On the Usability of Process Algebra:
An Architectural View

Alessandro Aldini, Marco Bernardo *

Universita di Urbino “Carlo Bo”
Istituto di Scienze e Tecnologie dell’Informazione
Piazza della Repubblica 13, 61029 Urbino, Italy

Abstract

Despite its strengths like compositionality and equivalence checking, process algebra
is rarely adopted outside the academia. In this paper we address the usability issue
for process algebra along two different directions. On the modeling side, we provide
a set of guidelines inspired by the software architecture field, which should enforce
a clear component-oriented approach to the process algebraic design of system fam-
ilies. On the verification side, we propose a component-oriented technique based on
equivalence checking for the detection of architecture-level mismatches and the pro-
vision of related diagnostic information. Such a technique extends previous results
in terms of generality of the considered mismatches, generality of the considered
system topologies, and scalability to system families.

Key words: process algebra, usability, architectural description languages,
component-oriented verification and diagnosis, equivalence checking.

1 Introduction

Process algebra [20,15,4,11,5] is a very rich theory that underpins the se-
mantics of concurrent programming as well as the understanding of the be-
havior of communicating concurrent systems and their various aspects — mo-
bility, performability, real-time constraints, and security. Process algebra re-
lies on a small set of powerful operators — among which is a parallel com-
position operator — that inherently support compositionality, i.e. the ability
to build process terms from smaller ones. Its semantics is formally defined

* Corresponding author: bernardo@sti.uniurb.it

Preprint submitted to Elsevier Science 18 July 2006

through structural operational rules, which precisely establish for each pro-
cess term the state transition graph that it stands for. Both syntax-oriented
and semantics-oriented behavioral reasonings are possible on process terms via
different equivalences, which capture different variants of the notion of same
behavior possibly abstracting from unnecessary details.

Despite its strengths, after almost thirty years the use of process algebra out-
side the academia is still very limited. Due to some of its technicalities, process
algebra is perceived by practitioners as being difficult to learn and use, which
is further exacerbated by the short time-to-market constraint to which the
information and communication technology industry is subject.

The limited usability of process algebra is the open problem that we address
in this paper. We observe that there are at least two interrelated objectives to
pursue. On the one hand, process algebra must be brought closer to the way
we think of computing systems nowadays. Since they typically are component-
based, it is necessary to support a friendly component-oriented way of model-
ing them, which hides the process algebraic technicalities. On the other hand,
the use of process algebra needs to be integrated in the system development
cycle. This requires understanding the appropriate phase or combination of
phases of the cycle — requirement analysis, architectural design, component
design, implementation, deployment, testing, and maintainance — in which
process algebra can profitably be employed.

As a step towards the solution of the usability problem, we propose to revise
process algebra in such a way that it can be employed in the architectural
design of component-based systems [21,22]. Our proposal is conceptually di-
vided into two parts. In the first part, we address the usability issue for pro-
cess algebra from the modeling viewpoint. This is carried out by providing
a set of guidelines — inspired by the architectural design level — that should
enforce a component-oriented approach to the process algebraic design of sys-
tem families, while hiding the technicalities of process algebra. The guidelines
should be employed to turn process algebra into a fully fledged architectural
description language (ADL), which elucidates the main architectural concepts
behind the system design: components, connectors, and styles [22]. The guide-
lines are concerned with: (1) the separation of the behavior specification from
the topology description, (2) the reuse of the specification of components and
connectors, (3) the elicitation of the interactions, (4) the classification of the
communications, (5) the combined use of textual and graphical notations, (6)
the proper use of the process algebraic operators, and (7) the support for ar-
chitectural styles, i.e. the design of system families. Although several process
algebraic ADLs have appeared in the literature — like, e.g., Wright [3], Dar-
win/FSP [18,19], and PADL [8] - to the best of our knowledge this is the first
time that the design rationale behind such languages is discussed in a detailed
way and structured around a set of guidelines.

In the second part of our proposal, we address the usability issue from the
analysis viewpoint. The aim is that of providing an analysis technique based
on equivalence checking, which has the same component-oriented flavor as
the syntax of a process algebraic ADL. The component orientation of such a
technique should bring two advantages. First, the technique should be able
to avoid computing the overall state space of a system description as much
as possible. Second, in the case of property violation, the technique should
be able to generate some diagnostic information through which the compo-
nents and connectors responsible for the violation can be singled out and then
modified to restore the property. Our contribution here is that the proposed
technique extends the previous results developed in the software architecture
field [3,17,16,12,8] in terms of generality of the considered properties, gener-
ality of the considered system topologies, and scalability to system families.

This paper, which is a full and revised version of [1,9,10] and builds on [8],
is organized as follows. In Sect. 2 we present the guidelines to turn process
algebra into an ADL for the specification of single systems. In Sect. 3 we dis-
cuss how to provide support for the design of system families within a process
algebraic ADL. In Sect. 4 we present a technique based on equivalence check-
ing for the component-oriented verification of mismatch freedom in process
algebraic architectural descriptions of system families. Finally, in Sect. 5 we
report some concluding remarks.

2 Turning Process Algebra into an ADL

In this section we discuss the first part of our proposal for enhancing the us-
ability of process algebra. After introducing a simple system, which will be
used as a running example throughout this section, and the typical process
algebraic operators, we provide a set of guidelines inspired by the architectural
design level. Such guidelines should enforce a component-oriented approach to
the process algebraic design of systems, while hiding the technicalities of pro-
cess algebra. In this section we present the guidelines (1) to (6). Guideline (7),
which is related to the design of system families, will be presented in Sect. 3.

2.1 The Running Example

The guidelines will be illustrated by means of a running example based on a
pipe-filter system. This system is composed of four identical filters and one
pipe. Each filter stores the items it receives from the outside into a buffer of
capacity ten, then processes the items in the order of their arrival and sends
them out. Each filter is subject to failures and subsequent repairs. The four

filters are divided into one upstream filter and three downstream filters. Every
item processed by the upstream filter is accepted by the pipe, which then
forwards it to one of the three downstream filters according to the availability
of free positions in their buffers. If more than one downstream filter has free
positions, the choice is resolved nondeterministically.

2.2 Process Algebra Syntaz

Let us consider a value-passing process algebra where the system descriptions
are sequences of possibly recursive behavioral equations of the following form:

A(formal_par_list; local —var_list) = E

where process term E has the following syntax:

E ::= stop

| A(actual_par_list)

| aE | a?(var_list)E | al(expr_list).E

| choice{process_term_list}

| cond(ezpr) = E

| E/L

| E\H

| Elg]

| E[sE
A process term can be built out of the most frequently used static opera-
tors — inaction, behavior invocation, unstructured /input/output action prefix,
choice, and conditional — and dynamic operators — hiding, restriction, relabel-
ing, and multiway parallel composition. The admitted data types for formal
parameters, local variables, and expressions are boolean, integer, bounded
integer (integer (min..max)), and real. The admitted type constructors are

list, array, and record. We assume that the semantics is defined in the
usual interleaving style.

The pipe-filter system introduced in Sect. 2.1 can be specified in the process
algebra above through the following behavioral equation:

Pipe Filter = Upstream Filter(0) ||{process_accept_iten}

P 1pe | | {forward_store_item_1}

Downstream Filter_1(0) ||{torvard store item 2}
Downstream Filter 2(0) || {torvard_store item 3}

Downstream Filter_3(0)
where:

Upstream_Filter(integer(0..10) item_num; void) =
choice {
cond(item_num < buffer_size) ->
store_item . Upstream_Filter(item_num + 1),
cond(item_num > 0) ->
process_accept_item . Upstream_Filter(item_num - 1),
fail . repair . Upstream_Filter(item_num)

Pipe(void; void) =
process_accept_item . choice {
forward_store_item_1 . Pipe(),
forward_store_item_2 . Pipe(),
forward_store_item_3 . Pipe()

¥

Downstream_Filter_1(integer(0..10) item_num; void) =
choice {
cond(item_num < buffer_size) —->
forward_store_item_1 . Downstream_Filter_1(item_num + 1),
cond(item_num > 0) ->
process_item . Downstream_Filter_1(item_num - 1),
fail . repair . Downstream_Filter_1(item_num)

Downstream_Filter_2(integer(0..10) item_num; void) =
choice {
cond(item_num < buffer_size) ->
forward_store_item_2 . Downstream_Filter_2(item_num + 1),
cond(item_num > 0) ->
process_item . Downstream Filter_2(item_num - 1),
fail . repair . Downstream_Filter_2(item_num)

Downstream_Filter_3(integer(0..10) item_num; void) =
choice {
cond(item_num < buffer_size) ->
forward_store_item_3 . Downstream_Filter_3(item_num + 1),
cond(item_num > 0) ->
process_item . Downstream_Filter_3(item_num - 1),
fail . repair . Downstream_Filter_3(item_num)

2.3 Guideline 1: Separating Behavior from Topology

Within a process algebraic description, both the system behavior and the
system topology are expressed through occurrences of the parallel composition
operator. Unfortunately, this makes the process algebraic description quite
complicated in the presence of numerous components and connectors, as it
becomes hard to understand which components and connectors are involved in
which communications. The usability of process algebra can thus be improved
through a clear separation of the system behavior from the system topology.

ARCHI_TYPE system name and data parameters)

ARCHI_ELEM_TYPES (architectural element types)

ARCHI TOPOLOGY architectural topology)

(
(
(
BEHAV_VARIATIONS (possible behavioral variations)

END

Table 1
Structure of a revised process algebraic description

This can be achieved by revising the structure of a process algebraic descrip-
tion, going from a flat sequence of behavioral equations to three different
sections as shown in Table 1. The revised description starts with the name of
the system — which we call an architectural type — and its data parameters.
In the case of the pipe-filter system of Sect. 2.1, the header is as follows:

ARCHI_TYPE Pipe_Filter(const integer pf_buffer_size := 10,
const integer(0..pf_buffer_size)
pf_init_item_num := 0)

All the data parameters of an architectural type are constant identifiers that
can be used throughout the rest of the description. For this reason, unlike

the formal parameters and local variables of the behavioral equations, their
declaration is preceded by const.

After this header, the first section of the revised description should define the
behavior of the components and connectors that form the system. For the
sake of simplicity, from now on components and connectors will generically be
termed architectural elements. The second section should define the topology
of the system based on its architectural elements and their communication
structure. Finally, the third section should provide some flexibility by allowing
some parts of the system behavior to be changed according to some specific
modeling- or analysis-related needs. As an example, behavioral variations may
be concerned with making some system activities unobservable, preventing
some activities from occurring, or renaming some activities.

2.4 Guideline 2: Specification Reuse

It might be the case that a process algebraic description contains several be-
havioral equations that differ only for the name of some actions, typically
because the choice of the name of the actions is not free. In order to increase
the degree of specification reuse within a system description — which reduces
the time to prepare the description itself — we distinguish between the def-
inition of an architectural element and the instantiation of an architectural
element.

The definition of an architectural element, which we call an architectural el-
ement type (AET), takes place only once in the first section of the revised
process algebraic description of Table 1. In the case of the pipe-filter system
of Sect. 2.1, we observe that the behavioral equations for the four filters shown
in Sect. 2.2 can be merged into a single AET, whose action names can be freely
chosen:

ARCHI_ELEM_TYPES

ELEM_TYPE Filter_Type(const integer buffer_size,
const integer(0..buffer_size)
init_item_num)

BEHAVIOR
Filter(integer(0..buffer_size) item_num := init_item_num;
void) =
choice {
cond(item_num < buffer_size) ->
store_item . Filter(item_num + 1),

cond(item_num > 0) ->
process_item . Filter(item_num - 1),
fail . repair . Filter(item_num)

ELEM_TYPE Pipe_Type(void)

BEHAVIOR
Pipe(void; void) =
accept_item . choice {
forward_item_1 . Pipe(),
forward_item_2 . Pipe(),
forward_item_3 . Pipe()

3

The instantiation of an architectural element, which we call an architectural
element instance (AEI), takes place in the second section of the description.
A single AET can have several AEIs, possibly equipped with different actual
data parameters. In the case of the pipe-filter system, Filter_Type has four
instances:

ARCHI_TOPOLOGY

ARCHI_ELEM_INSTANCES

F_O0 : Filter_Type(pf_buffer_size, pf_init_item_num);
: Pipe_Type();
: Filter_Type(pf_buffer_size, pf_init_item_num);
: Filter_Type(pf_buffer_size, pf_init_item_num);

P
F_
F_
F_3 : Filter_Type(pf_buffer_size, pf_init_item_num)

W N =

2.5 Guideline 3: Interaction Elicitation

The actions occurring in the behavioral equations of an AET do not play
the same role from the communication viewpoint. First of all, we distinguish
between internal actions, which model activities local to the AET, and in-
teractions, which are the interfaces through which the instances of the AET
communicate with the rest of the system. The interactions are then subject to
two further classifications. The first one divides the interactions into input and
output interactions, depending on whether the AET is passive or active with
respect to them. The second one divides the interactions into architectural in-
teractions, which act as interfaces for the whole system, and local interactions,

whose scope remains within the system.

In order to enhance the readability of a process algebraic specification, we
need to provide a way to explicitly elicit and classify the interactions in a
component-oriented way. This is accomplished in two steps. In the first section
of the revised process algebraic description of Table 1, the definition of each
AET is completed with the declaration of its input and output interactions.
In the second section, the architectural interactions are declared, while the
local interactions are attached to each other in order to define the system
communication structure.

