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Abstract

This paper presents a zonotopic set-invariance analysis of replay attacks affecting the communication network that serves
the supervisory layer of complex control systems using an observer-based detection scheme. Depending on the attacker’s
access to the system’s resources, two scenarios are considered: I) Sensors and controller data are counterfeited; II) Only
sensor measurements are counterfeited. The effect of a physical attack against the plant during the data replay is also
taken into consideration. The representation of invariant sets as zonotopes allows to derive analytical expressions for
attack detectability under the presence of bounded uncertainties. The validity of the analysis is demonstrated through
simulations using a quadruple-tank process.

Keywords: Invariant sets, replay attack, zonotopes, attack detection.

1. Introduction

The migration from traditional point-to-point control
schemes to widely interconnected systems, in conjunction
with an increasing number of registered attacks [1], has
awakened the interest on the study of cyber attacks on5

control systems. Consequently, the so-called secure con-
trol has found increasing interest since the end of the last
century. In this regard, works like [2, 3] propose a general
framework for the analysis of security on networked control
systems, while other works like [4] have modelled the effect10

of cyber attacks compromising measurement and actuator
data integrity on the physical dynamics of a system.

One of the main threats to control systems are stealthy
attacks, i.e., attacks in which the attacker aims at remain-
ing undetected by anomalies detectors [5]. In order to15

achieve undetectability, the attacker must be able to feed
data that is consistent with the nominal system operation
to the monitoring system. Among the different stealthy
attacks reported in the literature, there are: false data
injection attacks [6], zero dynamics attacks [7], covert at-20

tacks [8] and replay attacks [9]. This paper focuses on the
latter type of attacks.

The vast majority of works related to replay attacks
takes into consideration that the control loop is closed
remotely by means of a communications network which25

is prone to cyber attacks. Accordingly, the standard re-
play attack formulation considers that the control loop
has been affected either by deceiving the system controller
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with previously recorded measurements [9, 10, 11, 12], or
by replaying back previous control actions directly to the30

system [13, 14]. Nevertheless, in many industrial control
systems the low-level controller (regulatory layer) makes
use of dedicated networks which are hard to access while,
on the other hand, it is common that the supervisory layer,
in charge of the system monitoring and set-point reference35

generation, operates remotely. This difference has been
taken into account, for example, in the study of cyber-
attacks affecting the load frequency control of power sys-
tems [15]. In this line, this paper is devised from the su-
pervisor’s point of view, analysing different replay attack40

scenarios that arise when the system operation is assessed
using a state estimator located at the supervisory layer.

Moreover, a high percentage of security-related works
(not only concerning attacks but also faults) makes use of
assumptions about the statistical properties of the uncer-45

tainties. A different approach is the use of set-theoretic
methods, which are built upon norm-bounded uncertainty
assumptions. These techniques have proven useful in fault-
related secure control, as they allow to construct sets for
the system in healthy and faulty operations, so that it50

becomes possible to infer deterministically whether a sys-
tem is working under nominal or faulty conditions [16].
In this regard, ellipsoidal sets have been employed in [17]
to propose different security metrics, and design secure
controllers, against stealthy attacks affecting the control55

loop. On the other hand, set-based attack detectors have
been used in [18] to detect bias injection attacks in a net-
worked power plant, and in [19, 20] combined altogether
with set-theoretic controllers in an attack resilient control
scheme. However, these latter detectors do not rely on an60
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observer, and thus are subject to some limiting assump-
tions concerning the knowledge of the initial state of the
system.

Within the set-theoretic techniques, positive set in-
variance [21] is a common analysis tool for systems af-65

fected by bounded disturbances. By computing the
healthy/attacked residual invariant sets, it can be estab-
lished that whenever the residual vector exits the healthy
set, attack detection is achieved. Note that the inher-
ent steady-state conditions of replay attacks suit perfectly70

with set invariant tools. Among the possible set represen-
tations, zonotopes will be employed in this paper due to
their flexibility and the capability to separate the center
(nominal) evolution from the uncertainty evolution in the
generators representation [22].75

The motivation of the paper is characterizing the de-
tectability of the replay attacks in a guaranteed manner
using set-invariance analysis when an observer-based de-
tection scheme is used. Therefore, system’s vulnerabilities
are analysed for the case in which a malicious attacker80

compromises the communication between the regulatory
and supervisory layers of a control system, while the low-
level controller at the regulatory layer remains unaffected.
The following scenarios are considered: I) the attacker is
able to record and replay sensors and controller data, caus-85

ing the supervisory layer to operate based on false data;
II) the attacker is able to replay sensors data to the super-
visory layer while the low-level control actions are received
unaffected. This scenario models the case where the su-
pervisory layer operates based on a set of sensors installed90

for system monitoring and that may differ from the sensors
used for control. For both scenarios, a positive invariance
approach is developed for analysing attack detectability
with respect to the set-point reference signal injected from
the supervisory layer and an external attack conducted95

over the plant, where the invariant sets are represented as
zonotopes. Conditions to guarantee attack detectability
are derived under the assumption that the disturbances
are bounded.

