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1 Introdu
tionPresburger arithmeti
 [Pre29℄, i.e., the �rst-order additive theory of integers,is a powerful formalism for solving problems that involve integer variables.The manipulation of sets de�ned in Presburger arithmeti
 is 
entral to manyappli
ations in
luding integer programming problems [S
h86,PR96℄, 
ompileroptimization te
hniques [Pug92℄, temporal database queries [KSW95℄, pro-gram analysis tools [FO97,SKR98℄ and model-
he
king [DK00,TBP99℄.The most dire
t way of algorithmi
ally handling Presburger-de�nable sets 
on-sists in manipulating Presburger formulas expli
itly. This approa
h has beensu

essfully implemented in the Omega pa
kage [Pug92℄, whi
h is probably themost widely used Presburger tool at the present time. Unfortunately, formula-based representations su�er from a serious drawba
k: They la
k 
anoni
ity,whi
h implies that a set with a simple stru
ture may in some instan
es berepresented by a 
omplex formula; this notably happens when the set is ob-tained as the result of a lengthy sequen
e of operations. Moreover, the absen
eof a 
anoni
al representation hinders the eÆ
ient implementation of de
isionpro
edures that are essential to most appli
ations, su
h as testing whethertwo sets are equal.In order to alleviate these problems, an alternative representation of Pres-burger-de�nable sets has been developed, based on �nite-state automata. TheNumber De
ision Diagram (NDD) [WB95,Boi99℄ is, sket
hily, a �nite-statema
hine re
ognizing the en
odings of the integer ve
tors belonging to the setthat it represents. Its main advantages are that most of the usual set-theoryoperators 
an be applied to the represented sets by simply 
arrying out the 
or-responding tasks on the languages a

epted by the underlying automata, andthat a 
anoni
al representation of a set 
an easily be obtained by determiniz-ing and minimizing its �nite-state representations. Among its appli
ations, theNDD has made it possible to develop a tool for automati
ally 
omputing theset of rea
hable states of programs using unbounded integer variables [LAS℄.The problem of 
ounting how many elements belong to a Presburger set hasbeen solved for formula-based representations of Presburger sets [Pug94℄. Thisproblem has interesting appli
ations related to program analysis and veri�
a-tion. First, it enables one to quantify pre
isely and to improve the performan
eof some systems. In parti
ular, by de�ning Presburger formulas whose solu-tions 
orrespond to the memory lo
ations tou
hed by a loop and the 
opsexe
uted by a loop, one 
an estimate the amount of resour
es 
onsume by
ode fragments and improve the load balan
ing in a multipro
essor environ-ment [TF92℄. Furthermore, 
ounting the number of rea
hable data values atsele
ted 
ontrol lo
ations makes it possible to dete
t qui
kly some in
onsisten-
ies between di�erent releases of a program, without requiring to write down2



expli
it properties to be 
he
ked. For instan
e, it 
an promptly alert the devel-oper, although without any guarantee of always 
at
hing su
h errors, that alo
al modi�
ation had an unwanted in
uen
e on some remote part of the pro-gram. Finally, studying the evolution of the number of rea
hable states withrespe
t to the value of system parameters 
an also help to dete
t unsuspe
tederrors.The main goal of this paper is to present a method for 
ounting exa
tly andeÆ
iently the number of elements belonging to a Presburger-de�nable set rep-resented by an NDD. Intuitively, our approa
h is based on the idea that one
an easily 
ompute the number of distin
t paths in a dire
ted a
y
li
 graphwithout enumerating them. The a
tual algorithm is however more intri
ate,due to the fa
t that there is not a one-to-one relationship between the ve
torsbelonging to a set and the a

epting paths of NDD representing the set.In order to apply our 
ounting te
hnique to the set of solutions of a givenPresburger formula, one needs �rst to build an NDD from that formula. Thisproblem has been solved in [BHMV94,BC96,Boi99℄, but only in the form of a
onstru
tion algorithm that presents a systemati
 exponential 
ost in the num-ber of variables that appear in the formula. As an auxiliary 
ontribution of thispaper, we des
ribe an improved algorithm for handling the problemati
 pro-je
tion operation. The resulting 
onstru
tion pro
edure has been implementedand su

