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Determination of Q-Convex Sets by X-rays

Alain Daurat 1

LSIIT CNRS UMR 7005, Université Louis Pasteur (Strasbourg 1),
Pôle API, Boulevard Sébastien Brant, 67400 Illkirch-Graffenstaden, France

Abstract

In this paper, the problem of the determination of lattice sets from X-rays is studied.
We define the class of Q-convex sets along a set D of directions which generalizes
classical lattice convexity and we prove that for any D, the X-rays along D determine
all the convex sets if and only if it determines all the Q-convex sets along D. As a
consequence, any algorithm which reconstructs Q-convex sets from X-rays can be
used to reconstruct convex lattice sets from X-rays along directions which provide
uniqueness. This gives a constructive answer to the discrete version of Hammer’s
X-ray problem.

The aim of tomography is to reconstruct a 3D object from 2D X-ray pictures,
the grey-level of each point of the X-ray picture corresponding to the integral of
the density of the 3D object on a straight line. In many cases the reconstruction
can be done slice by slice, so it is sufficient to consider the analogue problem
in the plane: how can a 2D object be reconstructed from its 1D X-rays ?

The reconstruction from a lot of X-ray pictures has been much studied since
the beginning of 20th century and is applied intensively since the 1970s in
computerized tomography (see for example [16]).

Sometimes, we only have a few X-ray pictures (for example we only have two
pictures in Biplane Angiography [20]). In this case we must impose to the
object to be reconstructed some properties. The strongest properties we can
impose to the set are homogeneity and convexity. The homogeneity permits to
simply model the object by a subset of the plane. In 1961 Hammer posed the
following problem: how many X-ray pictures are needed to reconstruct a con-
vex set ([15]) ? This problem was solved in 1980 by Gardner and McMullen:
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a planar convex set is completely determined by four X-rays in suitable di-
rections ([12]). But the proof of this determination is not constructive. Some
algorithms which reconstruct the convex sets are described in [19], [10, the-
orem 1.2.28] but they are not completely satisfactory (see [19, Example 1,2],
[10, note 1.2]).

In fact, computability of continuous objects is much more difficult than the
one of discrete objects, so it is natural to study discretized versions of tomo-
graphic problems: the reconstructed image is a subset of the discrete plane Z2

(called lattice set), the X-rays are the numbers of points along the lines in a
given direction. Moreover this formulation is near to some problems in electron
microscopy, where the points correspond exactly to the atoms (see [21,18]).
Since the beginning of the 1990s many problems in “discrete tomography” have
been studied (for an overview see [17]): especially, Gardner-McMullen’s result
has been extended to the discrete case by Gardner-Gritzmann ([11]): lattice
sets which are the intersection between a convex polygon and the discrete
plane (called convex lattice sets) are completely determined by four X-rays in
suitable directions, or seven X-rays in any directions. But no polynomial-time
algorithm which reconstructs the convex lattice set in this case has been found
([14]). Nevertheless in [1,2,5], polynomial-time algorithms permit to recon-
struct lattice sets which satisfy properties which are linked but not equivalent
to lattice convexity. In particular in [5], the introduced class, Q-convexity is a
property which depends on the set of the directions of the X-rays.

In this paper we extend Gardner-Gritzmann’s uniqueness result to the class of
Q-convex sets: precisely in a first section of this paper we precise the original
uniqueness result by giving a characterization of all the sets of directions which
provide uniqueness for the convex lattice sets. In a second part we extend
the results of Gardner and Gritzmann to Q-convex sets, and finally we show
how this result permits to the polynomial-time algorithm of [5] to reconstruct
lattice convex sets from X-rays.

1 Preliminaries

Notations

The symbols N,Z,Fm,Q,R,C will denote respectively the sets of non-negative
integers, integers, integers modulom, rational numbers, real numbers, complex
numbers. Thus R2,Z2 denote respectively the euclidean plane and the discrete
plane. If E is a finite set, we denote by |E| the cardinality of E. If x is a real
number, ⌊x⌋ designs the greatest integer smaller or equal to x.
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Lattice direction

A direction is an equivalence class for the relation of parallelism on the straight
lines of the plane. It can be given by an equation λx + µy = const. or by a
directing vector (−µ, λ) or by the slope −λ

µ
∈ R∪{∞}. If λ and µ are integers

then, the direction is called a lattice direction, and we can suppose that λ and
µ are coprime. In this paper we will identify a direction p with its equation
p(x, y) = λx+ µy or with its slope p = −λ

µ
.

If p and q are two lattice directions, we denote by 〈i, j〉p,q (or 〈i, j〉 if there is
no ambiguity) the point M which satisfies p(M) = i and q(M) = j. It must be
noticed that the point 〈i, j〉p,q can be outside Z2, even if i and j are integers.

X-rays

We recall that a lattice set is a non-empty finite subset of Z2. The X-ray of a
lattice set F in a lattice direction p is the function XpF (i) : Z → N defined
by: XpF (i) = |{N ∈ F : p(N) = i}|.

Convexity

A lattice set F is line-convex along a direction p if the intersection of any
line of direction p and F is the set of the points with integer coordinates of a
straight line segment. A lattice set is convex if it is the intersection between
Z2 and its convex hull.

Determination of a class of lattice sets by X-rays in the directions of D

We suppose that E is a class of subsets of Z2. The set D of directions determines
the class E if for any sets E1 and E2 of E we have:

(∀p ∈ D XpE1 = XpE2) =⇒ E1 = E2.

Cross ratio

A linear transformation of R2 is a map f : R2 → R2 which can be written
f(x, y) = (ax+by, cx+dy) with a, b, c, d ∈ R. If a, b, c, d are rational, then f is
said to be rational. A projective transformation is the trace on the directions
of a linear transformation of R2.

Given three distinct directions p1, p2, p3, there is always a projective transfor-
mation φ such that the images by φ of these three directions have the slopes
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∞, 0, 1. If p4 is a fourth direction, then φ(p4) is called the cross ratio of the

directions p1, p2, p3, p4 and is denoted
[

p1 p2
p3 p4

]

.

If we represent the directions by their slopes we have:

[

p1 p2
p3 p4

]

=
p3 − p1

p3 − p2
:
p4 − p1

p4 − p2
=

(p3 − p1)(p4 − p2)

(p3 − p2)(p4 − p1)

with evident conventions when there is ∞.

The quadruplet (p1, p2, p3, p4) of four distinct directions is said to be in order
if the sequence of line-angles (p1, p2), (p1, p3), (p1, p4) ∈]0, π[ is increasing or

decreasing. This property is equivalent with
[

p1 p2
p3 p4

]

> 1 and is preserved after
a bijective projective transformation.

For more details about cross-ratios see [4, Paragraph 6.1].

Polygons

A convex polygon is the convex hull of a finite set of points of R2. If D is
a set of directions, a D-polygon P is a convex polygon such that any line of
direction in D contains zero or two vertices of P . An affinely regular polygon
is the non-singular affine image of a regular polygon.

2 Determination of convex lattice sets

In this section we shall summarize the results of [11] by the following theorem:

Theorem 1. Let D be a finite set of lattice directions. The seven following
statements are equivalent:

(1) The set D does not determine the class of the lattice convex sets.
(2) There exists a D-polygon whose vertices are in Z2.
(3) There exists a D-polygon whose vertices are in Q2.
(4) There exists a D-polygon.
(5) There exists an affinely regular D-polygon.
(6) The cross-ratio of any four directions in D, arranged in order, is in

{4
3
, 3

2
, 2, 3, 4}.