The article is structured as follows: Section 2 introduces100

some preliminary developments regarding the zonotopic
representation of invariant sets, as well as the different
phases that constitute the attack. Section 3 is devoted to
the description of the system in healthy operation, while
the assumptions on the system operation during the record105

phase are detailed in Section 4. Section 5 presents the
analysis of the detectability of the attack during the replay
phase. An illustrative example is presented in Section 6.
Finally, Section 7 presents concluding remarks.

2. Preliminaries110

2.1. Zonotopes and basic set operations

Zonotopes are centrally symmetric convex polytopes
that can be described as Minkowski sums of line seg-
ments [23]. In the generator representation, a zonotope

Z is described by its center c ∈ Rn and generators115

g1, ..., gm ∈ Rn as Z = {c + Hξ : ξ ∈ Rm, ||ξ||∞ ≤ 1}
where H ≡ [g1, ..., gm] indicates the generators matrix
and the ratio m/n is the order of the zonotope. For sim-
plicity, zonotopes will be denoted by Z = 〈c,H〉.

Let the sets Z, W ⊂ Rn, the matrix P ∈ Rk×n, and
define

PZ ≡ {Pz : z ∈ Z}, (1a)

Z ⊕W ≡ {z + w : z ∈ Z, w ∈ W}. (1b)

Zonotopes are closed under previous set operations, i.e.,
when Z = 〈cz, Hz〉 and W = 〈cw, Hw〉 are zonotopes, lin-
ear mappings (1a) and Minkowski sums (1b) are also zono-
topes which can be computed as

PZ = 〈Pcz, PHz〉, (2a)

Z ⊕W = 〈cz + cw,
[
Hz Hw

]
〉. (2b)

2.2. Invariant sets120

Let us define a discrete-time linear time-invariant (LTI)
system

x+ = Ax+Bδ, (3)

where x ∈ Rn is the system state, x+ ∈ Rn its suc-
cessor and δ ∈ Rnδ is a disturbance constrained to the
compact zonotopic set ∆ = 〈c∆, H∆〉 ⊂ Rnδ . Besides,
A ∈ Rn×n, B ∈ Rn×nδ are constant matrices with A an
asymptotically stable matrix (all the eigenvalues of A are125

strictly inside the unit disk).

Definition 1 (Robust positive invariance). The set Ω ⊂
Rn is said to be robustly positively invariant (RPI) for the
system (3) and disturbance set ∆, if Ax + Bδ ∈ Ω for all
x ∈ Ω and all δ ∈ ∆. Equivalently, Ω is RPI if and only if130

AΩ⊕B∆ ⊆ Ω.

Definition 2 (Minimal RPI). The minimal RPI (mRPI)
set of (3) is the RPI set in Rn that is contained in every
closed RPI set of (3) and disturbance set ∆.

For LTI asymptotically stable systems like (3), the135

mRPI set exists and is unique and compact [24, Sec. IV].
In addition, such mRPI set is the limit set of all trajectories
of the system. Henceforth, a zonotopic ε-approximation of
the mRPI set will be computed by means of Algorithm 1
detailed in Appendix A. When referring to Algorithm 1,140

the center and the generators matrix recursion will be pro-
vided.

For a detailed analysis on set invariance the reader is
referred to comprehensive studies [24, 25].

2.3. Attack time windows145

In the attack under study, it is assumed that at a first
stage a malicious attacker secretly records the data trans-
mitted from the regulatory layer to the supervisory layer.
Then, the recorded data are replayed back to the super-
visory layer with the intention of masking a physical at-150

tack conducted over the plant. Consequently, the following
time windows are defined:
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1. Record window: transmitted data are assumed to
be recorded for Krec = {k ∈ N : k ∈ [k0, k0 + l−1]},
where l ∈ N denotes the size of the record window.155

2. Replay window: real data are replaced for Krep =
{k ∈ N : k ∈ [k1 + (n − 1)l, k1 + nl − 1],∀n ∈
{1, ..., nr}}, where nr ∈ N+ accounts for the total
number of repetitions of the recorded sequence.

3. Physical attack window: a physical attack against160

the plant is launched for Kphy = {k ∈ N : k ∈
[k2, k3]} ⊆ Krep, i.e., k2 ≥ k1 and k3 ≤ k1 + nrl − 1.

Whenever one of the above temporal sets is mentioned,
it is assumed implicitly that the index k lies within it.