essfully applied to problems involving a large number of variables.2 Basi
 notionsLet us �rst show how �nite-state ma
hines 
an represent sets of integer ve
-tors. The main idea 
onsists of establishing a mapping between ve
tors andwords. Our en
oding s
heme for ve
tors is based on the positional notationfor numbers in a base r > 1, a

ording to whi
h an en
oding of a positiveinteger z is a word ap�1ap�2 � � �a1a0 su
h that ea
h digit ai belongs to the�nite alphabet f0; 1; : : : ; r� 1g and z = Pp�1i=0 airi. An en
oding of a negativenumber z is the last p digits of any en
oding of its r's 
omplement rp+ z. Thenumber p of digits is not �xed, but must be large enough for the 
ondition�rp�1 � z < rp�1 to hold. As a result, the �rst digit of the en
odings is 0 forpositive numbers and r � 1 for negative ones, hen
e that digit is referred toas the sign digit of the en
odings.In order to en
ode a ve
tor ~v = (v1; v2; : : : ; vn), one simply reads repeatedlyand in turn one digit from the en
odings of all its 
omponents, under the ad-ditional restri
tion that these en
odings must share the same length. In otherwords, an en
oding of ~v is a word dp�1;1dp�1;2 : : : dp�1;n dp�2;1dp�2;2 : : : dp�2;n : : :: : : d0;1d0;2 : : : d0;n su
h that for every i 2 f1; : : : ; ng, dp�1;idp�2;i : : : d0;i is an3



en
oding of vi. An en
oding of a ve
tor of dimension n has thus n sign digits| ea
h asso
iated to one ve
tor 
omponent | the group of whi
h forms asign header . Two en
odings of the same ve
tor 
an only di�er in the numberof times that their sign header is repeated.Let S � Zn be a set of integer ve
tors. If the language L(S) 
ontaining all theen
odings of all the ve
tors in S is regular, then any �nite-state automatona

epting L(S) is a Number De
ision Diagram (NDD) representing S. It isworth noti
ing that, a

ording to this de�nition, not all automata de�nedover the alphabet f0; 1; : : : ; r � 1g are valid NDDs. Indeed, an NDD musta

ept only valid en
odings of ve
tors sharing all the same dimension, andmust a

ept all the en
odings of ea
h ve
tor that it re
ognizes. Note that theve
tor en
oding s
heme that we use here is slightly di�erent from the oneproposed in [BHMV94,Boi99℄, in whi
h the digits related to all the ve
tor
omponents are read simultaneously rather than su

essively. It is easy to seethat both representation methods are equivalent from the theoreti
al pointof view. The advantage of our present 
hoi
e is that it produ
es 
onsiderablymore 
ompa
t �nite-state representations. For instan
e, a deterministi
 andminimal NDD representing Zn is of size O(2n) if the 
omponent digits areread simultaneously, whi
h limits the pra
ti
al use of that approa
h to smallvalues of n. On the other hand, the en
oding s
heme used in this paper yieldsan automaton of size O(n).It is known for a long time [Cob69,Sem77℄ that the sets that 
an be repre-sented by �nite-state automata in every base r > 1 are exa
tly those thatare de�nable in Presburger arithmeti
, i.e., the �rst-order theory hZ;+;�i.One dire
tion of the proof of this result is 
onstru
tive, and translates intoan algorithm for 
onstru
ting an NDD representing an arbitrary Presburgerformula [BHMV94,BC96,Boi99℄. Sket
hily, the idea is to start from elemen-tary NDDs 
orresponding to the formula atoms, and to 
ombine the NDDsby means of set operators and quanti�
ation. It 
an be easily shown that
omputing the union, interse
tion, di�eren
e or Cartesian produ
t of two setsrepresented by NDDs is equivalent to 
arrying out similar operations on thelanguages a

epted by the underlying automata. Quantifying existentially aset with respe
t to a ve
tor 
omponent, whi
h amounts to proje
ting this setalong this 
omponent, is more 
omplex. We dis
uss this problem in the nextse
tion.At this point, one 
ould wonder why we did not opt for de�ning NDDs asautomata a

epting only one en
oding (for instan
e the shortest one) of ea
hve
tor, and en
oding negative numbers as their sign followed by the en
odingof their absolute value. It turns out that the former 
hoi
e substantially 
ompli-
ates the essential manipulation algorithms su
h as 
omputing the Cartesianprodu
t or the di�eren
e of two sets (in this 
ase, the problem is that thoseoperations do not redu
e to 
arrying out similar operations over the languages4



