
Sequencing by Hybridization with Errors:

Handling Longer Sequences

Dekel Tsur∗

Abstract

Sequencing by Hybridization (SBH) is a method for reconstructing a DNA sequence
given the set of all subsequences of length k of the target sequence. This set, called the
spectrum of the sequence, can be obtained from hybridization with a universal DNA
chip. However, the hybridization experiments are error prone, so this leads to the
computational problem of reconstructing a sequence from a noisy spectrum. Halperin et
al. gave an algorithm for this problem with provable performance in the presence of both
false positive and false negative errors. Assuming, for example, that the false positive
rate is small, and the probability of false negative is 0.1, the algorithm can reconstruct
a random sequence of length O(20.7k) with an arbitrary small probability of failure.
In this paper, we give an algorithm that can reconstruct longer sequences: Under the
assumptions above, our algorithm can reconstruct sequences of length O(20.942k). This
bound is almost optimal as the bound for the errorless case is Θ(2k).

1 Introduction

Sequencing by Hybridization (SBH) [3, 14] is a method for sequencing DNA fragments. In
this method, the target sequence is hybridized to a universal chip containing all 4k sequences
of length k. Each sequence in the chip whose reverse complement appears in the target will
hybridize to the target, and this hybridization can be detected. Thus, one can obtain the
set of all subsequences of length k of a target sequence. This set is called the k-spectrum (or
spectrum) of the target.

Clearly, different sequences can have the same spectrum. It is known that if the target
sequence is chosen uniformly from the set of all sequences of length n for n = O(2k), then
with probability close to 1, there is no other sequence of length n with the same spectrum as
the target’s [16]. Thus, sequences of length O(2k) can be reconstructed with small probability
of failure, and this bound is asymptotically optimal [1, 2, 10, 17].

In practice, the hybridization experiments are error prone. In a false positive error, a
certain k-tuple appears in the experimental spectrum while in fact it does not appear in the

∗Caesarea Rothschild Institute of Computer Science, University of Haifa. Email: dekelts@cs.haifa.

ac.il

1

target. The converse occurs in a false negative error. The problem of reconstructing the
sequence when there are hybridization errors is NP-hard [11]. However, several heuristics
were proposed [4–9,13,15]. Halperin et al. [12] gave an algorithm with provable performance
in the following model: Each k-tuple contained in the target appears in the (experimental)
spectrum with probability 1−q, and each k-tuple that is not contained in the target appears
in the spectrum with probability p. In other words, the false negative probability is q, and
the false positive probability is p. Furthermore, the appearance of a tuple is independent
of the other k-tuples. Halperin et al. proved that if p < 1

2k , then the algorithm can recon-

struct a random sequence of length O(2(1−3q)k) from its k-spectrum, with an arbitrary small
probability of failure.

In this paper, we give an algorithm that can reconstruct longer sequences than the al-
gorithm of Halperin et al.: Under the same model as above, the algorithm can reconstruct
sequences of length O(2(1−β−δ)k), where β = α/(α + log2(1/q)), α = log4(1 + 3q + q/4 · (1 −
q)/(1 − q/4)), and δ is an arbitrary small constant. Moreover, our algorithm requires only
that p is smaller than some constant that depends on q and δ. Note that β < 3q for every
q > 0 (for example, for q = 0.1, β ≈ 0.057 < 0.3), so our algorithm performs better than the
algorithm of Halperin et al. for every q.

We finish this section with some definitions. For a sequence S = s1 · · · sn, Sl
i is the

subsequence sisi+1 · · · si+l−1 of S. Fix some k. We say that a sequence S is simple if there
are no indices i 6= j such that |i − j| < k and Sk

i = Sk
j . A sequence S is strongly simple if

there are no two indices i 6= j such that |i − j| ≤ 4k and S
d 2
3
ke

i = S
d 2
3
ke

j . For simplicity, we
assume in the following that k is divisible by 3.

