Counting the Solutions of Presburger

Equations without Enumerating Them *

Bernard Boigelot and Louis Latour

Institut Montefiore, B28
Université de Liége
B-4000 Liége Sart-Tilman
Belgium
Phone: +32-43662970
Fax: +32-4566298/

Abstract

The Number Decision Diagram (NDD) has recently been introduced as a power-
ful representation system for sets of integer vectors. NDDs can notably be used
for handling sets defined by arbitrary Presburger formulas, which makes them well
suited for representing the set of reachable states of finite-state systems extended
with unbounded integer variables. In this paper, we address the problem of counting
the number of distinct elements in a set of numbers or, more generally, of vectors,
represented by an NDD. We give an algorithm that is able to produce an exact
count without enumerating explicitly the vectors, which makes it capable of han-
dling very large sets. As an auxiliary result, we also develop an efficient projection
method that allows to construct efficiently NDDs from quantified formulas, and
thus makes it possible to apply our counting technique to sets specified by for-
mulas. Our algorithms have been implemented in the verification tool LASH, and
applied successfully to various counting problems.

Key words: Presburger arithmetic, automata, counting, symbolic representation
systems.

* This work was partially funded by a grant of the “Communauté francaise de Bel-
gique — Direction de la recherche scientifique — Actions de recherche concertées”,
and by the European Commission (FET project ADVANCE, contract No IST-1999-
29082).

Email address: {boigelot,latour}@montefiore.ulg.ac.be (Bernard
Boigelot and Louis Latour).

URL: http://wuw.montefiore.ulg.ac.be/"{boigelot,latour}/ (Bernard
Boigelot and Louis Latour).

Preprint submitted to Elsevier Science 14 January 2003

1 Introduction

Presburger arithmetic [Pre29], i.e., the first-order additive theory of integers,
is a powerful formalism for solving problems that involve integer variables.
The manipulation of sets defined in Presburger arithmetic is central to many
applications including integer programming problems [Sch86,PR96], compiler
optimization techniques [Pug92|, temporal database queries [KSW95], pro-
gram analysis tools [FO97,SKR98] and model-checking [DK00,TBP99].

The most direct way of algorithmically handling Presburger-definable sets con-
sists in manipulating Presburger formulas explicitly. This approach has been
successfully implemented in the Omega package [Pug92], which is probably the
most widely used Presburger tool at the present time. Unfortunately, formula-
based representations suffer from a serious drawback: They lack canonicity,
which implies that a set with a simple structure may in some instances be
represented by a complex formula; this notably happens when the set is ob-
tained as the result of a lengthy sequence of operations. Moreover, the absence
of a canonical representation hinders the efficient implementation of decision
procedures that are essential to most applications, such as testing whether
two sets are equal.

In order to alleviate these problems, an alternative representation of Pres-
burger-definable sets has been developed, based on finite-state automata. The
Number Decision Diagram (NDD) [WB95,Boi99] is, sketchily, a finite-state
machine recognizing the encodings of the integer vectors belonging to the set
that it represents. Its main advantages are that most of the usual set-theory
operators can be applied to the represented sets by simply carrying out the cor-
responding tasks on the languages accepted by the underlying automata, and
that a canonical representation of a set can easily be obtained by determiniz-
ing and minimizing its finite-state representations. Among its applications, the
NDD has made it possible to develop a tool for automatically computing the
set of reachable states of programs using unbounded integer variables [LAS].

The problem of counting how many elements belong to a Presburger set has
been solved for formula-based representations of Presburger sets [Pug94]. This
problem has interesting applications related to program analysis and verifica-
tion. First, it enables one to quantify precisely and to improve the performance
of some systems. In particular, by defining Presburger formulas whose solu-
tions correspond to the memory locations touched by a loop and the flops
executed by a loop, one can estimate the amount of resources consume by
code fragments and improve the load balancing in a multiprocessor environ-
ment [TF92]. Furthermore, counting the number of reachable data values at
selected control locations makes it possible to detect quickly some inconsisten-
cies between different releases of a program, without requiring to write down

explicit properties to be checked. For instance, it can promptly alert the devel-
oper, although without any guarantee of always catching such errors, that a
local modification had an unwanted influence on some remote part of the pro-
gram. Finally, studying the evolution of the number of reachable states with
respect to the value of system parameters can also help to detect unsuspected
errors.