�=� �=� �=� �=" �=� �=�1 2 i i+ 1 n�=�
For all transitions, � 2 f0; : : : ; r � 1g. The symbol " denotes the empty word.Fig. 1. Proje
tion transdu
er.a

epted by the automata). The latter 
hoi
e leads to signi�
antly larger rep-resentations for atomi
 formulas su
h as linear equations or inequations. Onthe other hand, our present 
hoi
es lead to simple manipulation algorithms,with the only ex
eptions of proje
tion and 
ounting, whi
h are addressed inthe following se
tions.3 Proje
ting NDDsThe proje
tion problem 
an be stated in the following way. Given an NDDA representing a set S � Zn, with n > 0, and a 
omponent number i 2f1; : : : ; ng, 
onstru
t an NDD A0 representing the set9iS = f(v1; : : : ; vi�1; vi+1; : : : ; vn) j (v1; : : : ; vn) 2 Sg:For every a

epting path of A, there must exist a mat
hing path of A0, thelabel of whi
h 
ontains digits 
orresponding to all the ve
tor 
omponents butthe i-th. Thus, one 
ould be tempted to 
ompute A0 as the dire
t result ofapplying to A the transdu
er depi
ted at Figure 1.Unfortunately, this method produ
es an automaton Aj6=i that, even though ita

epts valid en
odings of all the elements of 9iS, is generally not an NDD.Indeed, for some ve
tors, the automaton may only re
ognize their en
odingsif they are of suÆ
ient length. For example, the method applied to the NDDrepresenting 91f(4; 1)g would generate an automaton whose smallest a

eptedword is \0001" whi
h is not the smallest valid en
oding of the number 1, i.e\01". In order to build A0 from Aj6=i, one thus has to transform Aj6=i su
h thatit also a

epts the shorter en
odings of the ve
tors of the set 9iS.As already mentioned, two en
odings of the same ve
tor only di�er in thenumber of times that their sign header is repeated. We 
an thus restate theproje
tion problem in the following way: Given a �nite-state automaton A1over alphabet � a

epting the language L1, and a dimension n � 0, 
onstru
tan automaton A2 a

epting L2 = fuiw j u 2 f0; r � 1gn ^ w 2 �� ^ i >0 ^ 9k(k � i ^ ukw 2 L1)g. 5



In [Boi99℄, this problem is solved by 
onsidering expli
itly every potentialvalue u of the sign header. Then, for ea
h u, explore A1 in order to knowwhi
h states 
an be rea
hed by a pre�x of the form ui, with i > 0 and makeea
h of these states rea
hable after reading a single o

urren
e of u, whi
h 
anbe done by a simple 
onstru
tion. Although satisfa
tory from a theoreti
alpoint of view, this solution exhibits a systemati
 
ost in O(2n) whi
h limitsits pra
ti
al use to problems with a very small ve
tor dimension.The main idea behind our improved solution 
onsists of handling simulta-neously sign headers that 
annot be distinguished from ea
h other by theautomaton A1, i.e., sign headers u1; u2 2 f0; r�1gn su
h that for every k > 0,reading uk1 leads to the same automaton states as reading uk2. For simpli
ity,we assume A1 to be deterministi
 1 .Our algorithm pro
eeds as follows. First, it extra
ts from A1 a pre�x automa-ton AP that reads only the �rst n symbols of words and asso
iates one distin
tend state to ea
h group of undistinguished sign headers. Ea
h end state of APis then mat
hed to all the states of A1 that 
an be rea
hed after reading the
orresponding sign headers any number of times. At every time during thisoperation when one dete
ts two sign headers that are not yet distinguishedin AP but that lead to di�erent states of A1, one re�nes the pre�x automa-ton AP so as to asso
iate di�erent end states to these headers. Finally, theautomaton A2 is 
onstru
ted su
h that following one of its a

epting pathsamounts to reading n symbols in AP , whi
h rea
hes one of its end states s,and then following an a