2 The algorithm

In the rest of the paper, we shall use A = a1 · · ·an to denote the target sequence. Given
the (experimental) spectrum of the target sequence, a supporting probe for a sequence S is
a sequence of length k that appears in S and in the spectrum.

Let l = dk/(α + log2(1/q))e. Note that l ≤ k for every q > 0. We assume that the first
and last k − 1 letters of A are known. The reconstruction algorithm is as follows:

1. Set i = k.

2. Enumerate all simple sequences of length l.

3. Pick a simple sequence B ′ = b1, . . . , bl such that the number of supporting probes for
si−k+1 · · · si−1b1 · · · bl is maximal (breaking ties arbitrarily).

4. Set si = b1.

5. If i < n − k + 1, increase i by 1 and goto 2.

2

A sequence of length l that is constructed in step 2 of the algorithm is called a path (w.r.t. i).
The path ai · · ·ai+l−1 will be called the correct path (w.r.t. i). A path is called bad if its first
letter is not equal to ai.

Note that our algorithm is similar to the algorithm of Halperin et al. [12]. The main
difference is that our algorithm uses paths of length l ≤ k, while the algorithm of Halperin
et al. uses paths of length k. The motivation behind this difference is that when the paths
have length k, it is more likely that one of the probes that should support the correct path
will not appear in the spectrum, so the probability of failure increases. Another difference
is that our algorithm only considers simple paths. This fact simplifies the analysis of the
algorithm.

Theorem 1. For every 0 < δ < 1, if p ≤ min(1
2
q, 16−5 log2(1/δ)/δ , (1 − q)δ/8) and n =

O(2(1−β−δ)k), then the probability that the algorithm fails is o(1).

Proof. Fix some δ. Suppose that the algorithm fails, and let t be the minimum index such
that st 6= at. Let X be a random variable that counts the number of supporting probes for
the correct path (w.r.t. t). Define the following events:

(E0) The target sequence is not simple.

(E1) The target sequence is not strongly simple.

(E2) X ≤ δ′l, where δ′ = 1
5
δ/ log2(e/δ).

(E3) There is a bad path (w.r.t. t) with at least X supporting probes.

Since the algorithm failed to reconstruct at, we must have that either the correct path lost to
some bad path in step 3, namely event E3 occurs, or the correct path was not considered by
the algorithm as it is not simple. In the latter case, we have that event E0 occurs. Therefore,
the probability that the algorithm fails is at most P [E0 ∨ E3]. We have that

P [E0 ∨ E3] ≤ P [E1 ∨ E3] ≤ P [E1] + P
[

E2|E1

]

+ P
[

E3|E1 ∧ E2

]

.

We shall show that each of the last three probabilities is o(1). The reason why we consider
the events E1 and E2 is that it is easier to estimate P

[

E3|E1 ∧ E2

]

than to estimate P [E3]
directly.

Given two indices i < j, the probability that A
2
3
k

i = A
2
3
k

j is exactly 4− 2
3
k (this is true

even when |i − j| < k). The number of ways to choose the indices i and j is at most 4kn.

Therefore, P [E1] ≤ 4kn4− 2
3
k = o(1).

We now consider event E2. As we assume that event E1 does not happen, we have that
X has binomial distribution with l experiments and success probability 1 − q, so

P [X ≤ δ′l] = P [l − X ≥ (1 − δ′)l] ≤

(

l

δ′l

)

q(1−δ′)l.

Claim 2. q(1−δ′)l ≤ 2−(1−β− 1
5
δ)k.

3

Proof. From the definitions of l and δ′ we have

q(1−δ′)l = 2− log2(1/q)·(1−δ′)l ≤ 2log2(1/q)·(1−δ′)·k/(α+log2(1/q)) = 2−(1−β)(1−δ′)k

≤ 2−(1−β−δ′)k ≤ 2−(1−β− 1
5
δ)k.

Using Claim 2 and the inequality
(

a
b

)

≤
(

ea
b

)b
we obtain that

P [X ≤ δ′l] ≤
(e

δ′

)δ′l

q(1−δ′)l = 2δ′ log2(e/δ′)·lq(1−δ′)l ≤ 2−(1−β− 4
5
δ)k.