The main goal of this paper is to present a method for counting exactly and
efficiently the number of elements belonging to a Presburger-definable set rep-
resented by an NDD. Intuitively, our approach is based on the idea that one
can easily compute the number of distinct paths in a directed acyclic graph
without enumerating them. The actual algorithm is however more intricate,
due to the fact that there is not a one-to-one relationship between the vectors
belonging to a set and the accepting paths of NDD representing the set.

In order to apply our counting technique to the set of solutions of a given
Presburger formula, one needs first to build an NDD from that formula. This
problem has been solved in [BHM V94, BC96,B0i99], but only in the form of a
construction algorithm that presents a systematic exponential cost in the num-
ber of variables that appear in the formula. As an auxiliary contribution of this
paper, we describe an improved algorithm for handling the problematic pro-
jection operation. The resulting construction procedure has been implemented
and successfully applied to problems involving a large number of variables.

2 Basic notions

Let us first show how finite-state machines can represent sets of integer vec-
tors. The main idea consists of establishing a mapping between vectors and
words. Our encoding scheme for vectors is based on the positional notation
for numbers in a base r > 1, according to which an encoding of a positive
integer z is a word a,_1a, 2---ajao such that each digit a; belongs to the
finite alphabet {0,1,...,r — 1} and z = 75 a;r*. An encoding of a negative
number z is the last p digits of any encoding of its r’s complement 7P 4 z. The
number p of digits is not fixed, but must be large enough for the condition
—rP~1 < 2 < rP71 to hold. As a result, the first digit of the encodings is 0 for
positive numbers and r — 1 for negative ones, hence that digit is referred to
as the sign digit of the encodings.

In order to encode a vector ¥ = (v, v,...,v,), one simply reads repeatedly
and in turn one digit from the encodings of all its components, under the ad-
ditional restriction that these encodings must share the same length. In other
words, an encoding of ¢'is a word dp_11dp—1,2...dp—1,n dp_21dp—22...dp_2p ...
...dpadoz .. .do, such that for every ¢ € {1,...,n}, d,_1,d,_2;...dp, is an

encoding of v;. An encoding of a vector of dimension n has thus n sign digits
— each associated to one vector component — the group of which forms a
sign header. Two encodings of the same vector can only differ in the number
of times that their sign header is repeated.

Let S C Z" be a set of integer vectors. If the language L(S) containing all the
encodings of all the vectors in S is regular, then any finite-state automaton
accepting L(S) is a Number Decision Diagram (NDD) representing S. It is
worth noticing that, according to this definition, not all automata defined
over the alphabet {0,1,...,7 — 1} are valid NDDs. Indeed, an NDD must
accept only valid encodings of vectors sharing all the same dimension, and
must accept all the encodings of each vector that it recognizes. Note that the
vector encoding scheme that we use here is slightly different from the one
proposed in [BHMV94,B0i99], in which the digits related to all the vector
components are read simultaneously rather than successively. It is easy to see
that both representation methods are equivalent from the theoretical point
of view. The advantage of our present choice is that it produces considerably
more compact finite-state representations. For instance, a deterministic and
minimal NDD representing Z" is of size O(2") if the component digits are
read simultaneously, which limits the practical use of that approach to small
values of n. On the other hand, the encoding scheme used in this paper yields
an automaton of size O(n).

