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Abstract. In this paper, the space complexity of nonuniform quantum algorithms
is investigated using the model of quantum branching programs (QBPs). In order to
clarify the relationship between QBPs and nonuniform quantum Turing machines,
simulations between these two models are presented which allow to transfer up-
per and lower bound results. Exploiting additional insights about the connection
between the running time and the precision of amplitudes, it is shown that nonuni-
form quantum Turing machines with algebraic amplitudes and QBPs with a suitable
analogous set of amplitudes are equivalent in computational power if both models
work with bounded or unbounded error. Furthermore, quantum ordered binary
decision diagrams (QOBDDs) are considered, which are restricted QBPs that can
be regarded as a nonuniform analog of one-way quantum finite automata. Upper
and lower bounds are proved that allow a classification of the computational power
of QOBDDs in comparison to usual deterministic and randomized variants of the
model. Finally, an extension of QBPs is proposed where the performed unitary
operation may depend on the result of a previous measurement. A simulation of
randomized BPs by this generalized QBP model as well as exponential lower bounds
for its ordered variant are presented.

1. Introduction

The intriguing open question behind the research on quantum computing is whether there are
problems that can be solved more efficiently by quantum computers than by classical ones.
Shor’s famous quantum algorithm for factoring integers in polynomial time [35] provides the
most conclusive evidence so far in favor of an affirmative answer of this question. The notion of a
quantum algorithm is made precise by models of computation such as quantum Turing machines
(QTMs), quantum circuits, quantum finite automata (QFAs), and quantum communication
protocols. For an introduction to these models, we refer to the textbooks of Gruska [13],
Kitaev, Shen, and Vyalyi [18], and Nielsen and Chuang [26].

Apart from the obviously important computation time, different other complexity measures for
quantum algorithms have been investigated. Space is a crucial resource due to inherent techni-
cal constraints in the current physical realizations of quantum computers. As pointed out by
Ambainis and Freivalds [7], the goal of obtaining systems with a small quantum mechanical part
was one of the motivations for considering quantum finite automata. In his seminal paper [39]
and its later extensions [40, 41], Watrous investigated the space complexity of quantum algo-
rithms in the more general model of quantum Turing machines. The quantum Turing machines
considered by Watrous may have algebraic transition amplitudes and are unidirectional, i. e.,
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the direction of the head movements is a function of the state entered in a computation step.
Among other results, he has shown for this scenario that space O(s) probabilistic Turing ma-
chines with unbounded error and quantum Turing machines with unbounded error are equivalent
in computational power, where s is a space-constructible function. It is open whether similar
statements hold for other types of error, e. g., bounded error. It is also not known whether the
requirement of algebraic transition amplitudes is crucial for space-restricted quantum Turing
machines, despite the results of Adleman, DeMarrais, and Huang [3] that allow us to restrict the
set of amplitudes to {0,±3/5,±4/5,±1} for polynomial time, bounded error quantum Turing
machines. Finally, even the standard assumption of unidirectionality remains to be justified for
QTMs with sublinear space-bounds, since the known simulations for the time-bounded case due
Bernstein and Vazirani [11] and Yao [43] or Nishimura and Ozawa [27] can not be applied in an
obvious way.

Already classical Turing machines have turned out to be a quite cumbersome device for proving
upper and lower bounds. Branching programs are a graphic representation of boolean functions
and as such are more amenable to combinatorial arguments than Turing machines. Further-
more, it is well-known that the logarithm of the size of branching programs is asymptotically
equal to the space complexity for the nonuniform (advice taking) variant of Turing machines
(Cobham [12], Pudlák and Žák [30]). Recently obtained lower bound results for branching pro-
grams [8,5,6,9,10], which imply time-space tradeoffs for sequential computations, underline the
significance of branching programs in the investigation of space complexity.

In this paper we deal with a quantum variant of branching programs. In order to give a feeling
of how quantum branching programs (QBPs) work, we consider the example in Figure 1. For
the formal definition and the technical details we refer to Definitions 2.4 and 2.5. The QBP
in the figure represents a boolean function depending on the variables x1 and x2. Each node
v ∈ V = {v1, . . . , v6} of the QBP is associated with a vector |v〉 of an orthonormal basis of
the Hilbert space H = C

|V |. Each intermediate state of the computation of the QBP is a
vector in H. The initial state of the QBP is |v1〉, where v1 is the start node of the QBP. Each
computation step consists of a first phase, where a projective measurement is used to decide
whether the computation continues or whether it stops with the result 0 or 1, and a second phase,
where a unitary transformation described by the edge labels is applied to the state. If xi = 0
(xi = 1), only the dashed (solid) edges leaving each xi-node contribute to this transformation.
In our example the projections describing the measurement are Econt = |v1〉〈v1|+ · · ·+ |v4〉〈v4|,
E0 = |v5〉〈v5|, and E1 = |v6〉〈v6|, i. e., the projections on the subspaces spanned by the vectors
corresponding to interior nodes and sinks labeled by 0 and 1, resp. Assume that x1 = x2 = 0.
The initial state is |v1〉. The projective measurement yields that the computation is continued
with probability 1. The dashed edges leaving v1 are labeled by 1/

√
2, hence, the next state is

(1/
√
2)(|v2〉+ |v3〉). In the second step the computation again continues with probability 1 and

according to the labels of the edges leaving v2 and v3 the next state is |v6〉. Hence, in the third
step the computation stops with probability 1 and the result is 1.

The most important complexity measures for QBPs are the size of the QBP, i. e., its number of
nodes, and the (expected or worst-case) computation time. QBPs may be cyclic or acyclic. For
acyclic QBPs one can furthermore consider the width of the QBP, i. e., the maximum number
of nodes with the same distance from the start node. Before we present our results on the
relationship between the complexity measures for QBPs and other complexity measures for
boolean functions, in particular the space complexity of quantum Turing machines, we discuss
previous work on QBPs.

Ablayev, Gainutdinova, and Karpinski [1] and Nakanishi, Hamaguchi, and Kashiwabara [24]
have introduced quantum OBDDs (quantum ordered binary decision diagrams), i. e., acyclic
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Figure 1: An example of a QBP.

QBPs where the input variables may only be read once in a fixed order during each compu-
tation. Ablayev, Gainutdinova, and Karpinski have presented a function that requires linear
width in the input length for deterministic OBDDs, but only logarithmic width for quantum
OBDDs. Nakanishi, Hamaguchi, and Kashiwabara have obtained a similar gap, but their lower
bound even holds for randomized OBDDs. More recently, Ablayev, Moore, and Pollett [2] have
proved that the class of functions that can be exactly computed by oblivious width-2 QBPs
of polynomial size coincides with the class NC1, while width 5 is necessary classically unless
NC1 = ACC. Finally, Špalek [37] has studied a general model of QBPs and has independently
come up with a definition similar to that used here. Furthermore, he has also presented exact
simulations between QBPs whose transition function is composed of unitary matrices from a
finite basis and quantum Turing machines defined analogously. In the following, we describe
the contributions of our paper. For the sake of a clearer presentation, we group the results into
three parts.

First Part: Simulations (Sections 2–5). In Sections 2 and 3 we define quantum branching pro-
grams and extend the definition of quantum Turing machines (QTMs) to the nonuniform case.
Following Watrous [39,40,41], we include unidirectionality as a part of our definition of QBPs
and we usually consider unidirectional nonuniform QTMs. Simulations between QBPs and uni-
directional nonuniform QTMs are presented in Section 4. Our first result shows that unidirec-
tional nonuniform QTMs using space O(log S) can be simulated by QBPs of size poly(S) taking
the same number of computation steps as the simulated machine. In the opposite direction,
we obtain an approximate simulation of QBPs of size S by unidirectional nonuniform QTMs
that carry out T simulation steps with approximation error ε in space poly(S + log log(T/ε))
and time poly(S, T, log(1/ε)). These results are for QBPs and QTMs whose amplitudes are
arbitrary complex numbers.

As remarked above, the standard set of transition amplitudes for QTMs in the space-bounded
scenario are algebraic numbers. As an analogous standard set for QBPs we propose short
amplitudes, i. e., amplitudes that can be represented in polynomial bit length in the size of the
QBP as rational polynomials on finitely many algebraic numbers. Using our general simulation
results and additional insights about the connection between running time and the precision
of amplitudes, we show that in the case of bounded and unbounded error, QBPs with short
amplitudes and size poly(S) and unidirectional nonuniform QTMs with algebraic amplitudes
using space O(log S) are of the same computational power.

In Section 5, we justify our standard assumption of unidirectionality for the considered models.
We provide a space-efficient approximate simulation of (general) nonuniform QTMs by unidi-
rectional ones. In particular, this result yields that O(log S) space nonuniform QTMs, O(log S)
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space unidirectional nonuniform QTMs, and poly(S) size QBPs are of the same computational
power if these models work with algebraic and short amplitudes, resp., and with bounded or un-
bounded error. Altogether, these arguments show that QBPs are a suitable model for exploring
space-bounded nonuniform quantum complexity.

Second Part: QOBDDs (Section 6). We explore the relationship between the size of quantum
OBDDs (QOBDDs) and classical OBDDs. First, we design polynomial size QOBDDs for a
function that classical deterministic OBDDs can only represent in exponential size, as well as
for a partially defined function for which even randomized OBDDs require exponential size.
On the other hand, even very simple functions can be hard for QOBDDs. We show that for
the disjointness function (x1 ∨ x2) ∧ (x3 ∨ x4) ∧ · · · ∧ (xn−1 ∨ xn) as well as the inner product
function x1x2 ⊕ x3x4 ⊕ · · · ⊕ xn−1xn, QOBDDs require exponential size, while deterministic
OBDDs can represent these functions in linear size. Finally, we prove that zero error QOBDDs
of polynomial size are no more powerful than polynomial size reversible OBDDs.

Third Part: QBPs with Generalized Measurements (Section 7). For quantum OBDDs as well
as for quantum finite automata, the unitarity requirement of quantum algorithms is a serious
restriction. Intuitively, the problem is that it is difficult in these models to forget input already
read. In Section 7 we study the question of whether it may help to allow measurements to choose
the unitary transformation for the next computation step (apart from checking whether the
computation has stopped). For quantum circuits this question has already been considered by
Aharonov, Kitaev and Nisan [4], who have proposed to describe the states and the computations
of quantum circuits by mixed states and superoperators, resp. We define natural variants of
QBPs and QOBDDs with generalized measurements and investigate some of their properties.
QBPs and QOBDDs with generalized measurements can simulate their randomized counterpart
without increase in size. On the other hand, we prove an exponential lower bound on the size
of QOBDDs with generalized measurements for all so-called k-stable functions. This class
includes, e. g., the function checking for the presence of a clique in a graph and the determinant
of a boolean matrix.

2. Quantum Branching Programs

In this section, we define classical and quantum variants of branching programs and discuss
basic properties of the quantum variant. An extensive survey of results for classical branching
programs is given in the monograph of Wegener [42].

Definition 2.1: A (deterministic) branching program (BP) on the variable setX = {x1, . . . , xn}
is a directed acyclic graph with a designated start node and two sinks. The sinks are labeled
by the constants 0 and 1, resp. Each interior node is labeled by a variable from X and has
two outgoing edges carrying labels 0 and 1, resp. This graph computes a boolean function f
defined on X as follows. To compute f(a) for some input a = (a1, . . . , an) ∈ {0, 1}n, start at
the start node. For an interior node labeled by xi, follow the edge labeled by ai (this is called
testing the variable). Iterate this until a sink is reached, whose label gives the value f(a). For
a fixed input a, the sequence of nodes visited in this way is called the computation path for
a. The size |G| of a branching program is the number of its nodes. Its width is the maximum
number of nodes with the same distance from the start node. The branching program size of a
function f is the minimum size of a branching program that computes it.
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BPs are a nonuniform model of computation, so we usually consider a sequence (Gn)n∈N of
BPs representing a sequence of boolean functions (fn)n∈N, where Gn represents the function
fn : {0, 1}n → {0, 1}. We will encounter the following variants of BPs.

Definition 2.2:

– A BP is called read-once if, for each variable xi, each of the paths in the BP contains at
most one node labeled by xi.

– A BP is called leveled if the set of its nodes can be partitioned into disjoint sets V1, . . . , Vℓ,
where Vi is called the ith level, such that for 1 ≤ i ≤ ℓ − 1, each edge leaving a node in Vi
reaches a node in Vi+1.

– An OBDD (ordered binary decision diagram) is a read-once BP where on each computation
path the variables are tested according to the same order. For the variable order π it is also
called π-OBDD.

Definition 2.3: A randomized BP is defined as a deterministic BP, but may additionally
contain unlabeled randomized nodes with two unlabeled outgoing edges, may contain cycles,
and may have sinks labeled by 0, 1, or “?”. The computation for an input a is carried out
by starting at the start node, following the outgoing edge labeled by ai for an xi-node as for
deterministic BPs, and taking one of the outgoing edges with probability 1/2 for randomized
nodes until a sink is reached, where different randomized decisions are independent of each other.
The probability that the randomized BP computes the output r ∈ {0, 1, ?} for the input a is
the probability that the computation for a reaches a sink labeled by r.

Different modes of acceptance with unbounded, bounded (two-sided), one-sided, and zero error
are defined as usual (see, e. g., [32, 42]). Randomized variants of the restricted models of BPs
from Definition 2.2 are obtained by applying the respective restriction to the nodes labeled by
variables.

Next, we define a quantum variant of BPs. This definition contains the alternative definitions
in the literature as special cases.

Definition 2.4: A quantum branching program (QBP) over the variable set X = {x1, . . . , xn} is
a directed multigraph G = (V,E) with a start node s ∈ V , a set F ⊆ V of sinks, and (transition)
amplitudes δ : V × V × {0, 1} → C. Each node v ∈ V − F is labeled by a variable xi ∈ X and
we define var(v) = i. Each node v ∈ F carries a label from {0, 1, ?}, denoted by label(v). Each
edge (v,w) ∈ E is labeled by a boolean constant b ∈ {0, 1} and the amplitude δ(v,w, b). An
edge with boolean label b is called b-edge for short. We assume that there is at most one edge
carrying the same boolean label between a pair of nodes and set δ(v,w, b) = 0 for all (v,w) 6∈ E
and b ∈ {0, 1}.
The graph G is required to satisfy the following two constraints. First, it has to be well-formed,
meaning that for each pair of nodes u, v ∈ V − F and all assignments a = (a1, . . . , an) to the
variables in X,

∑

w∈V

δ∗(u,w, avar(u))δ(v,w, avar(v)) =

{
1, if u = v; and
0, otherwise.

(W)

Second, G has to be unidirectional, which means that for each w ∈ V , all nodes v ∈ V such
that δ(v,w, b) 6= 0 for some b ∈ {0, 1} are labeled by the same variable.
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The well-formedness constraint implies that the QBP has a unitary time evolution operator
(see below) and is, therefore, motivated by the laws of quantum theory. Unidirectionality is a
property that makes understanding and manipulating models of quantum computation much
easier. We discuss this issue in more detail in Section 3. Since unidirectionality is crucial for
our simulations, we include this requirement in the definitions of QBPs. Next, we define the
semantics of QBPs.

Definition 2.5 (Computation of a QBP): Let G = (V,E) be a QBP on n variables with
start node s ∈ V , sinks F ⊆ V , and transition amplitudes δ. Let H = C

|V | and let (|v〉)v∈V be
an orthonormal basis of H. Let a = (a1, . . . , an) be an assignment to the variables of G. Let
L(a) be the linear transformation from the subspace spanned by all |v〉, v ∈ V − F , into H such
that for v ∈ V − F ,

L(a)|v〉 =
∑

w∈V

δ(v,w, avar(v))|w〉.

Due to the well-formedness constraint (W), L(a) can be extended to a unitary transforma-
tion U(a) on H. Call U(a) a time evolution operator of the QBP for input a. Define projection
operators on H by setting

Econt =
∑

v∈V −F

|v〉〈v|, Estop =
∑

v∈F

|v〉〈v|, and Er =
∑

v∈V, label(v)=r

|v〉〈v|, for r ∈ {0, 1, ?}.

For T ∈ N0 and r ∈ {0, 1, ?} define

pG, r(a, T ) =

T∑

t=0

∥∥Er(U(a)Econt)
t|s〉

∥∥2 and pG, r(a) = pG, r(a,∞),

the probability that G outputs r for input a during the first T time steps and the (absolute)
probability that G outputs r for input a, resp.

QBPs computing a function f : {0, 1}n → {0, 1} with unbounded error, bounded (two-sided)
error, and one-sided error are defined in the straightforward way. We say that G computes f
with zero error and failure probability ε, 0 ≤ ε < 1, if pG,¬f(a)(a) = 0 and pG, ?(a) ≤ ε for all
a ∈ {0, 1}n. We say that G computes f exactly if it computes f with zero error and failure
probability 0.

Let the (worst-case) running time of G on a be

TG(a) = min{T | T ∈ N0 ∪ {∞}, pG, 0(a, T ) + pG, 1(a, T ) + pG, ?(a, T ) = 1}.

The running time can be in N0, infinite, or undefined. The expected running time of G on a is
defined by

TG(a) =
∞∑

t=0

t ·
∥∥Estop(U(a)Econt)

t|s〉
∥∥2.

We say that G runs in time T if TG(a) ≤ T for all a ∈ {0, 1}n. Furthermore, G runs in expected
time T if TG(a) ≤ T for all a ∈ {0, 1}n.

Since the QBP does not have edges leaving the sinks, the time evolution operator is merely an
extension of the mapping L(a) and, therefore, not necessarily uniquely determined.

In the remainder of this section we discuss the relationship between (classical) BPs and QBPs,
and some variants of the definition of QBPs. Because of the well-formedness and the unidirec-
tionality requirements of QBPs it is not obvious whether functions with small size BPs also have
small size QBPs. In order to prove such a statement, we introduce the notion of reversibility.
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Definition 2.6: A BP is reversible if each node is reachable from at most one node v by a
0-edge and from at most one node w by a 1-edge and v and w are labeled by the same variable.

Reversible BPs are obviously special QBPs. Furthermore, as proved by Špalek [37] using a
similar construction of Lange, McKenzie, and Tapp [23] for Turing machines, any (possibly
non-reversible) BP of size s(n) = Ω(n) can efficiently be simulated by a reversible one of
size poly(s(n)). This implies:

Proposition 2.7 ([37]): If the sequence of functions (fn)n∈N has BPs (Gn)n∈N of size s(n) =
Ω(n), it also has QBPs (G′

n)n∈N of size poly(s(n)).