3. System under healthy operation165

Let us consider the following system

xk+1 = Axk +Buk + Ewwk,

yk = Cxk + Evvk,
(4)

where xk ∈ Rnx is the state vector, uk ∈ Rnu is the applied
control action and yk ∈ Rny corresponds to the sensor
measurements at time instant k. Furthermore, wk ∈ Rnw
and vk ∈ Rnv represent the process disturbances and mea-
surement noise, respectively. Henceforth, the index k + 1170

will be replaced by the superscript + and k will be omitted
for the sake of simplified notations.

Assumption 1. The pair (A,B) is asymptotically stabi-
lizable and the pair (A,C) is asymptotically detectable.

Assumption 2. Uncertainties are bounded by

w ∈ W = 〈cw, Hw〉, v ∈ V = 〈cv, Hv〉, (5)

with Hw ∈ Rnw×mw , Hv ∈ Rnv×mv known generator ma-175

trices and cw ∈ Rnw , cv ∈ Rnv known zonotope centers.

The control objective is to regulate the plant tracking
error defined at each sample as z = x−xref , where xref ∈
Rnx is the reference signal governed by

x+
ref = Axref +Buref , (6)

and uref ∈ Rnu is the reference signal generated at the
supervisory layer, which is sent to the low-level controller
(regulatory layer) in charge of regulating the plant’s track-
ing error (see Figure 1). For a desired output set-point180

yref = Cxref , the corresponding uref signal can be ob-
tained by means of classical model inversion-based feed-
forward schemes [26].

3.1. Regulatory layer

In order to satisfy the control objective, the low-level185

controller is assumed to perform an estimate-feedback con-
trol action based on the estimates provided by its own set-
based observer [27, 28, 29], and that differs from the one
used in the supervisory layer. In this regard, the difference
between the system’s state and the state estimate gener-190

ated by the low-level estimator x̂c ∈ Rnx , is denoted as
η = x− x̂c.

Controller

Monitoring station

a

set-point

I/O Data 

Regulatory layer

Plant

Planner

Supervisory layer

Communication layer

State-estimator

Figure 1: Overall scheme. Solid (dotted) lines represent local (re-
mote) connections.

Assumption 3. The controller estimation error η lies
within the zonotopic set

η ∈ H = 〈cη, Hη〉, (7)

with generators matrix Hη ∈ Rnx×mη and center cη ∈ Rnx .

Hence, the control law is given by

u = ū+ uref , (8)

where ū denotes the estimate-feedback action computed
by the low-level controller

ū = −K(x̂c − xref ) = −Kz −Kη. (9)

Accordingly, under control law (8), the tracking error
dynamics is governed by the equation

z+ = x+ − x+
ref = (A−BK)z −BKη + Eww, (10)

with K designed such that A−BK is asymptotically sta-
ble. Therefore, Eq. (10) represents an asymptotically sta-195

ble dynamical system subject to bounded disturbances.

3.2. Supervisory layer

In the supervisory layer, an anomalies detector moni-
tors the plant operation. For this purpose, a generic Lu-
enberger observer is considered as follows

x̂+ = (A− LC)x̂+Bu+ Ly, (11)

where x̂ ∈ Rnx represents the state estimation vector.
Let us denote the estimation error as e = x− x̂. Then,

from (4) and (11), we obtain

e+ = x+ − x̂+ = (A− LC)e+ Eww − LEvv, (12)

with L designed such that A−LC is asymptotically stable.
Consequently, Eq. (12) represents an asymptotically stable200

dynamical system subject to bounded disturbances.

Assumption 4. The system is in stationary operation
such that k ≥ k∗, with k∗ ∈ N+ a finite sample by which
the trajectories of (10) and (12) have converged into their
respective mRPI sets.205
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In the sequel, an RPI zonotopic over-approximation of
the mRPI set for system (12) will be denoted as E =
〈ce, He〉, and may be computed through Algorithm 1 in
the Appendix, obtaining

ce = Λ−1(Ewcw − LEvcv), (13a)

He,j+1 =
[
(A− LC)He,j EwHw −LEvHv

]
, (13b)

with Λ = I−(A−LC) and (13b) representing the required
generators matrix recursion.

3.3. Anomalies detector

The presence of anomalies is monitored based on the
values adopted by the following residual vector

r = y − Cx̂ = C(x− x̂) + Evv = Ce+ Evv. (14)

Therefore, the healthy residual zonotopic set is given by

RH = CE ⊕ EvV = 〈chr , Hh
r 〉, (15)

using the set operations (2), it follows

chr = CΛ−1(Ewcw − LEvcv) + Evcv, (16a)

Hh
r =

[
CHe EvHv

]
. (16b)

Hence, the following can be established{
r ∈ RH =⇒ Healthy system,

otherwise =⇒ Something is wrong.