It is known for a long time [Cob69,Sem77| that the sets that can be repre-
sented by finite-state automata in every base r > 1 are exactly those that
are definable in Presburger arithmetic, i.e., the first-order theory (Z,+, <).
One direction of the proof of this result is constructive, and translates into
an algorithm for constructing an NDD representing an arbitrary Presburger
formula [BHMV94,BC96,B0i99]. Sketchily, the idea is to start from elemen-
tary NDDs corresponding to the formula atoms, and to combine the NDDs
by means of set operators and quantification. It can be easily shown that
computing the union, intersection, difference or Cartesian product of two sets
represented by NDDs is equivalent to carrying out similar operations on the
languages accepted by the underlying automata. Quantifying existentially a
set with respect to a vector component, which amounts to projecting this set
along this component, is more complex. We discuss this problem in the next
section.

At this point, one could wonder why we did not opt for defining NDDs as
automata accepting only one encoding (for instance the shortest one) of each
vector, and encoding negative numbers as their sign followed by the encoding
of their absolute value. It turns out that the former choice substantially compli-
cates the essential manipulation algorithms such as computing the Cartesian
product or the difference of two sets (in this case, the problem is that those
operations do not reduce to carrying out similar operations over the languages

A N S N
ala Ua/a ala N afe Ua/a ala

For all transitions, a € {0,...,r — 1}. The symbol ¢ denotes the empty word.

Fig. 1. Projection transducer.

accepted by the automata). The latter choice leads to significantly larger rep-
resentations for atomic formulas such as linear equations or inequations. On
the other hand, our present choices lead to simple manipulation algorithms,
with the only exceptions of projection and counting, which are addressed in
the following sections.

3 Projecting NDDs

The projection problem can be stated in the following way. Given an NDD
A representing a set S C Z", with n > 0, and a component number i €
{1,...,n}, construct an NDD A’ representing the set

Ele = {(1)1,...,Uz‘_l,vi+1,...,1}n) | (vl,...,vn) € S}

For every accepting path of A, there must exist a matching path of A’, the
label of which contains digits corresponding to all the vector components but
the i-th. Thus, one could be tempted to compute A’ as the direct result of
applying to A the transducer depicted at Figure 1.

Unfortunately, this method produces an automaton A|,; that, even though it
accepts valid encodings of all the elements of 3,5, is generally not an NDD.
Indeed, for some vectors, the automaton may only recognize their encodings
if they are of sufficient length. For example, the method applied to the NDD
representing 3;{(4, 1)} would generate an automaton whose smallest accepted
word is “0001” which is not the smallest valid encoding of the number 1, i.e
“01”. In order to build A’ from A|;, one thus has to transform .4|; such that
it also accepts the shorter encodings of the vectors of the set 3;S.

As already mentioned, two encodings of the same vector only differ in the
number of times that their sign header is repeated. We can thus restate the
projection problem in the following way: Given a finite-state automaton Ay
over alphabet ¥ accepting the language L, and a dimension n > 0, construct
an automaton A, accepting Ly = {v'w | u € {0,r —1}" A w € * A i >
0 A Jk(k>i A ufwe L)}

In [Boi99], this problem is solved by considering explicitly every potential
value u of the sign header. Then, for each u, explore A; in order to know
which states can be reached by a prefix of the form u!, with ¢ > 0 and make
each of these states reachable after reading a single occurrence of u, which can
be done by a simple construction. Although satisfactory from a theoretical
point of view, this solution exhibits a systematic cost in O(2") which limits
its practical use to problems with a very small vector dimension.

The main idea behind our improved solution consists of handling simulta-
neously sign headers that cannot be distinguished from each other by the
automaton Ay, i.e., sign headers uy, us € {0, — 1}" such that for every k > 0,
reading u? leads to the same automaton states as reading u5. For simplicity,
we assume A; to be deterministic®.

Our algorithm proceeds as follows. First, it extracts from A; a prefix automa-
ton Ap that reads only the first n symbols of words and associates one distinct
end state to each group of undistinguished sign headers. Each end state of Ap
is then matched to all the states of A; that can be reached after reading the
corresponding sign headers any number of times. At every time during this
operation when one detects two sign headers that are not yet distinguished
in Ap but that lead to different states of A;, one refines the prefix automa-
ton Ap so as to associate different end states to these headers. Finally, the
automaton A, is constructed such that following one of its accepting paths
amounts to reading n symbols in Ap, which reaches one of its end states s,
and then following an accepting path of A; starting from a state matched to
S.

