp1 (t) = − ∂
∂x

H1dt+ q1 (t) dW (t) ,

k (0) = 0, p1 (T ) = − ∂2

∂x2Φ2 (x (T )) k (T ) +
∂
∂x

Φ1 (x (T )) ,

(26)

and

H1 (t, u, x, k, p1, p2, q1, q2)

= 〈p1, Ax+B1u+B2ϕ2(t, p2, q2)〉

+ 〈q1, Cx+D1u+D2ϕ2(t, p2, q2)〉

+
1

2
(〈Q1x, x〉+ 〈R1u, u〉)

−
〈
k,A⊤p2 + C⊤q2 +Q2x

〉
.

From the uniqueness of the optimal strategy and Proposition A.1, we also know that the FBS-
DEs:



dx (t) = [A (t) x (t) +B1 (t) u (t) +B2 (t)ϕ2(t, p2 (t) , q2 (t))] dt
+ [C (t)x (t) +D1 (t)u (t) +D2 (t)ϕ2(t, p2 (t) , q2 (t))] dW (t) ,

−dp2 (t) =
[
A⊤ (t) p2 (t) +C⊤ (t) q2 (t) +Q2 (t) x (t)

]
dt− q2 (t)W (t) ,

dk (t) =
[
−B2 (t)

∂ϕ2(t,p2(t),q2(t))
∂p2

p1 (t)−D2 (t)
∂ϕ2(t,p2(t),q2(t))

∂p2
q1 (t) +A (t) k (t)

]
dt

+
[
−B2 (t)

∂ϕ2(t,p2(t),q2(t))
∂q2

p1 (t)−D2 (t)
∂ϕ2(t,p2(t),q2(t))

∂q2
q1 (t) + C (t) k (t)

]
dW (t) ,

−dp1 (t) =
[
A⊤ (t) p1 (t) +C⊤ (t) q1 (t) +Q1 (t) x (t)−Q2 (t) k (t)

]
dt− q1 (t) dW (t) ,

x (0) = x0, k (0) = 0, p1 (T ) = Φ2k (T )− Φ1x (T ) , p2 (T ) = −Φ2x (T )
(27)

has a unique solution under the assumption ∂
∂p2

ϕ2(t, p2 (t) , q2 (t)) and
∂
∂q2
ϕ2(t, p2 (t) , q2 (t)) are

well-defined.
Finally, we have the following coupled systems:





dx (t) = [A (t) x (t) +B1 (t)ϕ1(t, p1 (t) , q1 (t)) +B2 (t)ϕ2(t, p2 (t) , q2 (t))] dt
+ [C (t)x (t) +D1 (t)ϕ1(t, p1 (t) , q1 (t)) +D2 (t)ϕ2(t, p2 (t) , q2 (t))] dW (t) ,

−dp2 (t) =
[
A⊤ (t) p2 (t) +C⊤ (t) q2 (t) +Q2 (t) x (t)

]
dt− q2 (t)W (t) ,

dk (t) =
[
−B2 (t)

∂ϕ2(t,p2(t),q2(t))
∂p2

p1 (t)−D2 (t)
∂ϕ2(t,p2(t),q2(t))

∂p2
q1 (t) +A (t) k (t)

]
dt

+
[
−B2 (t)

∂ϕ2(t,p2(t),q2(t))
∂q2

p1 (t)−D2 (t)
∂ϕ2(t,p2(t),q2(t))

∂q2
q1 (t) + C (t) k (t)

]
dW (t) ,

−dp1 (t) =
[
A⊤ (t) p1 (t) +C⊤ (t) q1 (t) +Q1 (t) x (t)−Q2 (t) k (t)

]
dt− q1 (t) dW (t) ,

x (0) = x0, k (0) = 0, p1 (T ) = Φ2k (T )− Φ1x (T ) , p2 (T ) = −Φ2x (T )
(28)

Next we set Γ1 = R
m1 ,Γ2 = R

m2 . We observe that the Riccati equation approach is really
applicable in this case, and the AOL Stackelberg solution (u∗, v∗) can be written as

{
u∗ (t) = −R−1

1 (t)(B⊤
1 (t)p1 (t) +D⊤

1 (t)q1 (t)),

v∗ (t) = −R−1
2 (t)(B⊤

2 (t)p2 (t) +D⊤
2 (t)q2 (t)).

In this case, FBSDEs (28) turn into




dx (t) = [A (t)x (t) +B1 (t)ϕ1(t, p1 (t) , q1 (t)) +B2 (t)ϕ2(t, p2 (t) , q2 (t))] dt
+ [C (t)x (t) +D1 (t)ϕ1(t, p1 (t) , q1 (t)) +D2 (t)ϕ2(t, p2 (t) , q2 (t))] dW (t) ,

dk (t) =
[
B2 (t)R

−1
2 (t)B⊤

2 (t)p1 (t) +D2 (t)R
−1
2 (t)B⊤

2 (t)q1 (t) +A (t) k (t)
]
dt

+
[
B2 (t)R

−1
2 (t)D⊤

2 (t)p1 (t) +D2 (t)R
−1
2 (t)D⊤

2 (t)q1 (t) + C (t) k (t)
]
dW (t) ,

−dp1 (t) =
[
A⊤ (t) p1 (t) + C⊤ (t) q1 (t) +Q1 (t)x (t)−Q2 (t) k (t)

]
dt− q1 (t) dW (t) ,

−dp2 (t) =
[
A⊤ (t) p2 (t) + C⊤ (t) q2 (t) +Q2 (t)x (t)

]
dt− q2 (t)W (t) ,

x (0) = x0, k (0) = 0, p1 (T ) = −Φ2k (T ) + Φ1x (T ) , p2 (T ) = Φ2x (T ) .
(29)
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It is possible to derive the feedback representation of the Stackelberg solution (u∗, v∗) in terms
of the state (x, k). To this end, we introduce the following notations for simplicity,

X =

(
x
k

)
, P =

(
p1
p2

)
, Q =

(
q1
q2

)

and

A =

(
A 0
0 A

)
, C =

(
C 0
0 C

)
, X0 =

(
x0
0

)
,

B1 =

(
B1R

−1
1 B⊤

1 B2R
−1
2 B⊤

2

−B2R
−1
2 B⊤

2 0

)
, B2 =

(
B1R

−1
1 D⊤

1 B2R
−1
2 D⊤

2

−D2R
−1
2 B⊤

2 0

)
,

D1 =

(
D1R

−1
1 B⊤

1 D2R
−1
2 B⊤

2

−B2R
−1
2 D⊤

2 0

)
, D2 =

(
D1R

−1
1 D⊤

1 D2R
−1
2 D⊤

2

−D2R
−1
2 D⊤

2 0

)
,

Q1 =

(
Q1 −Q2

Q2 0

)
, Φ1 =

(
Φ1 −Φ2

Φ2 0

)
.