Adleman, DeMarrais, and Huang [3] have shown that uniform QTMs with arbitrary complex
amplitudes can decide certain languages of arbitrarily high Turing degree in polynomial time
and are thus too powerful to be realistic. For randomized classical as well as quantum models of
computation, practical considerations (depending on the details of the physical implementation
of the model) lead to restrictions on the set of allowed amplitudes. However it is not obvious
what a natural restriction in the nonuniform, space-bounded scenario is. The following definition
is motivated by the goal of finding the least restrictive definition that still allows the resulting
QBPs to be simulated efficiently by the corresponding standard QTM model. Recall that an
algebraic number (over Q) is an x ∈ C such that there is a rational polynomial with root x.

Definition 2.8: A sequence (Gn)n∈N of QBPs has short amplitudes if for some number k
independent from the input length there are algebraic numbers α1, . . . , αk, such that each
amplitude of each Gn can be written as p(α1, . . . , αk) for some k-variate rational polynomial p
of degree poly(|Gn|) whose coefficients are fractions with numerator and denominator each of
bit length at most poly(|Gn|).

The requirements of this definition are obviously satisfied in the special case that the sequence
of QBPs uses only amplitudes from a fixed, finite set of algebraic numbers. This is the situation
investigated for uniform, space-restricted QTMs by Watrous [40, 41]. Among other results, we
show in Section 4 that unidirectional nonuniform QTMs with algebraic amplitudes and QBPs
with short amplitudes are equivalent in computational power under space restrictions, which
serves as a motivation for the above definition.

We conclude the discussion on reasonable restrictions for the amplitudes with some simple ob-
servations. First, QBPs with complex amplitudes can be transformed into equivalent QBPs
with real amplitudes, where the number of nodes increases by a factor of at most 2 (cf. Propo-
sition 5.3 in [41]). The main idea is to replace each node v with two nodes vr and vi such that
the corresponding vectors |vr〉 and |vi〉 carry the real and imaginary part of the amplitude of
|v〉, resp. Second, in Definition 2.8 the number k of algebraic numbers can be replaced with
1, since by the primitive element theorem from algebra, the algebraic numbers α1, . . . , αk can
be represented as polynomials in a single algebraic number α. Since k as well as α1, . . . , αk

are independent from the input size, these polynomials have a constant number of constant
coefficients such that the resulting QBP still has short amplitudes. Finally, since the bit lengths
of the denominators of all coefficients are bounded by poly(|Gn|) and the numbers of edges and,
therefore, the number of denominators is bounded by 2|Gn|2, all the coefficients have a common
denominator m of bit length poly(|Gn|). We obtain the following result.

Proposition 2.9: Each sequence (Gn)n∈N of QBPs with short amplitudes can be simulated by
a sequence (G′

n)n∈N of QBPs with |G′
n| ≤ 2|Gn| such that there is a single algebraic number

α and a number m = 2poly(|G
′
n|) such that each amplitude of G′

n can be written as p(α)/m for
an integer polynomial p with a degree bounded by poly(|G′

n|) and coefficients bounded above in
absolute value by 2poly(|G

′
n|).
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As for classical BPs, it is possible to simplify the structure of QBPs without increasing their
size too much. The following has been observed by Špalek [37].

Proposition 2.10 ([37]): Let G be a QBP and let t ∈ N0. Then there is a leveled QBP G′

with t+1 levels that for each input a computes an output r ∈ {0, 1, ?} with probability pG,r(a, t)
after carrying out exactly t computation steps and that does not stop before. The size of G′ is
bounded above by (t+ 1)2|G|.

For the construction of QBPs, it is convenient to allow unlabeled nodes with an arbitrary number
of outgoing edges carrying only amplitude labels. An unlabeled node v can be understood as an
abbreviation for a node that is labeled by some input variable, where the value of this variable
does not influence the computation. This means that each edge leading from the unlabeled
node v to w has to be replaced with a 0-edge and a 1-edge from v to w which both have the
same amplitude label as the original edge from v to w. When using unlabeled nodes we have to
make sure that the QBP resulting from this transformation is unidirectional and well-formed.

3. Definitions and Tools for Quantum Turing Machines

We first introduce a nonuniform variant of quantum Turing machines (QTMs). The defini-
tion is similar to those of Bernstein and Vazirani [11] and Nishimura and Ozawa [27] for the
uniform setting. Afterwards, we collect tools for approximately performing arbitrary unitary
transformations by QTMs.

Definition 3.1: A nonuniform (or advice-taking) quantum Turing machine is a QTM M =
(Q,Σ, δ) together with an advice function adv : N→ Σ∗, where Q is a finite set containing q0, qf
and Σ = Σ1 × · · · × Σk with finite sets Σ1, . . . ,Σk each containing {0, 1, ?, B}. The QTM M
has the initial state q0 and the unique final state qf , and “B” is used as the blank symbol. The
machine is equipped with three tapes, a read-only input tape, a read-only advice tape, and the
work tape. All tapes are two-way infinite and indexed by Z and each is split into k separate tracks
that may contain symbols from Σ1, . . . ,Σk. We have δ : (Q×Σ3)×(Q×Σ×{−1, 0, 1}3) → C, and
δ
(
(q, σi, σa, σw), (q

′, σ′w, di, da, dw)
)
is the amplitude for a transition from state q, with symbols

σi, σa, σw on the input, advice, and work tape, resp., to state q′, writing σ′w on the work tape
and moving the heads on the three tapes according to di, da, dw. Upon start of the machine, the
input tape is loaded with the input string x ∈ {0, 1}∗ at positions 0, . . . , |x|−1 of the first track.
The advice tape is loaded with the advice string adv(|x|) ∈ Σ∗ at positions 0, . . . , | adv(|x|)|−1.
All other tape positions contain blanks, all heads are at position 0 and the finite control of M
is in its initial state. A configuration of M is a tuple (q, w, i, j, k), with the current state of the
finite control q ∈ Q, the contents w ∈ Σ∗ of the work tape, and the positions i, j, k ∈ Z of the
heads on the input, advice, and work tape, resp. Let Cn(M) be the set of all configurations ofM
for inputs of length n. Let H = C

|Cn(M)| be the Hilbert space spanned by all configurations from
Cn(M), which we identify with vectors from an orthonormal basis. The time evolution operator
U(a) describes the application of the transition function δ to a superposition of configurations,
where the input is a. The well-formedness constraint requires U(a) to be unitary for all inputs
a.

Definition 3.2 (Computation of a nonuniform QTM): Let M = (Q,Σ, δ) be as in the
above definition. A QTM indicates stopping by entering qf and signals its output by an entry
at position 0, called the output cell, of a designated track of the work tape, called the output
track. Define Estate(A) as the projection operator over H onto the subspace spanned by all
configurations with state in A ⊆ Q. Then the projections Estate({qf}), Estate(Q−{qf}) describe
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the measurement checking whether the current state is equal to qf . This measurement is
performed before each computation step. If the QTM does not stop, U(a) is applied to the
state after the measurement. Let Eresult(r), r ∈ {0, 1, ?}, be the projection onto the subspace
spanned by the configurations with result r in the output cell. If stopping of the QTM has
been detected, the measurement described by these latter projections is carried out in order to
determine the result of the computation. For T ∈ N0 and r ∈ {0, 1, ?}, let

pM, r(a, T ) =
T∑

t=0

∥∥Eresult(r)Estate({qf})(U(a)Estate(Q− {qf}))t|s〉
∥∥2

be the probability that M outputs r on input a during the first T computation steps. Based
on these probabilities, acceptance of the QTM with different types of error is defined as usual.
The (expected) running time of M on a, denoted by TM (a) (TM (a)), is defined analogously to
QBPs (Definition 2.5). The space used by M on input a ∈ {0, 1}∗ is the maximum number
of cells on the work tape between the leftmost and rightmost non-blank symbol taken over all
configurations which are reached with nonzero amplitude during the computation on input a and
in which the machine has not yet halted. The (total) space sM(a) used byM on input a ∈ {0, 1}∗
is defined as the sum of the space on the work tape and ⌈log | adv(|a|)|⌉. Finally, we say that
M runs in space s : N→ N0 if for all a ∈ {0, 1}n, sM (a) ≤ s(n).

Definition 3.3: A reversible Turing machine (RTM) is a deterministic TM where each config-
uration has at most one predecessor. A TM or QTMM is called unidirectional if each state can
be entered from only one direction on each tape, i. e., if there are functions Di,Da,Dw : Q →
{−1, 0, 1} such that δ

(
(q, σi, σa, σw), (q

′, σ′w, di, da, dw)
)
6= 0 only if Di(q

′) = di, Da(q
′) = da and

Dw(q
′) = dw.

Unidirectionality is a crucial property of QTMs that makes working with them much easier.
The property has first been investigated by Bernstein and Vazirani [11] for single-tape QTMs
that are additionally two-way, i. e., are required to move their head in each computation step.
Their results include that single-tape RTMs (even with stationary tape heads allowed) are
automatically unidirectional and, furthermore, that single-tape two-way QTMs can be simulated
time and space efficiently by unidirectional ones. Furthermore, it is well known that also QTMs
with stationary tape heads allowed can be time efficiently simulated by unidirectional ones using
the simulations of QTMs by quantum circuits and vice versa due to Yao [43] and Nishimura
and Ozawa [27]. These results cannot be applied in an obvious way in the space-bounded
scenario. Already for TMs with only one additional input tape, reversibility does no longer
imply unidirectionality, as simple examples show. In Section 5 we show that general nonuniform
QTMs with sublinear space can be space efficiently simulated by unidirectional ones.

For constructing unidirectional nonuniform QTMs, we need the usual toolbox of programming
primitives that allows us to work with multiple tracks, combine TMs, construct looping TMs and
so on. We use appropriate versions of lemmas for these tasks due to Bernstein and Vazirani [11].
We only remark that, by going through their proofs, it is straightforward to extend these lemmas
to unidirectional RTMs and unidirectional QTMs, resp., with an arbitrary number of read-only
input tapes. This includes nonuniform machines as a special case.

In simulations of other models of quantum computation by QTMs, we face the problem of
carrying out an arbitrary given unitary transformation over a finite-dimensional Hilbert space
using only a finite program for the QTM. For doing this, we use a result due to Harrow,
Recht, and Chuang [14] that allows us to approximate any unitary operator over a finite-di-
mensional Hilbert space by a product of “few” elements from a finite collection of “simple”
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unitary transformations. The approximation is with respect to the operator norm, defined for
an operator A over a Hilbert space H by ‖A‖ = sup{‖Ax‖ | x ∈ H, ‖x‖ ≤ 1}. We say that A′

is an ε-approximation of A or approximates A with error ε if ‖A′ −A‖ ≤ ε.

Define the unitary matrices

V1 =
1√
5

(
1 2

√
−1

2
√
−1 1

)
, V2 =

1√
5

(
1 2
−2 1

)
, and V3 =

1√
5

(
1 + 2

√
−1 0

0 1− 2
√
−1

)
.

For i ∈ {1, 2, 3} let Vi+3 = V −1
i . Let G2 = {V1, . . . , V6}. For i ∈ {1, . . . , 6} and j ∈ {1, . . . , d− 1}

define the unitary d× d-matrix Wi,j by setting

Wi,j|k〉 =





(Vi)1,1|j〉 + (Vi)2,1|j + 1〉, if k = j;

(Vi)1,2|j〉 + (Vi)2,2|j + 1〉, if k = j + 1;

|k〉, otherwise.

Let Gd be the set of all Wi,j with i ∈ {1, . . . , 6} and j ∈ {1, . . . , d − 1}. Recall that SU(d)
denotes the set of all unitary d× d-matrices. Harrow, Recht, and Chuang [14] have proved the
following lemma, where we have added the estimate of the bound for k depending on d, while
in [14] the dimension is regarded as a constant.

Lemma 3.4 ([14]): There is a constant c > 0 such that for all ε > 0, U ∈ SU(d), and
k = ⌈cd2 log(d/ε)⌉, there are U1, . . . , Uk ∈ Gd such that ‖U − U1 · · ·Uk‖ ≤ ε.

Call the matrices Wi,j with i ∈ {1, . . . , 6} and j ∈ {1, . . . , d − 1} elementary. Let d = 2m

and let |ψ〉 ∈ C

d be encoded in m = log d qubits on the work tape of a QTM. Given i, j
as additional inputs, we would like to compute Wi,j|ψ〉, as required for the application of
Lemma 3.4. Bernstein and Vazirani [11] have shown how to implement this for a different
set of two-dimensional transformations. By an easy adaptation of their construction and an
application of the simulation of single-tape two-way QTMs by unidirectional ones also from
their paper, we obtain:

Lemma 3.5 ([11]): There is a unidirectional single-tape QTM Melem with multiple tracks that
works as follows. Let d = 2m and let |ψ〉 ∈ Cd be a superposition of m qubits. Let c(i, j) consist
of the binary codes of i ∈ {1, . . . , 6} and j ∈ {1, . . . , d − 1}. Started with |ψ〉 in tape cells
0, . . . ,m− 1 of the first track and |c(i, j)〉 in the tape cells 0, . . . , |c(i, j)| − 1 of the second track,
Melem computes the output Wi,j|ψ〉 on the first track, replacing |ψ〉, in time and space O(m).
Furthermore, the running time of Melem only depends on m, the length of the contents on the
first track.

Combining Lemmas 3.4 and 3.5, we can use a QTM to compute a good approximation of any
desired finite-dimensional unitary transformation. We still have to make sure that measuring
the state after applying the approximate transformation gives a result that agrees with that
after applying the original transformation with high probability. This can be shown using the
following statements. The first one is due to Bernstein and Vazirani [11], the proof of second
one is analogous to that of a similar statement in [26], page 195.

Proposition 3.6: Let U , U1, . . . , Un, and V1, . . . , Vn be operators over a Hilbert space H with
‖Ui‖, ‖Vi‖ ≤ 1 and ‖Ui−Vi‖ ≤ εi for i = 1, . . . , n. Then ‖U1 · · ·Un−V1 · · ·Vn‖ ≤ ε1 + · · ·+ εn.

Lemma 3.7: Let ε > 0 and t ∈ N. Let U and U ′ be unitary operators over a Hilbert space H
with ‖U − U ′‖ ≤ ε. Let P,Q be projections over H. Let |v〉 ∈ H with ‖|v〉‖ = 1. Define
p = ‖Q(UP )t|v〉‖2 and p′ = ‖Q(U ′P )t|v〉‖2. Then |p− p′| ≤ 2tε.
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4. Equivalence of QBPs and Space-BoundedUnidirectional NonuniformQTMs

We prove our simulation results for QBPs and unidirectional nonuniform QTMs. We first
provide a basic theorem that allows a step-by-step simulation of unidirectional nonuniform
QTMs by QBPs and vice versa. Each step of a QBP can only be done approximately by a
unidirectional nonuniform QTM. In order to control the total error, we have to specify the
number of simulation steps in advance. This raises the problem of bounding the computation
time of space-bounded algorithms that is studied afterwards. We first define a suitable notion
of simulations.

Definition 4.1: LetM1,M2 be nonuniform QTMs or QBPs. As defined in Sections 2 and 3, let
pMi,r(a, T ) be the probability that Mi computes the output r on the input a during the first T
computation steps. We say that M1 simulates T steps of M2 in T ′ steps with accuracy ε ≥ 0, if
for all a ∈ {0, 1}∗ and r ∈ {0, 1, ?}: |pM1, r(a, T

′)− pM2, r(a, T )| ≤ ε. We say that M1 simulates
M2 if M1 simulates T steps of M2 in the same number of steps with accuracy ε = 0 for
arbitrary T .

4.1. Basic Step-by-Step Simulations

Theorem 4.2:

(i) Let M be a unidirectional nonuniform QTM that runs in space S(n) = Ω(log n). Then
there is a sequence of QBPs (Gn)n∈N with |Gn| = 2O(S(n)) that simulate M .

(ii) Let (Gn)n∈N be a sequence of QBPs with |Gn| = Ω(n). Let ε : N → (0, 1) and T : N→ N0.
Then there is a unidirectional nonuniform QTM that for each n ∈ N simulates T (n)
steps of Gn in poly(|Gn|, T (n), log(1/ε(n))) steps with accuracy ε(n) and runs in space
O(log |Gn|+ log log(T (n)/ε(n))).

We discuss the consequences of this theorem for the motivation of our QBP model and the
relationship between QBPs and QTMs in detail in Section 4.2.

Proof of Theorem 4.2, Part (i). This follows by an easy adaptation of the proof of the analogous
result for classical BPs and TMs. Let M = (Q,Σ, δ) be a unidirectional nonuniform QTM with
advice function adv : N→ Σ∗ that runs in space S(n) = Ω(log n). We ensure that the heads on
the input and advice tape stay in the area consisting of the non-blank cells (see [38] for details).
Then M has at most 2O(S(n)) configurations.

We construct the QBP G over the variable set X = {x0, . . . , xn−1} with Cn(M) as its node
set. For a configuration c ∈ Cn(M) of M where the head on the input tape is at position i ∈
{0, . . . , n− 1}, define var(c) = i in G (recall that var(c) denotes the index of the variable with
which a QBP node is labeled). For an input with bit b ∈ {0, 1} at position i on the input tape
of M , let the application of the transition function δ of M to |c〉 yield the superposition

∑

c′∈Cn(M)

α(c, c′, b)|c′〉, α(c, c′, b) ∈ C.

For each α(c, c′, b) 6= 0, we add a b-edge from c to c′ in G and use α(c, c′, b) as the amplitude
label of this edge. We define the start node of G as the initial configuration of M and identify
the set of final nodes F with the set of final configurations of M .
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The graph G defined above fulfills the well-formedness requirement of QBPs since the time
evolution operator of the QTM M is unitary. In order to prove that G is unidirectional assume
for a contradiction that the node v has predecessors v1 and v2 labeled by different variables.
Then during the transitions of M that correspond to the transition of v1 to v and v2 to v the
head on the input tape makes different moves in contradiction to the unidirectionality of M .
Since |Cn(M)| = 2O(S(n)), the branching program is of the required size. It is easy to verify that
G simulates M because of the similarity of the definitions of the semantics for the two models.

�

Proof of Theorem 4.2, Part (ii). Let G be the QBP to be simulated and let X = {x0, . . . , xn−1}
be the variable set of G. In a first step, we show how to transform G into an equivalent QBP
G′ which has the additional property that all nodes that are reachable from the start node
by a path of length t are labeled by xt mod n. This allows us to decompose the time evolution
operator into n factors where each factor only depends on the value of one of the variables. In
a second step we construct a nonuniform QTM and its advice string from the decomposed time
evolution operator of G′ and prove the claims on the resources required by this QTM.