As an example, observed that fail and repair are internal actions, the defi-
nition of Filter _Type provided in Sect. 2.4 must be completed as follows:

INPUT_INTERACTIONS store_item
OUTPUT_INTERACTIONS process_item

while the definition of Pipe _Type must be completed as follows:

INPUT_INTERACTIONS accept_item

OUTPUT_INTERACTIONS forward_item_1;
forward_item_2;
forward_item_3

Since the input interaction of the upstream filter and the output interactions of
the three downstream filters are the entry and exit points of the overall system,
while all the other filter interactions are used to exchange items through the
pipe, the architectural topology of Sect. 2.4 must be completed as follows:

ARCHI_INTERACTIONS
F_O.store_item;
F_1.process_item; F_2.process_item; F_3.process_item

ARCHI_ATTACHMENTS
FROM F_O.process_item TO P.accept_item;
FROM P.forward_item_1 TO F_1.store_item;
FROM P.forward_item_2 TO F_2.store_item;
FROM P.forward_item_3 TO F_3.store_item

END

Some remarks are now in order. First, the dot notation is used to disambiguate
among interactions with the same name belonging to different AEIs. Second,

the declaration of architectural interactions provides support for hierarchical
modeling, as we shall see in more detail in Sect. 3. Third, local interactions that
have to synchronize do not need to have the same name, thus increasing the
readability of the description. Fourth, some static checks can easily be applied
to the architectural topology, which permit to catch some modeling errors that
would probably go undetected in traditional process algebraic descriptions. For
instance, every local interaction must be involved in at least one attachment,
while the internal actions and the architectural interactions cannot be involved
in any attachment. As another example, every attachment must connect an

output local interaction of an AEI to an input local interaction of another
AEIL

2.6 Guideline 4: Communication Classification

As far as the interactions are concerned, it is worth noting that they may be in-
volved in different forms of communication. Among the most frequently recur-
ring ones, we mention one-to-one communications and conjuctive/disjunctive
one-to-many communications. In order to account for them in a component-
oriented way, in the first section of the revised process algebraic description
of Table 1 the input and output interactions are further classified as uni-
interactions, and-interactions, and or-interactions. A uni-interaction can be at-
tached only to one interaction, while an and-interaction and an or-interaction
can be attached to several uni-interactions. In the case of execution of an
and-interaction, it synchronizes with all the uni-interactions attached to it
(broadcast-like communication). In the case of execution of an or-interaction,
instead, it synchronizes with only one of the uni-interactions attached to it,
which is selected nondeterministically (client-server communication).

As an example, the declaration of the interactions of Filter Type provided
in Sect. 2.5 must be refined as follows:

INPUT_INTERACTIONS UNI store_item
OUTPUT_INTERACTIONS UNI process_item

For Pipe_Type we observe that in general it may have to be connected with
an arbitrary number of downstream filters, communicating with only one of
them at a time. This can easily be achieved through an or-interaction after
redefining Pipe Type in a more concise way as follows:

ELEM_TYPE Pipe_Type(void)

BEHAVIOR
Pipe(void; void) = accept_item . forward_item . Pipe()

10

INPUT_INTERACTIONS UNI accept_item
OUTPUT_INTERACTIONS OR forward_item

The attachments are consequently modified as follows:

ARCHI_ATTACHMENTS
FROM F_O.process_item TO P.accept_item;
FROM P.forward_item TO F_1.store_item;
FROM P.forward_item TO F_2.store_item;
FROM P.forward_item TO F_3.store_item

We conclude by noting that these additional communication-related qualifiers
for the interactions provide support for further static checks of the architec-
tural topology. For instance, every local uni-interaction of an AEI must be at-
tached only to one local interaction of another AEI. As another example, every
and- and or-interaction of an AEI must be attached only to uni-interactions
of other AEIs different from each other.

2.7 Guideline 5: Graphical Notation

A pure textual notation can become cumbersome when modeling complex sys-
tems. While a textual notation is adequate for the description of the system
behavior, a graphical notation can be more helpful for the definition of the
system topology. We therefore combine the enhanced process algebraic nota-
tion introduced before with a graphical notation, inspired by flow graphs [20],
to provide a visual aid. In an enriched flow graph, the AEIs are depicted as
boxes, the local interactions are depicted as small black circles on the box bor-
der, the architectural interactions are depicted as small white squares on the
box border, and the attachments are depicted as directed edges among local
interactions. In the case of an and-interaction, the related small circle/square
is extended with a triangle outside the box. In the case of an or-interaction,
such a triangle is marked with a bar. We report in Fig. 1 the enriched flow
graph for the pipe-filter system of Sect. 2.1.

2.8 Guideline 6: Transparent Use of the Static Operators

In the structure of the revised process algebraic description of Table 1, the
use of the process algebraic operators is confined to the first section. In order
to simplify the modeling process, the AETSs are viewed as sequential entities,

11

store_item

F O:Filter_Type(10,0)

process_item

accept _item

P: Pi pe_Type()

forward_item

store_item store item store_item

F 1:Filter_Type(10,0) | |[F_ 2:Filter_Type(10,0) | |F_3:Filter_Type(10,0)

process_item process_item process_item

Fig. 1. Graphical description of Pipe Filter

hence only the (easier) dynamic operators are at the disposal of the designer
for the definition of the AET behavior. The (harder) static operators should
not be explicitly used in a process algebraic architectural description. However,
they play a fundamental role whenever the semantics of a process algebraic
architectural description is given by translation into pure process algebra.
In other words, the static operators should only be used in a way that is
completely transparent, so that their technicalities do not burden the system
description.

The translation semantics proceeds in two steps. In the first step, the focus
is on the semantics of each AEI, which is defined to be the behavior of the
corresponding AET, with the formal data parameters replaced by the corre-
sponding actual data parameters. If the AET contains some or-interactions,
each of them must be rewritten into a choice among as many indexed instances
of a fresh uni-interaction as there are attachments involving the original or-
interaction, in order to reflect the fact that each or-interaction can result in
several distinct synchronizations.

Definition 2.1 Let A be an architectural type, let C be one of its AETs with
formal data parameters fpy, ..., fp, and behavior given by the list of behav-
ioral equations B, and let C' be an instance of C with actual data parameters
api, .. .,apn. LThe semantics of C' is defined by

[C] = or-rewrite(B){ap1/fp1,- .., apn/fPu}

where the curly braces enclose a syntactical substitution and or-rewrite(B) is
defined by structural induction on the process terms forming the right-hand
side of the behavioral equations in B as follows:

12

or-rewrite(stop) = stop
a.or-rewrite(E)

if ais not an or—interaction
or-rewrite(a.E) = { choice?_,{a;.or-rewrite(E)}

if ais an or—interaction

involved in n attachments
or-rewrite(choicef_,{E;}) = choicef_,{or-rewrite(E;)}

or-rewrite(A(actual _par_list)) = A(actual_par_list) -

For the pipe-filter system of Sect. 2.1 we have:
[FO] = [F-1] = [F-2] = [F-3] = Filter{10/buffer_size,0/item num}

[P] = or-rewrite(Pipe)
where or-rewrite(Pipe) is given by the following behavioral equation for Pipe’:

Pipe’(void; void) =
accept_item . choice {
forward_item_1 . Pipe’ (),
forward_item_2 . Pipe’(),
forward_item_3 . Pipe’ ()

3

which is equivalent to the third behavioral equation of Sect. 2.2.

In the second step, the semantics of the whole description is derived by com-
posing in parallel the semantics of its AEIs according to the specified attach-
ments and by taking into account the possible behavioral variations. This is
achieved by exploiting all the typical static operators: parallel composition,
hiding, restriction, and relabeling. Since attached local interactions do not nec-
essarily have the same name, while the CSP-like parallel composition operator
that we use requires the synchronizing actions to have the same name, it is
necessary to determine the number of fresh actions that are needed in order to
make the AEIs interact according to the attachments. This requires to single
out all the maximal sets of synchronizing local interactions, as all the mem-
bers of a maximal set must be relabeled to the same fresh action. In the case
of an attachment between two uni-interactions, the maximal set is composed
of the two uni-interactions themselves. In the case of an and-interaction, we
have a single maximal set composed of the and-interaction and all the uni-
interactions attached to it. In the case of an or-interaction, we have as many
maximal sets as there are attachments involving the or-interaction. Each of

13

such sets comprises one of the uni-interactions involved in the attachments
and the corresponding uni-interaction obtained by indexing the or-interaction
in the rewriting process (see Def. 2.1).

Given an architectural type A, let Cq,...,C, be some of its AEls, and let
i,j,k range over {1,...,n}. For each AEI C}, let Zp, = LZ¢, U AZ, be the
set of its local and architectural interactions, and LZ¢,.c, .c, € LZ¢c, be
the set of its local interactions attached to local interactions of C4,...,C,.
Once we have identified the maximal sets of synchronizing local interactions
for the considered AEIs, we construct a set S(C1,...,C,) composed of as
many fresh actions as there are maximal sets of synchronizing local interac-
tions. Then we relabel all the local interactions in the same set to the same
fresh action. This is achieved by defining a set of injective relabeling functions
of the form ¢e,.c..c. : LLcicy...0, — S(Ch,...,C,) in such a way that
00, (A1) = 00y, 00 (a2) iff Ciar and Cj.ay belong to the same set.

Definition 2.2 Let A be an architectural type and let C, ..., C, be some of
its AEIs. The interacting semantics of C; w.r.t. C,...,C, is defined by

[[Ci]]ch.--,cn = [[Ci]][gociiolymycn] -

Let us then define for each AEI and pair of AEIs in (1, ..., C, the subset of
fresh actions to which their local interactions are relabeled:
S(Ci;Ch, ..., C) = weson...cn(LLevcy. o)
S(CZ, Cj; Cl, ey Cn) = S(CZ, 01, ey Cn) N S(Cj; 01, Ce ,Cn)

Definition 2.3 Let A be an architectural type and let C, ..., C, be some of
its AEIs. The interacting semantics of C1, ..., C, is defined by

[Cy,...,Ch) = [Ci]ey

[Co]en,....on lls(Cr,Ca:C1 .0 C)US(Co,CaiCrysC) = - -

. H:'L:OES(CZ"CMCL...,C” [[C”]]Cﬁ,...,cn .

..... Cn ls(C1,Cas01,0m)

Definition 2.4 Let A be an architectural type, let C1,...,C, be all of its
AEISs, let ‘H be the set of its hidden actions, let R be the set of its restricted
actions, and let ¢ be a relabeling function describing its renamings. The se-
mantics of A before and after the behavioral variations are defined by

[Alobe = [Ch, ..., Ch]
[Alabe = [Ch, ..., Co] / HA\R [¢] [|

For the pipe-filter system of Sect. 2.1 we have:

14

[Pipe Filter].,, =
[F_O][process_item — F_0O.process_item#P.accept_item|

|| {F_0.process_item#tP.accept_item}

[P][accept_item — F_O.process_item#P.accept_item,
forward_ item_1 — P.forward item_1#F_1.store_item,
forward_ item 2 — P.forward_ item 2#F _2.store_item,

forward item 3 — P.forward item 3#F _3.store_iten]

| | {P.forward_item_1#F_1.store_item}

[F1][accept_item +— P.forward item 1#F_1.store item|

| | {P.forwvard_item_2#F_2.accept_item}

[F_2][accept_item — P.forward item 2#F 2.store_item|

’ | {P.forward_item_3#F_3.accept_item}

[F_3][accept_item +— P.forward item 3#F 3.store_item|
which is equivalent to the first behavioral equation of Sect. 2.2.

2.9 Comparison with Process Algebraic ADLs

Although several process algebraic ADLs have appeared in the literature — like,
e.g., Wright [3], Darwin/FSP [18,19], and PADL [8] — as far as we know this
is the first time that the design rationale behind such languages is discussed
in a detailed way and structured around a set of guidelines.

The language that we have constructed here, which we call basic PADL, is
an extension of the language presented in [8] from which the architectural in-
vocation mechanism with behavioral parameter passing has temporarily been
removed. Basic PADL is clearly inspired by Wright and Darwin/FSP. How-
ever, there are several differences that are worth mentioning. First, Wright
distinguishes between components and connectors, while in basic PADL (sim-
ilarly to Darwin/FSP) there are just architectural elements, each of which can
be interpreted as being a component or a connector depending on the specific
system. This avoids redundancy in the specifications caused by the presence
of connectors whose behavior is trivial. Second, in Wright the description of
each component/connector is accompanied by its ports/roles, whereas in basic
PADL and in Darwin/FSP the interactions are simply expressed as actions.
Since ports and roles can be retrieved whenever necessary through suitable
applications of the hiding operator, avoiding ports and roles simplifies the

15

specifications. Third, Wright allows the connector behavior to be constrained
through trace predicates, while this is not possible in basic PADL and in Dar-
win/FSP. As a consequence, in the last two languages the designer is forced
to completely describe each behavior in a process algebraic way and then to
verify that certain properties are satisfied by the behavior. This realizes a clear
separation of concerns between modeling and analysis. Fourth, Darwin/FSP
and an extension of Wright [2] allow systems with a dynamic architecture to
be modeled, whereas this is not the case with basic PADL.

With respect to [8], basic PADL additionally provides support for the decla-
ration of the forms of communication in which the interactions are involved
(uni/and/or qualifiers) together with the related static checks, as well as sup-
port for the specification of behavioral variations. These features are present
neither in Wright nor in Darwin/FSP.

2.10 Remarks on the Parallel Composition Operator

From a process algebraic viewpoint, the parallel composition operator is re-
sponsible for most of the modeling difficulties encountered by non-experts. The
general problem with this operator is that it forces the system behavior and
the system topology to be defined in an intertwined way. In this respect, it is
worth mentioning that a performance-oriented variant of PADL called Amilia,
recently implemented in the software tool TwoTowers [6], is currently being
used by some undergraduate and graduate students not necessarily familiar
with formal methods. Such students, who were exposed to the previous version
of TwoTowers based on pure stochastic process algebra, now feel much more
confident about their ability of faithfully modeling the systems of their inter-
est. They recognize that the reason for this is the replacement of the parallel
composition operator with a section in which the system topology is sepa-
rately described from the behavior by declaring the component and connector
instances and the attachments between their interactions. Another recognized
improvement is given by the various static checks that are automatically car-
ried out based on the qualifiers associated with the elicited interactions.

Other problems with parallel composition are related to the specific operator
that is used. The CCS-like parallel composition operator [20] is the simplest
one, but supports only two-way synchronizations and requires the application
of the restriction operator to enforce them. The CSP-like parallel composition
operator [15] allows instead for multiway synchronizations without resorting
to the restriction operator, but requires the synchronizing actions to have the
same name and suffers from the fact that the synchronization sets depend on
the order in which the process terms occur as operands. The ACP-like parallel
composition operator [4] overcomes the two previous drawbacks through the

16

definition of a communication function on the set of actions, but still it is a
binary operator.

