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Abstract

Quite often, trivial problems stated for Deterministic Finite Automata (DFA) are surpris-
ingly difficult for the nondeterministic case (NFA). In any non-minimal DFA for a given
regular language, we can find two equivalent states wich can be “merged” without chang-
ing the accepted language. This is not the case for NFA, where we can have non-minimal
automata with no “mergible” states. In this paper, we prove a very basic result for NFA,
that for a given regular language, any NFA of size greater than a computable constant must
contain mergible states. Even more, we parameterized this constant in order to guarantee
groups of an arbitrary number of mergible states.

Key words: Nondeterministic finite automata, mergible states, number of states,
equivalent states

1 Introduction

Deterministic Finite Automata are among the simplest structures in Formal Language Theory.
Therefore, many interesting properties of DFA were the subject of early developments in this
area. The existence of a finite number of Myhill-Nerode equivalence classes for regular languages
is an example of such properties. As a consequence of Myhill-Nerode Theorem, all DFAs for a
given regular language with a number of states greater than the index of the corresponding Myhill-
Nerode equivalence must have equivalent states (states that can be “merged” into one state, pre-
serving the recognized language). If we try to apply a similar idea to NFAs, we discover that
merging states may be done in different ways (preserving all transitions, or just some of them) and
that Myhill-Nerode equivalence is not powerful enough to detect such states, or to at least guaran-
tee their existence. Moreover, so far there are no efficient algorithms (computational complexity
wise) for reducing the number of states and transitions of NFAs.

In this paper we propose a method to detect(guarantee) mergible states in NFA solely based on
their size (number of states). Our results confirm the intuition that, for a given regular language,
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one cannot construct an arbitrarily large NFA with no mergible states. More precisely, we answer
to the following:

Problem 1 LetL be an arbitrary regular language, ankl> 2 an arbitrary integer. Does it exist
(and if “yes”, effectively construct it) a constagt y such that any-NFA of size at leadf,  has
at leastk mergible states?

In spite of its descriptive simplicity, the problem turned out to be quite difficult to solve by means
of just classical tools. In order to alleviate such technical difficulties, we define for each state in
an NFA two new equivalence relations on words derived from the Myhill-Nerode equivalence and
syntactic congruence of the given regular language. In the first section we introduce basic notions
and notations, and we prove an initial property of states in large NFA. In particular, we solve the
problem for the easiest case, of finite languages. In Section 3 we solve the problem for the general
case, i.e., for arbitrary regular languages.

2 Preliminaries and Initial Results

We begin this section witBirichlet's Box Principle (also known as pigeonhole prin-
ciple), extensively used throughout this paper:

“Given n boxes (withn > 1) containingm > n objects altogether, there exist at least one box
containing at least two objects.”

We can generalize this principle as following: giver> 1 boxes containingn > (k—1)n+1
objects altogethek > 2, there exist a box containing at ledsbbjects. (For further reference
consult [2, p.38])

Letnbe a positive integer. ng;we denote th&tirling number of the second kind ,
which gives the number of ways to partition a sehalements intg nonempty disjoint subsets
(see [6, p.65] or [3, 82.6.2]). It is given by the formula
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Then, the number of all distinct partitions of the $&t...,n} - calledBell number ,asin [3,
§2.6.3] - will be denoted b¥(n), given by

P(n) = isa - 2
J=

Let A, B be two arbitrary sets. Th€artesian product of A andB is denoted byA x B =
{(a,b) |ac A,be B}. Abinary relation overAandBis a subseR of Ax B. Theinverse



relation  of RisR™*={(b,a) | (a,b) € R}. Theidentity ~ of Ais the relatiorida = {(x,X) |

x € A}. Thecomposition of two relations R; C Ax BandR, C B x C is the relation
RooR1={(a,c)|3beB: (a,b) € Ry and(b,c) € Ry }. We say that a relatioR; is coarser than
relationRy if R, C R;. R€ Ax Ais anequivalence  overAifitis reflexive (da C R), symmetric
(R =R), and transitive Ro R C R). A binary operation over A is a total function® :
Ax A— A. We use the infix notation to denote binary operati@isb := ©(a,b). An equivalence
R over A is right-invariant with respect too if (a,b) e R= (a®c,b®c) e RVce A,
and isleft-invariant if (a,b) e R=(c®a,cob) € RVce A Risright-invariant

with respect to CCAIif (a,b)e R= (aGc,beoc) € RVc e C. Given an equivalence
R over A and an elemerd € A, the equivalence class of a with respect toR is the set
[@r:={beA|(ab) € R}. If asubseD is included in one class @&, than we used the notation
[D]r to denote the including class. All equivalence classd®refpresent partition of A i.e.,
they do not overlap and they cowrThe set of all classes &is called thequotient  of Aby R,
denoted byA/R. Theindex of Ris the cardinal oA/R, denoted by A/R|. Ris acongruence

if it is both right- and left- invariant with respect to (also said that R is compatible with, i.e.,
that(a,b) e R= (x®aoy,x®boy) € R¥xy e C). Consult [5] for more information on basic
algebraic concepts.