To bound P
[

E2|E1

]

, we multiply the probability above by the number of ways to choose t,

which is at most n. Thus, P
[

E2|E1

]

≤ n2−(1−β−4/5·δ)k = o(1).
We now bound the probability of event E3. We select a bad path b1 · · · bl at random,

and let Y be the number of probes supporting this path. Let Pbad be the probability that
Y ≥ X assuming that X ≥ δ′l. Clearly, Y = Y1 + Y2, where Y1 is the number of supporting
probes for the bad path that appear in the target, and Y2 is the number of supporting probes
arising from false positives. Let Y0 denote the number of sequences of length k that appear
both in st−k+1 · · · st−1b1 · · · bl and in the target (but not necessarily in the spectrum).

We will bound the probability that Y = i. Clearly, P [Y = i] =
∑i

a=0 f(a), where

f(a) = P [Y = i|Y2 = a] =

l
∑

j=i−a

P [Y0 = j] P [Y1 = i − a|Y0 = j] P [Y2 = a|Y0 = j] .

Moreover, P [Y1 = i − a|Y0 = j] =
(

j
i−a

)

qj−(i−a)(1 − q)i−a and

P [Y2 = a|Y0 = j] =

(

l − j

a

)

pa(1 − p)l−j−a ≤

(

l

a

)

pa.

A bound on the probability that Y0 = j is given by the following lemma, which is similar to
Lemma 3.2 in [12]. We note that some details are missing in the proof in [12], while we give
here a complete proof.

Lemma 3. For j > 0, P [Y0 = j] ≤ 5nl · 4−(k+j).

Proof. Denote B = st−k+1 · · · st−1b1 · · · bl. If Y0 = j then there is a set I ⊆ {1, . . . , l} of size
j and indices {ri : i ∈ I} such that Bk

i = Ak
ri

for i ∈ I. The sequence Ak
ri

will be called probe
i. Note that ri 6= t − 1 + i for all i ∈ I as b1 6= at. We say that probes i and i′ (i, i′ ∈ I)
are adjacent if ri − ri′ = i − i′ (in particular, every probe is adjacent to itself). For two
adjacent probes i and i′, with i < i′, we have that Bk

i = Ak
ri

and Bk
i′ = Ak

ri′
if and only if

Bk+i′−i
i = Ak+i′−i

ri
.

We can assume w.l.o.g. that each equivalence class of the adjacency relation is an interval
in I, and let I1, . . . , Ix ⊆ I be the equivalence classes, where min(I1) < min(I2) < · · · <

min(Ix). We have that Bk
i = Ak

ri
for all i ∈ I if and only if B

k−1+|Ii|
min(Ii)

= A
k−1+|Ii|
rmin(Ii)

for

i = 1, . . . , x. Each sequence A
k−1+|Ii|
rmin(Ii)

will be called a block, and will be denoted by Li. We

4

also define L0 to be the sequence Ak
t−k+1. A block Li is called overlapping if there is an index

i′ < i such that |rmin(Ii) − rmin(Ii′)
| ≤ 4k − 4, and let y the the index of the first overlapping

block, if there is such a block. Note that block Ly shares letters with at most one block Li

with i < y. We consider 3 cases, which will be denoted E1, E2, and E3:

1. There are no overlapping blocks.

2. There are overlapping blocks and y > 1.

3. There are overlapping blocks and y = 1.

Case 1 For fixed I and {ri : i ∈ I}, the probability that E1 happens is
∏x

i=1 4−(k−1+|Ii|) =
4−(k−1)x−j. The number of ways to choose disjoint (non empty) intervals I1, . . . , Ix ⊆
{1, . . . , l} such that

∑x
i=1 |Ii| = j is

(

j−1
x−1

)(

l−j+x
x

)

≤
(

j−1
x−1

)

lx. For a fixed choice of I1, . . . , Ix,
there are at most nx ways to choose the indices {ri : i ∈ I}. Therefore,

P [E1] ≤

j
∑

x=1

(

j − 1

x − 1

)

(nl)x 1

4(k−1)x+j
=

nl

4k−1+j

j
∑

x=1

(

j − 1

x − 1

)(

nl

4k−1

)x−1

=
nl

4k−1+j

(

1 +
nl

4k−1

)j−1

≤
nl

4k−1+j
ejnl/4k−1

= (1 + o(1))
nl

4k−1+j
.