epting path of A1 starting from a state mat
hed tos.The algorithm is formally des
ribed in Appendix A. Its worst-
ase time 
om-plexity O(2n) is not less than that of the simple solution [Boi99℄ outlined atthe beginning of this se
tion. However, in the 
ontext of state-spa
e explo-ration appli
ations, is has been observed that it su

eeds most of the time,if not always, to avoid the exponential blowup experien
ed with the latterapproa
h.4 Counting elements of NDDsWe now address the problem of 
ounting the number of ve
tors that belong toa set S represented by an NDD A. Our solution pro
eeds in two steps: First,we 
he
k whether S is �nite or in�nite and, in the former 
ase, we transform A1 This is not problemati
 in pra
ti
al appli
ations, sin
e the 
ost of determinizing anautomaton built from an arithmeti
 formula is often moderate [WB00℄ although theworst 
ase 
omplexity is O(2jQj) where jQj is the number of states of the automaton.6



into a deterministi
 automaton A0 that a

epts exa
tly one en
oding of ea
hve
tor that belongs to S. Se
ond, we 
ount the number of distin
t a

eptingpaths in A0.4.1 Transformation stepLet A be a deterministi
 and minimal NDD representing the set S � Zn. If Sis not empty, then the language a

epted by A is in�nite, hen
e the transitiongraph of this automaton 
ontains 
y
les. In order to 
he
k whether S is �niteor not, we thus have to determine if these 
y
les are always followed whenreading di�erent en
odings of the same ve
tors, or if they 
an be iterated inorder to re
ognize an in�nite number of distin
t ve
tors.Assume that A does not 
ontain unne
essary states, i.e., that all its statesare rea
hable and that there is at least one a

epting path originating in ea
hstate. We 
an 
lassify the 
y
les in A into three groups:� A sign loop is a 
y
le that 
an only be followed while reading the sign headerof an en
oding, or a repetition of that sign header;� An in
ating loop is a 
y
le that 
an never be followed while reading the signheader of an en
oding or one of its repetitions;� A mixed loop is a 
y
le that is neither a sign nor an in
ating loop.If A has at least one in
ating or mixed loop, then its transition graph admitsan a

epting path that follows the 
orresponding 
y
le while not reading arepetition of a sign header. By iterating this 
y
le, one thus gets an in�nitenumber of distin
t ve
tors, whi
h results in S being in�nite. The problem of
he
king if S is in�nite thus redu
es to determining whether A has at leastone non-sign (i.e., in
ating or mixed) loop 2 . Thanks to the following result,this 
he
k 
an be 
arried out by inspe
ting the transition graph of A withoutpaying attention to the transition labels.Theorem 1 Assume that A is a deterministi
 and minimal NDD. A 
y
le� of A is a sign loop if and only if it 
an only be rea
hed by one path (not
ontaining any o

urren
e of that 
y
le).PROOF. Sin
e A is an NDD, it 
an only a

ept words whose length is a2 An example of a non-trivial instan
e of this problem 
an be obtained by buildingthe minimal deterministi
 NDD representing the set f(x; y) 2 Z2 j x+ y � 0 ^ x �0g. 7



multiple of the ve
tor dimension n. The length of � is thus a multiple of n.� Assume � is rea
hable by only one path �. Let u 2 f0; r � 1gn be the signheader that is read while following the n �rst transitions of the path ��,and let s and s0 be the states of A respe
tively rea
hed after reading thewords u and uu (starting from the initial state).Sin
e A a

epts all the en
odings of the ve
tors in S, it a

epts, for everyw 2 f0; 1; : : : ; r � 1g�, the word uw if and only if it a

epts the word uuw.It follows that the languages a

epted from the states s and s0 are identi
alwhi
h implies, sin
e A is minimal, that s = s0.Therefore, � 
an only be visited while reading the sign header u or oneof its repetitions, and is thus a sign loop.� Assume � is rea
hable by at least two paths �1 and �2. Let kn, with k 2 N ,be the length of �. Sin
e A only a