4. Record phase

Two different attack scenarios are considered:210

� Scenario I: the attacker has gained access to the in-
put/output data sent by the low-level controller to the
monitoring center. Thus, the recorded data sets are
Y ≡ {yk : k ∈ Krec} and U ≡ {ūk : k ∈ Krec}.

� Scenario II: the attacker is able to access only the215

output sensors data, such that the recorded data set
is Y ≡ {yk : k ∈ Krec}. Note that this scenario mod-
els also the case where the monitoring center operates
based on a set of input/output sensors installed for
monitoring the plant operation and the attacker has220

gained access to the output sensors only. These sen-
sors may differ from the ones used by the controller
to close the low-level control loop.

Let us denote with the superscripts r and a the state of
the system variables during the record and replay phases,225

respectively. As an example, for the state variable it fol-
lows: xrk = xk ∀k ∈ Krec, while xak = xk ∀k ∈ Krep.

4.1. Regulatory layer

The control signal that is being injected during the
record phase ur = ūr + urref , encompasses the low-level
control action

ūr = −Kzr −Kηr, (17)

with ηr ∈ H, plus the fixed-set point reference signal urref .
Therefore, the tracking error dynamics is

zr+ = xr+ − xr+ref = (A−BK)zr −BKηr + Eww
r. (18)

4.2. Supervisory layer230

The estimator dynamics during the record phase is

x̂r+ = (A− LC)x̂r +Bur + Lyr, (19)

starting at the initial state x̂rk0 = x̂k0 . Accordingly, the
associated residual vector during the replay phase is

rr = yr − Cx̂r = C(xr − x̂r) + Evv
r, (20)

which, by means of Assumption 4, satisfies

rr ∈ RH ∀k ∈ Krec. (21)

5. Attack phase

During the attack phase, the attacker replays back pre-
vious measurements aiming to make a physical attack con-
ducted over the plant undetectable (cf. Section 2.3).

Assumption 5. The attacker knows the model of the235

system and is capable of compromising the state variables
independently by means of an attack signal a(k) ∈ Rnx
(e.g. liquid theft from different tanks of a distribution
network).

Assumption 5 is in line with the attack modelling per-
formed in other works like [3]. According to the time win-
dows defined in Section 2.3, the attack vector satisfies

a(k)

{
6= 0 if k ∈ Kphy,
= 0 otherwise.

(22)

Following the previously presented notation, for all k ∈
Krep we have

xa+ = Axa +Bua + Eww
a + a, (23)

starting at the initial state xak1 = xk1 . Moreover, process240

disturbances/noise satisfy wa ∈ W, va ∈ V.

Remark 1. The analysis performed below is also applicable
to the case in which a is injected through the input ma-
trix, i.e. substituting a in (23) with Bā (with ā ∈ Rnu).
This case would describe cyber-attacks that modify the245

set-point signals sent from the supervisory to regulatory
layer.

5.1. Regulatory layer

In the considered attacks, the malicious attacker is un-
able to access the dedicated network of the low-level con-250

troller, so the control loop remains healthy.
The injected signal during the replay phase is ua = ūa+

uaref , with

ūa = −Kza −Kηa, (24)
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where ηa ∈ H. Besides, uaref denotes the reference signal
that is being sent from the supervisory layer during the
replay phase.

Note that the controller capability to regulate the track-
ing error is affected by the presence of a

za+ = xa+−xa+
ref = (A−BK)za+Eww

a−BKηa+a, (25)

that is, since the controller remains healthy it will react to255

the physical attack a.

5.2. Scenario I

The first scenario considers that the recorded data sets
Y and U are replayed back. Hence, from the supervisory
layer point of view, the received signals are ya = yr and
ūa = ūr ∀k ∈ Krep. Accordingly, the residual vector dur-
ing the replay phase is

ra = yr−Cx̂a = (yr−Cx̂r)+(Cx̂r−Cx̂a) = rr+C(x̂r−x̂a),
(26)

with the state estimator evolving according to

x̂a+ = (A− LC)x̂a +Būr +Buaref + Lyr. (27)

Let us denote by x̄ = x̂r−x̂a the difference in the estima-
tion between record and replay phases. Thus, comparing
(19) and (27), we obtain

x̄+ = x̂r+ − x̂a+ = (A− LC)x̄+B∆uref , (28)

where ∆uref = urref −uaref represents the difference in the
reference signal between the record and replay phases for
a fixed urref . Since (28) is not affected by uncertainties, by260

denoting cx̄ = x̄ the evolution of (28) can be rewritten in
zonotopic form as X̄ = 〈cx̄, 0〉.