(7) There exists a bijective rational linear transformation φ of R2 such that
the images of the directions of D by φ have slopes in {∞, 0, 1, 3

2
, 2, 3}.

Proof. • (1) ⇔ (2) is Theorem 5.5 of [11].
• (2) ⇔ (3) ⇒ (4) clear.
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• (4) ⇒ (5) is proved in [12, Lemmas 5,6] or [10, p34-36]. The implication
(9) ⇒ (5) of Theorem 12 will be a generalization of this implication.

• (5) ⇒ (6) is Theorem 4.5 of [11].
• (6) ⇒ (7): let p1, p2, p3 be three consecutive directions of D, which means

that for any other d ∈ D the sequence (p1, p2, p3, d) is in order (i.e.
[

p1 p2

p3 d

]

>

1).
There exists a bijective linear transformation φ1 such that φ1(p1) =

∞, φ1(p2) = 0, φ1(p3) = 1. The directions p1, p2, p3 are lattice directions,
so φ1 is a rational linear transformation. From the statement (6) it follows
that: {∞, 0, 1} ⊆ φ1(D) ⊆ {∞, 0, 1, 4

3
, 3

2
, 2, 3, 4}.

We have:
·
[

∞ 0
4
3

3
2

]

= 9
8

so {4
3
, 3

2
} 6⊆ φ1(D).

·
[

∞ 0
4
3

3

]

= 9
4

so {4
3
, 3} 6⊆ φ1(D).

·
[

∞ 0
3
2

4

]

= 8
3

so {3
2
, 4} 6⊆ φ1(D).

·
[

0 1
3 4

]

= 9
8

so {3, 4} 6⊆ φ1(D).

·
[

∞ 1
4
3

4

]

= 9 so {4
3
, 4} 6⊆ φ1(D).

So φ1(D) is included in one of the following sets:

F1 = {∞, 0, 1,
3

2
, 2, 3}, F2 = {∞, 0, 1,

4

3
, 2}, F3 = {∞, 0, 1, 2, 4}

· If φ1(D) ⊆ F1, we take φ = φ1.
· If φ1(D) ⊆ F2, as φ2(F2) = {∞, 0, 3

2
, 2, 3} ⊆ F1 with φ2(x, y) = (x, 3y

2
), we

take φ = φ2 ◦ φ1.
· If φ1(D) ⊆ F3, as φ3(F3) = {3

2
, 0,∞, 3, 2} ⊆ F1 with φ3(x, y) = (−2x +

2y, 3y), we take φ = φ3 ◦ φ1.
• (7) ⇒ (3) The image by φ−1 of the polygon of Figure 1 is a D-polygon.

Fig. 1. A D-polygon whose vertices are in Z2 with D = {∞, 0, 1, 3
2 , 2, 3}.

Remark 2. If D ≥ 7 then statement (7) is impossible, so D determines the
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lattice convex sets: we find again Theorem 5.7 (iii) of [11].

Remark 3. The implication (6) ⇒ (2), restricted to the sets of four directions,
has been enunciated in Proposition 4.8 of [3].

Corollary 4. Let D be any set of lattice directions. Then D determines the
lattice convex sets if and only if there is a subset of D of four directions
determining the lattice convex sets.

3 Determination of Q-convex sets by X-rays

3.1 Definitions

Q-convexity along two directions

For this definition we must fix two lattice directions p and q.

For any M ∈ Z2, we can define the four quadrants around M along the
directions p and q by:

R
pq
0 (M) = {N ∈ Z2 | p(N) ≤ p(M) and q(N) ≤ q(M)}

R
pq
1 (M) = {N ∈ Z2 | p(N) ≥ p(M) and q(N) ≤ q(M)}

R
pq
2 (M) = {N ∈ Z2 | p(N) ≥ p(M) and q(N) ≥ q(M)}

R
pq
3 (M) = {N ∈ Z2 | p(N) ≤ p(M) and q(N) ≥ q(M)}

(see Figure 2).

p = p(M)

M

R
pq

0
(M) R

pq

1
(M)

R
pq

2
(M)

R
pq

3
(M)

q = q(M)

Fig. 2. The four quadrants along p = x and q = y.

Remark 5. For any point M , the function (i, p, q) 7→ R
pq
i (M) applied to the

triplets (0, p, q), (1,−p, q), (2,−p,−q), (3, p,−q), (0, q, p), (1,−q, p), (2,−q,−p),
(3, q,−p) gives the same quadrant. In the following we will identify these
triplets.

Definition 6. A lattice set E is Q-convex (quadrant-convex) along D = {p, q}
if Rpq

k (M) ∩E 6= ∅ for all k ∈ {0, 1, 2, 3} implies M ∈ E.
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(a) (b)

M

R3(M)

R1(M)R0(M)

R2(M)

Fig. 3. a) A lattice set which is line-convex along x and y, but not Q-convex along
{x, y}. b) A lattice set which is Q-convex along {x, y}.

Every Q-convex set along D is line-convex along the directions of D, but line-
convexity is not a sufficient property to be Q-convex (see Figure 3). Every
lattice convex set is Q-convex along any pair of directions, so Q-convexity is
an intermediate property between line-convexity and usual convexity.

The intersection of two Q-convex sets along D is also Q-convex along D so we
can define the Q-convex hull along {p, q} of a set E, denoted QCONVpq(E).

Extension to 3 directions and more

If D is any finite set of directions, then Q-convexity along D can be defined
as follows:

Definition 7. A lattice set E is Q-convex along D if it is Q-convex along any
pair of directions included in D. (see Figure 4)

D

Fig. 4. A Q-convex set along D = {x, y, x + y}

The ASP are a generalization of the quadrants to the sets of more than two
directions:
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Definition 8. An ASP (almost-semi-plane) along D is a quadrant Π =
R

pq
i (M) with p, q ∈ D such that for any direction r ∈ D there exists a semi-line

of direction r with starting point M which is contained in Π (see Figure 5).

M M

M

M M

M

R
pq

1
(M)

R
pq

3
(M)

R
qr

0
(M)

R
qr

2
(M) R

rp

2
(M)

R
rp

0
(M)

D

Fig. 5. The six ASP along D = {p, q, r}, p = x, q = y, r = x + y. (The ASP are the
grey regions.)

An ASP is a maximum element of the set {Rpq
i (M) : p, q ∈ D} ordered by

inclusion.

The property for Rpq
i (M) to be an ASP does not depend on M . We denote

by AD the set of (i, p, q) such that Rpq
i is an ASP. Two ASP are said to

be consecutive if their union is a semi-plane. The associated graph is cyclic,
more precisely: suppose we have ordered the directions of D by decreasing
angle with the y-axis: D = {p0, p2, . . . , pn−1} where p0 = a0x + b0y with
a0 > 0 or (a0, b0) = (0,−1), pi = aix + biy with bi > 0 for i > 0 and
∞ ≥ bi

ai
>

bi+1

ai+1
> −∞. The set AD and its associated cyclic graph are the

following:

(3, p0, p1) − (2, p1, p2) − · · ·− (2, pn−2, pn−1) − (2, pn−1, p0)

| |

(0, pn−1, p0) − (0, pn−2, pn−1) − · · ·− (0, p1, p2) − (1, p0, p1)

(see Figure 5).