Then, FBSDEs (28) can be rewritten as





dX (t) = [A (t)X (t)− B1 (t)P (t)− B2 (t)Q (t)] dt
+ [C (t)X (t)−D1 (t)P (t)−D2 (t)Q (t)] dW (t) ,

−dP (t) =
[
A (t)P (t) + C⊤ (t)Q (t) +Q1 (t)X (t)

]
dt−Q (t) dW (t) ,

X (0) = X0, P (T ) = Φ̂X (T ) .

(30)

We are ready to derive the Riccati equation. To this end, assume that there exists a matrix-
valued process P such that

P (t) = R (t)X (t) , t ∈ [0, T ] ,

where R (t) is an Ft-adapted process with values in R
n×n. In general, R (t) is not a bounded

variation function with respect to t. We tentatively assume that R (t) is a semi-martingale

R (t) = Φ1 +

∫ T

t

Π(s) ds−

∫ T

t

Ψ(s) dW (s) , 0 ≤ t ≤ T, (31)

Applying the Itô’s formula to R (·)X (·) , we obtain

R (t) [A (t)X (t)−B1 (t)R (t)X (t)− B2 (t)Q (t)] dt

−Π(t)X (t) dt+Ψ(t) [C (t)X (t)−D1 (t)R (t)X (t)−D2 (t)Q (t)] dt

+R (t) [C (t)X (t)−D1 (t)R (t)X (t)−D2 (t)Q (t)] dW (t) + Ψ (t)X (t) dW (t)

= dP (t)

= −
[
A (t)R (t)X (t) + C⊤ (t)Q (t) +Q1 (t)X (t)

]
dt+Q (t) dW (t) . (32)

It is easy to see

Q (t) = R (t) [C (t)X (t)−D1 (t)R (t)X (t)−D2 (t)Q (t)] + Ψ (t)X (t) ,

from which we get
Q (t) = Ξ (t)X (t) , (33)

where
Ξ (t) = (I +R (t)D2 (t))

−1 [R (t) C (t)−R (t)D1 (t)R (t) + Ψ (t)] .
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Inserting (33) into (32), we have

R (t) [A (t)− B1 (t)R (t)− B2 (t) Ξ (t)]X (t) dt

−Π(t)X (t) dt+Ψ(t) [C (t)−D1 (t)R (t)−D2 (t) Ξ (t)]X (t) dt

= −
[
A (t)R (t) + C⊤ (t) Ξ (t) +Q1 (t)

]
X (t) dt,

which yields

Π (t) = A (t)R (t) + C⊤ (t) Ξ (t) +Q1 (t)

+R (t) [A (t)− B1 (t)R (t)− B2 (t) Ξ (t)]

+Ψ (t) [C (t)−D1 (t)R (t)−D2 (t) Ξ (t)] .

Consequently, we obtain

dR (t) = [A (t)R (t) + C⊤ (t) Ξ (t) +Q1 (t)

+R (t) [A (t)− B1 (t)R (t)−B2 (t) Ξ (t)]

+Ψ (t) [C (t)−D1 (t)R (t)−D2 (t) Ξ (t)]]dt

−Ψ(t) dW (t)

R (T ) = Φ1. (34)

Remark 3.2 Whenever D1 (t) = D2 (t) = 0, the Riccati equation (34) becomes the right form
(5.21) in Bensoussan et al. [18].

We should claim that the Riccati equation (34) is just another equivalent form in Tang
[22] (see Discussion in Appendix). Nonetheless, the coefficients B1, B2, D1, D2 and Q1 are
not symmetric matrices. Next, we shall introduce a linear transformation to turn (34) into a
standard Riccati equation for n = 1.

Theorem 3.2 For n = 1, we assume that

Q2

Q1
=

Φ2

Φ1
,

B2R
−1
2 B⊤

2

B1R
−1
1 B⊤

1

=
B2R

−1
2 D⊤

2

B1R
−1
1 D⊤

1

=
D2R

−1
2 B⊤

2

D1R
−1
1 B⊤

1

=
D2R

−1
2 D⊤

2

D1R
−1
1 D⊤

1

are in force. Then the Riccati equation (34) admits a unique solution.

Proof. Let

Q2

Q1
=

Φ2

Φ1
= λ,

B2R
−1
2 B⊤

2

B1R
−1
1 B⊤

1

=
B2R

−1
2 D⊤

2

B1R
−1
1 D⊤

1

=
D2R

−1
2 B⊤

2

D1R
−1
1 B⊤

1

=
D2R

−1
2 D⊤

2

D1R
−1
1 D⊤

1

= µ. (35)

Let us introduce a linear transformation

X = X̄, P = ΥP̄ , Q = ΥQ̄,

via a matrix Υ (determined later). So The FBSDEs (30) can be expressed as




dX̄ (t) =
[
Ā (t) X̄ (t)− B̄1 (t) P̄ (t)− B̄2 (t) Q̄ (t)

]
dt

+
[
C̄ (t) X̄ (t)− D̄1 (t) P̄ (t)− D̄2 (t) Q̄ (t)

]
dW (t) ,

−dP̄ (t) =
[
Ā (t) P̄ (t) + C̄⊤ (t) Q̄ (t) + Q̄1 (t) X̄ (t)

]
dt−Q (t) dW (t) ,

X̄ (0) = X0, P̄ (T ) = Φ̄1X̄ (T ) ,

(36)
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where

Ā = Υ−1AΥ, B̄1 = B1Υ, B̄2 = B2Υ,

C̄ = Υ−1CΥ, D̄1 = D1Υ, D̄2 = D2Υ,

Q̄1 = Υ−1Q1, Φ̄1 = Υ−1Φ1.

Note that A,C are symmetric metrics. We are going to seek Υ such that B̄1, B̄2, D̄1, D̄2, Q̄1 and
Φ̄1 are symmetric. From the assumption (35), it is easy to compute that

Υ =

(
1 −2µ
2λ 1

)
.