The algorithm is formally described in Appendix A. Its worst-case time com-
plexity O(2") is not less than that of the simple solution [B0i99] outlined at
the beginning of this section. However, in the context of state-space explo-
ration applications, is has been observed that it succeeds most of the time,
if not always, to avoid the exponential blowup experienced with the latter
approach.

4 Counting elements of NDDs

We now address the problem of counting the number of vectors that belong to
a set S represented by an NDD A. Our solution proceeds in two steps: First,
we check whether S is finite or infinite and, in the former case, we transform A

1 This is not problematic in practical applications, since the cost of determinizing an
automaton built from an arithmetic formula is often moderate [WB00] although the
worst case complexity is O(2/Q|) where |Q| is the number of states of the automaton.

into a deterministic automaton A’ that accepts exactly one encoding of each
vector that belongs to S. Second, we count the number of distinct accepting
paths in A’.

4.1 Transformation step

Let A be a deterministic and minimal NDD representing the set S C Z". If S
is not empty, then the language accepted by A is infinite, hence the transition
graph of this automaton contains cycles. In order to check whether S is finite
or not, we thus have to determine if these cycles are always followed when
reading different encodings of the same vectors, or if they can be iterated in
order to recognize an infinite number of distinct vectors.

Assume that A does not contain unnecessary states, i.e., that all its states
are reachable and that there is at least one accepting path originating in each
state. We can classify the cycles in A into three groups:

e A sign loop is a cycle that can only be followed while reading the sign header
of an encoding, or a repetition of that sign header;

e An inflating loop is a cycle that can never be followed while reading the sign
header of an encoding or one of its repetitions;

e A mized loop is a cycle that is neither a sign nor an inflating loop.

If A has at least one inflating or mixed loop, then its transition graph admits
an accepting path that follows the corresponding cycle while not reading a
repetition of a sign header. By iterating this cycle, one thus gets an infinite
number of distinct vectors, which results in S being infinite. The problem of
checking if S is infinite thus reduces to determining whether A has at least
one non-sign (i.e., inflating or mixed) loop?. Thanks to the following result,
this check can be carried out by inspecting the transition graph of A without
paying attention to the transition labels.

Theorem 1 Assume that A is a deterministic and minimal NDD. A cycle

A of A is a sign loop if and only if it can only be reached by one path (not
containing any occurrence of that cycle).

PROOF. Since A is an NDD, it can only accept words whose length is a

2 An example of a non-trivial instance of this problem can be obtained by building
the minimal deterministic NDD representing the set {(z,y) € Z? |z +y <0 A = >

0}.

multiple of the vector dimension n. The length of A is thus a multiple of n.

e Assume X is reachable by only one path w. Let u € {0,r — 1}"™ be the sign
header that is read while following the n first transitions of the path wA,
and let s and s’ be the states of A respectively reached after reading the
words v and uu (starting from the initial state).

Since A accepts all the encodings of the vectors in S, it accepts, for every
w € {0,1,...,r — 1}* the word ww if and only if it accepts the word wuw.
It follows that the languages accepted from the states s and s’ are identical
which implies, since A is minimal, that s = s'.

Therefore, A can only be visited while reading the sign header u or one
of its repetitions, and is thus a sign loop.

e Assume X is reachable by at least two paths m and my. Let kn, with k € N,
be the length of A. Since A only accepts words whose length is a multiple of

n, there are exactly k states si, so,..., sy that are reachable in A from the
initial state of A after following a multiple of n transitions.
If the words read by following A from s; to sz, from s, to s3, ..., and

from s to s; are not all identical, then) is not a sign loop.