Let G = (V,E) and let s and F denote the start node and the set of sinks of G, resp. Due to the
unidirectionality of G, all predecessors of a node v ∈ V are labeled by the same variable, whose
index is denoted by pre(v). If the start node does not have any predecessor, let pre(s) = n− 1.
Furthermore, we set var(v) = 0 for v ∈ F .

We construct the QBP G′ = (V ′, E′) from G by adding dummy nodes. Let V ′ ={
(v, i)

∣∣ v ∈ V, i ∈ {pre(v) + 1, . . . , n− 1, 0, . . . , var(v)}
}
. Let s′ = (s, 0) be the start node

of G′ and let F ′ = {(v, 0) | v ∈ F} be its set of sinks. Define var(v, i) = i for all
v ∈ V and label(v, 0) = label(v) for all v ∈ F . For each (v,w) ∈ E, add an edge
((v, var(v)), (w, (pre(w) + 1) mod n)) to E′ that inherits all labels of the edge (v,w). Fur-
thermore, for each w ∈ V , i ∈ {pre(w) + 1, . . . , n− 1, 0, . . . , var(w)− 1}, and b ∈ {0, 1}, add an
edge ((w, i), (w, (i+1) mod n)) to E′ with boolean label b and amplitude 1. Let δ′ be the tran-
sition amplitudes of G′ defined in this way. It is easy to see that G′ is a QBP. Well-formedness
and unidirectionality of G′ follow from the respective properties of G for the subgraph induced
by the nodes in {(v, var(v)), (v, (pre(v) + 1) mod n) | v ∈ V } and are obvious for the rest of the
graph. It is easy to see that |G′| = O(n|G|).

Claim. G′ simulates T steps of G in nT steps with accuracy 0. Furthermore, there are unitary
operators Ui(b) with 0 ≤ i ≤ n−1 and b ∈ {0, 1} such that for any time evolution operator U ′(a)
of G′ with a ∈ {0, 1}n, the projection E′

cont to the space spanned by the non-sink nodes of G′, the

start node s′ of G′, and any T ∈ N0, (U
′(a)E′

cont)
nT |s′〉 =

(
(Un−1(an−1) · · · · · U0(a0))E

′
cont

)T |s′〉.

Proof of the claim. For the proof that G′ simulates T steps of G with nT of its own steps,
let ϕ be the linear embedding of the superpositions of G into those of G′ induced by setting
ϕ(|v〉) = |(v, 0)〉 for v ∈ V . Let U(a) and U ′(a) be time evolution operators of G and G′,
resp., for the input a ∈ {0, 1}n. Let Econt, Er and E′

cont, E
′
r be the projections to the spaces

spanned by the non-sink nodes and nodes with output label r, resp., for the graphs G and G′,
resp. An easy induction shows that for each T ∈ N0, (U

′(a)E′
cont)

nT |s′〉 = ϕ
(
(U(a)Econt)

T |s〉
)
.

Furthermore, E′
rϕ(|v〉) = ϕ(Er|v〉) for all v ∈ V . Hence, pG′,r(a, nT ) = pG,r(a, T ) for all T ∈ N0

and G′ simulates T steps of G with nT steps.

Furthermore, it is also easy to prove by induction that for any T ∈ N0, i = T mod n, and
any v ∈ V ′ − F ′ with var(v) 6= i, 〈v|E′

cont(U
′(a)E′

cont)
T |s′〉 = 〈v|(U ′(a)E′

cont)
T |s′〉 = 0. Hence,

instead of applying U ′(a) in the (T +1)-st computation step, we may apply a unitary extension
Ui(ai) of the mapping defined by |v〉 7→ ∑

w∈V ′ δ′(v,w, ai)|w〉 for v ∈ V ′ with var(v) = i,
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without changing the computed superposition. Finally, for all v ∈ F ′ and T mod n 6= 0, we have
〈v | (U ′(a)E′

cont)
T | s′〉 = 0. By induction, it follows that for any T ∈ N0, (U

′(a)E′
cont)

nT |s′〉 =(
(Un−1(an−1) · · · · · U0(a0))E

′
cont

)T |s′〉, as claimed. �

Now we describe the second step of the proof, the construction of the QTM from G′. Let
s = O(n|G|) be the number of nodes of G′. Let m = ⌈log s⌉. It is convenient to assume that
the node numbers have the length m + 2, where the numbers of interior nodes begin with 00
and the numbers of 0- and 1-sinks with 01 and 11, resp. Furthermore, we assume that the start
node has the number 0.

Construction of the advice string. First, we define approximate representations for each matrix
Ui(b), 0 ≤ i ≤ n− 1 and b ∈ {0, 1}, as a list of elementary matrices using Lemma 3.4. Choosing
ε′ = ε/(2nT 2) as the error bound and s as the dimension of the Hilbert space, Lemma 3.4
yields s× s-matrices Ui,0(b), . . . , Ui,k−1(b) whose product is an ε

′-approximation of Ui(b), where
k = O(s2 log(s/ε′)) = O(s2 log(nsT/ε)) is the number of matrices obtained from the lemma.
Observe that the number of elementary matrices in the representation of Ui(b) is the same for all
i and b. Elementary matrices are encoded such that the corresponding unitary transformations
can be applied using the QTM provided in Lemma 3.5. The code for an elementary matrix
Wj,j′ consists of the binary codes of j ∈ {1, . . . , 6} and j′ ∈ {1, . . . , s− 1}.
On the advice tape, we store the codes of the elementary matrices Ui,ℓ(b) for 0 ≤ i ≤ n − 1,
b ∈ {0, 1}, and ℓ ∈ {0, . . . , k − 1}, as well as some additional administrative information. The
information is organized using four tracks, where the non-blank part of each track starts at
position 0:

Track 1: Binary code of the input length n.

Track 2: Binary code of k.

Track 3: Binary code of the length of the code for an elementary matrix.

Track 4: List of codes for all Ui,ℓ(b).

The length of the code of each elementary matrix is O(log s). Each of the 2n matrices Ui(0) and
Ui(1) is encoded using O(k log s) bits. We have k = O(s2 log(nsT/ε)). Hence, the length of the
information on track 4 is bounded by O(2n · k log s) = poly(s, log(T/ε)), which is also a bound
on the overall length of the advice string. The logarithm of this, O(log s+ log log(T/ε)) =
O(log |G|+ log log(T/ε)), is the contribution of the advice tape to the space.

Construction of the QTM. The QTM uses the following tracks on the work tape:

Track 1: Output track. The output of the QTM is in cell 0 of this track upon termination.

Track 2: Node register consisting of m+2 cells that contains the current superposition of node
numbers of G′.

Track 3: Buffer for the code of Ui,ℓ(xi).

Track 4: Counter i with values in {0, . . . , n − 1}.
Track 5: Counter ℓ with values in {0, . . . , k − 1}.
Track 6: Buffer for the value of the current input bit.

Track 7: Buffer for the position of the currently applied Ui,ℓ(xi) on the advice tape.

Initially, the work tape only contains blanks. By choosing an appropriate encoding of binary
numbers (see, e. g., [39]), we ensure that a string of blanks represents the number 0. Hence, the
counters on track 4 and track 5 are initialized with 0. Since the start node has the number 0,
the blanks from the initialization of the node register encode the start node.
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1. Forever do

2. Termination check. Swap the contents of cell 0 of the node register (signaling
the output if the current node is a sink) and the output cell. If cell 1 of the
node register contains a 1 (signaling a sink), enter qf . Otherwise, swap again the
contents of cell 0 of the node register and the output cell.

3. For i := 0 to n− 1 do

4. XOR track 6 with the value of xi.

5. For ℓ := 0 to k − 1 do

6. XOR track 7 with the position of the code of Ui,ℓ(xi) on the advice tape.

7. XOR track 3 with the code of Ui,ℓ(xi) from the advice tape.

8. Apply Ui,ℓ(xi) to the node register.

9. Repeat step 7; this erases track 3.

10. Repeat step 6; this erases track 7.

11. Repeat step 4; this erases track 6.

Figure 2: Algorithm for the nonuniform QTM simulating G′.

The algorithm performed by the QTM is shown in Figure 2. The algorithm consists of an
infinite loop whose body, steps 2–11, simulates one computation step of the QBP G′. The loop
is left and the algorithm terminates in step 2 if a sink has been reached. We only bother to
simulate the first nT computation steps of G′ and thus the first T computation steps of G with
sufficient accuracy. In the following, we describe how this algorithm is implemented.

We construct unidirectional RTMs for steps 2, 4, 6, and 7 with the following additional prop-
erties. We ensure that these machines only use the space already allotted on the work tape,
that the time can be bounded by O(1) and O(n) for step 2 and 4, resp., and by a polynomial
in the length of the advice tape, i. e., poly(s, log(T/ε)), for steps 6 and 7. For step 2, we addi-
tionally take care that the running time only depends on the length of the node register, but
not on the actual contents of the node register. It is not hard to construct these machines from
scratch. Furthermore, Lemma 3.5 yields a unidirectional QTM for step 8 that has space and
running time bounded by the length of the node register, i. e., O(log s) and whose running time
is independent of the actual contents of the node register.

For constructing the final QTM from these basic RTMs, we apply appropriate versions of the
lemmas of Bernstein and Vazirani [11] for dealing with unidirectional nonuniform RTMs and
unidirectional nonuniform QTMs. The finite loops are realized as described by Watrous [39]. At
the beginning of a loop, we check a starting/stopping condition for the loop and switch the state
of being outside or inside the loop, resp., when this condition is met. For the loops beginning
in step 3 and 5, we use counters modulo n and k, resp., and check as the starting/stopping
condition whether the counter is equal to zero.

Using these tools, we first combine the machines for the steps 4 and 6–11, implementing the
loops in step 3 and 5 as described above, to get a QTM M3–11 for steps 3–11. The outermost,
endless loop is then realized by modifying the RTM for step 2. We use a simple unidirectional
RTM constructed from scratch that carries out the described termination check, enters two
special states as placeholders depending on the value of cell 1 of the node register, and then
restarts its computation. We insert M3–11 into the state for the value 0 of cell 1 (non-sink) and
replace the state for the value 1 (sink) with the final state qf of the whole QTM. This yields
the desired QTM for simulating G′ and thus G.
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We note that a space-bounded RTM performing an infinite loop cannot carry out initialization
steps before the loop. By our choice of the encoding of the contents of the tracks, we do not
need such an initialization. Furthermore, we have ensured that the running time for the body of
the outermost loop is the same for all possible classical inscriptions in the node register. Hence,
even if the simulated QBP is in a superposition, step 2 is always reached simultaneously for all
nodes in the superposition.

Space and time requirements. The space on tracks 1–6 of the work tape is obviously bounded
by O(1), O(log s), O(log s), O(log n), O(log k) = O(log s + log log(T/ε)), and O(1), resp. The
space on track 7 is bounded above by the logarithm of the length of the advice string, which
is O(log s+ log log(T/ε)) as computed above. Since this is also the contribution of the advice
string to the space, the overall space complexity is of the same order. We can estimate the
running time for simulating one computation step of G′ (steps 2–11 of the algorithm) as follows.
The running time of steps 4 and 11 is O(n). The running time of steps 6, 7, 9, and 10 is
dominated by the length of the advice tape, which is of order poly(s, log(T/ε)). Step 8 can be
performed in time proportional to the length of the node register, i. e., O(log s). Hence, also
the overall time for one computation step is of order poly(s, log(T/ε)) = poly(|G|, log(T/ε)).
Correctness. Let us assume for a moment that the product Ui,k−1(xi) · · ·Ui,0(xi) equals Ui(xi).
Then it is easy to see that steps 4–10 exactly apply Ui(xi) and that steps 3–11 exactly apply
Un−1(xn−1) · · ·U0(x0) to the node register. Together with the termination check in step 2
which realizes the projection E′

cont to the non-sink nodes of G′, steps 2–11 exactly apply
Un−1(xn−1) · · ·U0(x0)E

′
cont to the node register if the QTM does not stop. Due to the above

claim, we know that this simulates n successive computation steps of G′ and thus one compu-
tation step of the original QBP G.

However, the product Ui,k−1(xi) · · ·Ui,0(xi) is merely an ε′-approximation of Ui(xi), where
ε′ = ε/(2nT 2). By Proposition 3.6 we may estimate the error in the application of
U0(x0), . . . , Un−1(xn−1) by nε′. Let p̂G,r(a, t) be the probability that G halts after exactly t
steps at a sink labeled by r ∈ {0, 1, ?}. Let p̂M,r(a, t) be the probability that M halts after
exactly t iterations of steps 2–11 and outputs r. As remarked above, the error of one iteration
of the outer loop is bounded by nε′. By Lemma 3.7, |p̂G,r(a, t) − p̂M,r(a, t)| ≤ 2tε′n ≤ ε/T for
all t = 0, . . . , T . Hence,

∣∣∣
T∑

t=0

p̂G,r(a, t)−
T∑

t=0

p̂M,r(a, t)
∣∣∣ ≤

T∑

t=0

|p̂G,r(a, t)− p̂M,r(a, t)| ≤ ε.

Altogether, we have proved that M simulates T steps of G in poly(|G|, T, log(1/ε)) steps with
accuracy ε. �

4.2. High-Level Simulation Theorems

Here we use the basic, technical simulations from the last subsection for proving that the
logarithm of the size of QBPs and the space complexity of QTMs asymptotically agree for
the standard models of QBPs and QTMs. On the way, we investigate the relationship between
precision and running time for QBPs. All proofs are given in Section 4.3. We assume throughout
this subsection that the logarithm of the size of the considered QBPs and the space complexity
of the QTMs are at least logarithmic in the input length.

We begin with a simple corollary from the basic simulations. If we want to apply the approxi-
mate simulation of QBPs by QTMs, we have to specify a bound ε on the simulation error and
a bound T on the number of simulation steps in advance. These parameters turn up in a term
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of O(log log(T/ε)) in the space complexity of the simulating machine. If we restrict ourselves to
bounded error computation and to exponential running time, Theorem 4.2 immediately yields:

Corollary 4.3: The logarithm of the size of QBPs and the space complexity of unidirectional
nonuniform QTMs are asymptotically equal if both models are restricted to bounded error and
exponential running time in the worst case. Furthermore, the classes of functions computable by
sequences of QBPs with polynomial size and by unidirectional nonuniform QTMs with logarith-
mic space are the same if both models are restricted to bounded error and polynomial running
time.

It is obviously practically motivated to work with bounded running time, but it is not clear
what kind of bounds can be chosen without restricting the computational power of the space-
bounded models considered here. In [38] and implicitly also in [39], Watrous has investigated
this question for unidirectional uniform QTMs and has obtained answers analogous to the
situation for probabilistic TMs. He has shown that unidirectional uniform QTMs with rational
amplitudes and running in space S(n) = Ω(log n) have an expected running time that is at
most doubly exponential in S(n). This result can be extended to unidirectional uniform QTMs
with algebraic amplitudes using the ideas from his later papers [40,41].

These considerations provide the motivation to look at the relationship between the precision
allowed for the amplitudes and the running time also for the nonuniform model of QBPs. In
turns out that short amplitudes take over a role analogous to algebraic amplitudes for QTMs.

Theorem 4.4:

(i) Sequences of QBPs (Gn)n∈N with bounded error and short amplitudes and sequences of
QBPs (G′

n)n∈N with bounded error and expected running time 2poly(|G
′
n|) have polynomially

related size complexities.

(ii) Sequences of QBPs (Gn)n∈N with unbounded error and short amplitudes can be simulated by
sequences of QBPs (G′

n)n∈N of size poly(|Gn|) and with expected running time 2poly(|G
′
n|).

Our final and main result of this subsection provides a justification to regard QBPs with short
amplitudes as the natural standard variant of the model analogous to QTMs with algebraic
amplitudes.

Theorem 4.5: The logarithm of the size of QBPs with bounded or unbounded error and short
amplitudes and the space complexity of unidirectional nonuniform QTMs with algebraic ampli-
tudes and the same type of error are asymptotically equal.

4.3. Proofs of Theorems 4.4 and 4.5

For the proofs of the theorems we need a couple of technical lemmas, which are concerned with
the analysis of a matrix series that describes the acceptance probability of a QBP. Using these
lemmas we provide two results on QBPs with short amplitudes, which are the basic tools for
proving Theorems 4.4 and 4.5. First, even in the case of unbounded error there is some gap
between the error probability and 1/2. Second, in QBPs with short amplitudes a probabilistic
clock can be added by which computations lasting too long are aborted.

For the following, consider an arbitrary QBP G with s nodes. For any fixed input a for G let
U = U(a) be a unitary time evolution matrix ofG. Recall that Econt is the projection operator in
the measurement of the output label which belongs to the result “no label.” Let D = UEcont and
M = D ⊗D, where D denotes the matrix obtained from D by taking the complex conjugate
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of each of its entries. Let N = s2 denote the dimension of M and let |1〉, . . . , |N〉 be the
standard basis of CN . For v ∈ {1, . . . , s}, define iv = v + s(v − 1) ∈ {1, . . . , N}. Then, for any
v,w ∈ {1, . . . , s}, Miw,iv = (〈w| ⊗ 〈w|)M(|v〉 ⊗ |v〉).

Lemma 4.6:

(i) The probability that the node w is reached after exactly k computation steps in G when
starting at the node v is equal to (Mk)iw,iv .

(ii) The absolute value of each eigenvalue of M is bounded above by 1.

Proof. Part (i) follows from (Mk)iw ,iv = (〈w| ⊗ 〈w|)(Dk ⊗Dk)(|v〉 ⊗ |v〉) = (D
k
)w,v · (Dk)w,v =

|((UEcont)
k)w,v|2, which is obviously the desired probability.

For part (ii) it suffices to prove that ‖M‖ ≤ 1, since ‖M‖ provides an upper bound
on the absolute value of the eigenvalues of M (see, e. g., [15], page 45). We have
M †M = (D ⊗D)†(D ⊗D) = ((D)†D)⊗ (D†D). Furthermore, D†D = (UEcont)

†(UEcont) =

E†
contEcont = Econt. The eigenvalues of D

†D are thus from {0, 1}, and the same holds for (D)†D.
Since the eigenvalues of M †M are obtained as products of the eigenvalues of (D)†D and D†D,
it follows that ‖M‖ ≤ 1. �

The above lemma yields that, for each pair of nodes (v,w) in G, limk→∞

(∑k
ℓ=0M

ℓ
)
iw,iv

is the
probability of reaching node w from node v in G. In particular, the acceptance probability of G
can expressed as the sum of all such terms where v is the start node and w is a 1-sink.