Therefore, Ā = A, C̄ = C,

B̄1 =

(
B1R

−1
1 B⊤

1 + 2λB2R
−1
2 B⊤

2 −B2R
−1
2 B⊤

2

−B2R
−1
2 B⊤

2 2µB2R
−1
2 B⊤

2

)
,

B̄2 =

(
B1R

−1
1 D⊤

1 + 2λB2R
−1
2 D⊤

2 −B2R
−1
2 B⊤

2

−D2R
−1
2 B⊤

2 2µD2R
−1
2 B⊤

2

)
,

D̄1 =

(
D1R

−1
1 B⊤

1 + 2λD2R
−1
2 B⊤

2 −B2R
−1
2 D⊤

2

−B2R
−1
2 D⊤

2 2µB2R
−1
2 D⊤

2

)
,

D̄2 =

(
D1R

−1
1 D⊤

1 + 2λD2R
−1
2 D⊤

2 −D2R
−1
2 D⊤

2

−D2R
−1
2 D⊤

2 2µD2R
−1
2 D⊤

2

)
,

Q̄1 =
1

1 + 4λµ

(
Q1 + 2µQ2 −Q2

−Q2 2λQ2

)
,

Φ̄1 =
1

1 + 4λµ

(
Φ1 + 2µΦ2 −Φ2

−Φ2 2λΦ2

)
.

Now it is easy to check that B̄1, B̄2, D̄1, D̄2, Q̄1 and Φ̄1 are symmetric and positive definite.
Repeating the approach above, we can derive a standard backward stochastic Riccati equation
as follows:

dR̄ (t) = [Ā (t) R̄ (t) + C̄⊤ (t) Ξ̄ (t) + Q̄1 (t)

+R̄ (t)
[
Ā (t)− B̄1 (t) R̄ (t)− B̄2 (t) Ξ̄ (t)

]

+Ψ̄ (t)
[
C̄ (t)− D̄1 (t) R̄ (t)− D̄2 (t) Ξ̄ (t)

]
]dt

−Ψ̄ (t) dW (t)

R̄ (T ) = Φ̄1. (37)

where
Ξ̄ (t) =

(
I + R̄ (t) D̄2 (t)

)−1 [
R̄ (t) C̄ (t)− R̄ (t) D̄1 (t) R̄ (t) + Ψ̄ (t)

]
.

From Tang [22], we know that the Riccati equation (37) admits a unique solution. Moreover,
we have

P̄ = R̄X̄,

Q̄ = Ξ̄X̄,

R = ΥR̄,

Ψ = ΥΨ̄.

From the fact

P = ΥP̄ = ΥR̄X̄ = ΥR̄X,

Q = ΥQ̄ = ΥΞ̄X̄ = ΥΞ̄X,

we state that the AOL Stackelberg solution (u∗(·), v∗(·)) presents a feedback representation with
respect to state (x, k). The proof is completed. �
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3.2 The ACLM fashion

In this subsection, we aforehand suppose that the derivative ∂u
∂x

to be bounded. As we shall see
that the derivative enters into the coefficient of the adjoint equation, its boundedness ensures the
well-posedness of the leader’s problem whenever affine strategies are considered. For simplicity,
we study a one-dimensional linear quadratic game, with the state equation as follows:

{
dx = [Ax+B1u+B2v] dt+ [Cx+D1u+D2v] dW (t) ,

x (0) = x0 ∈ R.
(38)

The cost functionals for the leader and the follower to minimize are given, respectively, as follows:

J1 (u, v) =
1

2
E

[∫ T

0

[(
Q1x

2 +R1u
2
)]

dt+Φ1x
2 (T )

]
(39)

and

J2 (u, v) =
1

2
E

[∫ T

0

(
Q2x

2 +R2v
2
)
dt+Φ2x

2 (T )

]
. (40)

The admissible strategy spaces for the leader and the follower are denoted by

U =
{
u|u : Ω× [0, T ]× R → R is Ft-adapted for any x ∈ R, u (t, x) is

continuously differentiable in x for any (t, x) ∈ Ω× [0, T ] satisfying

∣∣∣∣
∂u

∂x

∣∣∣∣ < K
}
,

V = {v |: Ω× [0, T ]× R× U → Γ2 is Ft-adapted for any x ∈ R and u ∈ U } .

For any given u ∈ U , the follower responses a unique optimal strategy v∗ ∈ V. From (10), we
get

v∗ (u) = PΓ2
[−R−1

2 (B⊤
2 p2 +D⊤

2 q2)],

where p2 and q2 satisfy
{

−dp2 =
[(
A+B1

∂u
∂x

)
p2 +

(
C +D1

∂u
∂x

)
q2 +Q2x

]
dt− q2dW (t) ,

p2 (T ) = Φ2x (T ) .
(41)

Now we formulate the leader’s optimal control problem:

min
u∈U

J1 (u, v
∗)

subject to




dx =
[
Ax+B1u−B2PΓ2

[R−1
2 (B⊤

2 p2 +D⊤
2 q2)]

]
dt

+
[
Cx+D1u−D2PΓ2

[R−1
2 (B⊤

2 p2 +D⊤
2 q2)]

]
dW (t) ,

−dp2 =
[(
A+B1

∂u
∂x

)
p2 +

(
C +D1

∂u
∂x

)
q2 +Q2x

]
dt− q2dW (t) ,

p2 (T ) = Φ2x (T ) .

(42)

Note that FBSDEs (42) are fully coupled. Due to the boundedness of ∂u
∂x
, (42) admit a unique

solution. Hence the leader’s problem is well-posed. By means of Theorem 2.1, the leader can
select his strategy among affine functions

u (t, x) = u2 (t)x+ u1 (t) ,

where u2 and u1 are adapted processes with |u2| ≤ K. Thus, the leader’s problem can be
described as follows: The state equation is





dx =
[
(A+B1u2) x+B1u1 −B2PΓ2

[R−1
2 (B⊤

2 p2 +D⊤
2 q2)]

]
dt

+
[
(C +D1u2)x+D1u1 −D2PΓ2

[R−1
2 (B⊤

2 p2 +D⊤
2 q2)]

]
dW (t) ,

−dp2 = [(A+B1u2) p2 + (C +D1u2) q2 +Q2x] dt− q2dW (t) ,
p2 (T ) = Φ2x (T ) .

(43)
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The cost functional to be minimized:

min
u∈U

J1 (u, v) = min
u∈U

1

2
E

[∫ T

0

[(
Q1x

2 +R1 (u2x+ u1)
2
)]

dt+Φ1x
2 (T )

]
. (44)

For any (u1, u2), we can get the existence and uniqueness of the solution of (43) by the mono-
tonicity condition (Proposition A.2). Therefore, the leader’s problem with strategies restricted to
be of affine form is well-posed. Now we apply the maximum principle to obtain the Hamiltonian
system and the related Riccati equation for the leader’s problem (43)-(44).