Remark 1Let A be an arbitrary set andR be an equivalence ovek of finite index, namely.
One can observe that there exist at mB&n) distinct equivalenceR overA, such thaR C R.
Indeed, sinc&r is coarser tharR, it follows that any equivalence classRfis included in some
equivalence class d®¥, hence the index d® is smaller than that oR. Furthermore R induces
an equivalence relation ovex/R, given by

Mr~Mr < (Y eR . (3)

(It can easily verify that it is an equivalence o&fR). Since~ is an equivalence over a set with
n elements, it is clear that there exist at mB$h) such distinct equivalences. The mapping

@ A/R— AR/~ , ¢(Kr) = [Xr] . (4)

is a bijection, hence there can exist at mB&t) equivalence® as well. The relationship between
various quotient sets is depicted by the commutative diagram in Fig.1, whatend i~ are the
canonical projections oR, R and~ (the canonical projection of an equivalence maps an element
onto its corresponding equivalence class).

A A/R

& |

AR — e (A/R)/ ~

Fig. 1. The number of distinct equivalend®sD Ris bound byP( | A/R| ).

Let 2 be an alphabet, i.e., a nonempty, finite set of symbolszBwe denote the set of all finite
words (strings of symbols) ovérand bye we denote the empty word (a word having zero sym-



bols). The operation of concatenation (juxtaposition) of two wardsdv is denoted by - v, or
simply uv.

Definition 1 ([4]) A nondeterministic finite automaton overZ, NFA for short, is a
tupleA=(Q,Z,d,qo,F), where

(1) Qis a finite set of states,
(2) 6:Qx (Zu{e}) — 2Ris a next-state function, and
(3) qois an initial state and= C Q is a set of final states.

The next-state (or transition) function is extended to work on words as followiadi(q, €),vq €
Qandd(g,aw) = 6(6(q,a),w),Vaec 2, we 2* andg € Q. The language recognized Bys L(A) =
{we Z*| &(qo,w) N F # 0} (aregular language overZ is any language recognized by some
NFA overZ). A state ofAisaccessible if there exists a path in the associated transition graph
starting fromqgp and ending in that state. A stateasaccessible if there exists a path form
that state to some final state. A stateigeful if it is both accessible and coaccessible. A NFA
istrim if it has only useful states.

Note 1 Throughout this paper we consider only trim NFA. Notice that by an NFA we actually
understanc-NFA, i.e., NFA which may hawetransitions.

For background knowledge in automata theory, the reader may refer to [7,8,4,9].

Let L be a regular language aid= (Q,Z, d,do,F) be an NFA forL with | Q |= n. By thesize
of Awe understand the number of its states, nameRor some statg € Q we denote by

(1) Lg theleft language of g, obtained by setting to be the only final state oA, i.e.,
Lg={weZ"/qe d(qo,w)},
(2) Rq theright language of g, obtained by setting| to be the initial state oA, i.e.,

Rg={wez"/d(q,w)NF # 0},
(3) Iq theinner language of g, obtained by setting to be both the initial and the only
final state inA, i.e.,lq={we Z*/qge d(q,w)},

e

Fig. 2. The “(L)eft”, “(Inner” and “(R)ight” language of a statp

as illustrated in Fig.2.

Denote bypref(L) the set of all prefixes of words ib and bysuf(L) the set of all suffixes of
words inL. Notice thatvg € Q: € € Ig, I = Iqandlq C suf(Lq) N pref(Ry). Notice also that
lgo = Lgo @and thatvg € F : Iq C Ry.

Considering these observations, one can verify fhastduces a decomposition afwritten as a



union of languages as following:

L= J LqlgRa= |J LRy - (5)

9eQ geqQ

Definition 2 Two distinct state and q are mergible in A if and only if by addinge —
transitionsfrom one state to the other the newly obtained automaton accepts the same language
L.

More formally, letA’ be the automaton obtained frofby addingd(p,&) = qandd(q,&) = p
to the transition table oA. Thenp andq are mergible imA if and only if L(A) = L(A') = L (see
Fig.3).

Fig. 3. pandq are mergible ilL does not change when adding the dotted transitions.