A more friendly and expressive parallel composition operator is discussed
in [13]. There it is proposed to adopt an n-ary parallel composition opera-
tor and to explicitly declare the interfaces of the involved process terms. Then
the proposed operator is extended to deal with m-among-n synchronizations
(2 < m < n), which take place when n process terms synchronize m by m
on the same action. Similarly to [13], our approach suggests the component-
oriented specification and attachment of the interactions in place of the def-
inition of the synchronization sets, and provides support for n-among-n and
2-among-n synchronizations through and- and or-interactions, respectively.
Our approach is thus less expressive than the one of [13], but resides at a
higher level of abstraction, which in particular lets the designer free to choose
different names for synchronizing interactions like in [4]. We may have adopted
the parallel composition operator of [13] in the definition of the translation
semantics, but we have preferred to avoid that in order not to complicate the
proofs of the results of Sect. 4.

We conclude by mentioning the parallel composition operator recently pro-
posed in [14]. This approach requires the specification of the sets of actions
that can synchronize with each other and, within each set, the indication of
those groups of actions that result in complete synchronizations. Although
more flexible than [13], this approach cannot enforce m-among-n synchro-
nizations because it assumes that complete synchronizations are closed with
respect to set inclusion and it adopts a rule that favors the execution of the
largest complete synchronizations.

3 Designing System Families

We now discuss the seventh guideline introduced in Sect. 1: providing support
for the design of system families. This issue is closely related to the concept
of architectural style [22], which denotes an organizational pattern that has
been developed over the years, resulting in a family of systems having a com-
mon vocabulary of components and connectors as well as a common set of
constraints on their topology. As examples of architectural styles we mention
call-and-return systems (main program and subroutines, object-oriented pro-
grams, client-server systems, hierarchical layers), dataflow systems (pipe-filter
systems), independent components (event-based systems), virtual machines
(interpreters), and repositories (databases, hypertexts). From a practical view-
point, the architectural styles should serve as a means to capitalize on codified
principles and experience to specify, analyze, plan, and monitor the construc-
tion of complex systems with high levels of efficiency and confidence.

17

Unfortunately, it is hard to formalize the concept of architectural style, because
the variability of the system behavior and of the system topology within an
architectural style can be interpreted in different ways, with the interpretation
possibly changing from style to style. In order to keep the task manageable,
following [8] we advocate the use of an approximation of the concept of ar-
chitectural style — called architectural type — which allows for a controlled
variability of the system behavior and of the system topology. The controlled
variability of the system behavior is achieved by allowing only the internal
behavior of corresponding AET's to vary from instance to instance of an archi-
tectural type. As far as the controlled variability of the topology is concerned,
we consider three kinds of topological extensions. The first one — exogenous ex-
tensions — permits to add further AEIs by attaching them to the architectural
interactions, provided that the overall addendum complies with the original
topology. The second one — endogenous extensions — is concerned with the
introduction of further AEIs within the topology of the architectural type, in
a way that respects the original topology. The third one — and/or extensions
— allows the number of AEls attached to and- or or-interactions to vary from
instance to instance of an architectural type.

Technically speaking, the instances of an architectural type are obtained via
an architectural invocation mechanism and can differ not only for their ac-
tual data parameters, but also for their actual behavior and topology. In this
section we incrementally build on basic PADL by presenting the architectural
invocation mechanism, then the passing of behavior-related architectural pa-
rameters, and finally the passing of topology-related architectural parameters
resulting in exogenous, endogenous, and and/or extensions.

3.1 Architectural Invocation and Hierarchical Modeling

In its simplest form, an architectural invocation is expressed through the name
of a previously defined architectural type, followed by its actual data parame-
ters and the actual names for its architectural interactions enclosed in paren-
theses. The semantics of an architectural invocation is given by the semantics
of the invoked architectural type (see Def. 2.4), to which a relabeling opera-
tor is applied in order to rename the architectural interactions to their actual
names.

The architectural invocation mechanism opens the way to hierarchical mod-
eling. This is achieved by allowing the behavior of an AET to be defined not
only through a sequence of process algebraic behavioral equations, but also
through an architectural invocation. Graphically, an AET defined through
the invocation of an architectural type is represented as a box with a double
border.

18

C.dient_Type()
send_r equest

recei ve_response

recei ve_request

send_r esponse

S: Server _Type(10, 0) T
store_item;

2,

F O:Filter_Type(10,0)

process_item

accept _item

P: Pi pe_Type()

forward_item

store_item

store

item

tore_item

F 1:Filter_Type(10,0)

F 2:Filter_Type(10,0)

F 3:Filter_Type(10,0) ”E

¥

F¥

process_item

process_item

e

Fig. 2. Graphical description of Client _Server

As an example, suppose that we wish to describe a client-server system in
which the server has the same structure and behavior as the pipe-filter system
of Sect. 2.1. The graphical representation of the client-server system is shown
in Fig. 2. As can be noted below, the support for hierarchical modeling is
especially useful both to produce a more readable specification and to avoid

defining the server from scratch:

ARCHI_TYPE Client_Server(const integer cs_buffer_size :=

10,

const integer(0..cs_buffer_size)

cs_init_item_num
ARCHI_ELEM_TYPES
ELEM_TYPE Client_Type(void)

BEHAVIOR
Client(void; void) =

send_request

. receive_response . Client()

INPUT_INTERACTIONS UNI receive_response
OUTPUT_INTERACTIONS UNI send_request

ELEM_TYPE Server_Type(const integer buffer_size,

:=0)

const integer(0..buffer_size)

init_item_num)

19

BEHAVIOR
Server(void; void) =
Pipe_Filter(buffer_size, init_item_num;
receive_request, send_response,
send_response, send_response)

INPUT_INTERACTIONS UNI receive_request
OUTPUT_INTERACTIONS UNI send_response

ARCHI_TOPOLOGY

ARCHI_ELEM_INSTANCES
C : Client_Type(Q);
S : Server_Type(cs_buffer_size, cs_init_item_num)

ARCHI_INTERACTIONS
void

ARCHI_ATTACHMENTS
FROM C.send_request TO S.receive_request;
FROM S.send_response TO C.receive_response

END

The behavior of Server is specified through an invocation of the previously
defined architectural type Pipe Filter. While Pipe Filter has one architec-
tural input uni-interaction (F_0.store_item) and three architectural output
uni-interactions (F_1.process_item, F_2.process_item, F_3.process_iten),
Server has one local input uni-interaction (receive_request) and only one
local output uni-interaction (send response). The relation between the three
architectural output uni-interactions of Pipe Filter and the only local output
uni-interaction of Server is established in the architectural invocation, where
all the three architectural output uni-interactions are identically renamed to
send_response.

3.2 Behavioral Architectural Parameters

The first set of architectural parameters that we add to the architectural in-
vocation mechanism is composed of seven groups of behavioral architectural
parameters that must be specified between the actual data parameters and
the actual names for the architectural interactions. They represent the actual
AETs, the actual AEISs, the actual architectural interactions, the actual attach-

20

ments, the actual hidings, the actual restrictions, and the actual renamings.
The actual AETs are the actual types of components and connectors con-
stituting the instance of the invoked architectural type. The presence of the
other six behavioral architectural parameters is just a consequence of the fact
that the actual AETSs and their actions can have names that are different from
the ones of the corresponding formal AETs and their actions, respectively. In
other words, the AEIs, the architectural interactions, the attachments, the
hidings, the restrictions, and the renamings in the definition of the invoked
architectural type cannot always be reused in the invocation. Should reuse be
possible for an entire group of behavioral parameters, these can be omitted
from the architectural invocation.

We say that an actual AET behaviorally conforms to its corresponding formal
AET if both AETSs possess the same external behavior. The notion of same ex-
ternal behavior should be formalized through an equivalence that is: weak, in
order to abstract from the internal actions; compositional with respect to the
static operators, in order to provide support for lifting the notion of behavioral
conformity from AETS to architectural types; fine enough, in order to preserve
many properties of interest. To achieve these objectives, we adopt the weak
bisimulation equivalence [20], which we denote by ~p. Since an actual AET
and the corresponding formal AET can give different names to correspond-
ing interactions, the notion of same external behavior should abstract from
these differences. This is accomplished by applying suitable injective relabeling
functions to the interactions.

Definition 3.1 Let C;,Cy be two AETs with data parameter sets Dy, Ds,
behaviors By, By, internal action sets Hy, Hs, and interaction sets Z;,Z,, re-
spectively. Let the elements of D; and D5 be consistent by number, order, and
type. Let the elements of Z; and Z, be consistent by number, order, and qual-
ifiers. We say that C; behaviorally conforms to C, iff there exist two injective
relabeling functions @1, o for 71,7, respectively, such that ¢; and ¢, have
the same codomain and are qualifier-consistent and

or-rewrite(By) | Hi [¢1] =B or-rewrite(By) | Ha [pa]
for all data value assignments to D; and Ds. []

Definition 3.2 Let A; be the definition of an architectural type and A, be
an architectural invocation of A;. We say that A, behaviorally conforms to
A, iff they have:

Data parameters that are consistent by number, order, and type.
Behaviorally conformant AETSs that are consistent by number and order.
AEIs that are consistent by number, order, and type and have actual data
parameters with the same values.

Architectural interactions that are consistent by number, order, qualifiers,
and membership to corresponding AEIs.

21

e Attachments that are consistent by number, order, and qualifiers and mem-
bership to corresponding AEIs of the involved local interactions. |

If an architectural invocation behaviorally conforms to the definition of the
invoked architectural type, then its semantics is built as in Def. 2.4, with
the actual data parameters and the actual behavioral parameters replacing
the corresponding formal parameters and the architectural interactions being
relabeled with their actual names.

The following result, which is a slight reworking of a result shown in [§8], is a
straightforward consequence of Def. 3.2 and the fact that ~p is a congruence
with respect to the static operators.

Theorem 3.3 Let A; be the definition of an architectural type with internal
action set H; and interaction set Z; and let A, be a behaviorally conformant
architectural invocation of A; with internal action set Hs and interaction set
75, where the architectural interactions occur with their actual names. If the
values assigned to the formal data parameters of A; are equal to the corre-
sponding actual data parameters of A,, then there exist a relabeling function
1 for Z;, which is injective at least on the local interactions, and an injective
relabeling function ¢s for Z,, such that ¢; and ¢, have the same codomain
and are qualifier-consistent and

[[-Al]]bbv/Hl [901] ~B [[Az]]bbv/Hz [<P2]

In the theorem above, ¢, is not required to be injective over the architectural
interactions because different architectural interactions in Z; may need to be
put in correspondence with architectural interactions of A, that are given the
same actual name in Z, (see the architectural invocation of Pipe Filter in
Sect. 3.1).

Such a theorem provides us with an efficient algorithm for checking behavioral
conformity. Instead of building the global state spaces for the architectural
type definition and the architectural type invocation and checking them for
weak bisimulation equivalence after applying suitable hidings and relabelings,
we proceed as follows. For every pair of corresponding AETs without (resp.
with) data parameters, we verify whether the local state spaces of such AETs
(resp. of each pair of corresponding instances of such AETS) are weakly bisim-
ulation equivalent after applying suitable hidings and relabelings. Therefore,
the complexity of checking behavioral conformity at the architectural type
level grows linearly with the number of AETSs (resp. AEls), instead of growing
exponentially with the number of AEIs.

As an example, suppose the server of the architectural type Client _Server
of Sect. 3.1 is a pipe-filter system in which the filters never fail:

22

ELEM_TYPE Perfect_

BEHAVIOR

Filter_Type(const integer buffer_size,
const integer(0..buffer_size)
init_item_num)

Perfect_Filter(integer(0..buffer_size) item_num :=

choice {

init_item_num;
void) =

cond(item_num < buffer_size) ->
store_item . Perfect_Filter(item_num + 1),
cond(item_num > 0) ->

process_

item . Perfect_Filter(item_num - 1)

INPUT_INTERACTIONS UNI store_item
OUTPUT_INTERACTIONS UNI process_item

Then the architectural invocation defining the behavior of the server changes

as follows:

Pipe_Filter(buffer_size, init_item_num;
Perfect_Filter_Type, Pipe_Type;

F_0

P
F_1

F_2
F_3 :

;o /%
;0 /%
;0 /%
;o /*
;o /*

: Perfect_Filter_Type(buffer_size,

init_item_num),

: Pipe_Type(Q),
: Perfect_Filter_Type(buffer_size,

init_item_num),

: Perfect_Filter_Type(buffer_size,

init_item_num),
Perfect_Filter_Type(buffer_size,
init_item_num) ;
reusing formal architectural interactions */
reusing formal attachments */
no hidings */
no restrictions */
no renamings */

receive_request, send_response, send_response,
send_response)

Since the semantics of each of the four instances of Perfect Filter Type is
weakly bisimulation equivalent to the semantics of the corresponding instance
of Filter _Type after hiding all the internal actions — fail and repair — and
using the identical relabeling function, the above invocation of the architec-

23

tural type Pipe Filter conforms to the definition of the same architectural
type. As a consequence, the semantics of the above architectural invocation is
weakly bisimulation equivalent to the semantics of the corresponding architec-
tural definition, provided that the same internal actions as above are hidden
and the identical relabeling function is applied.

3.3 Erogenous Ertensions

Within an architectural type it is desirable to have some form of variabil-
ity in the topology as well. As an example, consider the architectural type
Pipe Filter of Sect. 2.1. Every instance of such an architectural type admits
a single pipe connector linking one upstream filter component to three down-
stream filter components. However, in principle it is reasonable to express by
means of this architectural type any pipe-filter system with an arbitrary num-
ber of filter components and pipe connectors, such that every pipe connector
links one upstream filter component to three downstream filter components.
For instance, the enriched flow graph in Fig. 3 should be considered as a legal
topological extension of the enriched flow graph in Fig. 1.

store_item

F O:Filter_Type(10,0)

process_item

accept _item

P: Pi pe_Type()

forward_item

store_item store item store_item

F 1:Filter_Type(10,0) | |[F_ 2:Filter_Type(10,0) | |F_3:Filter_Type(10,0)

process_item process_item process_item

accept _item
P’ : Pi pe_Type()
forward_ ite

store_item store item store_item

F 4:Filter_Type(10,0) | |[F 5:Filter_Type(10,0) | |F_6:Filter_Type(10,0)
‘ pr ocesas_i tem pr ocesas_i tem process_i taem

Fig. 3. Graphical description of an exogenous extension of Pipe Filter

Since the architectural interactions are the frontier of an architectural type,
the idea is to make it possible to extend an architectural type at some of its
architectural interactions — exogenous extension — in a way that follows the
topology prescribed by the architectural type itself. Note that this cannot be
done at the local interactions because each of them must occur in at least one
attachment, hence they are not free.