Otherwise, let u*, with v € {0,1,...,r — 1}", be the label of). Since A
is deterministic, at least one of the blocks of n consecutive digits read while
following m; or ms up to reaching A differs from u. Thus, A can be visited
while not reading a repetition of a sign header, and is not a sign loop. O

Provided that A has only sign loops, it can easily be transformed into an
automaton A’ that accepts exactly one encoding of each vector in .S by per-
forming a depth-first search in its transition graph. During the search, one
removes for each detected cycle the transition that gets back to a state that
has already been visited in the current exploration path. This operation does
not influence the set of vectors recognized by the automaton, since the removed
transitions can only be followed in A while reading a repeated occurrence of
a sign header.

An algorithm that combines the classification of cycles with the transformation
of A into A’ is given in Appendix B. Since each state of A needs to be visited at
most once, the time and space costs of this algorithm — if suitably implemented
— are linear in the number of states of A3 .

3 In the algorithm provided in Appendix B, given an automaton
A(Z,Q,s® A F)the subroutine ezplore() is called at most |Q| times and
all tests and instructions except the recursive call to the subroutine can be
performed in constant time.

4.2 Counting step

If S is finite, then the transition graph of the automaton A’ produced by the
algorithm given in the previous section is acyclic. The number of vectors in S
corresponds to the number of accepting paths originating in the initial state

of A'.

For each state s of A', let N(s) denote the number of paths of A’ that start
in s and end in an accepting state. Each of these paths either leaves s by one
of its outgoing transitions, or has a zero length (in which case s is accepting).
Thus, we have at each state s

N(s)= > N(s)+ acc(s),

(s,d,s")eA

where acc(s) is equal to 1 if s is accepting, and to 0 otherwise.

Thanks to this rule, the value of N(s) can easily be propagated from the states
that have no successors to the initial state of A’, following the transitions
backwards. The number of additions that have to be performed is linear in
the number of states of A'.

5 Example of use

The projection and counting algorithms presented in Sections 3 and 4 have
been implemented in the verification tool LASH [LAS], whose main purpose
is to compute exactly the set of reachable configurations of systems with finite
control and unbounded data. In short, this tool handles finite and infinite
sets of configurations by means of finite-state representations suited for the
corresponding data domains, and relies on meta-transitions, which capture
the effect of control loops, for exploring infinite state spaces in finite time. A
description of the main techniques implemented in LASH is given in [Boi99].

In the context of this paper, we focus on systems based on unbounded integer
variables, for which the set representation system used by LASH is the NDD.
Our present results thus make it possible to count precisely the number of
reachable system configurations that belong to a set computed by LASH.

Let us now describe an example of a state-space exploration experiment fea-
turing the counting algorithm. We consider the simple lift controller originally
presented in [Val89]. This system is composed of two processes modeling a
lift panel and its motor actuator, communicating with each other by means

N | NDD states | Configurations | Time (s)

10 852 930 25

100 1782 99300 65
1000 2684 9993000 101
10000 3832 999930000 153
100000 4770 99999300000 196
1000000 5666 | 9999993000000 242

Table 1
Number of reachable configurations w.r.t. V.

of shared integer variables. A parameter N, whose value is either fixed in the
model or left undetermined, defines the number of floors of the building. In
the former case, one observes that the amount of time and of memory needed
by LASH in order to compute the set of reachable configurations* grows only
logarithmically in N, despite the fact that the number of elements in this set
is clearly at least O(N?). (Indeed, the behavior of the lift is controlled by two
main variables modeling the current and the target floors, which are able to
take any pair of values in {1,..., N}2.) Our simple experiment has two goals:
Studying precisely the evolution of the number of reachable configurations
with respect to increasing values of IV, and evaluating the amount of acceler-
ation induced by meta-transitions in the state-space exploration process.

The results are summarized in Tables 1 and 2. The former table gives, for
several values of N, the size (in terms of automaton states) of the finite-state
representation of the set of reachable configurations, the exact number of these
configurations, and the total time needed to perform the exploration. These
results clearly show an evolution in O(N?), as expected. It is worth mentioning
that, thanks to the fact that the cost of our counting algorithm is linear in
the size of NDDs, its execution time (including the classification of loops) was
negligible with respect to that of the exploration.