Case 2 Let E be the event that B
k−1+|Ii|
min(Ii)

= A
k−1+|Ii|
rmin(Ii)

for i = 1, . . . , y − 1, and let E ′ be the

event that Bk
min(Iy) = Ak

rmin(Iy)
. Let z = 1+

∑y−1
i=1 |Ii| and I ′ = I∩{1, . . . , min(Iy)}. For fixed I ′

and {ri : i ∈ I ′}, the probability that event E happens is 4−(k−1)(y−1)−(z−1) and the probability
that event E ′ happens is 4−k. Moreover, events E and E ′ are independent (see [18]). The
number of ways to choose the intervals I1, . . . , Iy−1 and min(Iy) is

(

z−2
y−2

)(

l−z+y
y

)

≤
(

(z−1)−1
(y−1)−1

)

ly.

For fixed I1, . . . , Iy−1 and min(Iy), there are at most ny−1 · 8k(y − 1) ≤ ny−1 · 8kl ways to
choose the indices {ri : i ∈ I ′} (as |rmin(Iy) − rmin(Ii)| ≤ 4k − 4 for some i < y). Thus,

P [E ∧ E ′|z] ≤ 8kl2
z
∑

y=2

(

z − 2

y − 2

)

(nl)y−1 1

4(k−1)(y−1)+z−1+k

=
8nkl3

42k+z−2

z
∑

y=2

(

z − 2

y − 2

)(

nl

4k−1

)y−2

≤
8nkl3

42k+z−2
eznl/4k−1

= (1 + o(1))
8nkl3

42k+z−2
.

If j < 2
3
k then

P [E2] ≤ P [E ∧ E ′] = O

(

nkl3

42k

j
∑

z=2

1

4z

)

= O

(

nk4

42k

)

= o
(n

4k+j

)

.

5

Now, consider the case when j ≥ 2
3
k. If y = x then the analysis is the same as the analysis

of case 1, as event E and the event that B
k−1+|Ix|
min(Ix) = A

k−1+|Ix|
rmin(Ix) are independent. We therefore

assume that y < x.
Let E ′′ be the event that Bk

max(Ix) = Ak
rmax(Ix)

. If z ≤ 1
3
k then we have that max(Ix) −

min(Iy) ≥ j − z ≥ 1
3
k. It follows that the last 1

3
k letters of Bk

max(Ix) are not letters of

B
k−1+|I1|
min(I1)

, . . . , B
k−1+|Iy−1|

min(Iy−1)
or Bk

min(Iy), and thus these letters are not restricted by events E

and E ′. Therefore, P
[

E ′′|E ∧ E ′, z ≤ 1
3
k
]

≤ 4− 1
3
k. We conclude that

P [E2] ≤ P [E ∧ E ′ ∧ E ′′] = O





nkl3

42k





1
3
k
∑

z=2

1

4z+ 1
3
k

+

j
∑

z= 1
3
k+1

1

4z









= O

(

nk4

4
7
3
k

)

= o
(n

4k+j

)

.

Case 3 As L1 overlaps with L0, we have that min(I1) > 1
3
k because otherwise we get a

contradiction to the assumption that A is strongly simple. Thus, j ≤ 2
3
k. Assume again

that y < x. We consider the events E ′ and E ′′ defined above. If Lx does not overlap with L1,
then these events are independent, so

P [E3|Lx does not overlap L1] ≤ P [E ′ ∧ E ′′] ≤
8nkl2

42k
= o

(n

4k+j

)

.