24

If present, the exogenous extensions are syntactically expressed within an ar-
chitectural invocation between the actual attachments and the actual behav-
ioral variations. A single exogenous extension is expressed through the keyword
EXQ, followed by four topological parameters enclosed in parentheses, which
must satisfy certain constraints in order for the architectural invocation to
topologically conform to the definition of the invoked architectural type.

The first topological parameter is a list of AEIs. Such AEIs represent the com-
ponents and the connectors forming the exogenous extension. Each additional
AEI must have a name different from the name of all the other actual AEIs
in the architectural invocation, while its type must occur in the list of actual
AETSs of the architectural invocation, i.e. no new AET can be introduced in
an exogenous extension.

The second topological parameter is a list of substitutions of architectural
interactions of the additional AEIs for some of the actual architectural inter-
actions. This parameter indicates all the (replacing) architectural interactions
of the additional AEIs as well as all the (replaced) actual architectural interac-
tions at which the exogenous extension takes place. Such replaced architectural
interactions become local interactions within the exogenous extension, so each
of them must be involved in at least one additional attachment. All the archi-
tectural interactions occurring in a substitution must belong to AEIs of the
same type and have the same name. Every actual architectural interaction can
occur only in one substitution of one exogenous extension.

The third topological parameter is a list of attachments. Such attachments de-
scribe the structure of the exogenous extension by connecting the additional
AEIs to each other and to the replaced architectural interactions within the
frontier of the topology of the invoked architectural type. Such attachments
must follow the pattern prescribed by the topology of the invoked architec-
tural type. Intuitively, it is not possible to introduce an additional attachment
that has no correspondence in the topology of the invoked architectural type.
Formally, this means that there must exist an injective function corr from the
set of additional AEIs of the exogenous extension to the set of actual AEIs of
the invoked architectural type, such that corr preserves the type and the value
of the actual data parameters of corresponding AEIs, and for all interactions
a of an arbitrary additional AEI C:

e (C.a is local/architectural iff corr(C').a is local/architectural.

e There is an additional AEI C” with an additional attachment from C.a (resp.
C'.a") to C".a’ (resp. C.a) iff in the topology of the invoked architectural type
there is an attachment from corr(C).a (resp. corr(C’).a’) to corr(C').d’
(resp. corr(C).a).

e There is an additional attachment from C.a (resp. the replaced architectural
interaction K.b) to the replaced architectural interaction K.b (resp. C.a) iff

25

in the topology of the invoked architectural type there is an AEI K’ of the
same type as K with an attachment from corr(C).a (resp. K'.b) to K'.b
(resp. corr(C).a).

The fourth topological parameter is a list of possible nested exogenous exten-
sions.

In the presence of exogenous extensions, the possible actual behavioral varia-
tions can be concerned with the actions of the additional AEIs as well. We also
observe that actual names must be provided only for the actual architectural
interactions that are not replaced.

As an example of exogenous extension, let us consider the following invocation
of the architectural type Pipe_Filter of Sect. 2.1 within the server of the
architectural type Client Server of Sect. 3.1, which results in the enriched
flow graph of Fig. 3:

Pipe_Filter(buffer_size, init_item_num;
Filter_Type, Pipe_Type;
F_O0 : Filter_Type(buffer_size, init_item_num),

P : Pipe_TypeQ,

F_1 : Filter_Type(buffer_size, init_item_num),
F_2 : Filter_Type(buffer_size, init_item_num),
F_3 : Filter_Type(buffer_size, init_item_num);

; /* reusing formal architectural interactions */
; /* reusing formal attachments */
EXQ(P’ : Pipe_TypeQ,
F_4 : Filter_Type(buffer_size,
init_item_num),
F_5 : Filter_Type(buffer_size,
init_item_num),
F_6 : Filter_Type(buffer_size,
init_item_num) ;
SUBST F_4.process_item,
F_b.process_item,
F_6.process_item
FOR F_2.process_item;
FROM F_2.process_item TO P’.accept_item,
FROM P’ .forward_item TO F_4.store_item,
FROM P’ .forward_item TO F_5.store_item,
FROM P’ .forward_item TO F_6.store_item;
); /* no nested exogenous extensions */
; /* no hidings */
i /* no restrictions */
; /* no renamings */

26

receive_request, send_response, send_response,
send_response, send_response, send_response)

This exogenous extension occurs at one architectural output uni-interaction
(F_2.process_item), which is replaced by three new architectural output uni-
interactions (F_4.process_item, F_5.process_item, and F_6.process_item).
As a consequence, in total we have one architectural input uni-interaction,
which is renamed as receive_request, and five architectural output uni-
interactions, each of which is renamed as send_response. Here we have that
corr(P') = P, corr(F4) = F_1, corr(F5) = F2, and corr(F_6) = F_3. The
same kind of exogenous extension can take place at F_1.process_item or
F_3.process_item, and can be nested within the exogenous extension itself
at each of the three replacing architectural interactions.

An example of exogenous extension taking place at several architectural inter-
actions instead of a single one is obtained if we modify the Pipe Filter archi-
tectural type in such a way that the pipe connector has three upstream filter
components and its accept_item action becomes an input or-interaction. In
that case, all of F_1.process_item, F_2.process_item, and F_3.process_item
must be replaced within the same substitution.

3.4 Endogenous Ertensions

We now introduce another class of desirable topological extensions. Let us
consider a ring of four stations, each adopting the same protocol — wait for a
message from the previous station in the ring, process the received message,
and send the processed message to the next station in the ring:

ARCHI_TYPE Station_Ring(void)
ARCHI_ELEM_TYPES
ELEM_TYPE Init_Station_Type(void)
BEHAVIOR
Init_Station(void; void) =

send_msg . receive_msg . process_msg . Init_Station()

INPUT_INTERACTIONS UNI receive_msg
OUTPUT_INTERACTIONS UNI send_msg

27

ELEM_TYPE Station_Type(void)

BEHAVIOR
Station(void; void) =
receive_msg . process_msg . send_msg . Station()

INPUT_INTERACTIONS UNI receive_msg
OUTPUT_INTERACTIONS UNI send_msg

ARCHI_TOPOLOGY

ARCHI_ELEM_INSTANCES
IS : Init_Station_Type(Q);
1 : Station_Type(Q);
2 : Station_Type();
3 : Station_Type()

ARCHI_INTERACTIONS
void

ARCHI_ATTACHMENTS
FROM IS.send_msg TO S_1.receive_msg;
FROM S_1.send_msg TO S_2.receive_msg;
FROM S_2.send_msg TO S_3.receive_msg;
FROM S_3.send_msg TO IS.receive_msg

END

Every instance of the architectural type Station Ring admits a single initial
station and three normal stations connected to form a ring, with the initial
station being the first one allowed to send a message. However, it would be
desirable to express by means of such an architectural type any ring system
with an arbitrary number of normal stations. For instance, the enriched flow
graph in Fig. 4 should be considered as a legal topological extension of the
architectural type Station Ring.

send_nsg recei ve_msg

* S:Init_Station_Type() ¢
recei ve_ns g/ """"""""""" s end_rrsg """""

‘ S 1:Station_Type() ‘ ‘ S 4: Station_Type() ‘

send_msg- recei ve_nsg
recei ve_nsg send_nsg

) recei ve_nsg)
S 2:Station_Type() send_msg S 3:Station_Type()

Fig. 4. Graphical description of an endogenous extension of Station Ring

28

The idea behind this kind of topological extension, which we call endoge-
nous, is that of introducing some additional AEIs within the topology itself in
a controlled way. Unlike the exogenous extensions, an endogenous extension
does not require passing topological parameters. Since an endogenous exten-
sion takes place within the topology of an architectural type, the definition of
the architectural type has to be given in a way that permits the addition of
AEIs of certain types in certain parts of the topology. This is easily achieved
by describing the numbers of such AEIs through formal data parameters of
the architectural type and by declaring some of the AEISs, of the architectural
interactions, and of the attachments in an iterative way through an indexing
mechanism controlled by the previous data parameters. As we shall see be-
low, another difference between the endogenous extensions and the exogenous
extensions is that the endogenous ones may introduce kinds of attachments
that are not present in the instance of the considered architectural type with
no additional AEIs, whereas this is not possible for the exogenous extensions.

As an example, we show below a different definition of the architectural type
Station Ring — where the identical parts are not repeated — which provides
support for the desired endogenous extensions allowing for an arbitrary num-
ber of normal stations:

ARCHI_TYPE Station_Ring(const integer normal_station_num := 3)
ARCHI_ELEM_TYPES

ELEM_TYPE Init_Station_Type(void)

ELEM_TYPE Station_Type(void)

ARCHI_TOPOLOGY

ARCHI_ELEM_INSTANCES
IS : Init_Station_Type();
FOR_ALL 1 <= i <= normal_station_num
S[i] : Station_Type()

ARCHI_INTERACTIONS
void

ARCHI_ATTACHMENTS
FROM IS.send_msg TO S[1].receive_msg;
FOR_ALL 1 <= i <= normal_station_num - 1
FROM S[i].send_msg TO S[i + 1].receive_msg;

29

FROM S[normal_station_num].send_msg TO IS.receive_msg

END

For normal _station_num equal to 1 there is no attachment between two AEIs
of type Station _Type, whereas attachments of this kind are introduced when-
ever normal _station num is greater than 1. If normal station num is equal
to 4 we get the endogenous extension depicted in Fig. 4.

3.5 And/Or Eztensions

A special case of endogenous extension is the one that allows the number of
AEIs of certain types attached to and- or or-interactions to vary in a controlled
way. As an example, consider the architectural type Pipe Filter of Sect. 2.1.
Every instance of such an architectural type admits (via suitable exogenous
extensions) a certain number of pipe connectors, each having an output or-
interaction attached to the input uni-interaction of three downstream filter
components. By means of the considered architectural type it would be desir-
able to express any pipe-filter system in which every pipe connector is attached
to one upstream filter component and arbitrarily many downstream filter com-
ponents. For instance, the enriched flow graph in Fig. 5 should be considered
as a legal topological extension of the enriched flow graph in Fig. 1.

store_item

‘F_O: Fil ter_Type(10,0) ‘
process_item

accept_item

P: Pi pe_Type() ‘
forward item_t~

store_item storeltem store_item i' store_item ‘3

F 1:Filter Type(lO 0) ‘ ‘F 2:Filter Type(lO 0) ‘ ‘F 3:Filter Type(lO 0) ‘ ‘F 4:Filter Type(lO 0)

pr OCGSS item pr OCGSS item pr OCGSS item i pr ocess I tem

Fig. 5. Graphical description of an and/or extension of Pipe Filter

Like the endogenous extensions, this kind of topological extension, which we
call and/or, does not require the passing of architectural parameters. Instead,
a formal data parameter is used to represent the number of AEIs attached to
every extended and-/or-interaction, and an indexing mechanism controlled by
such data parameters is employed to declare some of the AEIs, of the archi-
tectural interactions, and of the attachments in an iterative way. We observe
that, in order for an and- or an or-interaction of an AEI to be extensible,
whenever an AEI is attached to it with a uni-interaction, then the former AEI
cannot be attached with uni-interactions to interactions of the latter AEIL. If
this were not the case, should an and/or extension take place then some uni-

30

interactions of the former AEI would be attached to several interactions of
the latter AEI — as shown in Fig. 6 — which is not allowed. We also note that,
unlike the endogenous extensions, the and/or extensions never introduce new

kinds of attachments.
ol e]
™

Cc.[2] 2 C [2]

> \DII
@ (b)

Fig. 6. Attachments preventing and/or extensions

As an example, we show below a different definition of the architectural type
Pipe Filter — where the identical parts are not repeated — which provides
support for the desired and/or extensions allowing for an arbitrary number of
downstream filter components:

ARCHI_TYPE Pipe_Filter(const integer pf_buffer_size := 10,
const integer(0..pf_buffer_size)
pf_init_item_num := O,
const integer ds_filter_num := 4)

ARCHI_ELEM_TYPES

ELEM_TYPE Filter_Type(const integer buffer_size,
const integer(0..buffer_size)
init_item_num)

ELEM_TYPE Pipe_Type (void)

ARCHI_TOPOLOGY

ARCHI_ELEM_INSTANCES
F[0] : Filter_Type(pf_buffer_size, pf_init_item_num);
P : Pipe_Type();
FOR_ALL 1 <= i <= ds_filter_num
F[i] : Filter_Type(pf_buffer_size, pf_init_item_num)

ARCHI_INTERACTIONS
F[0] .accept_item;
FOR_ALL 1 <= i <= ds_filter_num
F[i] .process_item

31

ARCHI_ATTACHMENTS
FROM F[0] .process_item TO P.accept_item;
FOR_ALL 1 <= i <= ds_filter_num
FROM P.forward_item TO F[i].accept_item

END

For ds_filter num equal to 4 we get the and/or extension depicted in Fig. 5,
while for ds_filter num equal to 3 we get the original architectural type
depicted in Fig. 1.

3.6 Comparison with Process Algebraic ADLs

We call full PADL the language that we have constructed here. With respect to
Wright and Darwin/FSP, the architectural invocation mechanism, the behav-
ioral parameter passing, the exogenous extensions, the endogenous extensions,
and the and/or extensions are new. With respect to [8], where the concepts
of architectural invocation and behavioral parameter passing were originally
proposed in a slightly different way, only the topological extensions are new.