The latter table shows, for N = 10%, the evolution of the number of configura-
tions reached after the successive steps of the exploration algorithm. Roughly

4 Practically, the reachable configurations are computed as follows. First we com-
pute the transition fonction for the system. This function takes a set of configu-
rations as input and generates the set of configurations reachable from the input
set in one-step. Then, we apply this transition fonction recusively to the initial
configuration until we reach a fixpoint. In our example, the Presburger formula
corresponding to the transition fonction is an union of about 100 clauses and has
14 variables of which 9 are quantified existentially. We need to apply 11 times the
transition fonction to explore the system completely.

10

Step | NDD states Configurations
1 638 3
2 1044 1000000003
3 1461 3999999999
4 2709 | 500000005499999997
5 4596 | 1500000006499999995
6 6409 | 3500000004499999994
7 7020 | 6499999997499999999
8 7808 | 7999999995000000000
9 8655 | 8999999994000000000

10 8658 | 9499999993500000000
11 8663 | 9999999993000000000

Table 2
Number of reached configurations w.r.t. exploration steps.

speaking, the states are explored in a breadth-first fashion, starting from the
initial configuration and following transitions as well as meta-transitions, until
a fixpoint is detected. In the present case, the impact of meta-transitions on
the number of reached states is clearly visible at Steps 2 and 4 in the table.

6 Conclusions and comparison with other work

The main contribution of this paper is to provide an algorithm for counting the
number of elements in a set represented by an NDD. As an auxiliary result, we
also present an improved projection algorithm that makes it possible to build
efficiently an NDD representing the set of solutions of a Presburger formula.
Our algorithms have been implemented in the tool LASH.

The problem of counting the number of solutions of a Presburger equation
has already been addressed in [Pug94|, following a formula-based approach.
More precisely, that solution proceeds by decomposing the original formula
into an union of disjoint convex sums, each of them being a conjunction of
linear inequalities. Then, all variables but one are projected out successively,
by splintering the sums in such a way that the eliminated variables have one
single and one upper bound. This eventually yields a finite union of simple
formulas, on which the counting can be carried out by simple rules.

11

The main difference between this solution and ours is that, compared to the
general problem of determining whether a Presburger formula is satisfiable,
counting using a formula-based method incurs a significant additional cost. On
the other hand, the automata-based counting method has a negligible practical
impact on the total execution time once an NDD has been constructed. Our
method is thus efficient in all the cases for which an NDD can be computed
quickly, which, as it has been observed in [BC96,WB00], happens mainly when
the coefficients of the variables are kept small. In addition, since automata can
be determinized and minimized after each manipulation, NDDs are especially
suited for representing the results of complex sequences of operations pro-
ducing simple sets, as in most state-space exploration applications. The main
restriction of our approach is that it cannot be generalized in a simple way
to the more complex counting problems, such as summing polynomials over
Presburger-definable sets, that are addressed in [Pug94].

References

[BCY6] A. Boudet and H. Comon. Diophantine equations, Presburger arithmetic
and finite automata. In Proceedings of CAAP’96, number 1059 in
Lecture Notes in Computer Science, pages 30—43. Springer-Verlag, 1996.

[BHMV94] V. Bruyere, G. Hansel, C. Michaux, and R. Villemaire. Logic and
p-recognizable sets of integers. Bulletin of the Belgian Mathematical
Society, 1(2):191-238, March 1994.

[Boi99] B. Boigelot. Symbolic Methods for Exploring Infinite State Spaces.
Collection des publications de la Faculté des Sciences Appliquées de
I’Université de Liege, Liege, Belgium, 1999.

[Cob69] A. Cobham. On the base-dependence of sets of numbers recognizable by
finite automata. Mathematical Systems Theory, 3:186-192, 1969.

[DKO00] Z. Dang and R.A Kemmerer. Using the astral symbolic model checker
as a specification debugger: Three approximation techniques. In E. M.
Clarke and R. P. Kurshan, editors, Proceedings of the 22nd International
Conference on Software Engineering (ICSE 2000). IEEE Press, IEEE
Press, 2000.