epts words whose length is a multiple ofn, there are exa
tly k states s1; s2; : : : ; sk that are rea
hable in � from theinitial state of A after following a multiple of n transitions.If the words read by following � from s1 to s2, from s2 to s3, . . . , andfrom sk to s1 are not all identi
al, then � is not a sign loop.Otherwise, let uk, with u 2 f0; 1; : : : ; r � 1gn, be the label of �. Sin
e Ais deterministi
, at least one of the blo
ks of n 
onse
utive digits read whilefollowing �1 or �2 up to rea
hing � di�ers from u. Thus, � 
an be visitedwhile not reading a repetition of a sign header, and is not a sign loop. 2Provided that A has only sign loops, it 
an easily be transformed into anautomaton A0 that a

epts exa
tly one en
oding of ea
h ve
tor in S by per-forming a depth-�rst sear
h in its transition graph. During the sear
h, oneremoves for ea
h dete
ted 
y
le the transition that gets ba
k to a state thathas already been visited in the 
urrent exploration path. This operation doesnot in
uen
e the set of ve
tors re
ognized by the automaton, sin
e the removedtransitions 
an only be followed in A while reading a repeated o

urren
e ofa sign header.An algorithm that 
ombines the 
lassi�
ation of 
y
les with the transformationofA intoA0 is given in Appendix B. Sin
e ea
h state ofA needs to be visited atmost on
e, the time and spa
e 
osts of this algorithm { if suitably implemented{ are linear in the number of states of A 3 .
3 In the algorithm provided in Appendix B, given an automatonA(�; Q; s(0);�; F );the subroutine explore() is 
alled at most jQj times andall tests and instru
tions ex
ept the re
ursive 
all to the subroutine 
an beperformed in 
onstant time. 8



4.2 Counting stepIf S is �nite, then the transition graph of the automaton A0 produ
ed by thealgorithm given in the previous se
tion is a
y
li
. The number of ve
tors in S
orresponds to the number of a

epting paths originating in the initial stateof A0.For ea
h state s of A0, let N(s) denote the number of paths of A0 that startin s and end in an a

epting state. Ea
h of these paths either leaves s by oneof its outgoing transitions, or has a zero length (in whi
h 
ase s is a

epting).Thus, we have at ea
h state sN(s) = X(s;d;s0)2�N(s0) + a

(s);where a

(s) is equal to 1 if s is a

epting, and to 0 otherwise.Thanks to this rule, the value of N(s) 
an easily be propagated from the statesthat have no su

essors to the initial state of A0, following the transitionsba
kwards. The number of additions that have to be performed is linear inthe number of states of A0.5 Example of useThe proje
tion and 
ounting algorithms presented in Se
tions 3 and 4 havebeen implemented in the veri�
ation tool LASH [LAS℄, whose main purposeis to 
ompute exa
tly the set of rea
hable 
on�gurations of systems with �nite
ontrol and unbounded data. In short, this tool handles �nite and in�nitesets of 
on�gurations by means of �nite-state representations suited for the
orresponding data domains, and relies on meta-transitions, whi
h 
apturethe e�e
t of 
ontrol loops, for exploring in�nite state spa
es in �nite time. Ades
ription of the main te
hniques implemented in LASH is given in [Boi99℄.In the 
ontext of this paper, we fo
us on systems based on unbounded integervariables, for whi
h the set representation system used by LASH is the NDD.Our present results thus make it possible to 
ount pre
isely the number ofrea
hable system 
on�gurations that belong to a set 
omputed by LASH.Let us now des
ribe an example of a state-spa
e exploration experiment fea-turing the 
ounting algorithm. We 
onsider the simple lift 
ontroller originallypresented in [Val89℄. This system is 
omposed of two pro
esses modeling alift panel and its motor a
tuator, 
ommuni
ating with ea
h other by means9



N NDD states Con�gurations Time (s)10 852 930 25100 1782 99300 651000 2684 9993000 10110000 3832 999930000 153100000 4770 99999300000 1961000000 5666 9999993000000 242Table 1Number of rea
hable 
on�gurations w.r.t. N .of shared integer variables. A parameter N , whose value is either �xed in themodel or left undetermined, de�nes the number of 
oors of the building. Inthe former 
ase, one observes that the amount of time and of memory neededby LASH in order to 
ompute the set of rea
hable 
on�gurations 4 grows onlylogarithmi
ally in N , despite the fa
t that the number of elements in this setis 
learly at least O(N2). (Indeed, the behavior of the lift is 
ontrolled by twomain variables modeling the 
urrent and the target 
oors, whi
h are able totake any pair of values in f1; : : : ; Ng2.) Our simple experiment has two goals:Studying pre
isely the evolution of the number of rea
hable 
on�gurationswith respe
t to in
reasing values of N , and evaluating the amount of a