Hence, taking into consideration (21), from (26) the
computation of the residual set under attack is

RA = RH ⊕ CX̄ = 〈chr , Hh
r 〉 ⊕ 〈Ccx̄, 0〉 = 〈chr + δcr, H

h
r 〉,
(29)

with δcr = car − chr = Ccx̄ denoting the center difference.

Definition 3. Guaranteed attack detection is achieved if
and only if RH ∩RA = ∅ at some k ∈ Krep.265

5.2.1. Steady-state analysis

The main advantage of the zonotopic invariant set anal-
ysis is that it allows to derive analytic expressions regard-
ing the separability of the residual sets in order to enforce
detectability. Accordingly, below it is considered that the270

reference signal imposed from the supervisory layer uaref
is constant, and thus, ∆uref = const. since urref is fixed.

Related to the set separation condition introduced in
Definition 3, the zonotopic interpretation (see [30]) of
Lemma 2.1 in [31], is formulated as275

Lemma 1. Let Z = 〈az + bz, Hz〉 and Y = 〈ay + by, Hy〉.
Then, Z ∩ Y = ∅ if and only if ay − az /∈ 〈bz, Hz〉 ⊕
〈−by, Hy〉.

Accordingly, the following proposition regarding the
output set-point imposed from the supervisory layer can280

be obtained.

Proposition 1. Guaranteed attack detection is achieved
in the steady-state if the output set-point difference be-
tween record and replay phases ∆yref = yrref −yaref fulfills

∆yref /∈ 〈0,M−1
[
Hh
r Hh

r

]
〉, (30)

with M = (I − CΛ−1L).

Proof. From ∆uref = const., and taking into consid-
eration the asymptotically stable system (28) and that
δcr = Ccx̄, the displacement of the residual set center
settles at

δcr = car − chr = CΛ−1B∆uref . (31)

By denoting as yaref the fixed set-point generated by

yaref = C(I − A)−1Buaref . Then, from the linearity of the
reference model (6), it follows

∆yref = C(I −A)−1B∆uref . (32)

Besides, by taking into consideration the equality

Λ−1 = (I −A)−1 − Λ−1LC(I −A)−1, (33)

then, using (32) and (33), (31) can be rewritten as

δcr = C((I −A)−1 − Λ−1LC(I −A)−1)B∆uref =

= (I − CΛ−1L)∆yref = M∆yref .
(34)

Therefore, by considering RH = 〈chr , Hh
r 〉 and RA =

〈chr +δcr, H
h
r 〉, from Lemma 1 it follows that RH ∩RA = ∅

if and only if (30) is satisfied.285

Note that the vector δcr is independent of the physi-
cal attack a, and thus its presence is masked to the su-
pervisory layer. Besides, for δcr = 0, the attack is com-
pletely undetectable in the steady-state since for this case
RH = RA = 〈0, Hr〉.290

Remark 2. Based on the performed analysis, watermark-
ing signals can be further developed by designing input
sequences that take into account the transient behaviour
of δcr in order to enforce the guaranteed detection condi-
tion in Definition 3, while minimizing the performance loss295

induced in the system operation.
5.3. Scenario II

For the second scenario, the received sensors data at the
supervisory layer are ya = yr, while the controller inputs
are received unaltered. Thus, the residual vector is

ra = yr − Cx̂a = C(xr − x̂a) + Evv
r. (35)

Denoting x̃ = xr − x̂a, its dynamics evolves according
to

x̃+ = xr+ − x̂a+ = (A− LC)x̃+B∆uref+

+B(ūr − ūa) + Eww
r − LEvvr.

(36)

Note that the evolution of (36) depends also on the dy-
namics of systems (18) and (25) through the control ac-
tion ūr and ūa, respectively. Let us gather the evolution

of those systems in q =
[
x̃T zrT zaT

]T
, such that

q+ = Θq + Πd+ Σ∆uref + Φa, (37)
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where vector d =
[
wrT waT vrT ηrT ηaT

]T
encompasses

the different disturbances. The augmented system matri-
ces are300

Θ =

A− LC −BK BK
0 A−BK 0
0 0 A−BK

 , Σ =

B0
0

 ,
Π =

Ew 0 −LEv −BK BK
Ew 0 0 −BK 0
0 Ew 0 0 −BK

 , Φ =

0
0
I

 .
5.3.1. Steady-state analysis

An analysis similar to the one performed in Section 5.2
will be carried out. In this regard, let us consider uaref to
be constant during the replay phase, i.e. ∆uref = const.,
and let us consider the following assumption.305

Assumption 6. The physical attack a is performed
abruptly and is kept constant over the attack set Kphy.