Remark 2A necessary and sufficient condition for ensuring thandq are mergible is:

(LplqULg)(Iplg)"Rp C L (6)
(LglpULp)(Iglp)"Rq S L

The definition of mergible states can readily be generalizédt@ states as following: the states
di, .- -,k are mergible if by adding-transitions in between all statgswith 1 <i <k, the newly
created automaton will still accept langudgd he following is a useful characterization of mergi-
ble states.

Lemma 1 (working definition) Leps,..., pkx be arbitrary states ifA. Then these states are mergi-
ble if and only if

k

(EJlei)'(Ulpi)*'(EJlRpi)QL . (7)

i=1

Proof: It can be proved either directly or, fér= 2, by relating it to Remark 2. Remark 2 can be
proved by induction. Both proofs are left to the readen



Remark 3Given an NFA of sizawhich has a group df mergible states, there exists an equivalent
NFA of sizen — k+ 1. Indeed, we can replace dllmergible states of the initial automaton with a
single state which will consolidate the inward and outward transitions of all states of the group.
By the definition of mergible states, we obtain an equivalent NFA.

Fig.4(a) shows that the property of being mergible is not transitive. Also notice thag arky
states of a group df(> 2) mergible states are mergible; however the reciprocal does not hold - as
exemplified in Fig.4(b).

Fig. 4. (a)p andq are mergibleg andr are mergible; howevegw andr are not. (b)p,q,r are mergible
two by two, howeveK p,q,r} is not a group of mergible states.

Unlike the case of deterministic finite automata (DFA), a non-minimal (size-wise) NFA may have
no mergible states. An example of such situation is given in Fig.5, which shows a non-minimal
NFA (stateg can readily be eliminated) with none of its states mergible. A languagg* induces

Fig. 5. Statey is obsolete; however, no mergible states are present.

two important equivalence relations or.

(1) Myhill-Nerode Equivalence: U=s L veVze ¥ (uzeL < vzel)
(a right-invariant equivalence),

(2) Syntactic Congruence: UZ ve Vxye X (xuye L < xvyell) .

We denote byN, the index of=| and byH, the index of=. It is well known that if L is regular,
then bothN_ andH_ are finite (consult [1, Th. 4.5]).

In the following we define the first out of two equivalence relations on words introduced in this



paper — equivalences which are central to the proof of existence of mergible states in large NFA.

Definition 3 Let A= (Q,Z,d,do,F) be an NFA for a regular languagk. For any stateqg € Q
define the following relation ovexr™:

YUVEZ': Uu~qV& [VZERy: (uzelL&evzel)] . (8)

Notice that this relation is derived from Myhill-Nerode equivalence by restricting the domain of
the “probe” wordz to R;. Clearly~q is coarser thaes,.

Lemma 2 The relation~q has the following properties:

(1) ~qis an equivalence (easily verifiable).
(2) (=) C (~q); consequently, */ ~q|< NL = Z*/ =_|.

(3) (Ngeq ~q) = (=1) -
(4) Lqisincluded in one class efq, class denoted bl g)~,. In other words,

geod(so,u)Nd(s,v) = U~qV. 9
(5) There are at mos®(N_ ) distinct equivalencesq, i.e.,| {~q}qeq |< P(NL).

Proof: Property (5) is a consequence of (2) and Remark 1; the rest of the proof is left to the
reader. O

Anticipating the use of property (5) of Lemma 2, we observe that if our NFA has mordtiiNan
states, then there will certainly exist at least two distinct stptasdq in Q such thatv,=~¢ (by
Dirichlet’s box principle). Moreover, given a regular language and a parametiarge enough
NFA for the language must have at lelasttatesyy, . . ., g verifying ~q,= ... =~q,.

Lemma 3 LetL be a regular language ankl > 2 an arbitrary integer. Any NFA of size at least
MLk, where

M k= (k—=1)-N.-P(N.)+1 , (10)

has at leask states{qy, ..., 0«}, such that

(1) ~qu=... =~g (:=~),and
@) Lol =-.. =[Lal~ -

Proof: LetA=(Q, %, 0,0, F) be an NFA forL with | Q |> M . Since| Q |> (k—1)-N_-P(NL) +

1 we infer that there exist at least= (k— 1) - N_ + 1 statespy, ..., pn such thatvp, = ... =~p,

(we generically denote this equivalence~gs But then, among all these states, there exist at least
k statesqs, . .., 0k with their left languages belonging to a same equivalence class dhis is

true since the index of is at mostN, and each of thék — 1)N_ + 1 left languages is included in

a class of~. Thenqu,..., gk is a group of states verifying the requirements of our theorem. Here
we used twice Dirichlet’'s box principle.O