4 Verifying Architectural Mismatch Freedom

The revision of the process algebra syntax leading to the construction of an
ADL must be accompanied by an analogous effort on the verification side.
Being able to reuse for a language like full PADL all the analysis machinery
developed for process algebra is not enough. What is needed at the archi-
tectural design level is a technique to verify the freedom from architectural
mismatches, i.e. those malfunctionings that arise when assembling together
several components that are correct when considered in isolation. For efficiency
and usefulness reasons, the verification technique mentioned above should be
component oriented. This means that it should be able to infer the proper-
ties of the whole system from the properties of the system components and
connectors, hopefully providing some diagnostic information in case of prop-
erty violation useful to single out and modify the components and connectors
responsible for the mismatches.

Apart from [12], where a generic notion of composability has been addressed,
several results have been achieved via equivalence checking that are specifically
concerned with deadlock freedom. In [3] a component-oriented deadlock free-
dom verification technique has been developed, which considers single pairs

32

of interactions of components and connectors communicating with each other.
In [17,16] a more general technique has been proposed, which operates at
the component level by taking into account the correlation among all the in-
teractions of a component. In [8] an even more general technique has been
presented, which considers not only the interactions between pairs of architec-
tural elements, but also the interactions within sets of architectural elements
forming a cycle.

As observed in the conclusion of [8], the proposed techniques suffer from some
limitations concerned with the considered properties (only deadlock freedom),
the distinguishing power of the employed equivalences (weak bisimulation
equivalence and failure equivalence), the considered topologies (acyclic struc-
tures and single cycles), and the lack of full scalability of the mismatch freedom
results from single systems to entire system families.

The main technical contribution of this paper is to generalize the previous
results by showing that it is possible to verify in a component-oriented way an
arbitrary property of a certain class over an entire architectural type having
an arbitrary topology. After revising some technical definitions of [8], we first
extend the sufficient condition of [8], which ensures deadlock freedom for a
single architecture whose topology is acyclic or is a cycle, to the validity of an
arbitrary property of a certain class for a single architecture with an arbitrary
topology. Then we further extend this result from a single architecture to an
architectural type, by considering behavioral parameter passing, exogenous
extensions, endogenous extensions, and and/or extensions.

4.1 Class of Properties

The class of properties that we consider is characterized by three constraints.
The first constraint is that such properties are expressed only in terms of local
interactions. Unlike the internal actions and the architectural interactions,
which can always be executed, the possibility or necessity of executing the
local interactions and the order in which they are executed depend on the local
interactions to which they are attached. Thus, architectural mismatches can
only be generated by the wrong interplay of the local interactions of different
AEIs. As a consequence of this constraint, the checks for verifying the absence
of architectural mismatches that we shall introduce are applied locally to pairs
of AEIs or cycles of AEIs by abstracting from their internal actions as well as
their architectural interactions.

The second constraint is that, given a property P in the class, there exists a

weak equivalence ~p coarser than ~p that preserves P — it never equates two
process terms such that only one of them satisfies P — and is a congruence

33

with respect to the static operators of process algebra. The reason is that the
previously mentioned checks, if passed, ~p-equate a set of AEIs forming a
star or a cycle to a single AEI in the set satisfying P. Then this is composi-
tionally exploited when scaling from the set of AEIs to the overall topology
by replacing the considered set of AEIs with the ~p-equivalent AEI satisfying
P. The fact that ~p is coarser than ~g, used in the definition of behavioral
conformity, is finally exploited when scaling from a single architecture to a
family of behaviorally conformant architectural invocations.

The third constraint is that the (action-based) temporal logic in which the
properties of the class are expressed does not allow the negation to be freely
used. We shall admit the universal and existential path quantifiers, the tem-
poral operators globally, eventually, and until, the modal operators weak dia-
mond and weak box !, the logical operators conjuction and disjunction, and
the constant true. The reason is that, given a property P in the class, the ap-
plication of the previously mentioned checks, if passed, results in ~p-equating
the architectural type under study in which some local interactions have been
hidden to another architectural type satisfying P. Therefore, to retrieve the
validity of P for the original architectural type, in which the hidden local in-
teractions are no longer hidden, we need to limit the way in which the negation
can be used within P.

From now on, when we mention an arbitrary property P, it is understood that
it belongs to the class of properties that we have just characterized.

4.2 Reuisiting Compatibility and Interoperability

In the verification of architectural mismatch freedom, the presence/absence of
cycles in the architectural topology plays a fundamental role. In this framework
a cycle does not refer to a cycle in the enriched flow graph of the considered
architectural type, but to a cycle in an enriched flow graph obtained from
the original one by abstracting from the direction of the attachments and by
collapsing all the attachments between two AEIs into a single attachment. We
say that an architectural type is acyclic if its abstract enriched flow graph is
acyclic.

The sufficient conditions that we shall introduce deal with checks to be carried
out locally to pairs of AEIs or cycles of AEIs. Such checks will involve a
variant of the interacting semantics of an AEI C; with respect to a set of
AElIs C4,...,C, (see Def. 2.2), in which all the actions of C; that are not

I Each such modal operator is weak in the sense that, when checked against a state
transition graph, it abstracts from all the transition labels different from the actions
occurring in the modal operator itself.

34

local interactions attached to one of the other AEIs of the set are hidden.
The checks will allow us to infer information about the interacting semantics
of a set of AEIs or the semantics of an entire architectural type (before the
behavioral variations), in which all the actions of the considered AEIs that
are not local interactions attached to certain AEIs are hidden.

Definition 4.1 Let A be an architectural type, let C1, ..., C, be some of its
AEIs, and let Act be the set of all the actions. For all 1 < ¢ < n, the closed
interacting semantics of C; w.r.t. C4,...,C, is defined by

[Cile,....c, = [Ci]) (Act = LIcc,...c0) [Pcuc,...cl =

Definition 4.2 Let A be an architectural type, let C1, ...,), be some of its
AEIs, and let C7, ..., C!, be some of such AEIs. The closed interacting seman-
tics of C1,...,C!, wr.t. Cy,...,C, is defined by

I]:C;J c Crlz’ﬂCCh...,Cn = IIC£H%1,...,CH HS(C{,C&,C{,,C’;/)
[C3)e,....cn Iscepcgey, o pusces.eer.cr)y - -

Huy;fs(cg,cil,;c;,..,c;,) [Ch]e,,..c. -
Definition 4.3 Let A be an architectural type and let C,...,C, be all of
its AEIs. The closed semantics of A before the behavioral variations is defined

by
[[Aﬂf)bv = [[Cl’ - >Cn]]CC’1,...,Cn -

In the following, a list of AEIs occurring in a subscript of a semantics or in a
synchronization set can be shortened with the name of the set of such AEISs.
In particular, if they are all the AEIs of an architectural type, their list can
be replaced with the name of the architectural type.

As observed in [8], an acyclic architectural type can be viewed as the compo-
sition of several star topologies, each one being formed by an AEI K, called
the center of the star topology, and a set of AElIs C,...,C, attached to K,
called the border of the star topology. The absence of cycles guarantees that
Ci,...,C, cannot directly communicate with each other. Therefore, in the
acyclic case the validity of an arbitrary property P can be investigated by
analyzing the interactions between the center K of the star topology and each
of the AEIs constituting the border of the star topology. Intuitively, we say
that K is compatible with C; if the potential interactions of K with the AEIs
in the border of the star topology are not altered when attaching C; to K.

Definition 4.4 Let A be an architectural type and let K be one of its AEIs.
The border of K is defined by

Bk = {C'| C is attached to K'}

35

Definition 4.5 Let A be an architectural type, let K be one of its AEIs, and
let By = {C4,...,C,}. We say that K is P-compatible with C; iff

[K15 sy s .cisre sy [Cil % 5, 2P [K]% 5, =

The result proven in [8] and illustrated on the specification of a compressing
proxy system shows that, whenever K is deadlock free and compatible with
every C; (according to the weak bisimulation equivalence), then the whole star
topology is deadlock free. It is easy to see that this holds for the validity of the
arbitrary property P. If the P-compatibility check is not passed by some Cj;,
then this reveals — in a component-oriented way — a potential violation of P
in the interaction between K and C;. In [8] it is also proven that the absence
of deadlock scales to the whole acyclic topology if the compatibility check is
satisfied by every pair of attached AEIs. Once again, it is easy to see that this
holds for the validity of the arbitrary property P. We also note that, compared
to checking P against the whole state space underlying an architectural type
having an acyclic topology — whose complexity grows exponentially with the
number of AEIs — the complexity of the application of the P-compatibility
check grows only linearly with the number of AEIs.

As further noted in [8], employing the peer-to-peer compatibility check de-
scribed above is not enough in the case of a cyclic architectural type, as there
may be additional causes of architectural mismatches due to the cyclic nature
of the topology. In the cyclic case, to verify the validity of P we need a check
that considers all the AEIs in the cycle, as each of them may interfere with
the others. Intuitively, given a cycle (', ..., C,, we say that C; interoperates
with the rest of the cycle if the potential interactions within the rest of the
cycle are not altered when inserting C; in the cycle, i.e. if the actual behavior
of the rest of the cycle is the same as that expected by C;.

Definition 4.6 Let A be an architectural type and let C,...,C, be some
of its AEIs forming a cycle in the abstract enriched flow graph of A. We say
that C; P-interoperates with the other AEIs in the cycle iff

[[Olv s 7Cn]]CC‘1,...,Cn / (ACt - S(Clv Cl? BRI Cn)) ~p [[Ci]](él,...,cn n

The result proven in [8] and illustrated on the specification of a cruise control
system shows that, whenever there exists a deadlock free AEI in the cycle that
interoperates with the other AEIs in the cycle (according to the weak bisimu-
lation equivalence), then the whole cycle is deadlock free. It is easy to see that
this holds for the validity of the arbitrary property P. We observe that, al-
though the worst-case complexity of the application of the P-interoperability
check grows exponentially with the number of AEIs in the cycle, in practice
this can be mitigated if the state space of the overall cycle — in which some
local interactions are hidden besides all the internal actions and all the ar-
chitectural interactions — is built compositionally and minimized at each step

36

with respect to ~p. The absence of a P-interoperating AEI within the cycle
reveals a potential violation of P within the cycle itself. Some component-
based diagnostic information can be derived by applying the loop shrinking
procedure proposed in [8]. In a generic shrinking step, we consider an AEI C;
in the cycle that does not P-interoperate with the other AEIs in the cycle.
The cause of a possible violation of P is within Cj, the rest of the cycle, or
both. This can in principle be determined by considering the behavior of C;
together with the modal logic based diagnostic information coming from the
failure of the P-interoperability check. If we discover that a violation of P
exists and that its source is within Cj, then we repair C; and we repeat the
P-interoperability check, otherwise we shrink the cycle by replacing C;_1, C;
and C;,1 with a new AEI whose behavior is given by the parallel composition
of the closed interacting semantics of the three original AEIs.

While the P-compatibility check scales from single star topologies to arbi-
trary acyclic topologies, the P-interoperability check does not scale from sin-
gle cycles to arbitrary cyclic topologies. This is caused by subtle architec-
tural mismatches that can arise from the interactions between intersecting
cycles as well as between a cycle and an acyclic portion of the whole architec-
tural topology. In particular, the P-interoperability check applied to a cycle
of AEIs (1, ..., C, does not provide a sufficient condition for the satisfaction
of P if some AEIs in the cycle interact with some other AEIs outside the
cycle. In other words, if the frontier of the cycle is not empty, then the P-
interoperability check is not enough to decide the satisfaction of P. Assume,
e.g., that it is possible to find an AEI C; in the cycle whose interactions are
not affected by the behavior of the other AEIs in the cycle. Even if C; P-
interoperates with the rest of the cycle, nothing can be deduced about the
influence of other AEIs of the architectural topology upon the cycle in case
some AEIs in the cycle interact with some AEIs outside the cycle. This is
because, when checking P-interoperability for C;, we abstract from the inter-
actions of the AEIs in the cycle that are attached to AEIs outside the cycle.

To overcome such a limitation, we now revise the previously defined notion
of P-interoperability by leaving all the local interactions of C; visible. This is
especially important when Cj is in the frontier of the cycle, i.e. whenever it is
in the intersection of the cycle with other cycles or with an acyclic portion of
the architectural topology. Below we also formalize the notion of frontier and
the notion of cyclic border, which is a set of intersecting cycles.

Definition 4.7 Let A be an architectural type and let C4,...,C, be some
of its AEIs forming a cycle in the abstract enriched flow graph of A. We say

that C; P-interoperates with the other AEIs in the cycle iff
[Ch,...,Cll% / (Act — S(Cy; A)) ~p [Ci]% .

Definition 4.8 Let A be an architectural type and let C, ..., C, be some of

37

its AEIs. The frontier of C1, ..., C, is defined by
Fer,cn =1Ci €{C1,...,Co} | LIy 0n,. 00 # L1c,} =

Definition 4.9 Let A be an architectural type and let K be one of its AEIs
belonging to some cycle in the abstract enriched flow graph of A. The cyclic
border of K is defined by

CBx ={K}U{H |3C4,...,C,. K, H,C4,...,C, formacycle} =
Definition 4.10 Let A be an architectural type and let K; and K5 be two
of its AEIs. We say that CBy, topologically conforms to CBg, iff there exists
a bijection between them that preserves for the AEIs their type, their attach-
ments within the cyclic border, and their membership to the frontier of the
cyclic border. n

4.3 Generalization to an Arbitrary Topology

The idea underlying the generalization of the results of [8] for an arbitrary
property P to an arbitrary topology is to view an acyclic topology as a special
topology to which every other topology can be reduced. Given an arbitrary
topology that is not acyclic, from a conceptual viewpoint we may think of
proceeding by reducing every cyclic portion of the topology satisfying the
(revised) P-interoperability check into a single ~p-equivalent AEI, until we
reach a point in which the P-interoperability check does not succeed or we
end up with an acyclic topology, to which we finally apply the P-compatibility
check. In practice, this reduction is implemented through a cycle covering
strategy.

Definition 4.11 Let A be an architectural type. A cycle covering strategy o
for A is defined by the following algorithm:

(1) All the AEIs in the abstract enriched flow graph of A are initially un-
marked.

(2) While there are unmarked AEIs in the cycles of the abstract enriched
flow graph of A:
(a) Pick out one such AEI, say K.
(b) Mark all the AEIs in CB.]