Set

H3 (t, u1, u2, x, χ, p1, q1, p2, q2)

= p1

[
(A+B1u2) x+B1u1 −B2PΓ2

[R−1
2 (B⊤

2 p2 +D⊤
2 q2)]

]

+q1

[
(C +D1u2) x+D1u1 −D2PΓ2

[R−1
2 (B⊤

2 p2 +D⊤
2 q2)]

]

−χ [(A+B1u2) p2 + (C +D1u2) q2 +Q2x]

+
1

2
Q1x

2 +
1

2
R1 (u2x+ u1)

2 . (45)

Clearly, H3 is quadratic with respect to u1. Thus fix u2 first, the minimizer of H3 can be obtained

u∗1 = −u2x−R−1
1 p1B1 −R−1

1 q1D1. (46)

Inserting (46) into (45), we can see that the only term involving u2 is −χ (B1p2 +D1q2)u2.
Hence, the optimal u2 can be attained by

u∗2 = sgn (χ (B1p2 +D1q2))K, (47)

where

sgn (x) =





1 if x > 0,
0 if x = 0,
−1 if x < 0.

Now for simplicity, let Γ2 = R. In this case,

H3 (t, u1, u2, x, χ, p1, q1, p2, q2)

= p1

[
(A+B1u2)x+B1u1 −B2R

−1
2 (B⊤

2 p2 +D⊤
2 q2)]

]

+q1

[
(C +D1u2)x+D1u1 −D2R

−1
2 (B⊤

2 p2 +D⊤
2 q2)

]

−χ [(A+B1u2) p2 + (C +D1u2) q2 +Q2x]

+
1

2
Q1x

2 +
1

2
R1 (u2x+ u1)

2 . (48)

So





dx =
[
(A+B1u

∗
2) x+B1u

∗
1 −B2R

−1
2 (B2p2 +D⊤

2 q2)
]
dt

+
[
(C +D1u

∗
2)x+D1u

∗
1 −D2R

−1
2 (B⊤

2 p2 +D⊤
2 q2)

]
dW (t) ,

dχ =
[
(A+B1u

∗
2)χ+B2R

−1
2 B⊤

2 p1 +D2R
−1
2 B⊤

2 q1
]
dt

+
[
(C +D1u

∗
2)χ+B2R

−1
2 D⊤

2 p1 +D2R
−1
2 D⊤

2 q1
]
dW (t) ,

−dp1 = [(A+B1u
∗
2) p1 + (C +D1u

∗
2) q1 − χQ2 +Q1x+R1 (u

∗
2x+ u∗1)u

∗
2] dt

−q1 (t) dW (t) ,
x (0) = x0, χ (0) = 0, p1 (T ) = −Φ2χ (T ) + Φ1x (T ) .
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Put (46) and (47) into above, we get




dx =
[
Ax−B2

1R
−1
1 (B1p1 +D1q1)−B2R

−1
2 (B2p2 +D⊤

2 q2)
]
dt

+
[
Cx−D2

1R
−1
1 (B1p1 +D1q1)−D2R

−1
2 (B2p2 +D⊤

2 q2)
]
dW (t) ,

dχ =
[
Aχ+B1sgn (χ (B1p2 +D1q2))Kχ+B2R

−1
2 B⊤

2 p1 +D2R
−1
2 B⊤

2 q1
]
dt

+
[
Cχ+D1sgn (χ (B1p2 +D1q2))Kχ+B2R

−1
2 D⊤

2 p1 +D2R
−1
2 D⊤

2 q1
]
dW (t) ,

−dp1 = [Ap1 + Cq1 − χQ2 +Q1x] dt− q1 (t) dW (t) ,
−dp2 =

[
(A+B1sgn (χ (B1p2 +D1q2))K) p2

+(C +D1sgn (χ (B1p2 +D1q2))K) q2 +Q2x
]
dt− q2dW (t) ,

x (0) = x0, χ (0) = 0, p1 (T ) = −Φ2χ (T ) + Φ1x (T ) , p2 (T ) = Φ2x (T ) .
(49)

Clearly, the Hamilton system (49) is highly complex due to the nonlinear term sgn (χ (B1p2 +D1q2)) .
Specifically, the state (x, χ)⊤ cannot be written as a linear equation with respect to (p1, p2)

⊤ .
However, sgn (χ (B1p2 +D1q2)) doesn’t appear into x, besides, the terminal condition p1 (T ) ,
p2 (T ) contain x (T ) . Hence, we only regard x as the state and postulate

χ (t) = α (t)x (t) , (50)

p1 (t) = β (t)x (t) , (51)

p2 (t) = γ (t)x (t) , (52)

where

dα (t) = α1 (t) dt+ α2 (t) dW (t) ,

dβ (t) = β1 (t) dt+ β2 (t) dW (t) ,

dγ (t) = γ1 (t) dt+ γ2 (t) dW (t) .

We first look for q1, q2. Applying Itô’s formula to β (t)x (t) and γ (t)x (t) , we have

β
[
Ax−B2

1R
−1
1 (B1βx+D1q1)−B2R

−1
2 (B2γx+D⊤

2 q2)
]
dt

+β
[
Cx−D2

1R
−1
1 (B1βx+D1q1)−D2R

−1
2 (B2γx+D⊤

2 q2)
]
dW (t)

+xβ1dt+ xβ2dW (t)

+β2

[
Cx−D2

1R
−1
1 (B1βx+D1q1)−D2R

−1
2 (B2γx+D⊤

2 q2)
]
dt

= dp1

= − [Aβx+Cq1 − αxQ2 +Q1x] dt+ q1dW (t) ,

and

γ
[
Ax−B2

1R
−1
1 (B1βx+D1q1)−B2R

−1
2 (B2γx+D⊤

2 q2)
]
dt

+γ
[
Cx−D2

1R
−1
1 (B1βx+D1q1)−D2R

−1
2 (B2γx+D⊤

2 q2)
]
dW (t)

+xγ1dt+ xγ2dW (t)

= dp2

= −
[
(A+B1sgn (αx (B1p2 +D1q2))K) p2

+(C +D1sgn (αx (B1p2 +D1q2))K) q2 +Q2x
]
dt+ q2dW (t) ,

So

q1 = βCx− βD2
1R

−1
1 B1βx− βD2

1R
−1
1 D1q1

−βD2R
−1
2 B2γx− βD2R

−1
2 D⊤

2 q2 + xβ2,

q2 = γCx− γD2
1R

−1
1 B1βx− γD2

1R
−1
1 D1q1

−γD2R
−1
2 B2γx− γD2R

−1
2 D⊤

2 q2 + xγ2,
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namely, { (
1 + βD2

1R
−1
1 D1

)
q1 + βD2R

−1
2 D⊤

2 q2 = Ξ1x,

γD2
1R

−1
1 D1q1 +

(
1 + γD2R

−1
2 D⊤

2

)
q2 = Ξ2x,

where

Ξ1 = βC − βD2
1R

−1
1 B1β − βD2R

−1
2 B2γ + β2,

Ξ2 = γC − γD2
1R

−1
1 B1β − γD2R

−1
2 B2γ + γ2.