Consequently, at steady-state, a zonotopic over-
approximation Q = 〈cq, Hq〉 of the mRPI set for system
(37) may be computed through Algorithm 1, obtaining

cq =
[
I −Θ

]−1
(Πcd + Σ∆uref + Φa),

Hq,j+1 =
[
ΘHq,j Πdiag(Hw, Hw, Hv, Hη, Hη)

]
,

(38)

where cd =
[
cTw cTw cTv cTη cTη

]T
and

[
I −Θ

]−1
=

Λ−1 −Λ−1BKΓ−1 Λ−1BKΓ−1

0 Γ−1 0
0 0 Γ−1

 ,
with Γ = I − (A−BK).

Proposition 2. Guaranteed attack detection is achieved
in the steady-state if the output set-point difference ∆yref
and attack vectors a satisfy

M∆yref + CΛ−1BKΓ−1a /∈ 〈0,
[
Hh
r H

a
r

]
〉, (39)

with Ha
r = [CPHq EvHv] and P =

[
I 0 0

]
.

Proof. Given an attack vector a that satisfies Assump-
tion 6 and ∆uref , by defining the projection matrix P =[
I 0 0

]
, the trajectories of (36) will converge into the zono-

topic set X̃ = PQ = 〈cx̃, Hx̃〉 = 〈Pcq, PHq〉, with

cx̃ = Λ−1
(
Ewcw− (BEu +LEv)cv +B∆uref +BKΓ−1a

)
.

(40)
Hence, from (35), and taking into account (2), the resid-

uals under attack will settle in the set

RA = CX̃ ⊕EvV = 〈car , Ha
r 〉 = 〈Ccx̃+Evcv, [CHx̃ EvHv]〉.

(41)
Accordingly, by recalling that chr = CΛ−1(Ewcw −

LEvcv) + Evcv, the center of the residual set under at-
tack can be rewritten as a function of the healthy center
as car = chr + δcr, where

δcr = CΛ−1(BKΓ−1a+B∆uref ). (42)

Therefore, adapting the steps given in proof of Proposi-310

tion 1, it follows that RH ∩ RA = ∅ if and only if (39) is
satisfied.

Concerning this attack scenario, the following discussion
may be given regarding the attack detectability.

Residual set size: Note that for the attack case, the315

generators matrix contains additional terms with respect
to the ones included in the healthy case. This is a direct
consequence of the fact that the cause-effect relationship
between the injected control signal and the obtained mea-
surements during the attack is lost, i.e., the healthy control320

signal ūa and the replayed output yr take independent val-
ues during the attack. The bigger size of RA with respect
to RH has two consequences: I) it is possible to detect the
attack even without forcing the center displacement; II)
the bigger size of the attacked set requires a bigger center325

displacement in order to fulfill condition (39).
Center displacement: Note that the attack vector a

appears explicitly in the detectability condition (39). If the
output set-point is maintained constant between phases
∆yref = 0, the effect of the injected vector a is particularly330

critical along the directions that belong to the null space
of the matrix CΛ−1BKΓ−1, i.e., a ∈ N (CΛ−1BKΓ−1),
since these attacks would not cause a displacement of δcr.
In other words, a malicious attacker could carry out an
unbounded attack a for which there are no detectability335

guarantees from the defender’s point of view.
Regarding the existence of N (CΛ−1BKΓ−1), the fol-

lowing proposition can be derived.

Proposition 3. The dimension d of N (CΛ−1BKΓ−1) is
lower bounded by d = nx − rank(CΛ−1BKΓ−1) ≥ nx −340

min{rank(C), rank(BK)}.

Proof. The proof is based on well-known matrix rank prop-
erties. Let us denote X = CΛ−1, Y = BKΓ−1 such that
N (CΛ−1BKΓ−1) = N (XY ). The following holds

rank(XY ) ≤ min{rank(X), rank(Y )},
rank(X) = rank(C),

rank(Y ) = rank(BK).

Therefore, it follows that

rank(XY ) ≤ min{rank(C), rank(BK)}.

Finally, by considering that the dimension of N (XY ) is
d = nx − rank(XY ), the proof is completed.

Note that, given a null space N (CΛ−1BKΓ−1) of di-
mension d, a malicious attacker could introduce an attack345

a ∈ N (CΛ−1BKΓ−1) with nx − d+ 1 components differ-
ent that zero, i.e. the attacker needs to have access only to
nx−d+1 states to carry out this attack. Besides, the lower
bound on d does not depend on the supervisory observer
gain L. Consequently, this motivates to modify ∆yref in350

order to detect these possible unbounded attacks.