We use the technique of Watrous [39, 40, 41] to analyze the series
(∑∞

ℓ=0M
ℓ
)
iw,iv

. Since the

matrix series
∑∞

ℓ=0M
ℓ does not converge in general, we look at the series

∑∞
ℓ=0(zM)ℓ for

some z ∈ [0, 1) instead and let z tend to 1 afterwards. Using the restrictions on the involved
numbers, we then show two facts: First, limz↑1

(∑∞
ℓ=0(zM)ℓ

)
iw,iv

can be approximated with

sufficient precision by choosing z = 1 − 2− poly(N). Second, if the limit
(∑∞

ℓ=0M
ℓ
)
iw,iv

is not

exactly 1/2, then it can be bounded away from 1/2 by a gap of size at least 2− poly(N).

For a multivariate polynomial f , the height of f , denoted by ‖f‖, is the maximum absolute
value of any of its coefficients and deg(f) is the maximum degree of f with respect to any of its
variables. Using the form of the entries of U = U(a) obtained by Proposition 2.9, it is easy to see
that there is a real algebraic number α not depending on N and a numberm = 2poly(N) such that
each entry of M = UEcont ⊗UEcont can be written as p(α)/m for an integer polynomial p with
deg(p) = poly(N) and ‖p‖ = 2poly(N). The following three technical lemmas yield properties of
general matrices of this form (not necessarily derived from QBPs). The first two lemmas are
extracted from [41] (Lemma 4.6 and its proof and the beginning of the proof of Lemma 4.2,
resp.).

Lemma 4.7 ([41]): Let α be any real algebraic number.

(i) If f is a univariate polynomial with ‖f‖ ≤ 2d, deg(f) ≤ d and f(α) 6= 0, then
|f(α)| ≥ 2−O(d2).

(ii) Let f , g be bivariate integer polynomials with ‖f‖, ‖g‖ ≤ 2d, deg(f),deg(g) ≤ d and
g(α, 1) 6= 0. Then there is a constant c > 0 such that for any δ with 0 < δ < 2−cd2

and d sufficiently large, ∣∣∣∣
f(α, 1)

g(α, 1)
− f(α, 1 − δ)

g(α, 1 − δ)

∣∣∣∣ ≤ δ 2cd
2
.
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Lemma 4.8 ([41]): Let α be any real algebraic number and let m ∈ R. Let M be an N ×N -
matrix such that for each entry x there is an integer polynomial p with x = p(α)/m and deg(p) =
poly(N), ‖p‖ = 2poly(N). Further suppose that the eigenvalues of M are bounded above in
absolute value by 1. Let 1 ≤ i, j ≤ N and let S =

(∑∞
ℓ=0M

ℓ
)
i,j

be convergent. For z ∈ [0, 1),

define S̃(z) =
(∑∞

ℓ=0(zM)ℓ
)
i,j
. Then there are bivariate integer polynomials f, g such that

‖f‖, ‖g‖ ≤ mN2poly(N), deg(f),deg(g) = poly(N), g(α, 1) 6= 0, and

f(α, z)/g(α, z) = S̃(z), for z ∈ [0, 1), and

f(α, 1)/g(α, 1) = S.

Lemma 4.9: Let m = 2poly(N). Let M be an N × N -matrix as in the previous lemma. Let
Si,j =

(∑∞
ℓ=0M

ℓ
)
i,j

for 1 ≤ i, j ≤ N .

(i) Suppose that Si,j converges. For z ∈ [0, 1), let S̃i,j(z) =
(∑∞

ℓ=0(zM)ℓ
)
i,j
. Then there is a

polynomial p such that for any z = 1− δ with 0 < δ < 2−p(N), |Si,j − S̃i,j(z)| ≤ δ2p(N).

(ii) Let I ⊆ {1, . . . , N}2 and suppose that for each (i, j) ∈ I, Si,j converges. Let S =∑
(i,j)∈I Si,j. Then there is a polynomial p such that S 6= 1/2 implies |S − 1/2| ≥ 2−p(N).

Proof. Part (i): Use Lemma 4.8 to get bivariate integer polynomials fi,j, gi,j such that

fi,j(α, z)/gi,j(α, z) = S̃i,j(z), for z ∈ [0, 1), and

fi,j(α, 1)/gi,j(α, 1) = Si,j.

By the lemma and the fact m = 2poly(N), there is a polynomial q such that ‖fi,j‖, ‖gi,j‖ ≤ 2q(N)

and deg(fi,j),deg(gi,j) ≤ q(N) and, furthermore, gi,j(α, 1) 6= 0. By Lemma 4.7(ii) applied to fi,j
and gi,j with d = q(N), it follows that there is a constant c > 0 such that for all 0 < δ < 2−cq(N)2

and N sufficiently large,

|Si,j − S̃i,j(1− δ)| =

∣∣∣∣
fi,j(α, 1)

gi,j(α, 1)
− fi,j(α, 1 − δ)

gi,j(α, 1 − δ)

∣∣∣∣ ≤ δ 2cq(N)2 .

Choosing p(N) = cq(N)2 yields the desired bound for any z = 1− δ with 0 < δ < 2−p(N).

Part (ii): By Lemma 4.8, it follows that for each (i, j) ∈ I,

Si,j =
( ∞∑

ℓ=0

M ℓ
)
i,j

=
fi,j(α, 1)

gi,j(α, 1)
,

where fi,j and gi,j are bivariate integer polynomials with ‖fi,j‖, ‖gi,j‖ ≤ 2q(N) and
deg(fi,j),deg(gi,j) ≤ q(N) for some polynomial q, and gi,j(α, 1) 6= 0 for all i, j ∈ I. Then

S =
∑

(i,j)∈I

fi,j(α, 1)

gi,j(α, 1)
6= 1/2 ⇒ 2

∑

(i,j)∈I

fi,j(α, 1)
∏

(i′ ,j′)6=(i,j)

gi′,j′(α, 1) −
∏

(i,j)∈I

gi,j(α, 1) 6= 0.

The left hand side of the last inequality is a polynomial in α with height at most 2O(|I|·q(N)) =
2poly(N) and degree at most |I| · q(N) = poly(N), since |I| ≤ N2. Lemma 4.7(i) implies that
the absolute value of this expression is lower bounded by 2−q′(N) for a suitable polynomial q′

and N large enough. Hence,
∣∣∣∣∣∣

∑

(i,j)∈I

fi,j(α, 1)

gi,j(α, 1)
− 1

2

∣∣∣∣∣∣
≥ 2−q′(N)−1

∏
(i,j)∈I |gi,j(α, 1)|

.
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We have ‖gi,j‖ ≤ 2q(N), deg(gi,j) ≤ q(N), and α,α2, . . . , αq(N) = 2poly(N) since α is a constant.
This implies that |gi,j(α, 1)| ≤ 2q

′′(N) for a polynomial q′′ and N sufficiently large. Thus,

|S − 1/2| ≥ 2−q′(N)−1

2|I|·q′′(N)
≥ 2−p(N)

for p(N) = q′(N) +N2q′′(N) + 1, which proves the claim. �

Now we can state and prove our first main lemma that allows us to bound the error probability
of QBPs away from 1/2.

Lemma 4.10: For each QBP G with short amplitudes there exists a polynomial q such that for
each input a ∈ {0, 1}n, pG,1(a) > 1/2 implies pG,1(a) ≥ 1/2+2−q(|G|) and pG,1(a) < 1/2 implies
pG,1(a) ≤ 1/2− 2−q(|G|).

Proof. Let G be a QBP with short amplitudes on n variables. By Proposition 2.9 we may
assume that the amplitudes in G are of the form p(α)/m, where p is an integer polynomial
with deg(p) = poly(|G|) and ‖p‖ = 2poly(|G|) and where α is the same algebraic number and
m = 2poly(|G|) is the same natural number for all amplitudes. Let v be the start node of G and
let F1 = {w | w is a 1-sink of G }. Let N = |G|2 and let the N × N -matrix M describing the
computation of G on an input a ∈ {0, 1}n as well as the indices iv ∈ {1, . . . , N} corresponding
to nodes v ∈ {1, . . . , |G|} be defined as above. Then the probability of G accepting a in the
kth computation step is given by

∑
w∈F1

(Mk)iw,iv , and the total probability of accepting a

is pG,1(a) =
∑

w∈F1

(∑∞
k=0M

k
)
iw,iv

. Since G only contains labels of the form p(α)/m, the

entries of M are of the form p′(α)/m′, where p′ is a polynomial with deg(p′) = poly(|G|) and
‖p′‖ = 2poly(|G|) and m′ = m2 = 2poly(|G|). Hence, part (ii) of Lemma 4.9 yields the claimed
result. �

The other main argument in our proofs is the construction of a probabilistic clock, which works
in the case of bounded as well as unbounded error.

Lemma 4.11: For each sequence of QBPs (Gn)n∈N with bounded or unbounded error and short
amplitudes, there is a sequence of QBPs (G′

n)n∈N for the same function with short amplitudes,
the same type of error, size poly(|Gn|), and expected running time 2poly(|G

′
n|).

Proof. The main idea is similar to that of Simon [36] for limiting the running time of probabilistic
Turing machines. We simulate G step-by-step. Before each simulation step, we stop and reject
the input with fixed, small probability. A similar construction for unidirectional QTMs has
been given in Lemma 4.6 of Watrous [39].

Let G be a QBP on n variables of size s. By Proposition 2.9 we may assume that the
amplitudes of G are the fraction of some integer polynomial in an algebraic number and a
common denominator m = 2poly(s). Let q be some polynomial. We construct a QBP G′

with size polynomial in s, expected running time 2poly(s), and such that for all a ∈ {0, 1}n,
pG,1(a)− 2−q(s) ≤ pG′,1(a) ≤ pG,1(a). Together with Lemma 4.10, this implies the claim.

Let t = t(s) = q(s) + p(s) + log s, where p(s) is a polynomial defined later on. Let v1, . . . , vs
be the nodes of G. The new QBP G′ is obtained from the QBP G′

0 shown schematically in
Figure 3. We use unlabeled nodes introduced in Section 2 to simplify the presentation. The
start node of G′

0 is w1. The edges in the upper part of the figure represent the transformation
|wi〉 7→ β|w′

i〉+ γ|w∗
i 〉, where

β =
22t+1 + 2t+1

22t+1 + 2t+1 + 1
and γ =

2t+1 + 1

22t+1 + 2t+1 + 1
.
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Figure 3: The QBP G′
0 used in the proof of Lemma 4.11.

Then β2 + γ2 = 1, which is used to prove that the QBP is well-formed. Each node w′
i,

i ∈ {1, . . . , s}, is a copy of the node vi in G and is labeled by the same variable as vi. For
each edge (vi, vj) in G, an edge (w′

i, w
′′
j ) is inserted in G′

0 that carries the same labels. The
shaded part in the figure represents these edges. The node w′′

i is a sink if the corresponding
node vi in G is, and each non-sink node w′′

i is unlabeled and has an outgoing edge with ampli-
tude 1 to node wi (not shown in the figure). The only nodes labeled by variables are w′

1, . . . , w
′
s,

all other nodes are unlabeled. We remove all unlabeled nodes from G′
0 to obtain the desired

QBP G′. It is easy to see that G′ constructed in this way is well-formed and unidirectional.
The only numbers added as amplitudes here, 1, β, and γ, are rational and have representations
of polynomial length. Hence, G′ also has short amplitudes.

We observe that the probability of G′ terminating during a traversal of the upper part is
δ = |γ|2 ≤ 2−2t. Hence, its expected running time is bounded by 2O(t) = 2poly(s). Furthermore,
for all inputs a ∈ {0, 1}n, pG′,1(a) ≤ pG,1(a). It remains to show that for all inputs a, pG′,1(a) ≥
pG,1(a)− 2−q(s).

Fix any input a ∈ {0, 1}n. Let N = s2, let the N × N -matrix M describing the compu-
tation of the original QBP G on a, and let the mapping of nodes v ∈ {1, . . . , s} to in-
dices iv ∈ {1, . . . , N} be defined as above. Let v be the start node of G and let F1 =
{w | w is a 1-sink of G }. As in the proof of Lemma 4.10, the total probability of G accept-
ing a is pG,1(a) =

∑
w∈F1

(∑∞
k=0M

k
)
iw,iv

. Now recall that G′ performs the same computation
as G with the only exception that it terminates the computation with the probability δ before
each step of G. Hence, the probability of G′ accepting a in the kth simulation step of G after
not rejecting k times in the first phase of the computation is

∑
w∈F1

(
(1 − δ)kMk

)
iw,iv

. We
obtain

pG′,1(a) =
∑

w∈F1

( ∞∑

k=0

(1− δ)kMk
)
iw,iv

.

Now choose p as the polynomial obtained when Lemma 4.9(i) is applied with z = 1 − δ,
Si,j = pG,1(a), and S̃i,j(z) = pG′,1(a). The lemma implies that

|pG′,1(a)− pG,1(a)| ≤
∑

w∈F1

∣∣∣∣∣
( ∞∑

k=0

(1− δ)kMk
)

iw,iv
−

( ∞∑

k=0

Mk
)

iw,iv

∣∣∣∣∣ ≤ |F1| · δ · 2p(s),

provided that 0 < δ < 2−p(s). The restriction on δ is easily seen to be satisfied since δ ≤ 2−2t

and t = t(s) = p(s) + q(s) + log s. Using that |F1| ≤ s, we obtain

|F1| · δ · 2p(s) ≤ |F1| · 2−2(q(s)+p(s)+log s) · 2p(s) ≤ 2−q(s)
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and thus |pG′,1(a)− pG,1(a)| ≤ 2−q(s). Hence, G′ has all required properties. �

Now we have collected all tools for the proofs of Theorems 4.4 and 4.5. For the convenience of
the reader, we restate the theorems here. We begin with the proof of Theorem 4.5.

Theorem 4.5 (restatement): The logarithm of the size of QBPs with bounded or unbounded
error and short amplitudes and the space complexity of unidirectional nonuniform QTMs with
algebraic amplitudes and the same type of error are asymptotically equal.

Proof. A simulation of unidirectional nonuniform QTMs by QBPs is already provided in Theo-
rem 4.2. It is easy to see that the resulting QBP has short amplitudes if the amplitudes of the
QTM are algebraic numbers.

Now let a sequence (Gn)n∈N of QBPs with short amplitudes be given. By Lemma 4.11 we can
simulate Gn by a QBP G′

n with size poly(|Gn|), the same type of error, short amplitudes and
expected running time T (n) = 2poly(|G

′
n|). In the case of bounded error, let ε be the error bound

of G′
n. In the case of unbounded error, by Lemma 4.10, there is some polynomial q(n) such

that the acceptance and rejection probabilities of G′
n are strictly larger than 1/2 + 2−q(|G′

n|) or
strictly smaller than 1/2 − 2−q(|G′

n|), resp. In this case let ε = ε(n) = 1/2 − 2−q(|G′
n|) be the

error bound of G′
n. We choose ε′ = (1/2 − ε)/3 and T ′(n) = T (n)/ε′ = 2poly(|G

′
n|). Then we

apply the simulation of QBPs by QTMs from Theorem 4.2 for the accuracy ε′ and the running
time T ′(n). The space complexity of the QTM is O(log |G′

n|+ log log(T ′(n)/ε′)) = O(log |Gn|).
By Markov’s inequality, the probability that the running time of G′

n and thus the number of
performed simulation steps exceeds T ′(n) = T (n)/ε′ is bounded by ε′. Hence, the probability of
an error caused by running more than T ′(n) simulation steps is bounded by ε′ and the overall
error probability is bounded by ε+ 2ε′ = 1/2− ε′. �

Theorem 4.4 (restatement):

(i) Sequences of QBPs (Gn)n∈N with bounded error and short amplitudes and sequences of
QBPs (G′

n)n∈N with bounded error and expected running time 2poly(|G
′
n|) have polynomially

related size complexities.

(ii) Sequences of QBPs (Gn)n∈N with unbounded error and short amplitudes can be simulated by
sequences of QBPs (G′

n)n∈N of size poly(|Gn|) and with expected running time 2poly(|G
′
n|).

Proof. A simulation of QBPs (Gn)n∈N with short amplitudes by QBPs (G′
n)n∈N with expected

running time 2poly(|G
′
n|) for bounded and unbounded error is contained in Lemma 4.11. This

proves one direction of part (i) as well as part (ii). It remains to prove the missing direction of
part (i), i. e., to provide a simulation of QBPs with bounded error and an expected exponential
running time by QBPs with bounded error and short amplitudes. Let (Gn)n∈N be a sequence of
QBPs with expected running time 2poly(|Gn|) and error probability ε ∈ [0, 1/2). As in the proof
of Theorem 4.5, we choose ε′ = (1/2 − ε)/3 and T ′(n) = T (n)/ε′ = 2poly(s(n)) and apply the
simulation of QBPs by QTMs of Theorem 4.2 for the accuracy ε′ and the running time T ′(n).
By the same arguments as in the proof of Theorem 4.5, we obtain a unidirectional nonuniform
QTM simulating the given QBP with bounded error, expected running time T (n), and space
complexity O(log |Gn|). The transition function of the QTM only contains a constant number
of algebraic numbers.

In a second step we apply the simulation of unidirectional nonuniform QTMs by QBPs from
Theorem 4.2. The resulting QBP has an error probability of at most ε′. Its size is bounded
above by 2O(log |Gn|) = poly(|Gn|). The amplitudes occurring in the QBP are the amplitudes of
the transition function of the QTM and thus are short. �
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5. Simulation of Nonuniform QTMs by Unidirectional Nonuniform QTMs

In this section, we consider nonuniform RTMs and QTMs that are, different from the previous
sections, not necessarily unidirectional. We show that they can be simulated space-efficiently
by their unidirectional counterparts. We discuss some consequences of the simulation result at
the end of this section.

Our simulation result uses the construction of the universal QTM due to Yao [43] and Nishimura
and Ozawa [27] based on a simulation of QTMs by quantum circuits and vice versa as interme-
diate steps. The original simulations cannot be applied since they use markers on the work tape
of the simulating machine to store the positions of the simulated tape heads and (which is more
serious) generate a quantum circuit for the simulated machine online on the work tape. Both of
this is too costly in terms of space. These obstacles are overcome here by using a space-efficient
encoding of the positions of the input tape heads and by storing a representation of the required
quantum circuit on the advice tape.

As a preparation for the proof of our simulation result, we state a simple necessary property
of the transition function of QTMs with two read-only input tapes which is extracted from the
proof of Theorem 4.5 in [28]. In the following the expression [A = B] has the value 1, if A = B,
and 0 otherwise.