The application of a cycle covering strategy ¢ to a cyclic architectural type
A results in a set of cyclic borders, denoted by CB,, that involve every AEI
belonging to a cycle in the abstract enriched flow graph of A.

Lemma 4.12 Given a cyclic architectural type A and a cycle covering strat-
egy o for it that results in the set of cyclic borders CB, = {CBk,,...,CBxg, },

38

then for any pair of different cyclic borders CBg, and CBg; in CB,, CB, can
be directly attached to CBg; in two different ways only:

(1) CBg, and CBg; interact through a single, shared AEI K.
(2) CBkg, and CBg, do not share any AEIL but they interact through attach-
ments between a single AEI H of CBg, and a single AEI H' of CB;.

Proof As far as condition (1) is concerned, assume that CBg, and CBg, share
another AEI H. Then the abstract enriched flow graph of A would contain a
cycle including K;, K, K;, and H, thus contradicting the hypothesis that CBk;
is the cyclic border of K;. Similarly, if there exists an attachment between an
AEI H of CBg, and an AEI H' of CBg;, then the abstract enriched flow graph
of A would contain a cycle including K;, K, K;, H', and H, thus contradicting
the hypothesis that CBg, is the cyclic border of K;.

As far as condition (2) is concerned, assume that there exists another attach-
ment between an AEI H” of CBg, and an AEI H" of CBf;,. Then the abstract
enriched flow graph of A would contain a cycle including K;, H, H', K;, H",
and H”, thus contradicting the hypothesis that CBy, is the cyclic border of
K;. On the other hand, if there exists another attachment between an AEI
H" of CBkg, and H’, then the abstract enriched flow graph of A would contain
a cycle including K;, H, H', and H”, thus contradicting the hypothesis that
CBg, and CBg, do not share any AEL. We can argue similarly in case of an
attachment between an AEI H” of CBy,; and H. |

Definition 4.13 Let A be an architectural type. A cycle covering strategy
o for A is said to be total iff, when replacing each cyclic border CBg, =
{Hy,...,H} in CB, with an AEI whose behavior is isomorphic to

[Hyoo HIG (At~ | S(H;)
H;€Fu,,.. 1
the obtained architectural topology is acyclic. |

In the theorem below, a sufficient condition for the satisfaction of P is provided
for an architectural type A with an arbitrary topology under three assump-
tions. First, every AEI of A must satisfy P. Second, every AEI of A that
belongs to an acyclic portion or to the frontier of some cycle in the abstract
enriched flow graph of A must be P-compatible with each AEI that is attached
to it but does not belong to any of the cycles involving the former AEI. This
ensures the satisfaction of P for acyclic portions of the topology. Third, if A
has a cyclic topology, then there must exist a total cycle covering strategy
for A such that two constraints are satisfied, which are concerned with cyclic
borders. The first constraint requires that, if A is formed by a single cyclic
border with empty frontier, then it must contain an AEI that P-interoperates
with the other AEIs in the cyclic border. The second constraint requires that
every AEI in the frontier of any cyclic border must P-interoperate with all

39

the other AEIs belonging to the cyclic border. This ensures a P-compliant
combination of cyclic and acyclic portions of the topology.

Theorem 4.14 Let A be an architectural type with an arbitrary topology.
Suppose that the following conditions hold:

(1) For every AEI K of A, [K]% satisfies P.

(2) For every AEI K that belongs to an acyclic portion or to the frontier of
some cycle in the abstract enriched flow graph of A, K is P-compatible
with each AEl in {C € Bx | C & CBk}.

(3) If A is cyclic, then there exists a set CB, of cyclic borders generated by
a total cycle covering strategy o such that:

I. If CB, has a single cyclic border {C1,...,C,} such that F¢, ¢, =0,
then there exists an AEI C; in the cyclic border that P-interoperates
with Cl, ceey Oi—h Ci—l—h ey On.

IT. Otherwise, for each AEI C; in the frontier of a cyclic border {C1, ..., C,}
in CB,, C; P-interoperates with Cy,...,C;_1,Ciyq, ..., Ch.

Then [A]5,, satisfies P.

Proof We proceed by induction on the number m of cycles in the abstract
enriched flow graph of A:

e If m = 0 then A is acyclic. To avoid trivial cases, suppose that there are
at least two AEls in A. We preliminarily prove that, given an AEI K of
A with B = {C,...,Ci}, [K,Ch, ..., Cil% s, =p [K]%5, by proceeding
by induction on the number k of AEIs in the border of K:

I k=1 then [K,Cil% g, = [Kl% s, st.curso [Cilk s, =p [Kl% s,
by virtue of (2).

- Let the result hold for a certain k£ > 1 and suppose that the border of K
contains k£ + 1 AEIs. Then

[[K701,--~,Ck+1]]§<,81< =
K% 5y sir.cnir i)
[C1]% 5, |S(k.Cos i B US(Cr,Cos K Bic)
[Co]% 5y |S(k.C3:5 B)US(C1 O3 K B)US (Co. O K Brc) - - -

e |’S(K,Ck+1;K,BK)UU;C:IS(CZ',Ck+1;K,BK) [[Ck‘i‘l]]%(,BK
Due to the acyclicity of A, we have that

40

[K,Cy,..., OkHH%,BK =
[K]% 5, lst.cuir i)
[C1] % B lser.coi i)
[Col% 5y ls(r.coik.,B) - - -

||S(K,C'k+1§K7BK) [[Ok-i-l]](l:(,BK
By virtue of (2) applied to K and C and the fact that ~p is a congruence

with respect to the parallel composition operator, we have that
[[K7 Cla v 7Ck+1]]§(,81< ~p
[K]% 5 lst.coi i)
[Colk sy lsx.carciey -

o Nl onimse) (Ol s,
from which the result follows by the induction hypothesis.

Now we prove that [A]f,, satisfies P by proceeding by induction on the

number s of star topologies in the abstract enriched flow graph of A:

- If s = 1 then, denoted by K the center of the only star topology in the
abstract enriched flow graph of A, we have that [A]f,, ~p [K]% because
of the previously proved result. The result then follows from (1) and the
fact that ~p preserves P.

- Let the result hold for a certain s > 1 and suppose that the abstract
enriched flow graph of A is composed of s + 1 star topologies. Due to
the acyclicity of A, there must exist a star topology, say composed of the
AEIs K, H,C,...,C, and centered on K, that is attached — with one
of the AEIs in its border, say H — to only one other star topology in
the abstract enriched flow graph of A. If we replace K,CY,...,C) with
a single AEI K’ whose behavior is isomorphic to [K,Ch, ..., Cy]%, then
[K']% ~p [K]% because of the previously proved result. If we further
replace K’ and H with a single AEI H’ whose behavior is isomorphic to
[H, K%/ (Act — S(H; A)), then

[H' 1% ~p [H]% srn0([K'S / (Act — S(H; A)))
P [H]% s [K 5 n
P [H] sz K% .n

~p [H]%
because of what previously proved, the fact that ~p is a congruence with
respect to the parallel composition operator, and (2). In other words, if we
replace the considered star topology with a single AEI whose behavior is
isomorphic to the closed interacting semantics of its AEIs where only the
interactions of H are left visible, then we obtain an architectural type A’
satisfying (1), (2), and (3) and having an acyclic topology with one fewer

Q

Q

Q

41

star topology. Then by the induction hypothesis it follows that [A']¢,,
satisfies P. Since

[AToe ~p [AlLby / (S(K3A) — S(H; A))
we derive that [A]¢,, satisfies P, because ~p preserves P and P does not
contain any free use of the negation.

e Let the result hold for a certain m > 0 and consider an architectural type
A satisfying (1), (2), and (3), whose abstract enriched flow graph has m+1
cycles. Let CB = {C4,...,C,} be a cyclic border in CB, that, by virtue
of Def. 4.13, directly interacts with at most one cyclic border in CB,. Now
we replace the AEIs C4,...,C, with a new AEI C' whose behavior is iso-
morphic to [C,...,Cn]%/(Act — oo S(Cj; A)), thus obtaining an

J C JEEEET) Cn

architectural type A’ such that:
- C preserves (1). In fact, by (3), there exists C; such that
[Cy,....Cl%/(Act — S(Cy; A)) ~p [Ci]%
from which we derive that [Cy, ..., C,]%/(Act — S(C;; A)) satisfies P be-
cause so does [C;]4 due to (1) and ~p preserves P. Therefore, we also
have that [C1,...,C,]%/(Act — oo S(Cy; A)) satisfies P, because

1seees n

P does not contain any free use of the negation.
- C preserves (2). In fact, let H be an AEI attached to C' because it was
previously attached to an AEI C; of F¢, .. ¢,. By (2) we have that
[Ci1e, e, IscrmiciBe) [H]E, 50, =P [CilE, e,
from which it follows that
(O lsicuma [HTE, 5~ [CI
Since /p is a congruence with respect to the parallel composition operator,
[CTo Nlste.man [HIE 50 =P [CT
because we hide interactions that are not attached to H (only C; can be
attached to H otherwise CB would not be a cyclic border), from which it
follows that

.....

[[C]]CC,BC HS(CvH§C:BC) [[H]]CC,BC %P [[Cﬂ(é,Bc
On H side, it can similarly be shown that

[H]% 5, scrcm 50 [Cli s, ~r [Hls,

- If A" is cyclic, then (3) is preserved. In fact, let CB. be the set of cyclic
borders for A" obtained from CB, by replacing in each original cyclic bor-
der every occurrence of C1, . .., C,, with C. Every cyclic border in CB., that
does not include C has a corresponding topologically conformant cyclic
border in CB,. On the other hand, if we take in CB., a cyclic border formed
by the AEls Hy,..., H;,C, then CB, contains a cyclic border formed by
the AEIs Hy, ..., H;,C;, where C; € F¢, ..c,, because of Lemma 4.12. By
virtue of (3).11

(Gl ~p [Ha, ..., H, Ci]%/(Act — S(Ci; A))

Since ~p is a congruence with respect to the parallel composition operator,

.....

42

[CIy ~p [Ha,- .., H, C]%/(Act — S(C; A"))
because we hide interactions that do not occur in C'. As a consequence,
if Fu,.. .mc = 0 then (3).I is preserved. On the other hand, if C' €
Fu,....n,c, then C preserves (3).11.
Similarly, for each H; € Fu, ., c—{C}, by (3).11 applied to Hy, . .., H;, C;
we have

[[H]Hfél ~p [[Hl, . ,Hl, CZ]]SL‘/(ACIS — S(Hj; A))
From (3).II applied to C4, ..., C, it follows

[Ci]% =p [Ch,. .., CulS%/(Act — S(Ci; A))

Since ~p is a congruence with respect to the parallel composition opera-
tor, we have that

[[Hj]]CA/ ~p [[Hl, ceey Hl7 C]]SL\//(ACt — S(Hj; A,))
because we hide interactions that do not occur in H;.
- The abstract enriched flow graph of A’ has at most m cycles.

Then by the induction hypothesis it follows that [A]5,, satisfies P. Since

[ATowy =2 [Aly / (U S(C; A) — U S(Ci; A))

CigFcy,....on Ci€Fcy,....0n
we derive that [A]f,, satisfies P, because ~p preserves P and P does not
contain any free use of the negation.]

It is worth pointing out that a violation of one of the three conditions of the
theorem above does not necessarily imply a violation of P in A, but reveals
the possible presence of some kind of P-related mismatch in a specific portion
of the topology of A. In this case, component-oriented diagnostic information
can be derived as explained in Sect. 4.2.

As a simple example of application of Thm. 4.14 with P being deadlock free-
dom, we derive that the architectural type Pipe Filter defined in Sect. 2
is deadlock free, because each of its AEIs is deadlock free and P-compatible
(using ~p) with every AEI attached to it.

store_item] store_item
F 1:Filter_Type(1,0) | |F_2:Filter_Type(1,0)

process_i tem® pr ocess_item
accept _item1 accept _item 2

P FB Pi pe_Type()

send_ack_1 send_ack_2
recei ve_ack ecel ve_ack

H 1: Host _Type() H 2: Host _Type()

send_i tem send_i tem

Fig. 7. Graphical description of FB_Pipe Filter

As a more complicated example of application of Thm. 4.14, let us consider the
architectural type FB_Pipe_Filter depicted in Fig. 7. This system is composed
of two hosts, two filters of capacity one, and a pipe which is expected to feed

43

the items back to the hosts. Each host generates an item which is passed to
the related filter. Every two generated items, the host waits for an ack from
the pipe. Each filter processes the incoming item and sends it to the pipe.
Upon sending an ack to a host, the pipe can accept two items generated by
the other host and send back the related ack. Each new AET is defined below:

ELEM_TYPE Host_Type(void)

BEHAVIOR
Host (void; void) =
send_item . send_item . receive_ack . Host()

INPUT_INTERACTIONS UNI receive_ack
QUTPUT_INTERACTIONS UNI send_item

ELEM_TYPE FB_Pipe_Type(void)

BEHAVIOR
FB_Pipe(void; void) =
choice {
send_ack_1 . accept_item_2 .
accept_item_2 . send_ack_2 . FB_Pipe(),
send_ack_2 . accept_item_1
accept_item_1 . send_ack_1 . FB_Pipe()

INPUT_INTERACTIONS UNI accept_item_1; accept_item_2
OUTPUT_INTERACTIONS UNI send_ack_1; send_ack_2

Suppose that the property P we are interested in is again deadlock freedom.
The system deadlocks, because the pipe waits for sending an ack which none
of the two hosts can receive, the filters cannot send to the pipe any of the
items generated by the hosts, and each host is blocked just after sending the
first item to the related filter. From the topology standpoint, each host forms
a cycle with its dedicated filter and the pipe. Such cycles are not disjoint,
as they all share the pipe, and applying the P-interoperability check to any
component but the pipe is not enough to detect deadlock. Formally, it can
be verified along every single cycle i that H; (resp. F;) P-interoperates with
F; (resp. H;) and P. As can easily be seen, the point is that in all cases we
abstract away from the local interactions of P with the other host, which is not
in the considered cycle. Therefore, we cannot take into account the influence of
such a host upon the overall behavior of the cycle. To achieve that, following
Thm. 4.14 and observed that conditions (1) and (2) are trivially satisfied,
we consider e.g. the cyclic borders CBy, = {H;,F;,P} and CBy, = {Hy,Fy, P}
obtained by applying a total cycle covering strategy that does not pick P. It

44

can be verified that P, which represents the frontier for both cyclic borders,
P-interoperates neither with H; and Fy, nor with Hy, and F,, which reveals a
potential mismatch that, as we have seen before, actually causes a deadlock.