Remark 9. If E is a Q-convex set along D and M 6∈ E, then, in many cases,
there is an ASP along M which does not contain any point of E, but it is not
true in the general case (see Figure 6). The sets which satisfy this property
are said to be strongly Q-convex and are used in [6].

D-sequences

The D-sequences generalize the D-polygons.
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D

M

Fig. 6. A Q-convex set E along D = {x + 3y, x, 2x + 3y}, but around the point M

there is no ASP which is disjoint with E.

Definition 10. A D-sequence is a sequence (Ak)k∈Fm
of m points of R2 such

that m is even and for any p in D there is an s ∈ Fm such that

p(As−1) < p(As−2) < · · · < p(As−m
2
)

q q q

p(As) < p(As+1) < · · · < p(As+ m
2
−1)

We can see that the sequences of the vertices of a D-polygon are D-sequences,
but D-sequences are not always vertices of D-polygons. (see Figure 7)

D

A0

A1

A2A3

A4

A5

A6

A7

A9

A10

A8

A11

Fig. 7. A D-sequence with D = {x, y}. With the notations of the definition, for
p = x we take s = 6, and for p = y, s = 9.

3.2 Results

Now we can give the main result of this paper:

Theorem 11. Let D be a finite set of lattice directions. The set D determines
the class of the Q-convex sets along D if and only if it determines the class of
the lattice convex sets.

This theorem is a corollary of an extension of Theorem 1:
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Theorem 12. Let D be a set of lattice directions such that |D| ≥ 2. Then the
seven statements of Theorem 1 are equivalent to the two following ones:

(8) The set D does not determine the class of the Q-convex sets along D.
(9) There exists a D-sequence.

The equivalence (1) ⇔ (8) is exactly Theorem 11.

1 4 3 3 4 5 7 6 6 6 4 4 5 4 4 2 1

3

2

2

3

8

8

8

8

6

9

6

4

2

1

1

1
1
1
1
1

1

1

1

1
1
1
1
1
1
1

1
1
1
1
1

22 2 2 44 4
4

4
3
3
33

3
3
4
4
4
4 4

2
2
2

2
2

2
2
2
3
2
3
2
2
3

3
4
3
3
2

2

0

Xx

Xy

X2x+y

Xx−2y

D

Fig. 8. The set of directions D = {x, y, 2x+y, x−2y} does not satisfy the equivalent
statements of Theorem 12 because the cross-ratio of these directions arranged in
order is 5

4 6∈ {4
3 , 3

2 , 2, 3, 4}. Therefore the set of the figure is the only Q-convex set
along D which has the given X-rays

We shall prove (1) ⇒ (8) ⇒ (9) ⇒ (5). The implication (1) ⇒ (8) is clear
since every lattice convex set is Q-convex along D.

Subsections 3.3 and 3.4 are devoted to the proofs of implications (8) ⇒ (9)
and (9) ⇒ (5) respectively.

3.3 Construction of a D-sequence

In this subsection we prove the implication (8) ⇒ (9). So we suppose that we
have a set D of lattice directions which satisfies the statement (8) of Theorem
12. By hypothesis there exist two sets F+ and F− which are Q-convex along
D and which have the same X-rays in D. We define:

E+ = F+ \ F−, E− = F− \ F+.

We have to construct a D-sequence from the two sets E+ and E−. The points of
the D-sequence will be gravity centers of equivalence classes for a well-chosen
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equivalence relation on E+ ∪ E− (see Figure 9).

F+

F−

Fig. 9. The construction of a D-sequence from two Q-convex sets which have the
same X-rays. (D = {x, y, x + y, x − y})

The first lemma will be used in whole Subsection 3.3.

Lemma 13. There does not exist any point M ∈ E− such that Rpq
i (M)∩E− =

{M} and Rpq
(i+2) mod 4(M) ∩ E+ = ∅. Symmetrically there does not exist any

point M ∈ E+ such that Rpq
i (M)∩E+ = {M} and Rpq

(i+2) mod 4(M)∩E− = ∅.

Proof. We suppose that a point M ∈ E− and integer i satisfy Rpq
i (M)∩E− =

{M} and R
pq
(i+2) mod 4(M) ∩ E+ = ∅. By Remark 5 we can suppose, after

replacing p by −p and/or q by −q if necessary, that i = 0. Let

n+
0 = |{N ∈ E+ : p(N) < p(M) and q(N) < q(M)}|

n−
2 = |{N ∈ E− : p(N) > p(M) and q(N) > q(M)}|

n+
1 = |{N ∈ E+ : p(N) > p(M) and q(N) < q(M)}|

n−
1 = |{N ∈ E− : p(N) > p(M) and q(N) < q(M)}|

u = XpE
+(p(M)) = XpE

−(p(M))

v = XqE
+(q(M)) = XqE

−(q(M)).

11



We have XqE
+ = XqE

− so:

n+
0 + u+ n+

1 =
∑

k<q(M)

XqE
+(k) =

∑

k<q(M)

XqE
−(k) = n−

1 (1)

and similarly by XpE
+ = XpE

−

n−
1 + (v − 1) + n−

2 =
∑

k>p(M)

XpE
−(k) =

∑

k>p(M)

XpE
+(k) = n+

1 (2)

By summing (1) and (2) we obtain

n+
0 + n−

2 + u+ v − 1 = 0. (3)

The point M is in E−, so u ≥ 1 and v ≥ 1, which contradicts (3).

Let p ∈ D. We have XpE
− = XpE

+. So for any point M ∈ E+, there exists
a point N ∈ E− such that p(M) = p(N). We denote one of these points by
Mp. Similarly for any point M ∈ E− there is a point Mp ∈ E+ such that
p(Mp) = p(M).

Lemma 14. For any point M ∈ E+, there exists one and only one (i, p, q) ∈
AD such that Rpq

i (M)∩E− = ∅. Symmetrically, for any M ∈ E−, there exists
one and only one (i, p, q) ∈ AD such that Rpq

i (M) ∩ E+ = ∅.

Proof. Suppose that M is a point of E+. For any pair of directions p and q, if
for all i, Rpq

i (M) contains one point of E−, then by Q-convexity of F− we have
M ∈ F− which contradicts M ∈ E+. So for any p, q ∈ D, there exists i such
that Rpq

i (M) ∩ E− = ∅. Consider (i, p, q) which maximizes Rpq
i (M) (for the

inclusion) among all the quadrants Rpq
i (M) which satisfy Rpq

i (M) ∩ E− = ∅.
By Remark 5 we can suppose that i = 0.

We make the hypothesis (0, p, q) 6∈ AD. Thus there is a direction r such that
the line r = r(M) has only the point M in the quadrant Rpq

i (M), and so
r = αp + βq with αβ > 0. By replacing r by −r if necessary, we can suppose
α > 0, β > 0.

Let us suppose that p(Mr) < p(M). We shall show that Rqr
0 (M) = R

pq
0 (M) ∪

R
pr
1 (M) contains no point of E−, which will be in contradiction with the

maximality of Rpq
0 (M). Indeed, no point of E− can be in R

pr
1 (M) because

otherwise for such a point N we would have M ∈ QCONVrp(Mr,Mp, N) (see
Figure 10). So the hypothesis (0, p, q) 6∈ AD is inconsistent with p(Mr) <

p(M).
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Mr

Mp

M Mq

p = const.

q = const.

r = const.N
R

pq

0
(M)

R
pr

1
(M)

E+

E−

Fig. 10. Why is there an ASP around M which contains no point of E− ?