Otherwise, since Bk
max(Ix) contains at least j − 1 letters that are not letters of Bk

min(I1)
, it

follows that

P [E3|Lx overlaps L1] = O

(

k2l2

4k+j

)

= o
(n

4k+j

)

.

Combining the three cases, we have that P [Y0 = j] = (1 + o(1))4nl · 4−(k+j).

By differentiating the identity
∑∞

b=0 xb = 1
1−x

(for x < 1) y times we get that
∑∞

b=0

(

y+b
y

)

xb =
1

(1−x)y+1 . Using the latter identity and Lemma 3, we obtain that for a < i,

f(a) ≤
l
∑

j=i−a

5nl

4k+j

(

j

i − a

)

qj−(i−a)(1 − q)i−a

(

l

a

)

pa

=
5nl

4k+i−a
(1 − q)i−a

(

l

a

)

pa

l−(i−a)
∑

b=0

(

i − a + b

i − a

)

(q

4

)b

≤
5nl

4k+i−a
(1 − q)i−a

(

l

a

)

pa 1

(1 − q
4
)i−a+1

=
5nl

(1 − q
4
)4k

(

1 − q

4(1 − q
4
)

)i(
l

a

)(

p ·
4(1 − q

4
)

1 − q

)a

.

6

Furthermore,

f(i) ≤

l
∑

j=0

P [Y0 = j]

(

l

i

)

pi ≤ 2lpi

l
∑

j=0

P [Y0 = j] ≤ 2lpi.

Therefore,

P [Y = i] ≤ 2lpi +
5nl

(1 − q
4
)4k

(

1 − q

4(1 − q
4
)

)i

·

i−1
∑

a=0

(

l

a

)(

p ·
4(1 − q

4
)

1 − q

)a

≤ 2lpi +
7nl

4k

(

1 − q

4(1 − q
4
)

)i(

1 + p ·
4(1 − q

4
)

1 − q

)l

≤ 2lpi +
7nl

4k

(

1 − q

4(1 − q
4
)

)i

ep·
4(1−

q
4)

1−q
·l

≤ 2lpi +
7nl

4k

(

1 − q

4(1 − q
4
)

)i

4
1
2
δl.

Now, P [X ≤ i] ≤
(

l
i

)

ql−i. Hence,

Pbad ≤
l
∑

i=δ′l

P [X ≤ i] · P [Y = i]

≤
l
∑

i=δ′l

(

l

i

)

ql−i ·
7nl

4k− 1
2
δl

(

1 − q

4(1 − q
4
)

)i

+
l
∑

i=δ′l

(

l

i

)

ql−i · 2lpi.

We denote the two sums above by S1 and S2. Then,

S1 ≤
7nl

4k− 1
2
δl

l
∑

i=0

(

l

i

)

ql−i

(

1 − q

4(1 − q
4
)

)i

=
14nl

4k− 1
2
δl

(

q +
1 − q

4(1 − q
4
)

)l

=
7nl

4k− 1
2
δl

(

1 + 3q + q(1−q)
4(1−q/4)

4

)l

=
14nl

4l
·

1

4k−αl− 1
2
δl

≤
7nl

4l
·

1

4k−α(k/(log2(1/q)+α)−1)− 1
2
δk

=
14nl

4l
·

4α

4k−βk− 1
2
δk

≤
7nl

4l
·

4

4(1−β− 1
2
δ)k

,

and by Claim 2,

S2 ≤

l
∑

i=δ′l

(

l

i

)

ql−i · 2lpi ≤ 4l

l
∑

i=δ′l

ql−ipi = 4lpδ′lq(1−δ′)l

(1−δ′)l
∑

a=0

(

p

q

)a

≤ 4lpδ′l2−(1−β− 1
5
δ)k

(1−δ′)l
∑

a=0

1

2a
≤ 4lpδ′l2−(1−β− 1

5
δ)k · 2.

7

The probability that event E3 happens (given that E1 and E2 do not happen) is at most
n4lPbad, where n bounds the number of ways to choose t, and 4l bounds the number of ways
to choose a bad path. We have that

n4lS1 ≤ 28l ·

(

n

2(1−β− 1
2
δ)k

)2

= o(1)

and

n4lS2 ≤ 2n ·
(

161/δ′p
)δ′l

· 2−(1−β− 1
5
δ)k ≤ 2n · 2−(1−β− 1

5
δ)k = o(1).