[FO97] L. Fribourg and H. Olsén. Proving safety properties of infinite state
systems by compilation into Presburger arithmetic. In Proceedings of
CONCUR’97, volume 1243, pages 213-227, Warsaw, Poland, July 1997.
Springer-Verlag.

[KSW95] F. Kabanza, J.-M. Stevenne, and P. Wolper. Handling infinite temporal
data. Journal of computer and System Sciences, 51(1):3-17, 1995.

[LAS] The Liege Automata-based Symbolic Handler (LASH). Available at
http://www.montefiore.ulg.ac.be/“boigelot/research/lash/.

12

[PRY6]

[Pre29]

[Pug92]

[Pug94]

[Sch86]

[Sem77]

[SKROS]

[TBP99)]

[TF92]

[Val89]

[WB95]

[WB00]

M. Padberg and M. Rijal. Location, Scheduling, Design and Integer
Programming. Kluwer Academic Publishers, Massachusetts, 1996.

M. Presburger. Uber die Volstandigkeit eines gewissen Systems der
Arithmetik ganzer Zahlen, in welchem die Addition als einzige Operation
hervortritt. In Comptes Rendus du Premier Congrés des Mathématiciens
des Pays Slaves, pages 92-101, Warsaw, Poland, 1929.

W. Pugh. The Omega Test: A fast and practical integer programming
algorithm for dependence analysis. Communications of the ACM, pages
102-114, August 1992.

W. Pugh. Counting solutions to Presburger formulas: How and why.
SIGPLAN, 94-6/94:121-134, 1994.

A. Schrijver. Theory of Linear and Integer Programming. John Wiley
& sons, Chichester, 1986.

A. L. Semenov. Presburgerness of predicates regular in two number
systems. Siberian Mathematical Journal, 18:289-299, 1977.

T. R. Shiple, J. H. Kukula, and R. K. Ranjan. A comparison of
Presburger engines for EFSM reachability. In Proceedings of the 10th
Intl. Conf. on Computer-Aided Verification, volume 1427 of Lecture
Notes in Computer Science, pages 280-292, Vancouver, June/July 1998.
Springer-Verlag.

R. Gerber T. Bultan and W. Pugh. Model-checking concurrent
systems with unbounded integer variables: symbolic representations,
approximations, and experimental results. ACM Transactions on
Programming Languages and Systems (TOPLAS), 21(4):747-789, July
1999.

N. Tawbi and P. Feautrier. Processor allocation and loop scheduling
on multiprocessor computers. In Proceedings of the 6th international
conference on Supercomputing, pages 63—71. ACM Press, 1992.

A. Valmari. State space generation with induction. In Proceedings of
the SCAI’89, pages 99-115, Tampere, Finland, June 1989.

P. Wolper and B. Boigelot. An automata-theoretic approach to
Presburger arithmetic constraints. In Proceedings of Static Analysis
Symposium, volume 983 of Lecture Notes in Computer Science, pages
21-32, Glasgow, September 1995. Springer-Verlag.

P. Wolper and B. Boigelot. On the construction of automata from linear
arithmetic constraints. In Proc. 6th International Conference on Tools
and Algorithms for the Construction and Analysis of Systems, volume
1785 of Lecture Notes in Computer Science, pages 1-19, Berlin, March
2000. Springer-Verlag.

13

A Projection algorithm

Let (Z,Q,s, A F) be the deterministic automaton A;, where ¥ is the al-
phabet {0, ...,7—1}, Q is a finite set of states, s(*) € Q is the initial state,
A C Q x ¥ x @ is the transition relation, and F C @ is a set of accepting
states.

(1) Let Ap = (E,Qp,sgg),Ap,Fp), with 352) = (s©,0), Qp = {sg)}, and
both of Ap and Fp are empty. Each state (s,7) of Ap will be composed

of a state s of A; and an index i ranging from 0 to n. The index n

corresponds to the end states of Ap.