4.4 Behaviorally Conformant Architectural Invocations

The validity of an arbitrary property P for an architectural type easily scales
to its architectural invocations in which only actual behavioral parameters are
passed, which conform to the corresponding formal parameters. The only con-
straint is that the names of the local interactions occurring in P are preserved.

Theorem 4.15 Let A be an architectural type such that [A]f,, satisfies P
and let A" be a behaviorally conformant architectural invocation of A preserv-
ing the names of the local interactions occurring in P. Then [A'[f,, satisfies

P.

Proof Due to behavioral conformity, [A']§,, and [A]f,, are weakly bisim-
ulation equivalent up to an injective relabeling function that matches their
local interactions. Since the names of the local interactions occurring in P are
preserved and ~p implies ~p, [A]f,, and [A]f,, are equivalent according to
~p up to an injective relabeling function that matches their local interactions.
Since [A]f,, satisfies P and ~zp preserves P, then [A']§,, satisfies P as well.

n

As an example of application of Thm. 4.15 with P being deadlock freedom,
we immediately derive that every behaviorally conformant invocation (like the
one presented in Sect. 3.2) of the architectural type Pipe Filter defined in
Sect. 2 is deadlock free.

4.5 Generalization to Exogenous Extensions

We now consider the scalability of the validity of P from an architectural type
A, which satisfies the three conditions of Thm. 4.14 and possesses some archi-
tectural interactions, to one of its exogenous extensions. In this case there are
two issues to be taken into account. The first issue is that all the architectural
interactions at which the exogenous extension takes place become local inter-
actions, which must satisfy the P-compatibility and P-interoperability checks
whenever necessary. To this purpose, the AEIs of A containing the architec-
tural interactions at which the exogenous extension takes place must undergo
to an extended version of the P-compatibility and P-interoperability checks,
in which such architectural interactions are left visible as well. The second

45

issue is that the exogenous extension may generate kinds of cycles that are
not present in the topology of A, in which case we cannot derive the validity
of P for the exogenous extension based on the three conditions of Thm. 4.14
satisfied by A. As an example of generation of such new kinds of cycles, con-
sider a variant of the architectural type Pipe Filter of Sect. 2 with several
upstream filters, each of which has an architectural interaction and is attached
to the accept_item interaction of the pipe that is now an or-interaction. Ev-
ery exogenous extension of this topology results in several instances of a new
kind of cycle, each involving two pipes and two of the filters in between.

We now define the open versions of the notions of interacting semantics, P-
compatibility, P-interoperability, and frontier of a set of AEIs, in which the
architectural interactions are left visible.

Definition 4.16 Let A be an architectural type and let C1,...,C, be some
of its AEIs. For all 1 < ¢ < n, the open interacting semantics of C; w.r.t.
Ci,...,C, is defined by

[Ci]e, ..o, = [Ci] [(Act — (LIc,0n,..00 U ALe,)) [0ciicn,....0n) n

Definition 4.17 Let A be an architectural type, let C,...,C,, be some of
its AEIs, and let C7,...,C!, be some of such AEIs. The open interacting se-
mantics of C1,...,C/, w.rt. Cp,...,C, is defined by

[[{7 ctt 07/1’}]%1 Cn = [[Cﬂ]och...,cn ||S(Ci,Cé;Ci,m,C;,)
[C31e..cn Iser.epcy. o pusey.cq0p.0n) -

T HU?;;IS(CZ{’C;UCi C:L/) [[C;L/]]%I""’C" u

.....

Definition 4.18 Let A be an architectural type and let C,...,C,, be all of
its AEIs. The open semantics of A before the behavioral variations is defined

by
[[Aﬂ%bv = [[Cl, s 7Cn]]%1,...,cn []

Definition 4.19 Let A be an architectural type, let K be one of its AEIs,
and let B = {C},...,C,}. We say that K is P°-compatible with C; iff

[KT% 5y lsi.cirsio) [Cilk s, =P [K]k 5, m
Definition 4.20 Let A be an architectural type and let C1,...,C, be some

of its AEIs forming a cycle in the abstract enriched flow graph of A. We say
that C; P°-interoperates with the other AEIs in the cycle iff

[Cr,o o Gl / (Act = (S(Cis A) U AZc,)) =p [Cil n
Observe that P°-compatibility and P°-interoperability imply P-compatibility

and P-interoperability, respectively, because ~p is a congruence with respect
to the hiding operator.

46

Definition 4.21 Let A be an architectural type and let C1,...,C, be some
of its AEIs. The open frontier of C', ..., C,, is defined by

8«17_._7(;” = {CZ c {Cl, - ,Cn} | -AICi 7£ @ V EICi;Cl,...,Cn 7& ,CIQ} =

We then introduce the notion of extensibility of a total cycle covering strategy
to an exogenous extension. In the following, we denote by CB:;‘ the set of cyclic
borders generated by the cycle covering strategy o applied to the architectural
type A, and by CB}‘} the cyclic border of an AEI K of A.

Definition 4.22 Let A be an architectural type, let o be a total cycle covering
strategy for A, and let A" be an exogenous extension of A. An exogenous
extension of o to A’ is defined by the following algorithm:

(1) All the AEIs in the abstract enriched flow graph of A’ are initially un-
marked.

(2) For each CB# € CBA, pick out K and mark all the AEIs in CB7 .

(3) While there is an unmarked additional AEI C'in the cycles of the abstract
enriched flow graph of A’ such that there exists CBZ, € CBZ with €' =
corr(C) and CBA topologically conforming to CB:

(a) Pick out C.
(b) Mark all the AEIs in CB& .

We say that A’ is exo-coverable by o iff all the AEIs in the cycles of the
abstract enriched flow graph of A’ are marked, the exogenous extension of o
is total, and for each AEI K in A such that CB7 € CBZ it holds CBx = CBy .
In general, we say that A’ is exo-coverable iff there exists a cycle covering
strategy o for A such that A’ is exo-coverable by o. n

As a consequence of the previous definition, we observe that if A’ is exo-
coverable by o then each cyclic border generated by the exogenous extension
of o to A’ topologically conforms to a cyclic border generated by o to A. There-
fore, if A is acyclic, then each cyclic exogenous extension A’ of A cannot be
exo-coverable. Moreover, if A has an arbitrary topology, then no exo-coverable
exogenous extension of A can be a cyclic border with empty frontier.

Theorem 4.23 Let A be an architectural type with an arbitrary topology
and at least one architectural interaction and let A" be an exogenous extension
of A. Suppose that A satisfies the three conditions of Thm. 4.14, with o
being the total cycle covering strategy of condition (3). Suppose that the
three following additional conditions hold:

(4exo) A’ is exo-coverable by o.

(5exo) For every AEI K of A of the same type as an AEI having architec-
tural interactions at which the exogenous extension takes place, K is
P°-compatible with each AEI in {C' € By | C € CB}.

47

(6exo) If A is cyclic, then for every AEI C; in the open frontier of a cyclic
border {C4,...,C,} in CB% that is of the same type of an AEI having
architectural interactions at which the exogenous extension takes place,
C; PC-interoperates with Cy,...,C;_1,Ciiq, ..., Ch.

Then [A']§,, satisfies P.

Proof We show that A’ satisfies the three conditions of Thm. 4.14, from
which the result follows.

o A’ satisfies (1) because, by definition of exogenous extension, no new AET
can be introduced with respect to A.

o A’ satisfies (2) by virtue of (5ey) and by definition of exogenous extension.
Consider an AEI K of A" and an AEI C of A" attached to it but not in
CB}‘}/. If both AEIs are in A, then K is P-compatible with C' by virtue of
condition (2) of Thm. 4.14 applied to A in the case K is not an AEI having
architectural interactions at which the exogenous extension takes place, or
by virtue of (5eyx,) otherwise. If K is in A and C' is an additional AEL in A
there exists an attachment between an AEI K’ and corr(C'), such that K’
is of the same type as K and corr(C) & CBz,. Then, by virtue of (5ex), K’
is P°-compatible with corr(C), hence K is P-compatible with C. We can
argue similarly if K is an additional AEI and C is in A. Finally, if both
K and C are additional AEIs, from the definition of exogenous extension
we derive that in A there exist two attached AEIs corr(K) and corr(C)
such that, by virtue of condition (2) of Thm. 4.14 applied to A, corr(K) is
P-compatible with corr(C'). As a consequence, K is P-compatible with C.

o If A" is cyclic, then A’ satisfies (3). We first observe that A’ trivially satisfies
(3).I because, by virtue of (4ex,), the exogenous extension of o to A’ cannot
generate a single cyclic border with empty frontier.

Suppose now that CB}? is a cyclic border generated by the exogenous ex-

tension of o, which is total since so is 0. By virtue of (4cx,), we distinguish

between two possible cases:

. If K is in A, then, by virtue of (4eg), CBp = CB7 with CBy € CBA and
each C; €]-"CB?;/ belonging to F2, 4 as well. Then, by virtue of (6ex,) or
condition (3).IT of Thm. 4.14 applied to A, C; P-interoperates with the
other AEIs of CB7, hence CBy satisfies (3).IL.

- If K is an additional AEIL, then, by virtue of (4exo), CB?I topologically
conforms to CBA K) € CBA. Since CB (k) satisfies (3).11 by hypothesis,

corr(corr
by means of an argument similar to that applied above it follows that C Bf}/
satisfies (3).11 as well. n

As an example of application of Thm. 4.23 with P being deadlock freedom,
we immediately derive that every exogenous extension (like the one presented
in Sect. 3.3) of the architectural type Pipe Filter defined in Sect. 2 with an

48

arbitrary number of additional pipes and filters is deadlock free.

4.6 Generalization to Endogenous Ertensions

In this section we address the scalability of the validity of P from an archi-
tectural type A, which satisfies the three conditions of Thm. 4.14, to one of
its endogenous extensions. In this case there are two issues to be taken into
account. The first issue is that, as observed in Sect. 3.4, the endogenous exten-
sion may introduce kinds of attachments that are not present in the topology
of A, in which case we cannot derive the validity of P for the endogenous ex-
tension based on the three conditions of Thm. 4.14 satisfied by A. The second
issue is that the endogenous extension may alterate the cyclic borders of A.
From the point of view of the scalability of the validity of P, this is dealt with
by admitting only certain modifications of the original cyclic borders, ruling
out in particular new kinds of cycles that are not present in the topology of

A.

Before showing the scalability result, we introduce the notion of extensibility
of a cycle covering strategy to an endogenous extension.

Definition 4.24 Let A be an architectural type, let o be a total cycle covering
strategy for A, and let A’ be an endogenous extension of A adding the AEIs
C1,...,Ch. An endogenous extension of o to A’ is defined by the following
algorithm:

(1) All the AEIs in the abstract enriched flow graph of A’ are initially un-
marked.

(2) For each CB# € CBA, pick out K and mark all the AEIs in CB7 .

(3) While there is an unmarked additional AEI C' in the cycles of the abstract
enriched flow graph of A’ such that there exists CBg, € CBA with C” of
the same type as C' and CBé, topologically conforming to CB4:

(a) Pick out C.
(b) Mark all the AEIs in CB& .

We say that A’ is endo-coverable by o iff all the AEIs in the cycles of the
abstract enriched flow graph of A’ are marked, the endogenous extension of
o is total, and for each AEI K in A such that CB € CB2 it holds CBy —
{Cy,...,Cp} = CB%. In general, we say that A’ is endo-coverable iff there
exists a cycle covering strategy o for A such that A’ is endo-coverable by o.

m

As a consequence of the previous definition, if A is acyclic, then each endo-
coverable endogenous extension of A is acyclic.

49

Theorem 4.25 Let A be an architectural type with an arbitrary topology
and let A" be an endogenous extension of A adding the AEIs Ci,...,C,,.
Suppose that A satisfies the three conditions of Thm. 4.14, with ¢ being the
total cycle covering strategy of condition (3). Suppose that the three following
additional conditions hold:

(4endo) A’ is endo-coverable by o.

(Bendo) For every attachment in A’ from an AEI K to another AEI Ky, there
exists an attachment in A4 from an AEI of the same type as K; to another
AEI of the same type as K.

(6endo) Let L£Z be the set of local interactions of Ci,...,C,, that are not at-
tached to interactions of the AEIs of A. For every CBy% € CBZ it holds
[CBX Y50 / LT ~p [CBEI:

cBY cBy”

Then [A']§,, satisfies P.

Proof We show that A’ satisfies the three conditions of Thm. 4.14, from
which the result follows.

o A’ satisfies (1) because, by definition of endogenous extension, no new AET
can be introduced with respect to A.

o A’ satisfies (2) by virtue of (5¢n40) and by definition of endogenous extension.
Consider an AEI K and an AEI C' attached to it but not in CBp . If both
AEls are in A, then K is P-compatible with C' by virtue of condition (2)
of Thm. 4.14 applied to A. If K (resp. C) is in A and C (resp. K) is in
{C1,...,Cn}, then, by definition of endogenous extension, in A we have
that K (resp. C) is attached to an AEI C’ (resp. K’) that is of the same
type as C' (resp. K). From this we derive that K is P-compatible with C' by
virtue of condition (2) of Thm. 4.14 applied to A. Finally, if both K and C
are in {C4,...,Cy}, then, by virtue of (5¢pq40), in A there exist two attached
AEIs K" and C’ of the same type as K and C, respectively, such that K’ is
P-compatible with C’. As a consequence, K is P-compatible with C'.

o If A’iscyclic, then A’ satisfies (3). First, by virtue of (4endo), the endogenous
extension of o is total.