Remark 3. Note that, since the analysis developed consid-
ers the steady-state operation of the system, the obtained
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expressions are independent of the record/replay starting
times.355

6. Case Study

The considered case study is a quadruple-tank process
[32], regulated using a low-level state estimated-feedback
controller and supervised by means of a state estimator.
False data are replayed to the anomalies detector.360

Regarding the quadruple-tank system, vectors h =
[h1, h2, h3, h4]T , u = [v1, v2]T and y = [y1, y2]T denote
the tank levels, process inputs (voltages to the pumps)
and outputs (voltages in level measurements), respectively.
The system model is linearised at the minimum-phase365

point (h∗, u∗), for the system parameters presented in [32].
By performing an Euler discretization with sampling

time Ts = 1s, and considering the disturbance/noise input
matrices Ew = 10−3diag(5, 3, 1, 5), Ev = 10−3diag(4, 1), a
discrete-time model is obtained as

∆h+ = A∆h+B∆u+ Eww,

y = C∆h+ Evv,

where ∆h = h − h∗, ∆u = u − u∗. Process disturbances
and sensor noise, which take random values at each sample
time within the sets w ∈ 〈0, I〉 and v ∈ 〈0, I〉 are included
in the simulations.370

An LQR controller is designed with state and input
weight matrices Q = 100I and R = I. Besides, the error
for the state estimate used by the controller is constrained
to η ∈ 〈0, 10−3I〉.

The observer in charge of the plant monitoring is also375

computed in an optimal way following the dual LQR de-
sign with Q = 100I R = I. Setting ε = 10−4, a guaran-
teed ε-approximation for the estimation error is obtained
for l ≥ 182 (see Appendix A). By performing an inter-
val over-approximation of the healthy residual zonotope380

RH , the following bounds are obtained: |r1| ≤ 0.0117 and
|r2| ≤ 0.0059.

6.1. Scenario I

The considered attack windows are: Krec = [100, 300]
and Krep = [400, 1000]. Besides, an attack vector a =385

[1, 1, 1, 1]T is injected during Kphy = Krep. Note that the
replayed data encompass the repetition of nr = 3 times
the recorded data set.

The set-point differences ∆yref = [δy1, δy2]T obtained
by computing an interval overapproximation of the zono-390

tope in condition (30) are: |δy1| ≤ 1.984, |δy2| ≤ 1.435.
This means that by imposing a set-point difference in any
of the outputs bigger than the computed limits |δy1| and
|δy2|, it can be guaranteed that the residual vector will
exit the healthy residual set in the steady-state.395

In this regard, Figs. 2 and 3 show the system residuals
and the imposed set-point for the attack described above.
The dashed red lines in Fig. 2 show the computed limits of
the healthy residual set. Note that during the time inter-
val before the set-point modification (yellow background),400

Figure 2: Residuals at the supervisory layer - Scenario I

Figure 3: Set-point imposed from the supervisory layer

the attack remains completely undetectable despite the
injection of vector a. Besides, it can be seen how the im-
posed set-point difference ∆yref = [1.99, 1.44]T presented
in Fig. 3, enforces the system residuals to exit the healthy
residual set at steady-state.405

6.2. Scenario II

The considered attack windows in the simulation of Sce-
nario II are: Krec = [100, 300] andKrep = [400, 1000]. For
the system under study, N (CΛ−1BKΓ−1) has a dimension
d = 2. Thus, the system is attacked following the direc-410

tion a =
[
−0.018 − 0.002 0.017 0

]T ∈ N (CΛ−1BKΓ−1)
for the time interval Kphy = [500, 1000] (note that the
fourth state in vector a is set to zero).

Fig. 4 shows the effect that the injection of the attack a
has on the system outputs. The real outputs (in blue) are415

compared to the replayed outputs (green). The attack a is
introduced incipiently in the interval [500, 750] and later
maintained constant. Consequently, Fig. 5 plots the resid-
ual signals generated in the supervisory layer. Since the
injection of the attack a ∈ N (CΛ−1BKΓ−1) does not dis-420

place the attack residual center, attack detectability can-
not be guaranteed unless a temporal mismatch is forced in
the reference signal generated at the supervisory layer.

7. Conclusions

This work used zonotopic sets to develop a set-425

invariance analysis on the detectability of replay attacks
against the supervisory layer using an observer-based de-
tection scheme. In spite of its inherent conservativeness,
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Figure 4: System outputs during the different attack phases

Figure 5: Residuals at the supervisory layer - Scenario II

invariant analysis is an interesting tool in the attack anal-
ysis, as it allows to derive analytical expressions regarding430

attack detectability. Attack detectability when an attacker
is replaying directly false data has been analysed. It was
shown how even in the case where the attacker is able to
replay only sensor measurements, no guarantees regard-
ing attack detectability can be given unless a temporal435

mismatch between record and replay phases is forced by
means of a signal sent from the supervisory layer. The
performed analysis serves as a basis for the future design
of efficient watermarking signals that guarantee the attack
detection during the transient, while minimizing the per-440

formance degradation induced to the system.
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Appendix A. Zonotopic ε-approximation of the
mRPI set

Below, the computation of a zonotopic ε-approximation
of the mRPI set for the disturbed system (3) is discussed.
This computation follows the iterative procedure used in555

[33] where, starting from an initial RPI, its reachable set
is computed recursively, thus obtaining at each iteration a
tighter RPI outer-approximation of the mRPI.