Lemma 5.1 ([28]): Let M = (Q,Σ, δ) be a QTM with two read-only input tapes. Let p, p′ ∈ Q,
∆ = (∆1,∆2) ∈ Z2 and a1, a2, a

′
1, a

′
2, v, w, v

′, w′ ∈ Σ.

(i) 0 =
∑

q∈Q, d′′∈{0,1},
d,d′∈{−1,0,1}2

δ(p, (a1, a2, v), q, w, (d, d
′′ − 1))∗

· δ(p′, (a′1, a′2, v′), q, w′, (d′, d′′)) ·
[
d′ − d = ∆

]
.

(ii) 0 =
∑

q∈Q,
d,d′∈{−1,0,1}2

δ(p, (a1, a2, v), q, w, (d,−1))∗

· δ(p′, (a′1, a
′
2, v

′), q, w′, (d′, 1)) ·
[
d′ − d = ∆

]
.

Now we can state and prove our result.

Theorem 5.2:

(i) Each nonuniform RTM that runs in space S at least logarithmic in the input length and
time T can be simulated by a unidirectional nonuniform RTM running in time poly(S, T )
and space O(S).

(ii) Let ε > 0 and T : N→ N0. For each nonuniform QTM M running in space S at
least logarithmic in the input length, there is a unidirectional nonuniform QTM that
simulates M for T steps in poly(2O(S), T, log(1/ε)) steps with accuracy ε using space
O(S + log log(T/ε)).

Proof. In the main part of the proof, we deal with part (ii). We handle necessary changes for
part (i) and RTMs at the end. We first describe how we encode the information about the
simulated machine on the work tape of the simulating machine. Then we present a high-level
algorithm carrying out a whole simulation step and define a unitary transformation realizing a
single transition of the simulated machine. Afterwards, this unitary transformation is imple-
mented approximately by the simulating unidirectional nonuniform QTM.

Storage layout on the work tape. Let M = (Q,Σ, δ) be a nonuniform QTM that is to be
simulated unidirectionally. We regard the advice tape simply as an additional read-only input
tape. We assume that for input length n and space bound S ≥ log n the heads on the input
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tapes i ∈ {1, 2} of M only reach the positions 0, . . . , ni − 1, where n1 = n + 2, n2 = poly(n),
and that the work tape head only reaches the positions 0, . . . , n3 − 1 with n3 = S +2 (this may
be achieved using end markers). We assume that {0, 1, 2} ⊆ Σ.

Let ℓ = ℓ1 + 6ℓ2 + 1 with ℓ1 = ⌈log |Q|⌉ and ℓ2 = max{⌈log ni⌉ | i ∈ {1, 2, 3}} = O(S), and
assume w. l. o. g. that ℓ ≥ 3. The information about the simulated machine is stored on two
tracks of the work tape of the simulating machine as shown below.

Track 2:

Track 1:

w1 w2 w3

i−1 i i+1 i+ℓ−2

ν = (ν1, ν2, ν3)ξ = (ξ1, ξ2, ξ3)q ϕ

Track 2 contains the work tape of the simulated machine. In ℓ consecutive cells on track 1, which
are called the info block, we encode all administrative information for the simulation. The posi-
tion of the info block is used to indicate the position of the head on the work tape in a classical
configuration. If the cells of the info block are located at positions i− 1, i, i + 1, . . . , i+ ℓ− 2
on the work tape as shown in the figure, we say that the info block is at position i. In this
situation, the inscription in the info block together with the symbols w1, w2, w3 ∈ Σ in cells
i− 1, i, i + 1 on track 2 are called the info window induced by the info block.

The information stored in the info block consists of the local state q ∈ Q of the simulated
machine encoded in binary, a flag ϕ ∈ {0, 1} showing whether the actual transition step has
already been carried out, and vectors ξ = (ξ1, ξ2, ξ3), ν = (ν1, ν2, ν3) in {0, . . . , n1 − 1} × · · · ×
{0, . . . , n3 − 1} encoded in binary. The coordinates of ξ are the positions of the tape heads of
the simulated machine. Similarly, ν1 and ν2 are the positions of the heads on the input tapes
of the simulating machine. Finally, ν3 is the position of the info block. We write the contents
of the info window shown above as (q, ϕ, ξ, ν, w), where w = (w1, w2, w3).

Carrying out a simulation step. We first give an outline of our approach. For the simulation
of a single step of M , we let the input tape heads of the simulating machine as well as the info
block on the work tape successively move to all combinations of positions in {0, . . . , n1 − 1} ×
· · ·×{0, . . . , n3−1} on the tapes that may be accessed. If during this sweep the machine reaches
a configuration where the positions of the heads of the input tapes as well as the position of the
info block, which are encoded in ν, all agree with the stored positions of those of the simulated
machine and ϕ = 0, then a local transition of the simulated machine is applied, for which we
update the contents of the info window and set ϕ = 1. After the sweep through all positions is
complete, the flag ϕ is negated.

In Figure 4 this is described in more detail as a high-level algorithm. We use the following nota-
tion. For x = (x1, x2, x3) ∈ {0, . . . , n1− 1}× · · · × {0, . . . , n3− 1}, let |x| = x3n2n1 + x2n1 + x1.
Furthermore, let |q, ϕ, ξ, ν, w1 w2w3〉 denote an ON-basis indexed by the different possible clas-
sical inscriptions of the info window.

Realizing a Transition Unitarily. Next we show that step 2 of the high-level algorithm can
be described by a unitary transformation. For this, let the heads on the input tapes of the
simulating machine as well as the info block on the work tape be at fixed positions. Let a1, a2 ∈ Σ
be the symbols under the input tape heads. Our goal is to specify a unitary transformation
Utrans = Utrans(a1, a2) that changes the contents of the info window according to the high-level
algorithm. Using an idea due to Yao [43], we only carry out the identity in step 2.2 for those
inscriptions of the info window that can actually arise during the computation at this point.
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Loop with starting/stopping condition ν = (0, 0, 0):

1. Move the real input tape heads and the info block on the work tape to the positions
in ν.

2. Transition: Let (p, ϕ, ξ, ν, (w1, w2, w3)) be the contents of the current info window and
let a1, a2 ∈ Σ be the symbols under the input tape heads.
2.1. If ξ = ν and ϕ = 0, replace the contents of the info window with the superposition

∑

q∈Q,b∈Σ,
d∈{−1,0,1}3

δ
(
p, (a1, a2, w2), q, b, d

)
|q, 1, ξ + d, ξ, w1 bw3〉.

2.2. For all inscriptions of the info window that do not satisfy the condition of step 2.1
and can actually arise during the computation, do nothing.

3. Move real input tape heads and the info block on the work tape to positions (0, 0, 0).

4. Update ν to a new vector ν ′ such that |ν ′| ≡ (|ν|+ 1) mod n1 · n2 · n3.
Set ϕ = 1− ϕ. End of simulation step.

Figure 4: High-level description of the simulation step.

∣∣v(1)p,ξ,w1,w2,w3

〉
= |p, 0, ξ, ξ, w1 w2 w3〉

∣∣v(2)p,ξ,w1,w2,w3

〉
=

∑

q,b,d

δ
(
p, (a1, a2, w2), q, b, d

)
|q, 1, ξ + d, ξ, w1 bw3〉

∣∣v(3)p,ξ,ν,w1,w2,w3

〉
= |p, ϕ, ξ, ν, w1 w2 w3〉 with ϕ = 0 ∧ ν 6= ξ or ϕ = 1 ∧ ν3 ≥ ξ3 + 2

∣∣v(4)p,ξ,ν1,ν2,w,w2,w3

〉
=

∑

q,b,d with
d3∈{0,1}

δ
(
p, (a1, a2, w), q, b, d)

)∣∣q, 1, ξ+d, (ν1, ν2, ξ3+1), b w2 w3

〉

∣∣v(5)p,ξ,ν1,ν2,w,b,w1,w2,w3

〉
=

∑

q,d with
d3=1

δ
(
p, (a1, a2, w), q, b, d

)∣∣q, 1, ξ+d, (ν1, ν2, ξ3+2), w1 w2 w3

〉

Figure 5: Vectors for the definition of Utrans.

This is required to allow the transformations of steps 2.1 and 2.2 to be combined to a unitary
one.

For a precise definition of Utrans, we introduce the collections of vectors in Figure 5. For these
definitions, let p ∈ Q, ξ = (ξ1, ξ2, ξ3), ν = (ν1, ν2, ν3) ∈ {0, . . . , n1−1}×· · ·×{0, . . . , n3−1}, and
w, b, w1, w2, w3 ∈ Σ. The summations are over all q ∈ Q, b ∈ Σ, and d = (d1, d2, d3) ∈ {−1, 0, 1}3
if not indicated otherwise. Let Vi be the set of vectors with upper index i ∈ {1, . . . , 5}.
We require that the transformation Utrans satisfies

Utrans

∣∣v(1)p,ξ,w1,w2,w3

〉
=

∣∣v(2)p,ξ,w1,w2,w3

〉

for all p, ξ, and w1, w2, w3 and that Utrans|v〉 = |v〉 for all |v〉 ∈ V3∪V4∪V5. The following claim
implies that the above requirements can be satisfied by a unitary operator Utrans, completing
this part of the proof.
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Claim. The sets V1, V2, and V3 ∪ V4 ∪ V5 are mutually orthogonal and the vectors in V2 form
an ON-basis.

Proof of the claim. The claim follows from the fact that M is a legal QTM and thus has a
unitary time evolution operator. We use the notion “superposition of M” to describe a unit
vector from the Hilbert space spanned by the classical configurations of M as an ON-basis.

The vectors in V2 form an ON-basis: We regard the vectors in V1 and V2 as unique descriptions
of superpositions of M . This is possible since the contents of the work tape of M that is outside

the three symbols in the info window is fixed. Each vector
∣∣v(2)p,ξ,w1,w2,w3

〉
uniquely describes

the image of the classical configuration described by
∣∣v(1)p,ξ,w1,w2,w3

〉
under the time evolution

operator of M . Since this time evolution operator is unitary and the vectors in V1 obviously
form an ON-basis, the vectors from V2 also form an ON-basis.

The vectors in V1, V2, V3 ∪ V4 ∪ V5 are mutually orthogonal : We write M1⊥M2 for two sets
of vectors M1 and M2 if 〈v |w〉 = 0 for all v ∈ M1 and w ∈ M2 and prove the statement by
considering all possible pairs of sets in the list.

V1⊥V2, V1⊥V3 ∪ V4 ∪ V5, V2⊥V3: This follows immediately, since either the component for the
flag ϕ or that for the position vector ν distinguishes vectors from the considered sets.

V2⊥V4: We consider any pair of vectors
∣∣v(2)p,ξ,w1,w2,w3

〉
and

∣∣v(4)p′,ξ′,ν′1,ν
′
2,w

′,w′
2,w

′
3

〉
. We may assume

that w′
3 = w3, ν

′
i = ξi for i ∈ {1, 2} and ξ′3 = ξ3 − 1 since otherwise the inner product of these

vectors is obviously zero. By keeping only the summands in the inner product for which the
basis vectors meet, we get

〈
v
(2)
p,ξ,w1,w2,w3

| v(4)p′,(ξ′1,ξ
′
2,ξ3−1),ξ1,ξ2,w′,w′

2,w3

〉
=

∑

q∈Q,d,d′∈{−1,0,1}3,
with d′3∈{0,1}

δ
(
p, (a1, a2, w2), q, w

′
2, d

)∗

· δ
(
p′, (a′1, a

′
2, w

′), q, w1, d
′
)
·
[
d′ − d = ξ − ξ′

]
.

For the d, d′ over which the summation is done, it is required that d′3 − d3 = ξ3 − ξ′3 = 1, i. e.,
d3 = d′3 − 1. The sum may thus be rewritten as

∑

q∈Q, d′′∈{0,1},
d,d′∈{−1,0,1}2

δ
(
p, (a1, a2, w2), q, w

′
2, (d, d

′′ − 1)
)∗

· δ
(
p′, (a′1, a

′
2, w

′), q, w1, (d
′, d′′)

)
·
[
d′ − d = (ξ1, ξ2)− (ξ′1, ξ

′
2)
]
.

For ∆ = (ξ1, ξ2) − (ξ′1, ξ
′
2), Lemma 5.1(i) implies that the sum takes the value 0. Thus the

considered vectors are orthogonal.

V2⊥V5: This case is handled similarly to the latter one now using part (ii) of Lemma 5.1. �

Constructing the Simulating QTM. We now describe how the QTM simulating the given
QTM M unidirectionally is constructed. This simulating QTM carries out an endless loop
executing single simulation steps until the simulated machine terminates, similar to the ma-
chine constructed for part (ii) of Theorem 4.2. It is initialized as follows.

– The info block belonging to the initial configuration of M is located at position 0 of track 1
of the work tape. The complete contents of the respective info window is then (q0, 0, ξ, ν, w),
where q0 is the initial state of M , ξ = ν = (0, 0, 0), and w only consists of blanks.

– All input tape heads of the simulating machine are at position 0.
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As in the last section, this initialization is realized by choosing the encoding for the information
on the work tape such that the blank tape is consistent with the above requirements.

We realize the high-level algorithm by first constructing a unidirectional RTM for everything
except for step 2, for which the RTM has a special state as a placeholder. This is easy by
putting together machines for basic tasks using appropriate versions of the lemmas of Bernstein
and Vazirani [11], as in the last section. Afterwards, we insert a QTM for carrying out step 2
which has still to be constructed. We ensure that the running time of this QTM is independent
of the inscriptions of the info window. Then the complete QTM for the high-level algorithm
obtained by the insertion has a running time independent of the contents of the different tapes.

The transformation Utrans operates on a Hilbert space of dimension O(ℓ) = O(S). The num-
ber of iterations of the loop is n1n2n3 = poly(n)S. Reusing the calculations in the proof of
Theorem 4.2(ii), it follows that a description of Utrans with accuracy ε′ = ε/(2n1n2n3T

2) by
elementary matrices adds O(S + log log(T/ε)) to the total space complexity if it is stored on
the advice-tape. This is within the required bound for part (ii) of the theorem. The chosen
accuracy ε′ is sufficient to carry out the T simulation steps with accuracy ε. This corresponds
to n1n2n3T executions of Utrans. The transformation Utrans is realized by carrying out the
respective elementary transformations as described in the last section, using Lemma 3.5.

Resources. The running time for carrying out Utrans is dominated by the length of its description
on the advice tape and can be estimated by 2O(S) log(T/ε). The number of iterations of the
loop is poly(n)S. Thus the total time required for one simulation step can be estimated by
O(poly(n)2O(S) log(T/ε)) = poly(2O(S), log(T/ε)).

Correctness. We show that each single computation step is performed correctly. We first
consider step 2.1 of the high-level algorithm and the case that the condition in this step is
met. We assume that the current configuration of the simulating machine is consistent with
our described invariants, that track 2 and the info block contain classical inscriptions, and that
the latter is at a fixed position. Then it is easy to see that Utrans correctly realizes a single
transition of M .

It remains to check that step 2.2 does not change anything. We observe that before the tran-
sition of M has been carried out in step 2.1, Utrans performs the identity in step 2.2, since
all encountered info window inscriptions correspond to vectors from V3. Immediately after the
transition, the info window operated upon contains a vector |v〉 ∈ V2. If after one or two shifts
of the info window to the right on the work tape we adapt |v〉 by inserting the new ν, this yields
a vector from V4 or V5, resp., on which Utrans also performs the identity. If the window is shifted
further to the right, the distance of the info window from the stored position of the work tape
head in each classical inscription contained in the current superposition is at least two. Then
the vector obtained by adapting |v〉 as described belongs to V3 and Utrans also performs the
identity. Hence, Utrans behaves as desired. Altogether, we have completed the proof of part (ii).

Simulation of RTMs. We can use the same construction as above, but replace the implemen-
tation of Utrans. In this case, Utrans is just a permutation of inscriptions of the info window.
This permutation can be computed exactly by a reversible circuit of size poly(ℓ) consisting
only of Toffoli gates. The description of this circuit on the advice tape adds an amount of
O(log ℓ) = O(log S) to the space complexity and its simulation takes time poly(ℓ) = poly(S),
which yields an overall bound on the time of poly(S, T ). Hence, also part (i) follows. �

Since the simulation of QTMs in Theorem 5.2 is done only approximately and the space
O(S + log log(T/ε)) needed for the simulation increases with the running time we again obtain
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the question in which cases we can bound the running time without restricting the computa-
tional power of the model. Here we need a statement for bounding the error probability away
from 1/2 in the case of unbounded error and a construction of a probabilistic clock for QTMs.

Lemma 5.3: For each nonuniform QTM M with algebraic amplitudes and running in space
S(n) there exists a polynomial q such that for each input a ∈ {0, 1}n, pM,1(a) > 1/2 implies

pM,1(a) ≥ 1/2 + 2−q(2S(n)) and pM,1(a) < 1/2 implies pM,1(a) ≤ 1/2 − 2−q(2S(n)).

Lemma 5.4: For each nonuniform QTM M with bounded or unbounded error, algebraic am-
plitudes and running in space S(n), there is a QTM for the same function with algebraic am-

plitudes, the same type of error, the space bound O(S(n)) and expected running time 22
O(S(n))

.

Lemma 5.3 is proved in the same way as Lemma 4.10 since the matrix describing the transition
probabilities in the proof in the same way describes transition probabilities of nonuniform QTMs.
For the proof of Lemma 5.4 we modify the given QTM M in a way similar to the construction
of the QBP in the proof of Lemma 4.11. Using the proof of Lemma 4.6 in Watrous [39] it is
easy to construct a QTM Mt that for an appropriate t = 2O(S) stops with probability 2−Θ(t)

and continues with probability 1 − 2−Θ(t). Using suitable versions of the lemmas of Bernstein
and Vazirani [11] for the construction of QTMs we modify M in such a way that, before
each computation step, it additionally performs Mt. By a reasoning similar to the proof of
Lemma 4.11 we obtain a QTM with the behavior claimed in Lemma 5.4. Using these results
we easily obtain the following.

Theorem 5.5: The space complexity of nonuniform QTMs with algebraic amplitudes and
bounded or unbounded error is asymptotically equal to the space complexity of unidirectional
nonuniform QTMs with the same kind of amplitudes and the same type of error, provided that
these space complexities are at least logarithmic in the input length.

Proof. Applying Lemmas 5.3 and 5.4 to a nonuniform QTM that according to the hypothesis
runs in space S, we obtain a nonuniform QTM of the same kind running in expected time 22

O(S)
.