If p(Mr) > p(M) then r(Mr) = r(M) and r = αp + βq with α, β > 0 imply
that q(Mr) < q(M), so this case is reduced to the previous one by reversing
p and q. Therefore we have proved the existence of (i, p, q) ∈ AD such that
R

pq
i (M) ∩ E− = ∅.

Now we have to prove the uniqueness of such triplet (i, p, q) ∈ AD. Suppose

that there is another (i′, p′, q′) ∈ AD which also satisfies Rp′q′

i′ (M) ∩ E− = ∅.

Then the regionRpq
i (M)∪Rp′q′

i′ (M) contains one line r = r(M) with r ∈ D. But
this line contains the point M ∈ E+ and no point of E− which is impossible
because XrE

+ = XrE
−.

The case M ∈ E− can be proved in symmetric way.

By this lemma, we can partition E+ and E−:

E+ =
⋃

(i,p,q)∈AD

E+
i,p,q , E− =

⋃

(i,p,q)∈AD

E−
i,p,q

where

E+
i,p,q = {M ∈ E+ : Rpq

i (M)∩E− = ∅}, E−
i,p,q = {M ∈ E− : Rpq

i (M)∩E+ = ∅}.

Now we define a relation on the points of each E+
i,p,q:

Definition 15. Two points A,B ∈ E+
i,p,q are equivalent (A ∼ B) if there

exists N ∈ Q2 such that A,B ∈ R
pq
i (N) and R

pq
i (N) ∩ E− = ∅. A similar

equivalence (also denoted ∼) is defined on E−
i,p,q.

In fact, to test if two points A and B are equivalent, it is enough to check for
only one point N if Rpq

i (N) ∩ E− = ∅. For example, if i = 0 then we take
N = 〈max(p(A), p(B)),max(q(A), q(B))〉.

Lemma 16. The relation ∼ is an equivalence relation on E+ ∪E−. Moreover
for any ∼-equivalence class C, there exists (i, p, q) ∈ AD, N ∈ Q2 such that
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C = (E+ ∪ E−) ∩ Rpq
i (N).

Proof. We only have to prove the transitivity of the relation ∼. Let A,B,C ∈
E+

0,p,q be three points such that A ∼ B and B ∼ C.

LetN1 = 〈max(p(A), p(B)),max(q(A), q(B))〉p,q,N2 = 〈max(p(B), p(C)),max(q(B), q(C))〉p,q

and N = 〈max(p(N1), p(N2)),max(q(N1), q(N2))〉p,q. We have Rpq
0 (N1)∩E

− =
R

pq
0 (N2) ∩ E

− = ∅ and we must prove that Rpq
0 (N) ∩ E− = ∅.

If Rpq
0 (N1) ⊆ R

pq
0 (N2) or Rpq

0 (N1) ⊇ R
pq
0 (N2) we have N ∈ {N1, N2} and so

R
pq
0 (N) ∩ E− = ∅.

So we can suppose p(N1) < p(N2) and q(N1) > q(N2) (after exchanging A and
C if necessary).

Thus max(p(A), p(B)) < max(p(B), p(C)) so p(B) < max(p(B), p(C)) i.e.
p(B) < p(C), and then:

p(A) ≤ p(B) = p(N1) < p(C) = p(N2)

or

p(B) ≤ p(A) = p(N1) < p(C) = p(N2).

Similarly:

q(A) = q(N1) > q(B) = q(N2) ≥ q(C)

or

q(A) = q(N1) > q(C) = q(N2) ≥ q(B).

For any of the four combinations of these cases, we have A ∈ R
pq
3 (N1) ∩

R
pq
0 (N1), B ∈ R

pq
0 (〈p(N1), q(N2)〉), C ∈ R

pq
1 (N2) ∩ R

pq
0 (N2).

Now we suppose that E− ∩ Rpq
0 (N) is non-empty. Let M be a point of E− ∩

R
pq
0 (N) which minimizes p(M) + q(M).

We have p(N1) < p(M) ≤ p(N2) and q(N1) > q(M) ≥ q(N2), so B ∈
R

pq
0 (〈p(N1), q(N2)〉) ⊆ R

pq
0 (M) and C ∈ R

pq
1 (N2) ⊆ R

pq
1 (M). So if q(Mp) ≥

q(M) then M ∈ QCONVpq(B,C,Mp), and M ∈ F+ which is impossible, and
so q(Mp) < q(M). Similarly we have p(Mq) < p(M). Thus Rpq

2 (M)∩E+ = ∅.
By minimality of p(M) + q(M) we also have Rpq

0 (M) ∩ E− = {M}. Finally
R

pq
2 (M) ∩ E+ = ∅ and R

pq
0 (M) ∩ E− = {M} which is impossible by Lemma

13 so E− ∩ Rpq
0 (N) = ∅ and A ∼ C. (see Figure 11)

Now we consider an equivalence class D ⊆ E+
0,p,q. Let A be a point of D which

maximizes p, and B be a point of D which maximizes q. We have A ∼ B so
R

pq
0 (N)∩E− = ∅ where N = 〈p(A), q(B)〉. By definition of A and B we have
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A

C

NN1

N2
B

Mp

Mq M

p = const.

E−

E+
q = const.

region which contains
no point of E

− by
hypothesis.

Fig. 11. Why do A ∼ B and B ∼ C imply A ∼ C ?

D ⊆ R
pq
0 (N), and by definition of ∼, if M ∈ E+ ∩ R

pq
0 (N) then M ∼ A, so

D = R
pq
0 (N) ∩ (E+ ∪E−).

The following lemma shows that it is not necessary to suppose that Rpq
i (N) is

an ASP, in the definition of the relation ∼.

Lemma 17. Let A,B be two points of E+. If there exists a quadrant Rpq
i (N)

with N ∈ Q2 such that Rpq
i (N) ∩E− = ∅ then A ∼ B.

Proof. Let Rpq
i (N) be a quadrant which satisfies the conditions of Lemma 17

and which is maximum for the following order:

Rrs
i (N) ≺ Rr′s′

j (N ′) iff Rrs
i (O) ⊆ Rr′s′

j (O) (4)

where O is the point (0, 0) (this order neither depends on N nor on N ′).

We can suppose that i = 0 and N = 〈max(p(A), p(B)),max(q(A), q(B))〉.

Suppose that Rpq
0 (N) is not an ASP, so there exists a direction r such that

r = αp+βq with αβ > 0. We can suppose (like in Lemma 14) that α > 0, β >
0.

• If A = N then we have B ∈ R
pq
0 (A) ⊆ R

pr
0 (A)∩Rqr

0 (A) so Rpr
0 (B) ⊆ R

pr
0 (A)

and R
qr
0 (B) ⊆ R

qr
0 (A). If p(Ar) < p(A) then R

qr
0 (A) ∩ E− = ∅, and if

p(Ar) > p(A) then R
pq
0 (A) ∩ E− = ∅. So R

pr
0 (A) or Rqr

0 (A) verifies the
conditions of Lemma 17 and we have R

pr
0 (A) 6≺ R

pq
0 (A) and R

qr
0 (A) 6≺

R
pq
0 (A), so there is always a contradiction with the maximality of Rpq

0 (A).
• If B = N then we can make the same proof as previously by exchanging A

and B.
• The remaining cases are N = 〈p(A), q(B)〉 and N = 〈p(B), q(A)〉. Suppose

the first case:
Then we have (p(Ar) > p(A) and p(Br) > p(B)) or (p(Ar) < p(A) and

p(Br) < p(B)) because otherwise:
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· If r(B) ≤ r(A) then A ∈ QCONVpr(Ar, Ap, Br) (see Figure 12) which is
impossible.

p = const.

q = const.

r = const.