Initial RPI set

Let us consider system (3) and the zero centered distur-
bance δ ∈ ∆̄ = 〈0, H∆〉. From Theorem 1 in [34], it follows
that for a given scalar α ∈ [0, 1) there exists a finite s ∈ N+

that satisfies

AsB∆̄ ⊆ αB∆̄. (A.1)

Besides, if (A.1) is satisfied, then the zonotope 〈0, H0〉
with

H0 = (1− α)−1[BH∆ ABH∆ ... As−1BH∆], (A.2)

is an RPI set for (3). Note that the evaluation of (A.1) can560

be formulated as a convex problem as proposed in [35].
For the specific case where matrixA in (3) has real eigen-

values, a zonotopic RPI can be obtained directly by mak-
ing use of the ultimate bound analytic formula reported
below.565

Theorem 1 (see [33]). Consider (3) and let A = V ΛV −1

be the Jordan decomposition of A. Then the set

{x ∈ Rn : |V −1x| ≤ (I − |Λ|)−1|V −1B|δ̄ + θ}, (A.3)

is an RPI and it is attractive for the trajectories of (3),
with θ any (arbitrarily small) vector with positive elements
and vector δ̄ with elements δ̄i = ||H∆i

||1.

For the case in which A has real eigenvalues, the simi-
larity transformation matrix is such that V ∈ Rn×n, and570

thus (A.3) is the half-space representation of a paralletope,
which is known to be a first order zonotope. The relation-
ship between a zero centered paralletope like (A.3) and its
generators representation 〈0, H0〉 is formulated in [36].

Forward propagation and stopping criterion575

Proposition 4 (see [33]). Consider (3) and denote as Φ0

an RPI initial set for (3). Each of the set iterations:

Φj+1 = AΦj ⊕B∆,

where j ∈ N denotes the jth element of the sequence, is an
RPI approximation of the mRPI set. Moreover, as j tends
to infinity, the set sequence converges to the mRPI set.

By means of the previous recursion, a certified outer
ε-approximation of the mRPI set Ωm can be obtained.580

Theorem 2 (see Theorem 3.5 in [33]). For all ε > 0 there
exists an l ∈ N+ such that the following RPI outer ε-
approximation exists:

Ωm ⊂ Φl ⊂ Ωm ⊕ Bnp (ε),

where Bnp (ε) = {x ∈ Rn : ||x||p ≤ ε} and ||x||p is the
p-norm.

From Appendix A of [33], by choosing an l such that

AlΦ0 ⊂ Bn∞(ε/2), (A.4)

it is guaranteed that Ωm ⊂ Φl ⊂ Ωm ⊕ Bn∞(ε). Therefore,
given an ε > 0, the following holds

||AlΦ0||∞ ≤ ||Al||∞||Φ0||∞ < ε/2→ AlΦ0 ⊂ Bn∞(ε/2).
(A.5)

By eigendecomposing A as A = TΨT−1, the spectral ra-
dius of matrix A can be expressed as ρ(A) = ||Ψ||∞. Thus,
||Al||∞ can be bounded as

||Al||∞ = ||TΨsT−1||∞ ≤ ||T ||∞||T−1||∞ρ(A)l. (A.6)

By replacing (A.6) in (A.5), and by computing φ = ||Φ0||∞
and κ = ||T ||∞||T−1||∞, an ε-approximation to the mRPI
set is guaranteed by choosing

l >
log(ε/2)− log(κφ)

log(ρ(A))
, l ∈ N+. (A.7)

Algorithm 1 summarizes the procedure for obtaining a
zonotopic ε-approximation of the mRPI for the system (3).

Algorithm 1 Zonotopic ε-approximation of the mRPI set

Input: Pair (A,B), parameter ε > 0 and zonotopic
representation of the disturbance set ∆ = 〈c∆, H∆〉.

Output: Zonotopic RPI approximation X of the
mRPI.

1: Compute H0 either using (A.2) or by means of (A.3)
2: Compute the spectral radius ρ(A), κ and φ = ||H0||∞
3: Compute the minimum l ∈ N+ such that

l >
(
log(ε/2)− log(κφ)

)
/log

(
ρ(A)

)
4: For j = 0 to j = l − 1 propagate Hj+1 = [AHj BH∆]
5: Compute the RPI set X = 〈cx, 0〉 ⊕ 〈0, Hl〉 with:

cx = (I −A)−1Bc∆
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