Analogously to the proofs in the last section, using Markov’s inequality to estimate the error of
computations that take longer than time 22

O(S)
, Theorem 5.2 yields a unidirectional nonuniform

QTM of the desired kind running in space O(S). �

6. Quantum OBDDs

Since for unrestricted branching programs no powerful lower bound methods are known, re-
stricted variants of branching programs have been investigated in order to develop lower bound
methods and to compare different modes of nondeterminism and randomization. A simple
variant of branching programs closely related to the uniform model of DFAs and to one-way
communication complexity are ordered binary decision diagrams (OBDDs). OBDDs are also
used as a data structure for the representation and manipulation of boolean functions, see, e. g.,
Wegener [42]. Hence, it is natural to investigate also the quantum variant of OBDDs.

Definition 6.1: A quantum OBDD (QOBDD) is a read-once QBP where on each path the
variables are tested according to the same order.

Below, we prove upper and lower bound results for QOBDDs. Before we do that, we discuss
the definition of QOBDDs and their relationship to quantum finite automata. Furthermore,
we define complexity classes in terms of the size of QOBDDs and compare them with the
corresponding complexity classes for OBDDs.
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Since on each path from the start node to a sink each variable is tested at most once, QOBDDs
are always acyclic. Because of the definition of QBPs, also QOBDDs are unidirectional. Dif-
ferent from Definition 6.1, Ablayev, Gainutdinova, and Karpinski [1] require QOBDDs to be
leveled such that there are edges only between adjacent levels. Proposition 2.10 shows that this
restriction is not crucial, because QOBDDs according to Definition 6.1 can be transformed into
leveled QOBDDs where the size increases by a factor of at most (n+ 1)2.

Despite their superficial similarity, there are some important differences between QOBDDs and
(1-way) quantum finite automata (QFAs). At the definition level, observe that, unlike QFAs,
QOBDDs may read their input in an order different from x1, . . . , xn. Furthermore, they are a
nonuniform model while QFAs are uniform. This implies two less obvious differences between
QOBDDs and QFAs. In general, measuring whether the computation has stopped and, if yes,
with which result, is allowed also during the computation of a QOBDD. The more restrictive
definition that allows end nodes to be reached only after exactly n computation steps have been
performed is equivalent to our definition because of Proposition 2.10. On the other hand, it
is known that QFAs with and without such intermediate measurements are of different power
(Kondacs and Watrous [20]). Furthermore, one can decrease the error probability of a QOBDD
with bounded error by probability amplification below any given constant, as for randomized
OBDDs (see [42] for the randomized case). Again, this does not work for QFAs: Ambainis and
Freivalds [7] have shown that the language {a}∗{b}∗ can be recognized by QFAs with two-sided
error 0.318, but not with error smaller than 2/9.

For QOBDDs, we distinguish the same types of error as for general QBPs (see Definition 2.5).
For characterizing the relative power of the resulting different types of QOBDDs, it is useful to
define complexity classes with a naming convention analogous to that used for QTMs. The class
of functions that can be computed exactly by polynomial size QOBDDs is called EQP-OBDD,
and the class of functions with polynomial size zero error (bounded-error) QOBDDs is called
ZQP-OBDD (BQP-OBDD). Similarly, the classes P-OBDD and BPP-OBDD of functions with
polynomial size deterministic OBDDs and polynomial size randomized OBDDs with bounded
error are defined. Furthermore, let Rev-OBDD denote the class of functions with polynomial size
reversible OBDDs. The inclusions Rev-OBDD ⊆ EQP-OBDD ⊆ ZQP-OBDD ⊆ BQP-OBDD
and Rev-OBDD ⊆ P-OBDD ⊆ BPP-OBDD immediately follow from the definitions.

In this section we present simple, concrete example functions in order to prove that QOBDDs
with bounded error and classical, deterministic OBDDs are incomparable in power, i. e.,
P-OBDD 6⊆ BQP-OBDD and BQP-OBDD 6⊆ P-OBDD. We also present a partially defined
function in order to show a similar result for QOBDDs and classical, randomized OBDDs for
partial functions. Finally, we study the power of zero error and exact quantum computation
for OBDDs. We prove that ZQP-OBDD ⊆ Rev-OBDD, i. e., zero error QOBDDs can at best
be as good as reversible OBDDs. This implies that the three classes Rev-OBDD, EQP-OBDD,
and ZQP-OBDD coincide and are strictly contained in P-OBDD.

6.1. A Function with Small QOBDDs that Requires Large Deterministic OBDDs

The permutation matrix test function PERMn is defined on n2 boolean variables that are ar-
ranged in a quadratic matrix. The function takes the value 1 iff each row and each column
contains exactly one entry 1. It is well-known that PERM = (PERMn)n∈N does not have poly-
nomial size read-once branching programs (Krause, Meinel and Waack [21]) and, therefore, no
polynomial size OBDDs either. In [33] (see also [42]), a polynomial size randomized OBDD
with one-sided error for PERM has been designed using the so-called fingerprinting technique.
We show here how this construction can be modified to work for QOBDDs.
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Let X denote the input matrix and let xj = (xj,0, . . . , xj,n−1) denote the jth row of X. Let
|xj | =

∑
k xj,k2

k denote the value of the jth row interpreted as a binary number. The crucial
observation is that

PERMn(X) = 1 ⇔
n−1∑

j=0

|xj | − (2n − 1) = 0 ∧ each xj contains exactly one entry 1.

The exact evaluation of the sum S =
∑n−1

j=0 |xj | − (2n − 1) requires OBDDs of exponential size.
Hence, S is evaluated modulo a randomly chosen prime number p. It is straightforward to
construct a reversible OBDD G(p) that evaluates S mod p and simultaneously checks that each
xj contains exactly one entry 1. In G(p) the variables are tested in a rowwise order. For each
row it has to be stored whether an entry 1 has already been found. If a second 1 is found in
some row, a 0-sink is reached. Furthermore, in each level the OBDD stores the partial sum
of the terms corresponding to the bits already read. Since the partial sums are only stored
modulo p, this increases the width merely by a factor of p. Altogether, each level contains at
most 2p interior nodes. Hence, the size of G(p) is O(pn2). It only accepts if S mod p is equal to
0.

Now we construct a QOBDD G for PERMn. Let m = 2n2 and let p1, . . . , pm denote the m
smallest primes. By the prime number theorem, pm = O(m logm) = O(n2 log n). We construct
G(1), . . . , G(pm) and combine these reversible OBDDs by a node labeled by the first variable
with m outgoing c-edges with amplitudes 1/

√
m leading to the c-successors of the start nodes

of G(1), . . . , G(pm). This realizes a random choice between G(p1), . . . , G(pm). The size of G is
bounded by O(n6 log n).

We estimate the error probability. The sum S is bounded above by n2n. Hence, if S is different
from 0, it has at most n + log n prime factors. Thus the probability of randomly choosing a
prime dividing S is bounded above by (n+ log n)/(2n2) ≤ 1/n. This is also an upper bound on
the error probability of G. The error is one-sided, i. e., if PERMn(X) = 1, then the QOBDD G
always computes 1, while it may err if PERMn(X) = 0. The probability can even be made
smaller than 1/p(n) for any polynomial p by increasing the number of primes, which only
increases the size of G polynomially. We have proved:

Theorem 6.2: There are QOBDDs for ¬PERMn with one-sided error 1/n and size O(n6 log n).

Corollary 6.3: BQP-OBDD 6⊆ P-OBDD.

6.2. Functions with Small Deterministic OBDDs that Require Large QOBDDs

The disjointness function and the inner product function are defined by DISJn(x1, . . . , xn) =
(x1 ∨ x2) ∧ (x3 ∨ x4) ∧ · · · ∧ (xn−1 ∨ xn) and IP(x1, . . . , xn) = x1x2 ⊕ · · · ⊕ xn−1xn, where n
is an even number. Both functions are extensively investigated in communication complexity,
see, e. g., [22]. For the variable order x1, . . . , xn they have OBDD size O(n), since it suffices to
store at most two bits at each level of the OBDD, namely, the value of the variable read in the
last step and the value that the function takes on the variables up to the last variable with an
even index. However, both functions are difficult for QOBDDs and, therefore, also for reversible
OBDDs, since these OBDD models have difficulties in “forgetting” variables read.

The lower bound proof uses some ideas due to Nayak [25] based on quantum information
theory. We briefly introduce the required notions and facts. For a proper introduction to
quantum information theory we refer to [26]. Recall that a mixed state of a quantum system
is a probability distribution of pure quantum states. A mixed state is usually described by
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its density matrix, which is a positive matrix with unit trace. The density matrix for the
probability distribution (pi, |ϕi〉)i is σ =

∑
i pi|ϕi〉〈ϕi|. A state resulting from the application of

the unitary transformation U to the state described by the density matrix σ is described by the
density matrix UσU †. Now assume that (|ψi〉)i is an orthonormal basis of eigenvectors of σ and
that λi is the eigenvalue belonging to |ψi〉. Then the von Neumann entropy of σ is defined as
S(σ) = −∑

i λi log λi. The von Neumann entropy is invariant under unitary transformations U ,
i. e., S(UσU †) = S(σ). Furthermore, if σ is a density matrix over a (finite-dimensional) Hilbert
space H, then S(σ) ≤ log(dim(H)). Finally, we formally introduce the kind of measurements
that are relevant here.

Definition 6.4: Let J be a finite index set and let M = (Pi)i∈J be a family of projection
operators over the finite-dimensional Hilbert space H with

∑
i∈J Pi = I. Then call M a

projective measurement over H with results in J . For any density matrix σ over H, define the
probability of measuring result i ∈ J in the state described by σ by Pr{M(σ) = i} = tr(σPi).

The following lemma is due to Nayak. In the lemma, H(p) denotes the binary entropy function
defined by H(p) = −p log p− (1− p) log(1− p).

Lemma 6.5 ([25]): Let σ0 and σ1 be density matrices over the finite-dimensional Hilbert
space H and let σ = 1/2 · (σ0 + σ1). Suppose there is a projective measurement M = (P0, P1)
over H with results in {0, 1} such that for b ∈ {0, 1}, Pr{M(σb) = b} ≥ p ≥ 1/2. Then
S(σ) ≥ (S(σ0) + S(σ1))/2 + (1−H(p)).

Now we are ready to prove the main result of this section, which is stated in the following
theorem. The corollary directly follows from the upper bound on the OBDD size mentioned
above.

Theorem 6.6: The size of each QOBDD with bounded error for DISJn or IPn is 2Ω(n).

Corollary 6.7: P-OBDD 6⊆ BQP-OBDD.

Proof of Theorem 6.6. We only prove the statement for disjointness, the claim for the inner
product follows in the same way. Let a QOBDD G with some variable order π for DISJn
be given. W.l.o.g. let G be leveled. Due to the symmetry of the OR-function, we may assume
w.l.o.g. that for each i ∈ {1, . . . , n/2} the variable x2i−1 is tested before x2i in π. Let p = 1/2+ε
be a lower bound on the success probability of G. We generate random inputs x for DISJn in
the following way. Each variable with an odd index gets one of the values 0 and 1 with a
probability of 1/2 each. All variables with an even index get the value 0. Let σ(k) denote the
density matrix describing the state of the QOBDD after reading the kth variable with an odd
index. By induction we prove S(σ(k)) ≥ (1 − H(p))k. Since the state of the QOBDD before
reading the first randomly chosen variable is a pure state, we have S(σ(0)) = 0. Now let k ≥ 1.
By induction hypothesis S(σ(k−1)) ≥ (1−H(p))(k−1). Let xi be the kth variable with an odd
index. Let U0 and U1 be the unitary transformations performed by the QOBDD while reading
all the variables after the (k − 1)-st variable with an odd index and up to xi inclusively, where
the latter gets the value 0 or 1, resp. Since xi is chosen to be 0 or 1 at random,

σ(k) =
1

2

(
U0σ(k − 1)U †

0 + U1σ(k − 1)U †
1

)
.
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Let U denote the composition of the unitary transformations performed by the QOBDD if the
partner xi+1 of xi gets the value 1 and all other variables read after xi get the value 0. Then
the function DISJn attains the value c ∈ {0, 1} if xi = c. Let σ = Uσ(k)U †. Since the QOBDD
computes the function DISJn, the measurement of the QOBDD on σ yields the result c with
a probability of at least p if xi has the value c. By Lemma 6.5 and the invariance of the von
Neumann entropy under unitary transformations,

S(σ(k)) = S(σ) ≥ 1

2

(
S(UU0σ(k − 1)U †

0U
†) + S(UU1σ(k − 1)U †

1U
†)
)
+ 1−H(p)

≥ 1

2
(S(σ(k − 1)) + S(σ(k − 1))) + 1−H(p).

Then the claim follows by the induction hypothesis. We obtain the lower bound (1−H(p)) ·n/2
on the von Neumann entropy of the density matrix describing the state of G after reading all
variables with odd indices. By the above remark, this implies the lower bound 2(1−H(p))·n/2 on
the dimension of the state space of G and, therefore, also on the size of G. �

6.3. A Partial Function with Small QOBDDs that Requires Large Randomized
OBDDs

An OBDD or QOBDD for a partially defined function has to compute the correct value of the
function only on the domain of the function, while it may compute an arbitrary result on inputs
outside the domain. We present a partially defined function with polynomial size QOBDDs but
only exponential size randomized OBDDs. The idea behind the construction of the function is
based on a result of Raz [31] for communication protocols.

The function we consider gets unitary matrices as inputs. In order to obtain a finitely rep-
resentable function, we redundantly encode sufficiently precise approximations of the desired
matrices by boolean variables. The redundancy in the encoding will allow us to prove a lower
bound for arbitrary variable orders.

For the following, fix an even n ∈ N and let ε > 0. Let b = 6(n − 1) and let W0, . . . ,Wb−1 be
some fixed enumeration of the matrices in Gn from Lemma 3.4. Let k = k(n, ε) = O(n2 log(n/ε))
be the number from this lemma. For ℓ ≥ k and m ≥ b− 1 the universal (ε, ℓ,m)-code of n× n-
matrices consists of the ℓ(m+1) boolean variables xi,j, 1 ≤ i ≤ ℓ, 1 ≤ j ≤ m+ 1. For 1 ≤ i ≤ ℓ
let xi = (xi,1, . . . , xi,m+1) and v(xi) = xi,1 + · · · + xi,m. Let

Ui =

{
W(v(x1)+···+v(xi)) mod b, if xi,m+1 = 1;

I, if xi,m+1 = 0.

Then the variable vector x = (x1, . . . , xℓ) encodes the matrix

W (x) = Uℓ · Uℓ−1 · · · · · U1.

Note that the variables xi,m+1 only switch between W(v(x1)+···+v(xi)) mod b and the identity ma-
trix. In particular, they do not influence the sum (v(x1) + · · · + v(xi)) mod b. By Lemma 3.4,
for each unitary n×n-matrix U there is a setting to the x-variables such that ‖U −W (x)‖ ≤ ε.
In the following, ℓ is much larger than k such that there are many settings to obtain a certain
unitary matrix in the product approximating U .
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Now we define the considered function. Let |1〉, . . . , |n〉 be the standard basis of Cn. Let V0
and V1 denote the subspaces spanned by the first and last n/2 of these basis vectors. Let
0 < ϑ < 1/

√
2. The input for the function Rϑ,ℓ,m,n consists of 3ℓ(m + 1) boolean variables

ai,j, bi,j , ci,j , 1 ≤ i ≤ ℓ, 1 ≤ j ≤ m+1, which are interpreted as universal (ε, ℓ,m)-codes for three
unitary n×n-matrices A,B,C, where ε = 1/(3n). The function takes the value z ∈ {0, 1} if the
Euclidean distance between CBA|1〉 and Vz is at most ϑ. Otherwise the function is undefined.

We first prove the upper bound on the size of QOBDDs.

Theorem 6.8: Let 0 < ϑ < 1/
√
2. The function Rϑ,3k,9kb,n with an input size of N =

81 k2b+ 9 k = O(n5 log2 n) has QOBDDs with error at most ϑ2 and size O(N9/5/ log8/5N).

Proof. Set ℓ = 3k and m = 9kb. We choose the variable order that starts with the a-variables
ordered as a1,1, . . , a1,m+1, a2,1, . . , a2,m+1, . . . , aℓ,1, . . , aℓ,m+1. Afterwards the b-variables and
then the c-variables are tested in analogous orders. We first describe a subgraph GA of the
QOBDD evaluating the a-variables. Analogous subgraphs GB and GC are constructed for the
b- and c-variables, resp.

The nodes of GA are arranged in bn columns, which we label by (r, s) with 0 ≤ r ≤ b− 1 and
1 ≤ s ≤ n, and in levels 1, . . . , ℓ(m + 1) + 1. Let |r〉|s〉|t〉 be the vector from an orthonormal
basis that corresponds to the node of the tth level in column (r, s). The nodes in each of the
first ℓ(m + 1) levels are labeled by the same a-variable according to the variable order. The
last level consists of sinks. Let p ∈ {1, . . . , ℓ}. For j ∈ {1, . . . ,m}, the node labeled by ap,j in
column (r, s) is left by a single 0-edge with amplitude 1 leading to the node of the next level of
the same column and a single 1-edge with amplitude 1 leading to the node of the next level in
column ((r + 1) mod b, s). For a node labeled by ap,m+1 in column (r, s), a single 0-edge with
amplitude 1 leaving this node leads to the node in column (r, s) of the subsequent level. There
are 1-edges connecting this node to the nodes of the subsequent level such that the mapping
|r〉|s〉|t〉 7→ |r〉(Wr|s〉)|t+ 1〉 is performed, where t = (p− 1)(m+ 1) +m+ 1.

It is easy to verify that the graph GA constructed in this way is well-formed and unidirectional.
We evaluate GA according to the semantics of QBPs starting from a node on the first level
in column (r, s), i. e., with the superposition |r〉|s〉|1〉. Then after reading the variable vectors
a1, . . . , ap, where ai = (ai,1, . . . , ai,m+1), we reach the superposition |r′〉(Up · · · · · U1|s〉)|t〉 with
r′ = (r + v(a1) + · · ·+ v(ap)) mod b and t = (p− 1)(m+ 1) +m+ 2.

The QOBDD for Rϑ,ℓ,m,n starts with GA, where the node on the first level in column (0, 1) is
chosen as the start node. Then the amplitude for reaching a node of the (ℓ(m+1) + 1)-st level
in column (r, s) of GA is exactly the sth coordinate of A|1〉, if r is the sum modulo b of all
a-variables, and 0 otherwise. After reading the a-variables, the value of r is no longer needed;
however, it cannot be erased in a QOBDD. Hence, for each possible value r we add a copy of a
subgraph GB processing the variables encoding B in the same way as described before for A.
The sink in column (r, s) of the (ℓ(m + 1) + 1)-st level of the subgraph GA for A is identified
with the node (0, s) of the rth copy of the subgraph GB for B. Altogether b copies of the
subgraph GB are sufficient. In the same way b2 copies of a subgraph GC for processing C are
sufficient. In each copy of GC , the sink in column (r, s) of the last level is a 0-sink if s ≤ n/2,
and a 1-sink otherwise. For each input, there is exactly one copy of GC and exactly one r
such that for all s the amplitude of the node in column (r, s) of the last level equals the sth
coordinate of CBA|1〉. For all other copies of GC and for all other r the amplitudes are 0.