It is easy to get

q1 = ∆1x,

q2 = ∆2x,

where

∆1 =

[
Ξ1

(
1 + γD2R

−1
2 D⊤

2

)
− Ξ2βD2R

−1
2 D⊤

2

]
(
1 + βD2

1R
−1
1 D1

) (
1 + γD2R

−1
2 D⊤

2

)
− βD2R

−1
2 D⊤

2 γD
2
1R

−1
1 D1

,

∆2 =

[
Ξ2

(
1 + βD2

1R
−1
1 D1

)
− Ξ1γD

2
1R

−1
1 D1

]
(
1 + βD2

1R
−1
1 D1

) (
1 + γD2R

−1
2 D⊤

2

)
− βD2R

−1
2 D⊤

2 γD
2
1R

−1
1 D1

.

Moreover,

β1 = − [Aβ + C∆1 − αQ2 +Q1]

−β
[
A−B2

1R
−1
1 (B1β +D1∆1)−B2R

−1
2 (B2γ +D⊤

2 ∆2)
]

−β2
[
C −D2

1R
−1
1 (B1β +D1∆1)−D2R

−1
2 (B2γ +D⊤

2 ∆2)
]

and

γ1 = −
[
(A+B1sgn (α (B1γ +D1∆2))K) γ

+(C +D1sgn (α (B1γ +D1∆2))K)∆2 +Q2

]

−γ
[
A−B2

1R
−1
1 (B1β +D1∆1)−B2R

−1
2 (B2γ +D⊤

2 ∆2)
]
.

Repeating the method used above, we have

α
[
Ax−B2

1R
−1
1 (B1βx+D1q1)−B2R

−1
2 (B2γx+D⊤

2 ρ2x)
]
dt+ xα1dt+ xα2dW

+α
[
Cx−D2

1R
−1
1 (B1βx+D1q1)−D2R

−1
2 (B2γx+D⊤

2 q2)
]
dW (t)

+α2

[
Cx−D2

1R
−1
1 (B1βx+D1q1)−D2R

−1
2 (B2γx+D⊤

2 q2)
]
dt

= dχ

=
[
Aαx+B1sgn (αx (B1γx+D1q2))Kαx+B2R

−1
2 B⊤

2 βx+D2R
−1
2 B⊤

2 q1

]
dt

+
[
Cαx+D1sgn (αx (B1γx+D1q2))Kαx+B2R

−1
2 D⊤

2 βx+D2R
−1
2 D⊤

2 q1

]
dW (t) .

By comparing (49) and (50), we have

α2 = α
[
D2

1R
−1
1 (B1β +D1∆1) +D2R

−1
2 (B2γ +D⊤

2 ∆2)
]

+D1sgn (α (B1γ +D1∆2))α+B2R
−1
2 D⊤

2 β +D2R
−1
2 D⊤

2 ∆1,

α1 = B1sgn (α (B1γ +D1∆2))Kα+B2R
−1
2 B⊤

2 β +D2R
−1
2 B⊤

2 ∆1

+α
[
B2

1R
−1
1 (B1β +D1∆1) +B2R

−1
2 (B2γ +D⊤

2 ∆2)
]

+α2

[
C +D2

1R
−1
1 (B1β +D1∆1) +D2R

−1
2 (B2γ +D⊤

2 ∆2)
]
.
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Now we are able to announce a new system as follows:





dx∗ =
[
A−B2

1R
−1
1 (B1β +D1∆1)−B2R

−1
2 (B2γ +D⊤

2 ∆2)
]
x∗dt

+
[
C −D2

1R
−1
1 (B1β +D1∆1)−D2R

−1
2 (B2γ +D⊤

2 ∆2)
]
x∗dW (t) ,

dα =
[
B1sgn (α (B1γ +D1∆2))Kα+B2R

−1
2 B⊤

2 β +D2R
−1
2 B⊤

2 ∆1

+α
[
B2

1R
−1
1 (B1β +D1∆1) +B2R

−1
2 (B2γ +D⊤

2 ∆2)
]

+α2

[
C +D2

1R
−1
1 (B1β +D1∆1) +D2R

−1
2 (B2γ +D⊤

2 ∆2)
] ]

dt[
α
[
D2

1R
−1
1 (B1β +D1∆1) +D2R

−1
2 (B2γ +D⊤

2 ∆2)
]

+D1sgn (α (B1γ +D1∆2))Kα+B2R
−1
2 D⊤

2 β +D2R
−1
2 D⊤

2 ∆1

]
dW (t) ,

dβ =
{
− [Aβ + C∆1 − αQ2 +Q1]

−β
[
A−B2

1R
−1
1 (B1β +D1∆1)−B2R

−1
2 (B2γ +D⊤

2 ∆2)
]

−β2
[
C −D2

1R
−1
1 (B1β +D1∆1)−D2R

−1
2 (B2γ +D⊤

2 ∆2)
] }

dt+ β2dW (t) ,
dγ =

{
−
[
(A+B1sgn (α (B1γ +D1∆2))K) γ

+(C +D1sgn (α (B1γ +D1∆2))K)∆2 +Q2

]

−γ
[
A−B2

1R
−1
1 (B1β +D1∆1)−B2R

−1
2 (B2γ +D⊤

2 ∆2)
] }

dt+ γ2dW (t) ,
α (0) = 0, β (T ) = −Φ2α (T ) + Φ1, γ (T ) = Φ2.