eler-ation indu
ed by meta-transitions in the state-spa
e exploration pro
ess.The results are summarized in Tables 1 and 2. The former table gives, forseveral values of N , the size (in terms of automaton states) of the �nite-staterepresentation of the set of rea
hable 
on�gurations, the exa
t number of these
on�gurations, and the total time needed to perform the exploration. Theseresults 
learly show an evolution in O(N2), as expe
ted. It is worth mentioningthat, thanks to the fa
t that the 
ost of our 
ounting algorithm is linear inthe size of NDDs, its exe
ution time (in
luding the 
lassi�
ation of loops) wasnegligible with respe
t to that of the exploration.The latter table shows, for N = 109, the evolution of the number of 
on�gura-tions rea
hed after the su

essive steps of the exploration algorithm. Roughly4 Pra
ti
ally, the rea
hable 
on�gurations are 
omputed as follows. First we 
om-pute the transition fon
tion for the system. This fun
tion takes a set of 
on�gu-rations as input and generates the set of 
on�gurations rea
hable from the inputset in one-step. Then, we apply this transition fon
tion re
usively to the initial
on�guration until we rea
h a �xpoint. In our example, the Presburger formula
orresponding to the transition fon
tion is an union of about 100 
lauses and has14 variables of whi
h 9 are quanti�ed existentially. We need to apply 11 times thetransition fon
tion to explore the system 
ompletely.10



Step NDD states Con�gurations1 638 32 1044 10000000033 1461 39999999994 2709 5000000054999999975 4596 15000000064999999956 6409 35000000044999999947 7020 64999999974999999998 7808 79999999950000000009 8655 899999999400000000010 8658 949999999350000000011 8663 9999999993000000000Table 2Number of rea
hed 
on�gurations w.r.t. exploration steps.speaking, the states are explored in a breadth-�rst fashion, starting from theinitial 
on�guration and following transitions as well as meta-transitions, untila �xpoint is dete
ted. In the present 
ase, the impa
t of meta-transitions onthe number of rea
hed states is 
learly visible at Steps 2 and 4 in the table.6 Con
lusions and 
omparison with other workThe main 
ontribution of this paper is to provide an algorithm for 
ounting thenumber of elements in a set represented by an NDD. As an auxiliary result, wealso present an improved proje
tion algorithm that makes it possible to buildeÆ
iently an NDD representing the set of solutions of a Presburger formula.Our algorithms have been implemented in the tool LASH.The problem of 
ounting the number of solutions of a Presburger equationhas already been addressed in [Pug94℄, following a formula-based approa
h.More pre
isely, that solution pro
eeds by de
omposing the original formulainto an union of disjoint 
onvex sums, ea
h of them being a 
onjun
tion oflinear inequalities. Then, all variables but one are proje
ted out su

essively,by splintering the sums in su
h a way that the eliminated variables have onesingle and one upper bound. This eventually yields a �nite union of simpleformulas, on whi
h the 
ounting 
an be 
arried out by simple rules.11
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A Proje
tion algorithmLet (�; Q; s(0);�; F ) be the deterministi
 automaton A1, where � is the al-phabet f0; : : : ; r � 1g, Q is a �nite set of states, s(0) 2 Q is the initial state,� � Q � � � Q is the transition relation, and F � Q is a set of a