Let Ez denote the projection to the subspace Vz. If |y〉 = CBA|1〉 has distance at most ϑ
from the subspace Vz, we have ϑ2 ≥ ‖|y〉 − Ez|y〉‖2 = 1 − ‖Ez |y〉‖2. The equality follows by
an easy calculation. Hence, the measurement on the level of the sinks leads to the result z
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with probability ‖Ez |y〉‖2 ≥ 1 − ϑ2. The size of the QOBDD is dominated by the b2 copies
of GC . Each of these copies has size O(bnN). Hence, the size can be estimated by O(b3nN) =
O(n9 log2 n) = O(N9/5/ log8/5N). �

In order to prove the lower bound, we apply arguments from communication complexity (see,
e. g., [16, 22] for an introduction). We first state a result of Raz [31], who has proved a lower
bound on the communication complexity for a different function R0

ϑ,n. Using two rectangular
reductions, which are defined below, we transfer this lower bound to a lower bound on the
communication complexity of Rϑ,ℓ,m,n for any ℓ ≥ k and m ≥ b−1. Finally, by a standard lower
bound technique for randomized OBDDs, the lower bound on the communication complexity
implies a lower bound on the size of randomized OBDDs.

We define the functionR0
ϑ,n due to Raz by describing the corresponding communication problem.

Let 0 < ϑ < 1/
√
2. The input of Alice consists of a unit vector x ∈ R

n and two orthogonal
subspaces S0 and S1 of Rn of dimension n/2 each. Bob gets an orthogonal real-valued n × n-
matrix T as input. The output is c ∈ {0, 1} if Tx has distance at most ϑ from Sc, and
arbitrary otherwise. We remark that the usual definition of communication complexity can
easily be extended to the case of infinite input sets which is considered here. Raz has proved
the following result.

Theorem 6.9 ([31]): Let 0 < ϑ < 1/
√
2. Each randomized communication protocol with

bounded error for R0
ϑ,n requires Ω(n1/2) bits of communication.

We note that the considered communication problems are partially defined. On inputs for
which such a problem is not defined, both outputs 0 and 1 are allowed. A partially defined
communication problem on input sets X and Y can also be described by a relation R ⊆ X ×
Y × {0, 1}, where (x, y, z) ∈ R iff z is a valid output for (x, y). In particular, if the problem
is undefined for (x, y), we have (x, y, 0), (x, y, 1) ∈ R. A rectangular reduction from R′ ⊆
X ′ × Y ′ × {0, 1} to R ⊆ X × Y × {0, 1} consists of two mappings f : X ′ → X and g : Y ′ → Y
such that (f(x), g(y), z) ∈ R ⇒ (x, y, z) ∈ R′. It is easy to see that a lower bound on the
communication complexity for R′ implies the same lower bound for R if there is a rectangular
reduction from R′ to R.

We observe that the problem R0
ϑ,n can easily be reduced to the following infinite precision variant

R′
ϑ,n of the considered problem Rϑ,ℓ,m,n. The input of R′

ϑ,n consists of unitary n × n-matrices
A, B and C, where Alice gets A and C, and Bob gets B. Their task is to compute z ∈ {0, 1}
if the distance between CBA|1〉 and Vz is bounded by ϑ. (Again, V0 = span{|1〉, . . . , |n/2〉}
and V1 = span{|n/2 + 1〉, . . . , |n〉}.) Obviously, R0

ϑ,n is a special case of R′
ϑ,n. Instead of an

orthogonal matrix T , a unitary matrix B is allowed. The vector x and the subspaces V0 and V1
are now encoded by the unitary matrices A and C. Hence, the lower bound from Theorem 6.9
also holds for R′

ϑ,n. The second rectangular reduction is given in the following lemma.

Lemma 6.10: For all constants ϑ, ϑ′ with 0 ≤ ϑ′ < ϑ < 1/
√
2, for all ℓ ≥ k and m ≥ b − 1,

and for sufficiently large n, R′
ϑ′,n is reducible to Rϑ,ℓ,m,n.

Proof. Let (A′, B′, C ′) be an arbitrary input for R′
ϑ′,n. We map this input to an input for

Rϑ,ℓ,m,n consisting of the universal (ε, ℓ,m)-codes of unitary n× n-matrices A,B,C with

‖A−A′‖ ≤ ε, ‖B −B′‖ ≤ ε, and ‖C −C ′‖ ≤ ε,

where ε = 1/(3n). By Lemma 3.4, we can find such an input (A,B,C) for Rϑ,ℓ,m,n. We show
that this mapping is even a rectangular reduction. Let E0 and E1 be the projections on the
subspaces V0 and V1, resp. Let |y〉 = CBA|1〉 and |y′〉 = C ′B′A′|1〉.
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Let w. l. o. g. 0 be a solution of Rϑ,ℓ,m,n for the input (A,B,C). Then either ‖|y〉 −E0|y〉‖ ≤ ϑ,
i. e., the only valid output is 0, or ‖|y〉−E0|y〉‖ > ϑ∧‖|y〉−E1|y〉‖ > ϑ, i. e., the outputs 0 and
1 are allowed. This is equivalent to ‖|y〉 −E1|y〉‖ > ϑ. We prove that 0 is also a solution of the
problem R′

ϑ′,n for the input (A′, B′, C ′) by showing that ‖|y′〉 − E1|y′〉‖ > ϑ′.

By the choice of A, B and C and by Proposition 3.6, we obtain ‖|y′〉 − |y〉‖ ≤ 3ε = 1/n. By

the assumption, ‖E0|y〉‖ = ‖|y〉 − E1|y〉‖ > ϑ. Hence, ‖|y〉 − E0|y〉‖ =
(
1 − ‖E0|y〉‖2

)1/2
<

(
1− ϑ2

)1/2
and thus

‖E1|y′〉‖ ≤ ‖E1(|y′〉 − |y〉)‖+ ‖E1|y〉‖ ≤ ‖|y′〉 − |y〉‖+ ‖|y〉 − E0|y〉‖ <
1

n
+

(
1− ϑ2

)1/2
.

This implies ‖|y′〉 − E1|y′〉‖2 = 1 − ‖E1|y′〉‖2 > ϑ2 − o(1). Since ϑ′ < ϑ and both ϑ, ϑ′ are
constants, it follows that ‖|y′〉 − E1|y′〉‖ > ϑ′ for sufficiently large n. Hence, 0 is a solution of
R′

ϑ′,n for the input (A′, B′, C ′). �

Altogether we obtain a lower bound on the communication complexity of Rϑ,ℓ,m,n for ℓ ≥ k and
m ≥ b− 1.

Corollary 6.11: Let 0 < ϑ < 1/
√
2, ℓ ≥ k, and m ≥ b − 1. Each randomized communication

protocol with bounded error for Rϑ,ℓ,m,n where Alice has the matrices A and C and Bob the
matrix B requires Ω(n1/2) bits of communication.

Now we can prove the second part of the main result of this section, the lower bound on the
size of randomized OBDDs with bounded error.

Theorem 6.12: Let 0 < ϑ < 1/
√
2. Each randomized OBDD with bounded error for the

function Rϑ,3k,9kb,n on N = 81k2b+ 9k = O(n5 log2 n) variables has size 2Ω(N1/10/ log1/5 N).

It remains open to find an example of a total function with polynomial size QOBDDs but only
exponential size randomized OBDDs. Using the currently available techniques, this seems to
be difficult since the known lower bound techniques for randomized OBDDs, which are based
on randomized communication complexity, also work in the quantum case (see Klauck [19]).

Proof of Theorem 6.12. Let G be a given randomized OBDD for Rϑ,ℓ,m,n with ℓ = 3k and
m = 9kb and with an arbitrary variable order. In general, the variables encoding the matrices
A, B, and C do not occur as contiguous groups in the variable order. Because of the redundancy
of the encoding of the matrices we can construct a suborder where the variables of each of the
encodings of A, B, and C are grouped together such that the corresponding subproblem of
Rϑ,ℓ,m,n is still hard. Then we can apply the above communication complexity lower bound.
Let π denote the order of the variables ai,j, bi,j, ci,j , 1 ≤ i ≤ ℓ, 1 ≤ j ≤ m, in G. For A (and
similarly B and C) call each set of variables ai,1, . . . , ai,m in its encoding a block. The variables
ai,m+1, bi,m+1, and ci,m+1 do not occur in any block or in π.

Claim. There is a suborder π′ of π such that for each matrix of A, B and C there are exactly k
consecutive blocks in π′ that each contain exactly b variables.

Proof of the claim. Think of π as a list of all variables (except ai,m+1, bi,m+1, and ci,m+1) in the
prescribed order. Observe that there are 9k blocks of m = 9kb variables each encoding some
matrix from the set Gn.
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We divide π into 9k contiguous parts such that for each block there is a part that contains
at least b of its variables and such that for different blocks there are different parts with this
property. The first of these parts is chosen by searching for the first position in the variable
order π where for some block b variables have been tested (and hence for all other blocks less
than b variables have been tested). Then this block is chosen and the other variables up to
the chosen position are eliminated. Furthermore, all other variables of the chosen block are
eliminated. An easy induction shows that this procedure can be iterated until 9k parts are
chosen. Thus we are left with 9k smaller blocks with exactly b variables each and such that for
each original block there is a smaller block in the list.

We now use the same idea to partition the list of variable blocks obtained in the first step into
three parts such that for each of the three matrices there is a part containing at least k of its
blocks and such that for different matrices there are different parts with this property. Again we
eliminate variables in order to ensure that for each matrix exactly k consecutive blocks remain
in the variable order. In this way, we obtain a variable order π′ with the desired properties. �

We replace all eliminated variables with 0 and remove the nodes labeled by these variables in the
randomized OBDD and redirect incoming edges to the 0-successor. Furthermore, if all variables
ai,1, . . . , ai,m of a block are eliminated, we also replace ai,m+1 with 0 and modify the randomized
OBDD accordingly. The same is done for the eliminated blocks of b- and c-variables. This yields
a randomized OBDD G′ for Rϑ,k,b,n that is at most as large as G.

We prove the desired lower bound for G′ using the standard lower bound technique for random-
ized OBDDs (see, e. g., [42]). Observe that the variable order π′ consists of three parts belonging
to the different matrices A,B,C in some arbitrary order. Let C1 be the set of nodes which are
reached by some path on which exactly the variables for the first matrix according to π′ have
been tested, and let C2 be the set of nodes which are reached by some path on which exactly
the variables in the first two matrices have been tested. The OBDD can be used to build a
randomized one- or two-round communication protocol for Rϑ,k,b,n where Alice has the variables
for A and C and Bob the variables for B. The players jointly follow a computation path in the
OBDD from the start node to a sink, using random bits for decisions at random nodes of the
OBDD and communicating the numbers of nodes in the sets C1 and C2. The communication
complexity of this protocol is bounded by ⌈log |C1|⌉+ ⌈log |C2|⌉ ≤ 2(log |G′|+1). Together with
Corollary 6.11, this yields the claimed lower bound. �

6.4. Las Vegas QOBDDs Versus Reversible OBDDs

The main result of this section is that ZQP-OBDD ⊆ Rev-OBDD. This means that even the
zero-error QOBDD model with some failure probability is no more powerful with respect to
polynomial size than reversible OBDDs.

The essence of the proof is as follows. Given a reversible OBDD G and a Las Vegas QOBDD G′

for the same function and with the same variable order, we show that G′ induces collections
of measurements, called measurement schemes here, that allow to distinguish the subfunctions
represented at each of the levels of G. We further prove that for such a measurement scheme, the
dimension of the underlying Hilbert space can be lower bounded in terms of the number of those
subfunctions. Altogether, we obtain a lower bound on the size of the Las Vegas QOBDD G′ in
terms of the size of the reversible OBDD G.

Definition 6.13: Let H be a finite-dimensional Hilbert space and let |v1〉, . . . , |vm〉 ∈ H be
different pure quantum states. Let X = {1, . . . ,m} and Y = {1, . . . , n}. Call an m× n-matrix
A = (aij) with entries in {0, 1, ∗} and projective measurements Mj = (Mj,0,Mj,1,Mj,?) with
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possible results {0, 1, ?}, where j = 1, . . . , n, a measurement scheme for |v1〉, . . . , |vm〉 with zero
error and failure probability ε, 0 ≤ ε < 1, if

(i) for all different i, j ∈ X there is a k ∈ Y such that aik, ajk ∈ {0, 1} and aik 6= ajk;

(ii) for all i ∈ X and j ∈ Y , if aij = ∗, then aik = ∗ for all j ≤ k ≤ n; and

(iii) for all i ∈ X and j ∈ Y , if aij ∈ {0, 1}, then Pr{Mj(|vi〉) = aij} ≥ 1 − ε and
Pr{Mj(|vi〉) = ¬aij} = 0.

A measurement scheme allows us to distinguish any pair of vectors from |v1〉, . . . , |vm〉 ∈ H by
zero error measurements. Our aim is to prove a lower bound on the dimension of H in terms
of m. For this, we use the following lemma due to Klauck [19], which is a Las Vegas variant of
Lemma 6.5.

Lemma 6.14 ([19]): Let σ0, σ1 be density matrices over H and let 0 ≤ p ≤ 1. Suppose that
there is a projective measurement M = (M0,M1,M?) with possible results {0, 1, ?} such that
Pr{M(σb) = b} ≥ 1 − ε and Pr{M(σb) = ¬b} = 0 for all b ∈ {0, 1}. Let σ = pσ0 + (1 − p)σ1.
Then S(σ) ≥ pS(σ0) + (1− p)S(σ1) + (1− ε)H(p).

The following lemma extends a result of Klauck [19] that gives a lower bound on the Las Vegas
one-way quantum communication complexity in terms of deterministic one-way communica-
tion complexity. The proof of Klauck provides the main idea of the proof of Lemma 6.15 for
measurement schemes without “∗”-entries.

Lemma 6.15: Let |v1〉, . . . , |vm〉 ∈ H be different pure quantum states. If there is a measure-
ment scheme for |v1〉, . . . , |vm〉 with zero error and failure probability ε, then dim(H) ≥ m1−ε.

Proof. Let A be the m× n-matrix with entries from {0, 1, ∗}, and let M1, . . . ,Mn be the pro-
jective measurements in the given measurement scheme for |v1〉, . . . , |vm〉. Let X = {1, . . . ,m}
and Y = {1, . . . , n}. Call two rows of a A distinguishable if they differ in a column where both
of them have boolean values. Thus the rows of A are pairwise distinguishable according to the
hypothesis.

In the following we inductively define a mixed state over H with large von Neumann entropy
in order to obtain the lower bound on the dimension of H. The mixed states that we consider
are convex combinations of the pure states σi = |vi〉〈vi|, i = 1, . . . ,m. For any I ⊆ X, j ∈ Y ,
and b ∈ {0, 1} let Ij,b = {i ∈ I | aij = b}.
(i) For I ⊆ X with |I| ≥ 2 and j ∈ Y such that all rows in the submatrix I × {j, j + 1, . . . , n}

of A are distinguishable, let σ(I, j) = (|Ij,1|/|I|) · σ(Ij,1, j + 1) + (|Ij,0|/|I|) · σ(Ij,0, j + 1).

(ii) Let σ({i}, j) = σi for i ∈ X and 1 ≤ j ≤ n+ 1.

If the rows in the submatrix I × {j, j + 1, . . . , n} of A are distinguishable, by condition (ii) of
Definition 6.13 the jth column of the submatrix only contains the entries 0 and 1: If it contained
an entry “∗”, the whole row would consist of “∗” and would thus not be distinguishable from
the other rows. It follows that σ(X, 1) is well defined by a recursive application of the above
definition, since (by induction), all rows in I are pairwise distinguishable as long as |I| ≥ 2,
in which case part (i) is applicable. After some applications of part (i), finally part (ii) is
applicable.

Claim. For each I ⊆ X and j ∈ Y such that all rows in the submatrix I × {j, j + 1, . . . , n} of
A are distinguishable, S(σ(I, j)) ≥ (1− ε) log |I|.
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By the claim S(σ(X, 1)) ≥ (1 − ε) logm and dim(H) ≥ 2S(σ(X,1)) ≥ m1−ε, which implies
Lemma 6.15. It remains to prove the claim by an induction on the definition of σ(I, j).

Induction base (Part (ii) of the definition): Then S(σ({i}, j)) = 0 for all i ∈ X and 1 ≤ j ≤ n+1.

Induction step (Part (i) of the definition): We consider σ(I, j) = p · σ(Ij,0, j + 1) +
(1− p) · σ(Ij,1, j + 1), where p = |Ij,0|/|I|. Observe that I = Ij,0 ∪ Ij,1 and that for b ∈ {0, 1},
σ(Ij,b, j + 1) =

∑
i∈Ij,b

piσi for suitable probabilities pi, i ∈ Ij,b, with
∑

i∈Ij,b
pi = 1 (the latter

can also be proved by an easy induction on the definition of the σ(I, j)). Thus, applying the
measurement Mj to σ(Ij,b, j + 1) yields

Pr{Mj(σ(Ij,b, j + 1)) = b} ≥ 1− ε and Pr{Mj(σ(Ij,b, j + 1)) = ¬b} = 0.

By Lemma 6.14, this implies

S(σ(I, j)) ≥ p · S(σ(Ij,0, j + 1)) + (1− p) · S(σ(Ij,1, j + 1)) + (1− ε)H(p).

By the induction hypothesis, S(σ(Ij,b, j + 1)) ≥ (1− ε) log |Ij,b| for b ∈ {0, 1}. Thus,

S(σ(I, j)) ≥ p(1− ε) log |Ij,0|+ (1− p)(1− ε) log |Ij,1|+ (1− ε)H(p)

= (1− ε)
(
p log |Ij,0|+ (1− p) log |Ij,1|+H(p)

)
.

Using that p|I| = |Ij,0| and (1− p)|I| = |Ij,1|, we get

S(σ(I, j) ≥ (1− ε)
(
p log(p|I|) + (1− p) log((1− p)|I|) +H(p)

)

= (1− ε)
(
p log p+ (1− p) log(1− p) +H(p) + log |I|

)
= (1− ε) log |I|,

as desired. This completes the proof of the claim and thus the proof of Lemma 6.15. �

Now we can state and prove the main result.