(53)
Suppose that FBSDEs (53) admit a unique solution, denoted by (x∗, α, β, γ, β2, γ2) , which actu-
ally solve the Hamiltonian system (49). As a result, a candidate for the leader’s optimal strategy
can be expressed as

u (t, x) = sgn (α (B1γ +D1∆2))Kx− sgn (α (B1γ +D1∆2))Kx
∗ (t)

−R−1
1 βB1x

∗ (t)−R−1
1 ∆1D1x

∗ (t) . (54)

Remark 3.3 From (54), it indicates that, comparing with Bensoussan et al. [18], the matrices
D1,D2 will impose on u (t, x) via D1∆2 and ∆1D1. If D1 = D2 = 0, (54) reduces to Bensoussan
et al.’s type (see [18]).

4 Conclusions and remarks

In this paper, we are concerned on the solutions of stochastic Stackelberg differential games
within two information structures: AOL and ACLM patterns under convex control domain.
Having maximum principle for the former kind of game as a basis, we give the necessary con-
ditions for the leader’s optimal strategy in the latter game. To illustrate our theoretic results,
we study the LQ stochastic Stackelberg differential games. For AOL case, on the one hand, we
prove the existence and uniqueness of Hamiltonian system of leader’s with projection operator
and derive a kind of standard backward stochastic Riccati equation. For ACLM case, we also
give a Riccati equation with non-linear term and then provide the leader’s optimal strategy.

There are some topics deserved to study displaying in the following: (i) The Riccati equation
derived in the framework of ACLM case consists of complex coupled FBSDEs with non-linear
term. The general conditions to guarantee the existence and uniqueness is not known. (ii) As
observed that the control set is limited to convex, a natural question arises: How to establish
the maximum principle for general case, namely, non-convex control domain? Certainly, the
second-order adjoint equation is employed, which makes the system extremely complicated.
The Hamiltonian system in this situation actually involves six types of (forward or backward)
stochastic differential equations. (iii) It is necessary to point out that the Stackelberg game
considered in this paper is limited to in the complete information background. In other word,
both the leader and the follower can observe the state process of the stochastic system directly,
which, however, is impossible in reality. As a matter of fact, both of them can only announce
partial information because of the market competition, information-delay, private information
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and limitation policy by the government, etc. Therefore, it is necessary to study the Stackelberg
game with partial and asymmetric information (see [32, 33]). These possible extensions to the
Stackelberg stochastic differential game no doubt promise to be interesting research directions.
We shall response these challenging topics in our future work.

A Properties of projection PΓ

For the readers’ convenience, let us recall the following properties of projection PΓ onto a closed
convex set, see [34], Chapter 5.

Proposition A.1 For a nonempty closed convex set Γ ⊂ R
m, for every x ∈ R

m, there exists a
unique x∗ ∈ Γ, such that

|x− x∗| = min
y∈Γ

|x− y| =: dist(x,Γ).

Moreover, x∗ is characterized by the property

x∗ ∈ Γ,
〈
x∗ − x, x∗ − y

〉
≤ 0 ∀y ∈ Γ. (55)

The above element x∗ is called the projection of x onto Γ and is denoted by PΓ[x].

From above theorem, it is easy to show that

Proposition A.2 Let Γ ⊂ R
m be a nonempty closed convex set, then we have

∣∣PΓ[x]−PΓ[y]
∣∣2 ≤

〈
PΓ[x]−PΓ[y], x− y

〉
. (56)

Proposition A.3 Let Γ ⊂ R
m be a nonempty closed convex set, then the projection PΓ does

not increase the distance, i.e. ∣∣PΓ[x]−PΓ[y]
∣∣ ≤

∣∣x− y
∣∣. (57)

Now let us consider R
m and the projection PΓ both with the norm ‖ · ‖R0

:= 〈R
1

2

0 ·, R
1

2

0 ·〉,
from (56), we have

Proposition A.4 Let Γ ⊂ R
m be a nonempty closed convex set, then

〈〈PΓ[x]−PΓ[y], x− y〉〉 =

〈
R

1

2

(
PΓ[x]−PΓ[y]

)
, R

1

2 (x− y)

〉
≥ 0.

B The proof of Theorem 3.1

Proof. (Uniqueness) Suppose that there exists two solutions: (x1, p12, q
1
2), (x2, p22, q

2
2) and

denote
x̂ = x1 − x2, p̂2 = p12 − p22, q̂2 = q12 − q22 .

Then, we have





dx̂ (t) = [A (t) x̂ (t) +B2 (t) ϕ̂2(t, p̂2 (t) , q̂2 (t))] dt
+ [C (t) x̂ (t) +D2 (t) ϕ̂2(t, p̂2 (t) , q̂2 (t))] dW (t) ,

−dp̂2 (t) =
[
A⊤ (t) p̂2 (t) +C⊤ (t) q̂2 (t)−Q2 (t) x̂ (t)

]
dt− q̂2 (t)W (t) ,

x̂ (0) = 0, p̂2 (T ) = −Φ2x̂ (T ) .

(58)
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with

ϕ̂2(t, p̂2 (t) , q̂2 (t)) = ϕ2(t, p
1
2 (t) , q

1
2 (t))− ϕ2(t, p

2
2 (t) , q

2
2 (t))

= PΓ2
[R−1

2 (t)(B⊤
2 (t)p

1
2 (t) +D⊤

2 (t)q
1
2 (t))]

−PΓ2
[R−1

2 (t)(B⊤
2 (t)p

2
2 (t) +D⊤

2 (t)q
2
2 (t))]

First, applying Itô’s formula to
〈
p̂, x̂
〉
and taking expectations on both sides (noting the mono-

tonicity property of ϕ̂, see Proposition A.4), we have:

0 = E 〈Φ2x̂ (T ) , x̂ (T )〉

+E

[ ∫ T

0

(〈(
B⊤

2 (t) p̂2 (t) +D⊤
2 (t) q̂2 (t)

)
, ϕ̂2(t, p̂2 (t) , q̂2 (t))

〉
+ 〈x̂ (t) , Q2 (t) x̂ (t)〉

)
dt

]

≥ E 〈Φ2x̂ (T ) , x̂ (T )〉+ E

[ ∫ T

0
〈x̂ (t) , Q2 (t) x̂ (t)〉dt

]

Thus, Φ2x̂ (T ) = 0 and Q2 (t) x̂ (t) = 0 which implies p̂2 (t) ≡ 0, q̂2 (t) ≡ 0. Next, we have
ϕ̂2(t, p̂2 (t) , q̂2 (t)) ≡ 0 which further implies x̂ (t) ≡ 0. Hence the uniqueness follows.