A

B

Br

Ar

Ap

N

E+

E−

Fig. 12. Case r(B) ≤ r(A)

· If r(B) ≥ r(A) then B ∈ QCONVqr(Br, Bq, Ar) which is impossible.
We can deduce that (Rpr

0 (A)∪Rpr
0 (B))∩E− = ∅ or (Rqr

0 (A)∪Rqr
0 (B))∩E− =

∅. Suppose we are in the first case. LetN ′ = 〈max(p(A), p(B)),max(r(A), r(B))〉p,r,
we have Rpr

0 (N ′) ⊆ R
pr
0 (A)∪Rpq

0 (N)∪Rpr
0 (B) and so Rpr

0 (N ′)∩E− = ∅ in
contradiction with the maximality of Rpq

0 (N).

Lemma 18. Let A,B be two points of E+
i,p,q such that A ∼ B. Then for any

direction r ∈ D and any point M ∈ E+ such that r(A) ≤ r(M) ≤ r(B), we
have M ∈ R

pq
i (Mr) and M ∼ A ∼ B.

Proof. We suppose i = 0. Let N = 〈max(p(A), p(B)),max(q(A), q(B))〉p,q. If
M ∈ R

pq
0 (N) then the conclusion of the lemma is clear. So we can suppose

that p(M) > max(p(A), p(B)) or q(M) > max(q(A), q(B)).

Suppose that we are in the case p(M) > max(p(A), p(B)). If p(Mr) ≤ p(M)
then Mr ∈ QCONVpr(M,A,B). So p(Mr) > p(M), and since r = αp + βq

with αβ ≤ 0 we also have q(Mr) > q(M) and so M ∈ R
pq
0 (Mr). Moreover

we have q(M) ≥ min(q(A), q(B)), because otherwise we cannot have r(A) ≤
r(M) ≤ r(B), so A or B is in Rpq

0 (M) and so M ∼ A ∼ B.

Similarly if q(M) > max(q(A), q(B)) then q(Mr) > q(M), p(Mr) > p(M) and
M ∼ A ∼ B.

Lemma 19. Let r ∈ D. If A ∼ B then Ar ∼ Br.

Proof. Let A,B, r satisfy the conditions of the lemma. We denote A′ = Ar, B
′ =

Br. We can suppose that A,B ∈ E+
0,p,q with (0, p, q) ∈ AD. Because Rpq

0 is an
ASP, we have r = αp + βq with αβ ≤ 0. We can also suppose that α ≤ 0
and β ≥ 0. Let N = 〈max(p(A), p(B)),max(q(A), q(B))〉. As A ∼ B we have
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R
pq
0 (N) ∩E− = ∅. By exchanging A and B if necessary, we can suppose that

r(A′) = r(A) ≤ r(N) ≤ r(B) = r(B′).

There exist i′ and j′ such that Rpq
i′ (A′)∩E+ = ∅ and Rpq

j′ (B
′)∩E+ = ∅, thus

i′, j′ cannot be equal to zero because A ∈ R
pq
0 (A′) and B ∈ R

pq
0 (B′).

There are 9 other remaining cases:

• i′ = 1, j′ = 1. So we have Rpq
1 (A′) ∩ E+ = ∅. For any M in R

pr
1 (A′), we

have A′ ∈ QCONVpr(A,A
′
p,M) and so M 6∈ E+ and Rpr

1 (A′)∩E+ = ∅. In
the same way Rpr

1 (B′) ∩E+ = ∅.
· If p(B′) ≤ p(A′) then R

pr
1 (A′) ⊆ R

pr
1 (B′) and so by Lemma 17 we have

A′ ∼ B′.
· Suppose now p(B′) ≥ p(A′) . Let N ′ = 〈p(A′), r(B′)〉p,r. We suppose that
R

pr
1 (N ′) ∩ E+ 6= ∅. Let M be a point of Rpr

1 (N ′) ∩ E+ which maximizes
p(M) − r(M). By Lemma 18 we have p(Mr) ≥ p(M). Moreover r(Mp) ≤
r(M) because otherwise M ∈ QCONVpr(A,Mp,Mr). So Rpr

3 (M) ∩ E− 6=
∅, but by the maximality of M we have Rpr

1 (M) ∩ E+ = {M} which is
impossible by Lemma 13, so Rpr

1 (N ′) ∩ E+ = ∅, and then by Lemma 17,
A′ ∼ B′ (see figure13).

p = const.

q = const.

A

B

A′

B′

N′

N

E+

E−

Mp

Mr

M

Fig. 13. Case i′ = 1, j′ = 1 and p(B′) ≥ p(A′).

• i′ = 1, j′ = 2. In this case we still have Rpr
1 (A′) ∩ E+ = ∅.

· If p(B′) ≤ p(A′) then by Lemma 18, p(A′
pr) ≥ p(A′

p) and so A′
p ∈

QCONVpr(A
′, B′, A′

pr) which is impossible.
· If p(B′) ≥ p(A′), in the same way, we have B′

p ∈ QCONVpr(A
′, B′, B′

pr)
which is impossible.

• i′ = 1, j′ = 3. We have Rpr
1 (A′) ∩ E+ = ∅ and R

qr
2 (B′) ∩ E+ = ∅. By

Lemma 18, we have p(B′
pr) ≥ p(B′

p) and p(A′
pr) ≥ p(A′

p).
· If p(A′) ≤ p(B′) then B′

p ∈ QCONVpr(B
′
pr, A

′, B′) which is impossible.
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p = const.

q = const.

A

B

A′

B′

r = const.

B′

p

B′

pr

Fig. 14. Case i′ = 1, j′ = 3 and p(A′) ≤ p(B′)

· If p(A′) ≥ p(B′) then A′
p ∈ QCONVpr(A

′
pr, A

′, B′) which is impossible.
• i′ = 2, j′ = 1. We have Rpr

1 (B′) ∩ E+ = ∅.
· If p(B′) ≥ p(A′) then B′ ∈ R

pq
2 (A′), so A′ ∼ B′.

· If p(B′) ≤ p(A′) then A′ ∈ R
pr
1 (B′), so by lemma 17, A′ ∼ B′.

• i′ = 2, j′ = 2.
· If p(A′) ≤ p(B′), because r(A′) ≤ r(B′) we have q(A′) ≤ q(B′). And so
B′ ∈ R

pq
2 (A′) therefore A′ ∼ B′.

· If p(A′) ≥ p(B′) and q(A′) ≥ q(B′) then A′ ∈ R
pq
2 (B′), and A′ ∼ B′.