Suppose now that the endogenous extension of o generates a single cyclic
border CB# with empty frontier. Then, by virtue of (4endo), CBy € CBA
and CB7 —{C4,...,Cp} = CB2. Assume CBx = {K,H, K, ..., K,} and
let H be the AEI that, by virtue of Thm. 4.14 applied to A, P-interoperates
with K, K3, ..., K,. Then, by virtue of (6enq0), H P-interoperates with the
other AEIs in CB7 , which means that A’ satisfies (3).1.

Suppose now that CBé, is a cyclic border generated by the endogenous
extension of . By virtue of (4engo), we distinguish between two possible
cases:

. If CB% is equal or topologically conforms to CBx € CBZ, then CBy

20

satisfies (3).II by virtue of condition (3).IT of Thm. 4.14 applied to A.

S I CBYE —{CY,...,Ch} = CB7 with CB7 € CBA, in order to derive (3).11
we exploit (6endo) and an argument similar to that applied for (3).I. In
particular, for each C' € Fepa, we have C' € FCB;}" Hence, (3).I1 trivially

holds. For each C' € fczaﬁ’ such that C' € {C4,...,C,,}, we have that C

is attached to an AEI C” not in CBy iff there exists C” € Fepp — of the
same type as C' — that is attached to an AEI C" — of the same type as C’
— not in CBy . Then, since C” satisfies (3).II by virtue of condition (3).II
of Thm. 4.14 applied to A, we have that C satisfies (3).I1 as well. n

As an example of application of Thm. 4.25 with P being deadlock freedom,
let us consider the architectural type Station Ring defined in Sect. 3.4. If we
take the endogenous extension Station Ring(2) of Station Ring(1), then
Thm. 4.25 does not apply because of the violation of condition (5cnq0) due to
the introduction of a new kind of attachment (the one between two normal
stations). Let us take instead any endogenous extension Station Ring(n) of
Station Ring(2) withn > 2. Observed that every AEI of Station Ring(2) is
deadlock free and P-interoperates with the other AEIs — thus Station Ring(2)
is deadlock free by virtue of Thm. 4.14 — since the three additional conditions
of Thm. 4.25 are satisfied it follows that Station Ring(n) is deadlock free as
well.

4.7 Generalization to And/Or Extensions

Similarly to the exogenous and endogenous extensions, we guarantee the scal-
ability of the validity of P from an architectural type A, which satisfies the
three conditions of Thm. 4.14, to one of its and/or extensions whenever no
new cycles are added by the extension itself. Unlike the previous two cases of
extensions, we do not need to introduce a concept of and/or extension for a cy-
cle covering strategy, because the set of cyclic borders of the and/or extension
of A coincides with the set of cyclic borders of A.

Theorem 4.26 Let A be an architectural type with an arbitrary topology
and let A’ be an and/or extension of 4. Suppose that A satisfies the three
conditions of Thm. 4.14, with ¢ being the total cycle covering strategy of
condition (3). Suppose that the two following additional conditions hold:

(4andaor) Every extended or-interaction is enabled infinitely often.
(5andor) No additional AEI belongs to a cycle of the abstract enriched flow graph
of A’

Then [A']§,, satisfies P.

ol

Proof We show that A’ satisfies the three conditions of Thm. 4.14, from
which the result follows.

o A’ satisfies (1) because, by definition of and/or extension, no new AET can
be introduced with respect to A.

o A’ satisfies (2) by virtue of (4andor) and by definition of and/or extension.
Consider an AEI K and an AEI C' attached to it but not in CB7 . If both
K and C are in A and are not attached through an and/or-interaction that
is extended, then K is P-compatible with C' by virtue of condition (2) of
Thm. 4.14 applied to A. Now suppose that K is in A and has an and- or
an or-interaction that is extended. If C' is one of the AEIs attached to the
considered interaction of K, then C' is of the same type as an AEI C” of A
that is attached to K. By virtue of condition (2) of Thm. 4.14 applied to A,
K is P-compatible with C’, from which we derive that K is P-compatible
with C. Suppose instead that C' is in A and has an and-interaction that
is extended. If K is one of the AEIs attached to the considered interaction
of C, then K is of the same type as an AEI K’ of A that is attached to
C'. Hence, by virtue of condition (2) of Thm. 4.14 applied to A, K’ is P-
compatible with C', from which it follows that K is P-compatible with C.
Finally, suppose that C'is in A and has an or-interaction that is extended.
If K is one of the AEIs attached to the considered interaction of C', then
K is P-compatible with C' by virtue of an argument similar to the previous
one together with (4andor)-

A’ satisfies (3) because, by virtue of (5angor), the set of cyclic borders gen-
erated by o for A’ is the same as that generated by o for A. |

accept _itema accept _iteme
F[1]: Ml ti_Filter_Type()

F[2]:Milti_Filter_Type()

. process_itema progéss_itemb)
accept _itemb accept _itemb
process\itemb process’itema
accept _itemb accept _itema

pritembs A pt_item
P: Sync_Pi pe_Type()
send_ack
recei ve_ack recei ve_ack

send_itemb send_itemb

H 1] : Host _Type()

H[2] : Host _Type()

send_itema send_item.a

Fig. 8. Graphical description of Sync_Pipe Filter with two hosts/filters

As an example of motivation for condition (5,n40r) of Thm. 4.26, let us consider
the architectural type Sync Pipe Filter depicted in Fig. 8. This system is
composed of a certain number of hosts and filters of capacity one processing
two different types of items — a and b — and a pipe that synchronizes the items
processed by all the filters whenever they are of the same type, in which case
the pipe acknowledges all the hosts. The AETSs are defined below:

o2

ELEM_TYPE Host_Type(void)

BEHAVIOR
Host (void; void) =
choice {
send_item_a . receive_ack . Host(),
send_item_b . receive_ack . Host()

3

INPUT_INTERACTIONS UNI receive_ack
OUTPUT_INTERACTIONS UNI send_item_a; send_item_b

ELEM_TYPE Multi_Filter_Type(void)

BEHAVIOR
Multi_Filter(void; void) =
choice {
accept_item_a . Multi_Filter_a(),
accept_item_b . Multi_Filter_b(),
fail . repair . Multi_Filter()
I
Multi_Filter_a(void; void) =
choice {
process_item_a . Multi_Filter(),
fail . repair . Multi_Filter_a()
I
Multi_Filter_b(void; void) =
choice {
process_item_b . Multi_Filter(),
fail . repair . Multi_Filter_b()

INPUT_INTERACTIONS ©UNI accept_item_a; accept_item_b
OUTPUT_INTERACTIONS UNI process_item_a; process_item_b

ELEM_TYPE Sync_Pipe_Type(void)

BEHAVIOR
Sync_Pipe(void; void) =
choice {
accept_item_a . send_ack . Sync_Pipe(),
accept_item_b . send_ack . Sync_Pipe()
}

93

INPUT_INTERACTIONS AND accept_item_a; accept_item_b
OUTPUT_INTERACTIONS AND send_ack

Suppose that the property P we are interested in is deadlock freedom. From
Thm. 4.14 we obtain that Sync_Pipe Filter(1) is deadlock free, because H|[1]
is deadlock free and P-interoperates with F[1] and P. Let us now consider its
and/or extension Sync_Pipe Filter(2) depicted in Fig. 8. Each host forms
a cycle with its dedicated filter and the pipe. Such cycles are not disjoint, as
they all share the pipe. Consider the scenario where F[1] processes an item of
type a, while F[2] processes an item of type b. The cycle composed of H[1],
F[1], and P deadlocks since H[1] waits for an acknowledgement from P, F[1]
waits for delivering the item of type a to P, and P waits for an item of the
same type from F[2]. On the other hand, F[2] is blocked since it is trying to
send out an item of type b to P and, as a consequence, H[2] is blocked until the
reception of an acknowledgement that P cannot send. As can easily be seen,
the point is that P is involved in the additional cycle that is introduced by the
and/or extension, and the influence of such a cycle upon the overall behavior
of the system cannot be inferred a priori. From the viewpoint of the and/or
extension, what happens is that all the additional AEIs are involved in a new
cycle.

5 Conclusion

In this paper we have tackled the usability problem for process algebra. On
the modeling side, we have proposed a set of guidelines to lift process algebra
to a fully fledged ADL for the hierarchical design of parameterized system
families, in a way that hides the process algebraic technicalities. Most of these
guidelines have been incorporated in Amilia, the process algebraic ADL im-
plemented in the software tool TwoTowers [6]. On the verification side, we
have proposed a technique based on equivalence checking for the detection of
architectural mismatches and the provision of component-oriented diagnostic
information for process algebraic architectural descriptions of system families.
This technique — which will be implemented in TwoTowers — extends previous
results in terms of generality of the considered mismatches, generality of the
considered topologies, and scalability to system families.

Although the focus of this paper is the usability of process algebra, it is worth
noting that this study has some general implications on the architectural de-
sign process. Compared to the informal box-and-line diagrams that are com-
monly used in practice, adopting an architecturally enhanced process algebra,
together with the related component-oriented technique for mismatch detec-
tion, strengthens the architectural design process itself in terms of modeling

o4

accuracy and property analyzability.

As further steps towards the solution of the usability problem, there are two
main directions that we would like to investigate. The first one is related
to dynamic architectures, which are typical of nowadays mobile communica-
tions and self-organizing systems. In this respect, we would like to understand
whether our approach can be extended to deal with systems in which the
number of components and connectors and the links among them can vary at
run time.

The second direction is related to embedding our approach in the system
development cycle. On the upstream side, this amounts to synthesize process
algebraic architectural descriptions from the user requirements expressed in
some notation, like e.g. UML, which is widely used in practice but does not
fully support analyzability. On the downstream side, instead, this amounts to
automatically generate code that is guaranteed to satisfy certain properties as
formally proved at the architectural level, together with a set of representative
tests to be used when deploying the system on a specific platform. Some
preliminary work on code generation can be found in [7].

Acknowledgements

We wish to thank the anonymous referees for their useful comments and sug-
gestions.

References

[1] A. Aldini and M. Bernardo, “A General Deadlock Detection Approach for
Software Architectures”, in Proc. of the 12th Int. Formal Methods Furope
Symp. (FME 2003), LNCS 2805:658-677, Pisa (Italy), 2003.

[2] R. Allen, R. Douence, and D. Garlan, “Specifying and Analyzing Dynamic
Software Architectures”, in Proc. of the 1st Int. Conf. on Fundamental
Approaches to Software Engineering (FASE 1998), LNCS 1382:21-37, Lisbon
(Portugal), 1998.

[3] R. Allen and D. Garlan, “A Formal Basis for Architectural Connection”, in
ACM Trans. on Software Engineering and Methodology 6:213-249, 1997.

[4] J.C.M. Baeten and W.P. Weijland, “Process Algebra”, Cambridge University
Press, 1990.

[5] J.A. Bergstra, A. Ponse, and S.A. Smolka (eds.), “Handbook of Process
Algebra”, Elsevier, 2001.

95

[10]

M. Bernardo, “TwoTowers 5.0 User Manual”,
http://www.sti.uniurb.it/bernardo/twotowers/, 2004.

M. Bernardo and E. Bonta, “Generating Well-Synchronized Multithreaded
Programs from Software Architecture Descriptions”, in Proc. of the 4th
Working IEEE/IFIP Conf. on Software Architecture (WICSA 2004), IEEE-
CS Press, pp. 167-176, Oslo (Norway), 2004.

M. Bernardo, P. Ciancarini, and L. Donatiello, “Architecting Families of
Software Systems with Process Algebras”, in ACM Trans. on Software
Engineering and Methodology 11:386-426, 2002.

M. Bernardo and F. Franze, “Architectural Types Revisited: Extensible
And/Or Connections”, in Proc. of the 5th Int. Conf. on Fundamental
Approaches to Software Engineering (FASE 2002), LNCS 2306:113-128,
Grenoble (France), 2002.

M. Bernardo and F. Franze, “Ezogenous and Endogenous FExtensions of
Architectural Types”, in Proc. of the 5th Int. Conf. on Coordination Models
and Languages (COORDINATION 2002), LNCS 2315:40-55, York (UK),
2002.

T. Bolognesi and E. Brinksma, “Introduction to the ISO Specification
Language LOTOS”, in Computer Networks and ISDN Systems 14:25-59, 1987.

C. Canal, E. Pimentel, and J.M. Troya, “Compatibility and Inheritance in
Software Architectures”, in Science of Computer Programming 41:105-138,
2001.

H. Garavel and M. Sighireanu, “A Graphical Parallel Composition Operator
for Process Algebras”, in Proc. of the IFIP Joint Int. Conf. on Formal
Description Techniques for Distributed Systems and Communication Protocols
and Protocol Specification, Testing and Verification (FORTE/PSTV 1999),
Kluwer, pp. 185-202, Beijing (China), 1999.

G. Gossler and J. Sifakis, “Composition for Component-Based Modeling”, in
Proc. of the Ist Int. Symp. on Formal Methods for Components and Objects
(FMCO 2002), LNCS 2852:443-466, Leiden (The Netherlands), 2003.

C.A.R. Hoare, “Communicating Sequential Processes”, Prentice Hall, 1985.

P. Inverardi and S. Uchitel, “Proving Deadlock Freedom in Component-Based
Programming”, in Proc. of the 4th Int. Conf. on Fundamental Approaches to
Software Engineering (FASE 2001), LNCS 2029:60-75, Genova (Italy), 2001.

P. Inverardi, A.L. Wolf, and D. Yankelevich, “Static Checking of System
Behaviors Using Derived Component Assumptions”, in ACM Trans. on
Software Engineering and Methodology 9:239-272, 2000.

J. Magee, N. Dulay, S. Eisenbach, and J. Kramer, “Specifying Distributed
Software Architectures”, in Proc. of the 5th European Software Engineering
Conf. (ESEC 1995), LNCS 989:137-153, Barcelona (Spain), 1995.

o6

J. Magee and J. Kramer, “Concurrency: State Models & Java Programs”,
Wiley, 1999.

R. Milner, “Communication and Concurrency”; Prentice Hall, 1989.

D.E. Perry and A.L. Wolf, “Foundations for the Study of Software
Architecture”, in ACM SIGSOFT Software Engineering Notes 17:40-52, 1992.

M. Shaw and D. Garlan, “Software Architecture: Perspectives on an Emerging
Discipline”; Prentice Hall, 1996.

57