(Existence) Consider a family of parameterized FBSDEs as follows4:





dxα = [αB (xα, pα2 , q
α
2 ) + ψ] dt+ [αC (xα, pα2 , q

α
2 ) + φ] dW (t) ,

−dpα2 = [αF (xα, pα2 , q
α
2 ) + ζ] dt− qα2 dW (t)

xα (0) = x0, p
α
2 (T ) = −αΦ2x̂ (T ) + η,

with 



B (t, x, p2, q2) = Ax+B2ϕ2(t, p2, q2)
C (t, x, p2, q2) = Cx+D2 (t)ϕ2(t, p2, q2)
F (t, x, p2, q2) = A⊤p2 + C⊤q2 −Q2x

Here, (ψ, φ, ζ) are given processes in M2(0, T ;Rn) × M2(0, T ;Rn) × M2(0, T ;Rn), and η is a
R
n-valued square integrable random variable which is FT -measurable. When α = 0, we have a

decoupled FBSDEs whose solvability is trivial:





dx = ψdt+ φdW (t) ,
−dp2 = ζdt− q2dW (t)
x (0) = x0, p2 (T ) = η,

Denote
M̃(0, T ) = M2(0, T ;Rn)×M2(0, T ;Rn)×M2(0, T ;Rn).

Now we introduce a mapping Iα0
: (x, p2, q2) ∈ M̃(0, T ) −→ (X,P2, Q2) ∈ M̃(0, T ) via the

following FBSDEs:





dX = [α0B (X,P2, Q2) + δB (x, p2, q2) + ψ] dt
+ [α0C (X,P2, Q2) + δC (x, p2, q2) + φ] dW (t) ,

−dP2 = [α0F (X,P2, Q2) + δF (x, p2, q2) + ζ] dt−QdW (t)
X (0) = x0, P (T ) = −α0Φ2X (T )− δΦ2x (T ) + η,

Considering Iα0
: (x, p2, q2) −→ (X,P2, Q2) and Iα0

: (x′, p′2, q
′
2) −→ (X ′, P ′

2, Q
′
2) and

(x̂, p̂, q̂) = (x− x′, p2 − p′2, q2 − q′2),

(X̂, P̂ , Q̂) = (X −X ′, P2 − P ′
2, Q2 −Q′

2)

4For simplicity, the dependence of coefficients on time variable t is suppressed.
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dX̂ =
[
α0B̂

(
X̂, P̂ , Q̂

)
+ δB̂ (x̂, p̂, q̂)

]
dt

+
[
α0Ĉ

(
X̂, P̂ , Q̂

)
+ δĈ (x̂, p̂, q̂)

]
dW (t) ,

−dP̂ =
[
α0F̂

(
X̂, P̂ , Q̂

)
+ δF̂ (x̂, p̂, q̂)

]
dt− Q̂dW (t)

X̂ (0) = 0, P̂ (T ) = −α0Φ2X̂ (T )− δΦ2x̂ (T ) ,

with 



B̂

(
X̂, P̂ , Q̂

)
= B (X,P2, Q2)− B (X,P ′

2, Q
′
2) ,

Ĉ

(
X̂, P̂ , Q̂

)
= C (X,P2, Q2)− C (X,P ′

2, Q
′
2) ,

F̂

(
X̂, P̂ , Q̂

)
= F (X,P2, Q2)− F (X,P ′

2, Q
′
2) ,

Applying Itô formula to
〈
P̂ , X̂

〉
and taking expectations on both sides:

E

〈
X̂ (T ) ,−α0Φ2X̂ (T )− δΦ2x̂ (T )

〉

= E

{∫ T

0

[〈
X̂ (s) ,−α0F̂

(
X̂ (s) , P̂ (s) , Q̂ (s)

)〉
+
〈
X̂ (s) ,−δF̂ (x̂ (s) , p̂ (s) , q̂ (s))

〉

+
〈
P̂ (s) , α0B̂

(
X̂ (s) , P̂ (s) , Q̂ (s)

)〉
+
〈
P̂ (s) , δB̂ (x̂ (s) , p̂ (s) , q̂ (s))

〉

+
〈
Q̂ (s) , α0Ĉ

(
X̂ (s) , P̂ (s) , Q̂ (s)

)〉
+
〈
Q̂ (s) , δĈ (x̂ (s) , p̂ (s) , q̂ (s))

〉]
ds

}

Rearranging the above terms, we have

α0E

〈
X̂ (T ) ,Φ2X̂ (T )

〉
+ α0E

{∫ T

0

[ 〈
X̂ (s) ,−F̂

(
X̂ (s) , P̂ (s) , Q̂ (s)

)〉

+
〈
P̂ (s) , B̂

(
X̂ (s) , P̂ (s) , Q̂ (s)

)〉
+
〈
Q̂ (s) , Ĉ

(
X̂ (s) , P̂ (s) , Q̂ (s)

)〉 ]
ds

}

= δE

{∫ T

0

[〈
X̂ (s) , F̂ (x̂ (s) , p̂ (s) , q̂ (s))

〉
−
〈
P̂ (s) , B̂ (x̂ (s) , p̂ (s) , q̂ (s))

〉

−
〈
Q̂ (s) , δĈ (x̂ (s) , p̂ (s) , q̂ (s))

〉]
ds

}
− δE

〈
X̂ (T ) ,Φ2x̂ (T )

〉

Hence,

α0E

∣∣∣∣Φ
1

2

2 X̂ (T )

∣∣∣∣
2

+ α0E

{∫ T

0

∣∣∣∣Q
1

2

2 (s) X̂ (s)

∣∣∣∣
2

ds

}

≤ α0E

〈
X̂ (T ) ,Φ2X̂ (T )

〉
+ α0E

{∫ T

0

[ 〈
X̂ (s) ,−F̂

(
X̂ (s) , P̂ (s) , Q̂ (s)

)〉

+
〈
P̂ (s) , B̂

(
X̂ (s) , P̂ (s) , Q̂ (s)

)〉
+
〈
Q̂ (s) , Ĉ

(
X̂ (s) , P̂ (s) , Q̂ (s)

)〉 ]
ds

}

= δE

{∫ T

0

[〈
X̂ (s) , F̂ (x̂ (s) , p̂ (s) , q̂ (s))

〉
−
〈
P̂ (s) , B̂ (x̂ (s) , p̂ (s) , q̂ (s))

〉

−
〈
Q̂ (s) , δĈ (x̂ (s) , p̂ (s) , q̂ (s))

〉]
ds

}
− δE

〈
X̂ (T ) ,Φ2x̂ (T )

〉

≤ δE

{∫ T

0

[ ∣∣∣X̂ (s)
∣∣∣
2
+
∣∣∣P̂ (s)

∣∣∣
2
+
∣∣∣Q̂ (s)

∣∣∣
2
]
ds

}

+δE

{∫ T

0

[
|x̂ (s)|2 + |p̂ (s)|2 + |q̂ (s)|2

]
ds

}

+δC

(
|x̂ (T )|2 +

∣∣∣X̂ (T )
∣∣∣
2
)
. (59)
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We point out that, the first inequality uses the monotonicity property of ϕ(p, q) (Proposition
A.2). The second inequality is due to the basic geometric inequality and Lipschitz property of
projection operator (Proposition A.3).