eptingstates.(1) Let AP = (�; QP ; s(0)P ;�P ; FP ), with s(0)P = (s(0); 0), QP = fs(0)P g, andboth of �P and FP are empty. Ea
h state (s; i) of AP will be 
omposedof a state s of A1 and an index i ranging from 0 to n. The index n
orresponds to the end states of AP .(2) The array mat
hes[s℄ will asso
iate ea
h end states of AP to the subsetof Q su
h that(3) For i = 1; : : : ; n and for ea
h (s; �; s0) 2 � su
h that (s; i� 1) 2 QP , add(s0; i) to QP and ((s; i� 1); �; (s0; i)) to �P .(4) For ea
h s 2 Q su
h that (s; n) 2 QP , let mat
hes[(s; n)℄ = fsg.(5) Let remaining = f(s; s) j (s; n) 2 QPg.(6) For ea
h (s; s0) 2 remaining:� If there do not exist s00 2 Q n mat
hes[(s; n)℄ and u 2 �n su
h that(s(0)P ; u; (s; n)) 2 ��P and (s0; u; s00) 2 ��, then remove (s; s0) from re-maining .� If there exists s00 2 Q n mat
hes[(s; n)℄ su
h that for every u 2 �nfor whi
h (s(0)P ; u; (s; n)) 2 ��P , (s0; u; s00) 2 ��, then add s00 to theset mat
hes[(s; n)℄, add (s; s00) to remaining, and remove (s; s0) fromremaining .� Otherwise, �nd u; u0 2 �n su
h that (s(0)P ; u; (s; n))2 ��P , (s(0)P ; u0; (s; n))2 ��P and either� there exist s00; s000 2 Q, s00 6= s000, su
h that (s0; u; s00) 2 �� and(s0; u0; s000) 2 ��, or� there exists s00 2 Q su
h that (s0; u; s00) 2 �� but no s000 2 Q su
hthat (s0; u0; s000) 2 ��,then re�ne AP with respe
t to the state s0 and the headers u and u0(this operation will be des
ribed separately).(7) Let A2 = (�; Q2; s(0)2 ;�2; F2), with Q2 = Q [ QP , s(0)2 = s(0)P , �2 =� [�P [ f((s; n); "; s0) j s0 2 mat
hes[(s; n)℄g, and F2 = F .It is worth mentioning that the test performed at Line 6 
an be 
arried outeÆ
iently by a sear
h in the transition graph of the automata. Details of aneÆ
ient implementation are available in [LAS℄.A 
entral step of the algorithm 
onsists of re�ning the pre�x automaton APin order to asso
iate di�erent end states to two sign headers u and u0 read14



from the state s0 of A1. This operation is performed as follows:(1) Let k 2 f1; : : : ; ng be the smallest integer su
h that the paths reading uand u0 from the state s(0)P of AP rea
h the same state after having followedk transitions, and the paths reading u and u0 from the state s0 of A1 rea
htwo distin
t states after the same number k of transitions.(2) Let ((s1; k�1); d; (s2; k)) and ((s01; k�1); d0; (s2; k)) be the k-th transitionsof the paths reading (respe
tively) u and u0 in AP .(3) For ea
h q 2 QP su
h that ((s2; k); w; q) 2 ��P for some w 2 ��, add anew state q0 to QP and set split [q℄ = q0.(4) For ea
h transition (q; d; q0) 2 �P su
h that split [q℄ is de�ned, add thetransition (split [q℄; d; split [q0℄) to �P .(5) Repla
e the transition ((s01; k�1); d0; (s2; k)) by ((s01; k�1); d0; split [(s2; k)℄)in �P .(6) For ea
h q 2 QP su
h that split [q℄ exists, letmat
hes[split [q℄℄ = mat
hes[q℄.(7) For ea
h (s; s0) 2 remaining su
h that split [(s; n)℄ is de�ned, add the pair(split [(s; n)℄; s0) to remaining.B Cy
le 
lassi�
ation and removal algorithm(1) Let A = (�; Q; s(0);�; F ), let visited = ;, and for ea
h state s 2 Q, letleads-to-
y
le[s℄ = F;(2) If explore(s(0); 0) = F, then the set represented byA is in�nite. Otherwise,the automaton A0 is given by (�; Q; s(0);�; F ).Subroutine explore(s; k):(1) Let visited = visited [ fsg, and let history [k℄ = s;(2) For ea
h (s0; d; s00) 2 � su
h that s0 = s:� If s00 62 visited , then(a) If explore(s00; k + 1) = F then return F;(b) If leads-to-
y
le[s00℄ then let leads-to-
y
le[s℄ = T;� If s00 2 visited and (9i < k)(history [i℄ = s00), then(a) If leads-to-
y
le[s℄ then return F;(b) Let leads-to-
y
le[s℄ = T, and remove (s0; d; s00) from �;� If s00 2 visited and (8i < k)(history [i℄ 6= s00), then(a) If leads-to-
y
le[s00℄ then return F;(3) Return T.
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