· We suppose the remaining case: p(A′) ≥ p(B′) and q(A′) ≤ q(B′). We
use the same argument as for the case i′ = 1, j′ = 1. Precisely, let
N ′ = 〈p(B′), q(A′)〉p,q and we suppose that Rpq

2 (N ′) ∩ E+ 6= ∅. Let M
be a point of Rpq

2 (N ′) ∩ E+ which maximizes p(M) + q(M). By lemma
18 p(Mr) ≥ p(M). We have p(Mq) ≥ p(M) because otherwise M ∈
QCONVqr(Mr,Mq, A

′), and q(Mp) ≥ p(M) because otherwiseM ∈ QCONVpr(Mr,Mp, B
′).

So Rpq
0 (M) ∩E− = ∅, and by maximality of M we have Rpq

2 (M) ∩E+ =
{M}, but by lemma 13, this situation is impossible, so Rpq

2 (N ′)∩E+ = ∅

and A′ ∼ B′.
• i′ = 2, j′ = 3. It is similar to the case i′ = 1, j′ = 2
• i′ = 3, j′ = 1. We have Rqr

2 (A′) ∩E+ = ∅ and Rpr
1 (B′) ∩ E+ = ∅.

· If p(A′) ≥ p(B′) then A′ ∈ R
pr
1 (B′), so A′ ∼ B′.

· If p(A′) ≤ p(B′) then B′ ∈ R
qr
2 (A′), so A′ ∼ B′.

• i′ = 3, j′ = 2. It is similar to the case i′ = 2, j′ = 1.
• i′ = 3, j′ = 3. It is similar to the case i′ = 1, j′ = 1.

For (i, p, q) ∈ AD, we define C+
i,p,q (resp C−

i,p,q) as the set of equivalence classes
for the relation ∼ on E+

i,p,q (resp E−
i,p,q) and Ci,p,q as C+

i,p,q ∪ C−
i,p,q. So the sets

18



of all the equivalence classes on E+, E−, E+ ∪E− are:

C+ =
⋃

(i,p,q)∈AD

(C+
i,p,q), C− =

⋃

(i,p,q)∈AD

(C−
i,p,q), C = C+∪C− =

⋃

(i,p,q)∈AD

(Ci,p,q).

The previous lemma shows that for every class C ∈ C+ and any r ∈ D there
exists another class, denoted (C)r ∈ C− such that XrC = Xr((C)r). The
application C 7→ (C)r is a bijection from C+ onto C−, its inverse (also denoted
C 7→ (C)r) is defined in the same way. In particular |C| is even.

Now we give a graph-structure to the set C. If C1, C2 ∈ C then we say that
C1 <p C2 if for any M1 ∈ C1,M2 ∈ C2 we have p(M1) < p(M2). We also define
the relation >p by C1 >p C2 ⇐⇒ C2 <p C1.

Lemma 20. For any (i, p, q) ∈ AD the class Ci,p,q is non-empty.

Proof. We can suppose i = 0. The class of the point M of E+ ∪ E− which
minimizes p(M) + q(M) is in C0,p,q.

Lemma 21. For any (i, p, q) ∈ AD and r ∈ D the relation <r is a total strict
order on Ci,p,q = C+

i,p,q ∪ C−
i,p,q. Moreover the graph associated to (Ci,p,q, <r) is a

chain which does not depend on r.

Proof. We suppose i = 0. Let C1, C2 ∈ C0,p,q with C1 6= C2. By Lemma 16
there exist N1, N2 such that C1 = (E+ ∪ E−) ∩ R

pq
0 (N1) and C2 = (E+ ∪

E−)∩Rpq
0 (N1). So if p(N1) < p(N2) then q(N2) > q(N1) and so C1 <p C2 and

C1 >q C2. Otherwise C1 >p C2 and C2 <q C1. Any direction r ∈ D \ {p, q}
can be written αp+ βq with αβ < 0 so we have C1 <r C2 or C1 >r C2.

So for any r ∈ D, we have C1 <r C2 or C2 <r C1, thus <r is a total order.
Moreover we have for any r:

∀C1, C2 ∈ C0,p,q C1 <p C2 ⇐⇒ C2 <q C1 ⇐⇒ C1 <r C2

or

∀C1, C2 ∈ C0,p,q C1 <p C2 ⇐⇒ C2 <q C1 ⇐⇒ C2 <r C1

So the graph-relation C1 6= C2 and 6 ∃C (C1 <r C <r C2 or C2 <r< C <r C1)
does not depend on r.

Lemma 22. Let r be any direction of D and C1, C2 ∈ C. Then C1 <r C2 or
C2 <r C1 or C1 = C2 or (C1)r = C2.

Proof. Let C1, C2 ∈ C+ such that C1 6= C2 andM ∈ C1, N ∈ C2. By Lemma 18
we have r(N) 6∈ [minP∈C1 r(P ),maxP∈C1 r(P )] and r(M) 6∈ [minP∈C2 r(P ),maxP∈C2 r(P )],
so C1 <r C2 or C2 <r C1.
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By considering (C1)r or (C2)r the cases C1 ∈ C− or C2 ∈ C− are reduced to
the previous one.

Definition 23. Two distinct classes C1, C2 ∈ C are said to be consecutive
(denoted C1CONSC2) if one of the following statements is true:

• C1, C2 ∈ Ci,p,q and 6 ∃C ∈ Ci,p,q (C1 <p C <p C2 or C2 <p< C <p C1),

• C1 ∈ Ci,p,q, C2 ∈ Cj,p,r, C1 = min <pCi,p,q, C2 = min <pCj,p,r, R
pq
i (O) ∪ R

pr
j (O) =

{M : p(M) ≤ 0},

• C1 ∈ Ci,p,q, C2 ∈ Cj,p,r, C1 = max <pCi,p,q, C2 = max <pCj,p,r, R
pq
i (O) ∪ R

pr
j (O) =

{M : p(M) ≥ 0}.

Lemma 24. Let C1 and C2 be two consecutive classes by the following prop-
erty:

C1 ∈ Ci,p,q, C2 ∈ Cj,p,r, C1 = min <p
Ci,p,q, C2 = min <p

Cj,p,r, R
pq
i (O)∪Rpr

j (O) = {M : p(M) ≤ 0}.

Then C1 = (C2)p and for any other C ∈ C we have C1 <p C and C2 <p C.

Proof. Let M ∈ E+ ∪E− such that p(M) is minimum. We have M ∈ Ci,p,q or
M ∈ Cj,p,r and then M ∈ C1 or M ∈ C2. So by Lemma 22 we have C1 = (C2)p

and for any other C ∈ C we have C1 <p C and C2 <p C.

By Lemmas 21, 20 and the cyclicity of AD, the graph (C,CONS) is cyclic. Let
m = |C| and (Ck)k∈Fm

such that CkCONSCk+1. We recall that m is even.

Lemma 25. For any direction p ∈ D there exists s ∈ Fm such that

Cs−1 <p Cs−2 <p . . . <p Cs−m
2

Cs <p Cs+1 <p . . . <p Cs+ m
2
−1

and Cs = (Cs−1)p, Cs+1 = (Cs−2)p, . . . Cs+ m
2
−1 = (Cs−m

2
)p.

Proof. We can suppose that AD has the form:

(3, p0, p1) − (2, p1, p2) − . . .− (2, pn−2, pn−1) − (2, pn−1, p0)

| |

(0, pn−1, p0) − (0, pn−2, pn−1) − . . .− (0, p1, p2) − (1, p0, p1)

with p0 = p. By Lemma 24 the two classes D = min<p0
C3,p0,p1 and D′ =

min<p0
C0,pn−1,p0 are consecutive so there exists s such that {Cs−1, Cs} =

{D,D′}. We suppose for example D = Cs−1 and D′ = Cs.
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For any i ≥ 1 we have p = αipi + βipi+1 with αi < 0 and βi > 0. Let Cs1 =
max<p1

C3,p0,p1 = max<p
C3,p0,p1 and Cs1+1 = max<p1

C2,p1,p2 = min<p
C2,p1,p2.