Therefore, P
[

E3|E1 ∧ E2

]

= o(1).

References

[1] R. Arratia, B. Bollobás, D. Coppersmith, and G. Sorkin. Euler circuits and DNA
sequencing by hybridization. Discrete Applied Math, 104:63–96, 2000.

[2] R. Arratia, D. Martin, G. Reinert, and M. S. Waterman. Poisson process approximation
for sequence repeats, and sequencing by hybridization. J. of Computational Biology,
3(3):425–463, 1996.

[3] W. Bains and G. C. Smith. A novel method for nucleic acid sequence determination.
J. Theor. Biology, 135:303–307, 1988.

[4] J. B lażewicz, P. Formanowicz, F. Glover, M. Kasprzak, and J. Wȩglarz. An improved
tabu search algorithm for DNA sequencing with errors. In Proc. 3rd Metaheuristics
International Conference, pages 69–75, 1999.

[5] J. B lażewicz, P. Formanowicz, F. Guinand, and M. Kasprzak. A heuristic managing
errors for DNA sequencing. Bioinformatics, 18(5):652–660, 2002.

[6] J. B lażewicz, P. Formanowicz, M. Kasprzak, W. T. Markiewicz, and J. Wȩglarz. DNA
sequencing with positive and negative errors. J. of Computational Biology, 6(1):113–123,
1999.

[7] J. B lażewicz, P. Formanowicz, M. Kasprzak, W. T. Markiewicz, and J. Wȩglarz. Tabu
search for dna sequencing with false negatives and false positives. European Journal of
Operational Research, 125:257–265, 2000.

[8] J. B lażewicz, J. Kaczmarek, M. Kasprzak, W. T. Markiewicz, and J. Wȩglarz. Sequential
and parallel algorithms for DNA sequencing. CABIOS, 13:151–158, 1997.

[9] J. B lażewicz, M. Kasprzak, and W. Kuroczycki. Hybrid genetic algorithm for DNA
sequencing with errors. J. of Heuristics, 8:495–502, 2002.

8

[10] M. E. Dyer, A. M. Frieze, and S. Suen. The probability of unique solutions of sequencing
by hybridization. J. of Computational Biology, 1:105–110, 1994.

[11] J. Gallant, D. Maier, and J. A. Storer. On finding minimal length superstrings. J. of
Computer and System Sciences, 20:50–58, 1980.

[12] E. Halperin, S. Halperin, T. Hartman, and R. Shamir. Handling long targets and
errors in sequencing by hybridization. In Proc. 6th Annual International Conference on
Computational Molecular Biology (RECOMB ’02), pages 176–185, 2002.

[13] R. J. Lipshutz. Likelihood DNA sequencing by hybridization. J. Biomolecular Structure
and Dynamics, 11:637–653, 1993.

[14] Y. Lysov, V. Floretiev, A. Khorlyn, K. Khrapko, V. Shick, and A. Mirzabekov. DNA
sequencing by hybridization with oligonucleotides. Dokl. Acad. Sci. USSR, 303:1508–
1511, 1988.

[15] P. A. Pevzner. l-tuple DNA sequencing: Computer analysis. J. Biomolecular Structure
and Dynamics, 7:63–73, 1989.

[16] P. A. Pevzner and R. J. Lipshutz. Towards DNA sequencing chips. In Symp. on
Mathematical Foundations of Computer Science, LNCS 841, pages 143–158, 1994.

[17] R. Shamir and D. Tsur. Large scale sequencing by hybridization. J. of Computational
Biology, 9(2):413–428, 2002.

[18] D. Tsur. Bounds for resequencing by hybridization. In Proc. 3rd Workshop on Algo-
rithms in Bioinformatics (WABI ’03), LNCS 2812, pages 498–511, 2003.

9