Then, by standard estimates of BSDE:

E

{∫ T

0

[ ∣∣∣P̂ (s)
∣∣∣
2
+
∣∣∣Q̂ (s)

∣∣∣
2
]
ds

}

≤ δCE

{∫ T

0

[
|x̂ (s)|2 + |p̂ (s)|2 + |q̂ (s)|2

]
ds

}
+ δCE |x̂ (T )|2

+Cα0

(
E

∣∣∣∣Φ
1

2

2 X̂ (T )

∣∣∣∣
2

+ E

{∫ T

0

∣∣∣∣Q
1

2

2 (s) X̂ (s)

∣∣∣∣
2

ds

})
. (60)

Next, by the standard estimate of forward SDEs:

E

{∫ T

0

∣∣∣X̂ (s)
∣∣∣
2
ds

}
+ E

∣∣∣X̂ (T )
∣∣∣
2

≤ δCE

{∫ T

0

[
|x̂ (s)|2 + |p̂ (s)|2 + |q̂ (s)|2

]
ds

}

+CE

[∫ T

0

[ ∣∣∣P̂ (s)
∣∣∣
2
+
∣∣∣Q̂ (s)

∣∣∣
2
]
ds

]
+ δCE |x̂ (T )|2 . (61)

Based on the above estimates (59)-(61), we see the mapping I satisfying

E

∫ T

0

(
|X̂s|

2 + |P̂s|
2 + |Q̂s|

2
)
ds+ E|X̂T |

2 ≤ Kδ

(
E

∫ T

0

(
|x̂s|

2 + |p̂s|
2 + |q̂s|

2
)
ds+ E|x̂T |

2

)
.

It follows the mapping is a contraction and the existence follows immediately using the arguments
presented in [28] and [29]. �

C Discussion on Riccati equation

Recall the stochastic Hamilton system (taken from Tang [22]) is given by





dx (t) = (A (t)x (t) +B (t)u (t)) dt+
∑d

i=1

(
Ci (t)x (t) +Di (t)u (t)

)
dW i (t) ,

u (t) = −N−1 (t)
[
B⊤ (t) y (t) +

∑d
i=1D

i (t)⊤ zi (t)
]
,

−dy (t) =
[
A⊤ (t) y (t) +

∑d
i=1 C

i (t)⊤ zi (t) +Q (t)x (t)
]
dt−

∑d
i=1 z

i (t) dW i (t)

x (τ) = h ∈ L2 (Ω,Fτ , P ;R
n) , y (T ) =Mx (T ) .

Inserting u (·) into the first equation, we have




dx =
(
Ax−BN−1

[
B⊤y +

∑d
i=1

(
Di
)⊤
zi
])

dt

+
∑d

i=1

(
Cix−DiN−1

[
B⊤y +

∑d
i=1

(
Di
)⊤
zi
])

dW i (t) ,

−dy =
[
A⊤y +

∑d
i=1

(
Ci
)⊤
zi +Qx

]
dt−

∑d
i=1 z

idW i (t)

x (τ) = h ∈ L2 (Ω,Fτ , P ;R
n) , y (T ) =Mx (T ) .

A formal approach to derive the associated Riccati equation from the stochastic Hamilton system
a priori assumes that there is a semi-martingale K of the form

K (t) = K (0)−

∫ t

0
K1 (s) ds+

∫ t

0

d∑

i=1

Li (s) dW (s) , 0 ≤ t ≤ T.
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such that
y (t) = K (t)x (t) .

Then, applying Itô’s formula to K (t)x (t), we have

K

(
Ax−BN−1

[
B⊤y +

d∑

i=1

(
Di
)⊤
zi

])
dt

+K
d∑

i=1

(
Cix−DiN−1

[
B⊤y +

d∑

i=1

(
Di
)⊤
zi

])
dW i (t)

−K1xdt+
d∑

i=1

LixdW i (t)

+

d∑

i=1

Li (s)

d∑

i=1

(
Cix−DiN−1

[
B⊤y +

d∑

i=1

(
Di
)⊤
zi

])
dt

= dy (t)

= −

[
A⊤y +

d∑

i=1

(
Ci
)⊤
zi +Qx

]
dt+

d∑

i=1

zidW i (t) . (62)

It follows that

zi = K
(
Cix−DiN−1B⊤Kx−DiN−1

(
Di
)⊤
zi
)
+ Lix, 1 ≤ i ≤ d.

Immediately,
zi = Zix, (63)

where

Zi =
(
I +KDiN−1

(
Di
)⊤)−1 (

KCi −KDiN−1B⊤K + Li
)
.

Substituting (63)5 into (62), we identify the integrands of the Lebesgue integral. As a conse-
quence

KA−KBN−1B⊤

︸ ︷︷ ︸
B1

K −KBN−1
d∑

i=1

(
Di
)⊤

︸ ︷︷ ︸
B2

Zi −K1

+

d∑

i=1

Li (s)

d∑

i=1


Ci −DiN−1B⊤

︸ ︷︷ ︸
D1

K −DiN−1
(
Di
)⊤

︸ ︷︷ ︸
D2

Zi




= −A⊤K −
d∑

i=1

(
Ci
)⊤
Zi −Q. (65)

5In order to get the standard form (3.1) in Tang [22], the rest proceeding will employ the well-known matrix
inverse formula, that is,

(A+BCD)−1 = A
−1

− A
−1

B
(

DA
−1

B +C
−1

)−1

DA
−1 (64)

where A−1, C−1, and either (A+BCD)−1 or
(

DA−1B +C−1
)

−1
are assumed to exist.
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Now

K1 = A⊤K +

d∑

i=1

(
Ci
)⊤
Zi +Q+KA−KB1K −KB2Z

i

+

d∑

i=1

Li (s)

d∑

i=1

(
Ci −D1K −D2Z

i
)
.

This is another expression for Riccati equation (3.1) in Tang [22].
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