By Lemma 24 Cs1+1 = (Cs1)p1 . For any M ∈ Cs1, we have p(Mp1) > p(M) so
Cs1+1 >p Cs1.

More generally if Csi
= max<pi+1

C2,pi,pi+1
and Csi+1 = max<pi+1

C2,pi+1,pi+2
.

Then Csi+1 = (Csi
)pi+1

, and if M ∈ Csi
then pi(Mpi+1

) < pi(M) and so
p(Mpi+1

) > p(M) and Csi
<p Csi+1. We deduce that there exist s′ such that

Cs′ = max<p0
C2,pn−1,p0 and:

Cs <p Cs+1 <p . . . <p Cs′.

On the same way, we can prove that there exists s′′ such that Cs′′ = max<p0
C1,p0,p1

and:
Cs−1 <p Cs−2 <p . . . <p Cs′′.

We have s′′ = (s′ + 1) mod m and s′ = s + m
2
− 1, s′′ = s− m

2
. Then we can

see by recurrence that (Cs+k)p = Cs−1−k for any 0 ≤ k < m
2
. So this lemma

has been proved.

Now we define Ak = 1
|Ck|

∑

M∈Ck
M . We have p(Ak) = 1

|Ck|

∑

M∈Ck
p(M). So

if Ck <p Cl then p(Ak) < p(Al), and if Ck = (Cl)r then p(Ak) = p(Al). We
deduce from Lemma 25 that the sequence (Ak)k∈Fm

is a D-sequence. So the
implication (8)⇒(9) of Theorem 12 has been proved.

3.4 Construction of an affinely regular polygon

Now we shall prove the implication (9) ⇒ (5) of Theorem 12. So in this section,
D is a set of directions such that |D| ≥ 2, and (Ak)k∈Fm

is a D-sequence. This
sequence can also be considered as an element of Cm after the identifications
R2 = C and Fm = {0, 1, . . . , m− 1}.

Definition 26. We define the function φ : Cm → Cm by

φ((Mk)k∈Fm
) =





Mk−1+Mk

2
+ Mk+Mk+1

2

2





k∈Fm

=
(

1

4
Mk−1 +

1

2
Mk +

1

4
Mk+1

)

k∈Fm

Lemma 27. If (Mk)k∈Fm
is a D-sequence then (Nk)k∈Fm

= φ((Mk)k∈Fm
) is

also a D-sequence. More precisely if p is any direction of D and s is the index
such that

p(Ms−1) < p(Ms−2) < . . . < p(Ms−m
2
)

q q q

p(Ms) < p(Ms+1) < . . . < p(Ms+ m
2
−1)

(5)
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then,

p(Ns−1) < p(Ns−2) < . . . < p(Ns−m
2
)

q q q

p(Ns) < p(Ns+1) < . . . < p(Ns+ m
2
−1).

Proof. For 0 ≤ k < m
2
, we obtain from (5):

p(Ns−k−1) =
(

1

4
p(Ms−k−2) +

1

2
p(Ms−k−1) +

1

4
p(Ms−k)

)

=
(

1

4
p(Ms+k−1) +

1

2
p(Ms+k) +

1

4
p(Ms+k+1)

)

= p(Ns+k)

And moreover for 0 ≤ k < m
2
− 1, by (5) we have:

p(Ms+k−1) ≤ p(Ms+k) < p(Ms+k+1) ≤ p(Ms+k+2)

so p(Ns+k) < p(Ns+k+1).

Let G be the gravity center of (Ak)k∈Fm
and (G)k∈Fm

= (G,G, . . . , G).

Lemma 28. The sequence
φn((Ak)k∈Fm )−(G)k∈Fm

cos2n( π
m

)
converges to an affinely regular

D-polygon as n tends to infinity.

This result is a generalization of a result of Darboux. ([7])

...........

n = 0 n = 1 n = 2 n = ∞

D
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A1

A2

A3

A4
A5

A6 A7

A8

A10

A11

A12

A13

A14A15

A9

B0

B1

B2

B3

B4

B5
B6 B7

B8

B9

B10

B11

B12

B13

B14
B15

Fig. 15. The three first terms of a sequence
φn((Ak)k∈Fm )−(G)k∈Fm

cos2n( π
m

) and its limit.

(D = {x, y, x + y, x − y})
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Proof. The function φ is linear. It is represented by the matrix:





















1
2

1
4

0 . . . 0 1
4

1
4

1
2

1
4
. . . 0 0

...
...

...
. . .

...
...

1
4

0 0 . . . 1
4

1
2





















.

This matrix is diagonalizable and has the eigenvectors Yj = (ei
2πjk

m )k∈Fm
asso-

ciated to the eigenvalues vj = cos2( jπ

m
).

Since the family (Yj)0≤j<m is a basis of Cm, there exist coefficients λj ∈ C

such that (Ak)k∈Fm
=
∑m−1

j=0 λjYj, or equivalently:

(Ak)k∈Fm
= λ0Y0 +

m
2
−1
∑

j=1

(λjYj + λm−jYj) + λm
2
Ym

2

where z 7→ z designs the conjugation on C. Thus, for n ≥ 1:

φn((Ak)k∈Fm
) = λ0Y0 +

m
2
−1
∑

j=1

cos2n

(

jπ

m

)

(λjYj + λm−jYj).

(Notice that the eigenvalue associated to Ym
2

is zero.)

Let r = min{j ≥ 1 : λj 6= 0 or λm−j 6= 0}. If r = m
2

then all the points Ak are
aligned, which is impossible because (Ak)k∈Fm

is a D-polygon with D ≥ 2. So
1 ≤ r ≤ m

2
− 1.

We define the vector

(Bk)k∈Fm
= lim

n→∞

φn((Ak)k∈Fm
) − λ0Y0

cos2n( rπ
m

)
.

As cos( jπ
m

) > cos( j′π
m

) for any 0 ≤ j < j′ ≤ m
2
, we have (Bk)k∈Fm

= λrYr +
λm−rYr, so (Bk)k∈Fm

is the image by the R-linear transformation ψ : z 7→
λrz + λm−rz of the polygon Yr.

The linear transformation ψ is non-null so the sequence (Bk)k∈Fm
is not con-

stant. Thus there exists a direction p ∈ D such that (p(Bk))k∈Fm
is not con-

stant. By Lemma 27 we have:

p(Bs−1) ≤ p(Bs−2) ≤ · · · ≤ p(Bs−m
2
)

q q q

p(Bs) ≤ p(Bs+1) ≤ · · · ≤ p(Bs+ m
2
−1).

(6)
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Since (Bk)k∈Fm
= λrYr + λm−rYr, there exist b1, b2 ∈ R such that

p(Bk) = b1 cos

(

2πrk

m
+ b2

)

.

The vector (p(Bk))k∈Fm
is not constant, and so by formula (6), we have:

p(Bs−1) = p(Bs) < p(Bs+ m
2
−1) = p(Bs−m

2
).