Lemma 4 LetL be a regular language anA a corresponding NFA. If there exik{> 2) states
d1,...,0x in Asuch that

(1) ~q=".. =~q ((=~),and
@) [Lgyl~=-..=[Lgl~,
then
k k
(Uks) (URg) CL . (11)
i=1 j=1

Proof: Takeu € L andze Ry, withi, j € {1,...,k} arbitrarily chosen. Since all states are useful,
there exists a word € Lq;, hencevze L. But since[Lq]~ = [Lq;]~, it follows thatu ~ v. Then
U~gq; Vand since € Ry; andvze L, it follows thatuze L. ThereforeLq - Ry; C L for arbitrary
ibje{1,...,k}. O

An application of the previous two lemmas is the solution to Problem 1 for finite languages, as
captured in the following result.

Corollary 1 Any NFA for a finite languaggk, of size at leasM_ k, k > 2, has at leask mergible
states.

Proof: Let A be a NFA forL of size at leasM| . Consequence of Lemma 3 and 4, there ekist
stateqys, ..., 0k in Asuch that

k k

L) (URy) <L 12)

=1

(1

It now suffices to observe that any stati a trim NFA for a finite language hdg = {&}. Then

k k k k

(.L_leLqi)'(U'qi)*'(Uqu)z( Jla) - (URq) €L - (13)

i=1 i=1 i=

j=1

henceqy,...,qx are mergible. O

We essentially proved that a large enough NFA for a finite language must satisfy the hypothesis of
Lemma 4. Notice that satisfying only condition (1.) of Lemma 4 does not suffice. Indeed, consider
the example shown in Fig.6. The stafgandq satisfy the condition-p=~gq, sincez*/. =2/

~q = {{a}, {b},Z"\{a, b}}. However,p andq are not mergible.



Fig. 6. The statep andq are not mergible despite the fact thag=~.

3 Large NFA - the General Case

In Section 2 we have defined a useful equivalence relation on words, derived from the Myhill-
Nerode equivalence. We have used this new equivalence and its properties to solve Problem 1
for finite languages. For the general case, this equivalence does not suffice. Therefore, let us first
define a second equivalence, this time derived from the syntactic congragnce (

Definition 4 LetL be a regular language and = (Q.Z,d,0p, F) a corresponding NFA. For any
stateq € Q we associate the following relation on words:

YuveS': umqve [V(XYy) ELgxRg: (xuyeL < xvyel)] . (14)

Notice that this relation is derived from the syntactic congruendelnf restricting the domain of
the “probe” pair(x,y) to Lq x Rq. Clearly~q is coarser thas®, .

Lemma 5 The relation~q has the following properties:

(1) =qis an equivalence (can easily be verified).
(2) (=L) C (=q); consequently, >*/ ~q|< HL =| X/ == |.

(3) (Ngeq ~q) = (=1) -
(4) lgisincluded in one class 6¢q. In other words,

ged(qu)nd(g,v) = u=qV . (15)
Consequentlylg C [€]~,, sincee € lq.
(5) There are at mos®(HL) equivalenceszy, i.e.,| {~q}qeo |< P(HL) .
(6) ~q is right-invariant with respect tdy (if u~qvandzc Iq thenuz~q v2).
Proof: Property (5) follows from property (2) and Remark 1. For property (6), considey v,
and choose an arbitrag/e 1q. We must prove thatz~q vz Let (X,y) € Lq x Ry. We prove that

xuzye L < xvzye L (we prove only one implication, the relation being symmetric).

For the implication to the right, suppose thatzyc L. We havez € I andy € Ry, therefore, we
deduce thary e Ry. Since(x,zy) € Lq x Ry, U~q Vv andxuzye L, it follows thatxvzye L.

The rest of the proof is left to the readerd



Note 2 Notice that~q is not necessarily a right-invariant equivalence. It is just right-invariant
with respect tdg.

In order to be able to use both relationg and~q simultaneously, we require a mean to couple
them via their equivalence classes. The following corollary provides a solution.

Lemma 6 If Ais an NFA for a regular languagke andq is an arbitrary state inA, then

LofE]q C [La)mg - (16)

Proof: We first observe thadtg[€]~,Rq C L. Indeed, let € Lg, v € [€]~, andw € Ry. Sincee ~qV,
(u,w) € Lg x Ryanduw € L, we obtain thativwe L.