(2) The array matches/s] will associate each end states of Ap to the subset
of @ such that

(3) Fori=1,...,n and for each (s,a,s’) € A such that (s,i—1) € Qp, add
(s',7) to Qp and (s, —1),a,(8',7)) to Ap.

(4) For each s € @ such that (s, n) € Qp, let matches|(s,n)] = {s}.

(5) Let remaining = {(s,s) | (s,n) € Qp}-

(6) For each (s,s") € remaining:

e If there do not exist s” € @ \ matches[(s,n)] and u € " such that
(sg),u, (s,n)) € A% and (8',u,s") € A*, then remove (s,s') from re-
maining.

o If there exists s” € @ \ matches[(s,n)] such that for every v € X"
for which (s, u,(s,n)) € A%, (s',u,s") € A*, then add s” to the
set matches[(s,n)], add (s, s") to remaining, and remove (s,s’) from
remaining.

e Otherwise, find u, v’ € £" such that (352), u, (s,n)) € A% (sp), v, (s,n))
€ A} and either

- there exist s",s" € @, s" # s, such that (s',u,s") € A* and
(s',u',s") € A* or
- there exists s" € @ such that (s',u,s") € A* but no s" € @ such
that (s',u/, s") € A*,
then refine Ap with respect to the state s’ and the headers v and u’
(this operation will be described separately).
(7) Let AQ = (E,Q2,8g0),A2,F2), with Q2 = Q U Qp, ng) = Sg:(;)), A2 =
AUApU{((s,n),e,s") | s' € matches[(s,n)]}, and Fy = F.

It is worth mentioning that the test performed at Line 6 can be carried out
efficiently by a search in the transition graph of the automata. Details of an
efficient implementation are available in [LAS].

A central step of the algorithm consists of refining the prefix automaton Ap
in order to associate different end states to two sign headers u and u' read

14

from the state s’ of A;. This operation is performed as follows:

(1) Let k € {1,...,n} be the smallest integer such that the paths reading u
and ' from the state 352) of Ap reach the same state after having followed
k transitions, and the paths reading u and u' from the state s’ of A; reach
two distinct states after the same number £ of transitions.

(2) Let ((s1,k—1),d,(s2,k)) and ((s},k—1),d', (s2,k)) be the k-th transitions
of the paths reading (respectively) v and u' in Ap.

(3) For each ¢ € @Qp such that ((s2,k),w,q) € A} for some w € £*, add a
new state ¢’ to Qp and set split[q] = ¢'.

(4) For each transition (g,d,q") € Ap such that split[q] is defined, add the
transition (split[q], d, split|q']) to Ap.

(5) Replace the transition ((s}, k—1),d’, (s2,k)) by ((s}, k—1),d', split[(ss, k)])
in Ap.

(6) For each ¢ € Qp such that split]qg] exists, let matches[split|q]] = matches|q|.

(7) For each (s,s") € remaining such that split[(s,n)] is defined, add the pair
(split[(s,n)], s") to remaining.

B Cycle classification and removal algorithm

(1) Let A= (2,Q,s%, A F), let visited = (), and for each state s € Q, let
leads-to-cycle[s| = F;

(2) If explore(s?),0) = F, then the set represented by A is infinite. Otherwise,
the automaton A’ is given by (3, Q, s, A, F).

Subroutine ezxplore(s, k):

(1) Let visited = visited U {s}, and let history[k] = s;
(2) For each (s',d, s") € A such that s’ = s:
o If s" & wvisited, then
(a) If explore(s",k + 1) = F then return F;
(b) If leads-to-cycle[s"] then let leads-to-cycle[s] = T;
o If " € visited and (Ji < k)(history[i] = s"), then
(a) If leads-to-cycle[s] then return F;
(b) Let leads-to-cycle[s] = T, and remove (s',d, s") from A,
o If s" € wisited and (Vi < k)(history[i] # s"), then
(a) If leads-to-cycle[s"] then return F;
(3) Return T.

15