But:

p(Bk) − p(Bk−1) = −2b1 sin
(

πr

m

)

sin

(

πr(2k − 1)

m
+ b2

)

therefore we can suppose b1 < 0 and b2 = πr(1−2s)
m

.

The number p(Bs+k) − p(Bs+k−1) = −2b1 sin πr
m

sin 2πrk
m

is non-negative for

k ∈ {0, . . . , m
2
}. If 1 < r < m

2
then

⌊

m
2r

+ 1
⌋

∈ {0, . . . , m
2
} and sin

2πr⌊m
2r

+1⌋
m

< 0.
Thus the only possibility is r = 1.

The function gravity center : Cm → C, (zk)k∈Fm
7→ 1

m

∑

k∈Fm
zk is C-linear so

G = gravity center((Ak)k∈Fm
)

= λ0gravity center(Y0) +
∑

k∈Fm\{0}

λkgravity center(Yk)

= λ0 · 1 +
∑

k∈Fm\{0}

λk · 0 = λ0.

Then (G)k∈Fm
= λ0Y0 and so (Bk)k∈Fm

is the limit of the sequence
(

φn((Ak)k∈Fm )−(G)k∈Fm

cos2n( π
m

)

)

n
of Lemma 28.

So finally:

lim
n→∞

φn((Ak)k∈Fm
) − (G)k∈Fm

cos2n( π
m

)
= (Bk)k∈Fm

= λrYr + λm−rYr = λ1Y1 + λm−rY1

Thus the vector (Bk)k∈Fm
is the image of a regular polygon by the R-linear

transformation ψ : z 7→ λ1z + λm−1z. Now we have to prove that this trans-
formation is bijective. Suppose the converse.

Then the image, interpreted as points R2, of the R-linear transformation ψ :
R2 → R2 is not R2 and is a linear space so it is included in a line. So there
exists a direction p such that (p(Bk))k∈Fm

is constant.

• We suppose p 6∈ D. Let q, q′ be two distinct directions of D. The vector
(Ak)k∈Fm

is a D-polygon so there exist three distinct integers k1, k2, k3 such
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that q(Ak1) = q(Ak2), q
′(Ak1) = q′(Ak3). Moreover by Lemma 27 we can

suppose q(Bk1) = q(Bk2) and q′(Bk1) = q′(Bk3). But Bk1, Bk2, Bk3 are
aligned on a line whose direction is not q nor q′ so Bk2 = Bk1 = Bk3. We
deduce that the k1-th, k2-th, k3-th points of Y1 have the same image by ψ,
which is impossible because these points are not aligned and ψ is supposed
to be non-null.

• We suppose p ∈ D. Let r′ be defined by:

r′ = min{j : p(λjYj + λm−jYj) is not a constant vector}.

We have

φn((Ak)k∈Fm
) −

(

λ0Y0 +
∑r′−1

j=1 (λjYj + λm−jYj)
)

cos2n( r′π
m

)
−→
n→∞

λr′Yr′+λm−r′Y r′ = (Ck)k∈Fm

But (Ak)k∈Fm
is a D-sequence and p(λjYj +λm−jYj) is a constant vector for

any j < r′, so again by Lemma 27, there exists an s such that:

p(Cs−1) ≤ p(Cs−2) ≤ . . . ≤ p(Cs−m
2
)

q q q

p(Cs) ≤ p(Cs+1) ≤ . . . ≤ p(Cs+ m
2
−1).

But, like for the vector (Bk)k∈Fm
, it implies r′ = 1 which contradicts that

(p(Bk))k∈Fm
is constant.

We have proved that the transformation ψ : z 7→ λ1z + λm−1z is bijective,
so (Bk)k∈Fm

is an affinely regular polygon. It is also a D-polygon by formula
(6).

So Theorem 12 has been proved.

3.5 Link with a conjecture

In this paragraph we describe a conjecture of [3]. Before, we recall some clas-
sical definitions:

A 4-path is a finite sequence (M0,M1, . . . ,Mn) of points of Z2 such thatMi+1−
Mi is in the set {(±1, 0), (0,±1)}. A polyomino is a finite lattice set F which
is 4-connected, which means that for any A,B ∈ F there is a 4-path from A

to B. A HV-convex set is a set which is line-convex along the horizontal and
vertical directions.
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Conjecture 29. If D is a set of four directions containing the coordinate
directions x and y, and such that the cross-ratio of these directions arranged
in order is not in {4

3
, 3

2
, 2, 3, 4}, then D determines the HV-convex polyominos.

In fact Q-convexity is very linked to the HV-convex polyominos: Indeed, a
direct consequence of proposition 2.3 of [5] is the following property:

Proposition 30. Every HV-convex polyomino is Q-convex along D = {x, y}.

So it is natural to extend the previous conjecture by the following one:

Conjecture 31. If D is a set of four directions such that the cross-ratio of
these directions arranged in order is not in {4

3
, 3

2
, 2, 3, 4} and if D′ is any pair

of directions of D then D determines the class of the Q-convex sets along D′.

This conjecture has been checked in the case D = {x, y, 2x+ y,−x+ 2y} and
D′ = {x, y}: counter-examples cannot be in the square {0, . . . , 12}2 ([9]).

Theorem 12 is weaker than this conjecture because in the theorem the con-
vexity directions and the X-ray directions must be the same. Anyway it seems
that the proof of this paper cannot be adapted easily to prove this conjecture
(see Figure 16).

E
+ = F

+ \ F
−

E
− = F

− \ F
+

D

D′

F
− ∩ F

+

Fig. 16. The two sets F+ and F− are Q-convex along D′ = {x, y}, and have the
same X-rays in D = {x, y, x+y, x−y}. We cannot extract easily a D-sequence from
these sets.

4 Algorithmic consequences

In [5] the following problem

ReconstructionQconv(D) where D = {p1, . . . , pd}
Instance: d vectors (fpi

(minpi
), fpi

(minpi
+ 1), . . . , fpi

(maxpi
))1≤i≤d.

Task: Reconstruct a set which is Q-convex along D and satisfies Xpi
F (j) =

fpi
(j) for all i ∈ {1, . . . , d} and j ∈ {minpi

, . . . , maxpi
}

is proved to be solved in O(n5) operations, where n = max(maxpi
−minpi

).

We also consider the more classical problem:
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ReconstructionConv(D) where D = {p1, . . . , pd}
Instance: d vectors (fpi

(minpi
), fpi

(minpi
+ 1), . . . , fpi

(maxpi
))1≤i≤d.

Task: Reconstruct a lattice convex set such that Xpi
F (j) = fpi

(j) for all
i ∈ {1, . . . , d} and j ∈ {minpi

, . . . , maxpi
}.

Suppose that D determines the lattice convex sets, then by Theorem 12, D
also determines the Q-convex sets along D. So the solution of an instance
of ReconstructionConv(D) is always the solution of the same instance
for ReconstructionQConv(D). Conversely if the solution of an instance
of ReconstructionQConv(D) is a lattice convex set, then it is a solution
of the same instance for ReconstructionConv(D), otherwise it has no solu-
tions. Since lattice convexity can be checked in a complexity less than O(n5)
(see [13]), we have proved:

Theorem 32. If D determines the lattice convex sets then ReconstructionConv(D)
can be solved in O(n5) operations where n = max(maxpi

−minpi
).
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[7] M. G. Darboux. Sur un problème de géométrie élémentaire. Bull. Sci. Math.,
2:298–304, 1878.
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