The fact thatl q[e]~,Rq C L implies thatlq[€]~, is included in one equivalence class-of (by
the definition of~q). But sincelq C Lg[€]~, M [Lg]~,, this class can only b g]~,. Concluding,
Lq[g]%q - [LQ]Nq' 0

This property allows us to prove a result similar to Lemma 4, with the improvement of introducing
[€]~ in between the two unions of left and right languades. will later be used as a mean to
accommodate the inner languages.

Corollary 2 LetAbe an NFA for a regular language andq, . .., gk states inA such that

(1) =q=Rg=-.. =~q (=%),
(2) ~q=~g= .. =~ (i=~) , and
(3) [Lg]~= .. = [Lg]~ (i.e U Ly is included in one class of) .

Then the following relation holds:
k

k
( 1Lqi)[s]z(_L_J Ry) CL - (17)

i= =1

Proof: We prove thal g [¢]~Rq; C L, Vi, j € {1,...,k}. Arbitrarily choosei, j € {1,...,k}. We
have the following relations:

LCIi [5]%RQJ = LCIi [E]zqi RQj c [LQi]Nqi qu = [LQi]NRqJ' = [qu]Nqu cL. (18)

We have used the fact thag; (€]~ C [Lq]~, (by Lemma 6) and thaty]. = [Lq;]~ by hypothe-
sis. O

In order to take into consideration the inner languages as well, it now suffices to relate them to
[€]~ — as stated in the context of Corollary 2. The result follows.

10



Lemma 7 LetAbe an NFA andys, ..., 0k be arbitrary states irA. If =q, = ... =~=q, (:==) then

Proof: Letze (Uik:1 l;)* and consider a factorizatian=z; ...z, with z € (U'j‘:1 Iqj), vVi<i<n.
We prove thar € [g]~ by induction om. The property is true fan = 1 since it is easy to notice that
U'j;llqj C [g]~ (from property (4) of Lemma 5). Assume that the property holds for an arbitrary
and choose&, .1 € Ulj(:l lg;- It remains to prove tha ... z,zn1 € [€]~. Considetz, ;1 € Iqg for an
arbitraryt € {1,...,k}. By induction hypothesis we have that . . z, € [€]~ = [€]~,, - SinCeZ,1 €

lq and sincez; ...z ~q &, it follows thatz; ... znzn11 ~q Zh+1 (Using property (6) of Lemma 5).
Butzy 1 ~q € sincee € lg, hencez; ... znzn 1 ~q €. It follows thatz; ... znzn 1 € [€]l~. O

We now have sufficient ingredients for solving Problem 1 for the general case.

Theorem 1 LetL be an arbitrary regular language arida positive integer. There exists a constant
E_ k (effectively constructed) such that any NFA ffoof size at leasE, y has at leask mergible
states.

Proof: Let us defineE i to be

ELk =ML [(k-1)PH)+1 (20)

and prove that indeed it satisfies theorem’s requirementsAlbet an NFA forL of size at least
EL k- Applying Lemma 3, we infer thak has at least := (k—1) - P(H_) + 1 statespy, ..., pn Such
that

(1) ~p,=...=~p, ((=~),and
@) [Lp)~=-. = [Lpl~-
But among these states there are at leasatesqy, ..., gk such thateg, = ... ==, (:=~). This

follows from the fact that there exist at md&tH, ) distinct equivalences: (we applied yet again
Dirichlet’s box principle). Summing up what we found so far, we proved that the Nas at
leastk stateqys, . . ., gk which verify the following properties:

(1) Rgp= - =~ (::%) ’
(2) N = Clk(1=~) ’ and
() Lol = = L] ~

These relations allow us to apply Corollary 2, from which we infer that

Ry) CL . (21)

1

k
=

(.QLQi)[E]%(

11



But sincexq,= ... =~q,=~, We can also apply Lemma 7, and establish that

Then, by the relations (21) and (22), the following relations hold:
k k |k k k
(ULa)(Ua) (URa) < (Uta)lel=(URy) L
I1= 1= 1= 1= =

henceqy, .. .,qx are mergible by Lemma 1.0

This result completes the solution to Problem 1.

4 Conclusions and Further Work

In this paper we studied the existence of mergible states in large NFA. We have proven that given a
regular language, there is a certain size beyond which any corresponding NFA has mergible states.
Moreover, we effectively determined a parameterized constant for this size, which guarantees
arbitrarily many (given by the parameter) mergible states. During our work we mainly focussed
on proving the existence of such constants and on effectively computing them. The constants we
provided are very large, some involving imbricated Stirling numbers. Left for immediate future
work is to find smaller such constants, preferably sharp lower bounds. Last, but not the least,
it remains to apply our results in, for example, NFA minimization algorithms or in decidability

problems for NFA involving “brute-force” techniques.
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