Theorem 6.16: Let G be a minimum size, leveled, reversible π-OBDD for f . Let G′ be a
leveled π-QOBDD that computes f with zero error and failure probability ε, 0 ≤ ε < 1. For
i = 1, . . . , n+1, let Li and L

′
i be the sets of nodes on level i in G and G′, resp. Then |L′

i| ≥ |Li|1−ε

for i = 1, . . . , n+ 1. In particular, |G′| ≥ |G|1−ε.

Corollary 6.17: Rev-OBDD = EQP-OBDD = ZQP-OBDD.

Proof of Theorem 6.16. W.l.o.g. let G = (V,E) and G′ = (V ′, E′) have the variable order
x1, . . . , xn. From G and G′ we construct some set of vectors which are intermediate states
of the computation of G′. We exploit the relation to G in order to construct a measurement
scheme for these vectors such that the lower bound follows from Lemma 6.15.

W. l. o. g. f depends on all variables. Let δ : V ′×V ′×{0, 1} → C denote the transition amplitudes
of G′. Let H be the Hilbert space spanned by an orthonormal basis (|v〉)v∈V ′ whose elements
are identified with the nodes of G′. Let s ∈ V and s′ ∈ V ′ be the start nodes of G and G′,
resp., and let F ⊆ V ′ be the set of sinks of G′. For a partial input assignment a to x1, . . . , xi,
let |ϕ(a)〉 ∈ H be the superposition reached in G′ by carrying out its computation on a. Let
Msink = (Msink,0,Msink,1,Msink,?) be the projective measurement of the output label at the sinks
in G′. For b ∈ {0, 1}, fix a unitary operator Ub on H such that Ub|v〉 =

∑
w∈V ′ δ(v,w, b)|w〉 for

all v ∈ V ′ − F . Such an operator exists due to the well-formedness of G′.
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By the assumptions of the theorem, Li is the set of all nodes of G reached by partial assignments
to x1, . . . , xi−1, for i = 1, . . . , n+1. Observe that L1 = {s} and, since G is leveled and f depends
on all variables, all nodes in Li, 1 ≤ i ≤ n, are labeled by xi. For a node v ∈ V , let fv denote
the subfunction of f represented at v according to the usual semantics of deterministic OBDDs.

We recursively construct mappings asni for i = 1, . . . , n+ 1 such that asni maps a node v ∈ Li

to a partial assignment to x1, . . . , xi−1 reaching that node from the start node of G. First, we
choose asn1(s) as the empty assignment. Next consider a level Li with i > 1. Let v1, . . . , vℓ be all
nodes representing one of the subfunctions fsub represented at nodes in Li. Since G is reversible
and of minimum size, there are a constant b ∈ {0, 1} and different nodes u1, . . . , uℓ ∈ Li−1

such that (fuj )|xi−1=b = fsub and there is a b-edge from uj to vj for j = 1, . . . , ℓ. Define
asni(vj) = (asni−1(uj), b) for j = 1, . . . , ℓ. For i = 1, . . . , n+ 1, let Ci = {|ϕ(asni(v))〉 | v ∈ Li}.

Claim. For each i = 1, . . . , n + 1, there is a measurement scheme for Ci with zero error and
failure probability ε.

By Lemma 6.15, the claim implies |L′
i| ≥ dim(span(Ci)) ≥ |Li|1−ε and thus the first part of

the theorem. Since (x1 + · · · + xk)
c ≥ xc1 + · · · + xck for all c ≥ 1 and x1, . . . , xk ∈ R

+
0 , also

|G′| ≥ |G|1−ε follows.

We prove the claim by induction on i. For i = 1 and C1 = {|ϕ(asn1(s))〉} = {|s′〉} the empty
measurement scheme has the required properties.

Let i > 1 and Li = {v1, . . . , vm}. Let Y = {y1, . . . , yN}, N = 2n−i+1, be the set of assignments
to xi, . . . , xn. Define the m ×N -matrix A = (ajk) by setting ajk = fvj (yk) for 1 ≤ j ≤ m and
1 ≤ k ≤ N . For k = 1, . . . , N let Mk = (Mk,0,Mk,1,Mk,?) be the projective measurement with
Mk,x =Msink,xUyk where x ∈ {0, 1, ?} and Uyk is the unitary transformation carried out by G′

for the partial input yk when started on a superposition of the basis vectors (|v〉)v∈L′
i
.

Obviously, A is a boolean matrix where two rows j, j′ ∈ {1, . . . ,m} differ iff the corresponding
subfunctions fvj and fvj′ differ on an input from Y . Hence, for a each set of pairwise different
rows of A chosen as representatives for the different subfunctions and vectors in Ci chosen ac-
cordingly, the above definitions yield a measurement scheme due to the fact that G′ computes f
with zero error and failure probability ε. Our goal is to extend the matrix A and the collection
of measurements such that we obtain a measurement scheme for all vectors in Ci. We remark
that A does not have entries “∗”.
Consider a subset of rows of A belonging to the same subfunction fsub and thus containing
identical vectors. W. l. o. g., let v1, . . . , vℓ be the respective nodes in Li representing fsub. Let
u1, . . . , uℓ ∈ Li−1 and b ∈ {0, 1} be as in the definition of the assignments asni(vj) above. In
particular, b is the same constant for u1, . . . , uℓ. Then Ub|ϕ(asni−1(uj))〉 = |ϕ(asni−1(uj), b)〉 =
|ϕ(asni(vj))〉. By induction hypothesis, there is measurement scheme for Ci−1. Let D be the
matrix of this measurement scheme, which is of size |Ci−1| × p for some p. Consider the sub-
scheme for the vectors |ϕ(asni−1(uj))〉, j = 1, . . . , ℓ, which we obtain from D by deleting the
rows corresponding to the other vectors. Let this measurement scheme be described by the
ℓ × p-matrix B = (bjk) and the projective measurements Pk = (Pk,0, Pk,1, Pk,?), k = 1, . . . , p.

Define P ′
k = (P ′

k,0, P
′
k,1, P

′
k,?), k = 1, . . . , ℓ, by P ′

k,x = Pk,xU
†
b for x ∈ {0, 1, ?}.

Then for j ∈ {1, . . . , ℓ} and k ∈ {1, . . . , p} such that bjk ∈ {0, 1},

Pr{P ′
k(|ϕ(asni(vj))〉) = bjk} = ‖P ′

k,bjk
|ϕ(asni(vj))〉‖2 = ‖Pk,bjk U

†
b |ϕ(asni(vj))〉‖2

= ‖Pk,bjk U
†
bUb|ϕ(asni−1(uj))〉‖2

= Pr{Pk(|ϕ(asni−1(uj))〉) = bjk}.
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Hence, the measurements P ′
k, k = 1, . . . , p, satisfy property (iii) in the definition of measurement

schemes with respect to the matrix B.

Let B1, . . . , BR be all submatrices of D obtained by the above construction for the different
subfunctions of fv, v ∈ Li. Since in the construction of B1, . . . , BR no columns of D are
deleted, the columns of B1, . . . , BR are labeled by the same measurements. Hence, we can
attach the matrices B1, . . . , BR to A as submatrices in the columns m + 1, . . . ,m + p and
fill up the remaining entries with “∗” such that the new matrix A′ obtained in this way and
the measurements M1, . . . ,MN ,P ′

1, . . . ,P ′
p comprise a measurement scheme for Ci with zero

error and failure probability ε. Since A does not have any “∗”-entries, also property (ii) of
Definition 6.13 is fulfilled. �

The above lower bound on the size of zero error QOBDDs in terms of the size of reversible
OBDDs is essentially optimal, as the following example shows. For n = 2ℓ define the index
function INDn : {0, 1}n+ℓ → {0, 1} on variable vectors x = (x0, . . . , xn−1) and y = (y0, . . . , yℓ−1)
by INDn(x, y) = x|y|, where |y| = ∑ℓ−1

i=0 yi2
i.

Proposition 6.18: For the variable order π described by (x0, . . . , xn−1, y0, . . . , yℓ−1), each de-
terministic π-OBDD representing INDn requires size 2n, while the same function can be com-
puted by zero error π-QOBDDs with failure probability ε of size 2(1−ε)n+O(log n).

Hromkovič and Schnitger [17] have used a similar function to prove an analogous result for
classical Las Vegas and deterministic one-way communication complexity and the special case
of failure probability ε = 1/2. The proof of the proposition is by a straightforward adaptation
of a simple randomized OBDD to the quantum case.

Proof. The lower bound for deterministic OBDDs is well known and follows from the fact that
INDn has maximal one-way communication complexity with respect to the partition of variables
where Alice obtains x and Bob obtains y. In the following, we briefly sketch the upper bound
construction.

For ε ≥ 1/2, partition x into k = ⌊1/(1− ε)⌋ blocks of size approximately (1−ε)n. The QOBDD
chooses one of these blocks at random by an unlabeled node at the top (which can be removed
later on similarly to the proof of Theorem 6.2) with outgoing edges having amplitudes 1/

√
k.

These edges lead to sub-QOBDDs where the complete chosen block is read and stored, which
requires a binary tree with O(2(1−ε)n) nodes for each block. At each leaf of such a tree, append
a tree of size O(n) reading y and computing |y|. Finally, a sink with the correct output value
is reached if |y| lies in the chosen block, which happens with probability at least 1/k ≥ 1 − ε.
Otherwise, the “?”-sink is reached.

For ε < 1/2, we select k = ⌈1/ε⌉ blocks of x-variables of size approximately (1− ε)n that cover
each single variable exactly k− 1 times. The rest of the construction is the same as above. The
failure probability is obviously bounded above by 1/k ≤ ε. �

6.5. Comparison of QOBDDs and Read-Once QBPs

In this section we observe that, similarly to the classical case, QOBDDs are a more restricted
model of QBPs than read-once QBPs. A function separating these two models with respect to
polynomial size is the so-called indirect storage access function, which is defined in the following
way. Let n = 2k. The input of ISAn consists of the variables y0, . . . , yk−1 and x0, . . . , xn−1.
The y-variables are interpreted as a binary number s. The x-variables are partitioned into
b = ⌊n/k⌋ blocks of size k = log n, which are numbered beginning with 0. If s ≥ b, the output
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is 0. Otherwise the sth block is again interpreted as a binary number t and the output is xt. It
is straightforward to construct a decision tree for ISAn of size O(n2/ log n), which can also be
regarded as a read-once QBP.

The lower bound for QOBDDs for all variable orders is a straightforward combination of two
results. Klauck [19] proved the lower bound Ω(n) on the quantum one-way communication
complexity of INDn, where Alice gets the x-variables and Bob the y-variables. This lower
bound directly implies the lower bound 2Ω(n) on the size QOBDDs for INDn, where the x-
variables are tested before the y-variables. Using a rectangular reduction, it has been shown
in [34] that an OBDD for ISAn and an arbitrary variable order cannot be smaller than an OBDD
for IND⌊n/ logn⌋−1 and the variable order mentioned before. This also holds for QOBDDs such

that we obtain the lower bound 2Ω(n/ logn) on the size for QOBDDs for ISAn and an arbitrary
variable order.

7. QBPs with Generalized Measurements

The usual unitary quantum mode of computation has turned out to be only of limited use
for such restricted models as quantum OBDDs and quantum finite automata. In this section
we consider a generalization of QBPs where in each step the performed unitary operation is
determined by the result of a previous measurement. We first present the definition of QBPs
with generalized measurements and we discuss the relationship to QBPs and to randomized
BPs. Afterwards, we prove a generic lower bound on the size of QOBDDs with generalized
measurements for so-called k-stable functions.

Definition 7.1: Let k ∈ N with k ≥ 3. A quantum branching program with generalized mea-
surements (gmQBP) over the variable set X = {x1, . . . , xn} is a directed multigraph G = (V,E)
with a start node s ∈ V , a set of sinks F ⊆ V , and transition amplitudes δ. Nodes and edges
are labeled in the same way as in a usual QBP (see Definition 2.4). Additionally, there is a
partition (V0, V1, V2, . . . , Vk−1) of V such that V0 and V1 consist of the 0- and 1-sinks of G,
resp. The edge labels of the gmQBP G have to fulfill the following modified well-formedness
constraint. Let u, v ∈ Vℓ, ℓ ∈ {2, . . . , k − 1}, be interior nodes with var(u) = i and var(v) = j,
resp. Then for all assignments a = (a1, . . . , an) to the variables in X,

∑

w∈V

δ∗(u,w, ai)δ(v,w, aj ) =

{
1, if u = v;
0, otherwise.

(W∗)

Furthermore, gmQBPs are unidirectional, i. e., for each w ∈ V , all v ∈ V for which a b ∈ {0, 1}
exists such that δ(v,w, b) 6= 0 are labeled by the same variable.

We remark that the well-formedness condition for gmQBPs is weaker than the well-formedness
condition for ordinary QBPs, because it has only to hold for pairs of nodes of the same set Vℓ.

We now define the semantics of gmQBPs. As in the definition of usual QBPs, nodes corre-
spond to vectors in an orthonormal basis (|v〉)v∈V of H = C

|V | and intermediate results of the
computation are superpositions of these vectors. As for QBPs, a computation step consists of
a measurement and the subsequent transition to successor nodes according to the transition
amplitudes δ. In a gmQBP, the measurement generalizes that allowed for QBPs as follows.
The gmQBP performs the projective measurement M = (P0, P1, P2, . . . , Pk−1) with results
{0, 1, 2 . . . , k − 1}, where

Pr =
∑

v∈Vr

|v〉〈v|, r ∈ {0, 1, 2, . . . , k − 1}.

40



The probability of obtaining the result r is ‖Pr|v〉‖2. If the result r is 0 or 1, the computation
stops with output r. If r ≥ 2, the computation continues with the normalized projection

|ψ′〉 =
Pr|ψ〉
‖Pr|ψ〉‖

=
∑

v∈Vr

αv|v〉.

Then for each node v ∈ Vr with var(v) = i the gmQBP follows the edges with boolean label ai
according to their amplitudes. This yields the new superposition

|ψ′′〉 =
∑

v∈Vr

αv

∑

w∈V

δ(v,w, avar(v))|w〉.

The above definition does not allow “?” outputs for simplicity, since we do not consider
Las Vegas gmQBPs, anyway. The modified well-formedness constraint implies that for each
result of the measurement the corresponding mapping can be extended to a unitary transfor-
mation. Computation time and acceptance modes are defined analogously to QBPs. Also the
definition of QOBDDs with generalized measurements (gmQOBDDs) is straightforward: The
variables are required to be tested according to a fixed variable order. We remark that gmQBPs
have a simple graphic representation. Additionally to the representation of QBPs there is merely
a partition of the nodes.

The physical realizability of gmQBPs depends on the ability to perform measurements during
a computation. Based on a standard argument using Neumark’s theorem (see, e. g., [29]),
such measurements can be described by unitary transformations in an extended Hilbert space.
Furthermore, intermediate measurements are also possible, e. g., in the quantum circuit model
defined in the textbook of Nielsen and Chuang [26] as well as in the model of Aharonov, Kitaev
and Nisan [4] which allows gates computing general quantum operations (superoperators).

It is obvious that a QBP is a gmQBP with three possible measurement results. We show that
randomized BPs can easily be transformed into gmQBPs.

Proposition 7.2: For each randomized BP G computing some function f there is a gmQBP G′

computing the same function with the same acceptance mode, and the size of G′ is bounded above
by the size of G.

Proof. We remove all randomized nodes from G by allowing each node to have several outgoing
0- and 1-edges labeled by appropriate probabilities. In the corresponding gmQBP there are the
same edges, where the probability p is replaced with the amplitude

√
p. The partition of the

node set consists of the set of 0-sinks, the set of 1-sinks and sets each containing exactly one
interior node. An easy induction shows that for each input the acceptance probabilities of G
and G′ coincide. �

With the currently available techniques we cannot prove superpolynomial lower bounds for BPs
and for QBPs either (cf. Proposition 2.7). Thus we are not able to prove that polynomial size
gmQBPs are more powerful than polynomial size QBPs. However, for QOBDDs this is easy,
even for k = 4, i. e., the smallest k where gmQOBDDs are a generalization of QOBDDs. In
Theorem 6.6 we have proved exponential lower bounds on the size of QOBDDs for the function
DISJ and IP. On the other hand, it is easy to construct linear size deterministic OBDDs for
DISJ and IP. A careful inspection shows that each node of these OBDDs has at most two
incoming 0-edges and at most one incoming 1-edge. We partition the internal nodes into two
sets V2 and V3 such that each pair of nodes with the same 0-successor is not in the same set.
Furthermore, by duplicating the sinks we ensure that each sink has at most one predecessor.
The sets V0 and V1 are the sets of 0- and 1-sinks, resp., that are obtained in this way. We obtain
the following result.
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Proposition 7.3: There are gmQOBDDs of linear size with k = 4 possible measurement results
that exactly compute DISJn and IPn.

Finally, we prove a generic lower bound on the size of gmQOBDDs for k-stable functions. A
function f : {0, 1}n → {0, 1} is called k-stable if for each set V of variables of size k and each
variable xi ∈ V there is a setting of the variables outside V such that the resulting subfunction
is xi or xi. It is well known that k-stable functions only have read-once branching programs
of size 2k−1, and it has been shown in [34] that also randomized OBDDs require size 2Ω(k).
Examples for such functions include the determinant of an n × n-matrix over Z2, which is
(n − 1)-stable, and the function checking whether a graph on n vertices has an n/2-clique,
which is (n/4 + 1)-stable. For these and other examples, see Wegener [42].

We remark that the state of a gmQOBDD after performing a measurement during a computation
can be described as a mixed state, i. e., a probability distribution over pure states. Now we can
apply a lower bound on the quantum communication complexity for the index function (defined
at the end of Section 6.4) due to Klauck [19].

Theorem 7.4: Each gmQOBDD with bounded error for a k-stable functions has size 2Ω(k).

Proof. W. l. o. g. let k = 2ℓ. Klauck [19] has observed that the quantum one-way communication
complexity of the function INDk is lower bounded by Ω(k) for the partition where the first player
Alice gets the input vector x = (x0, . . . , xk−1) and the second player Bob gets y = (y0, . . . , yℓ−1).
This lower bound also holds for the two-sided error model and if Alice may send a mixed state
to Bob. Let a gmQOBDD for a k-stable function f be given. Then INDk can be computed
by a quantum one-way protocol in the following way: Alice may choose the first k variables in
the variable order and Bob the remaining variables. By the property of k-stable functions, for
each of Alice’s variables, Bob can fix his variables such that the gmQOBDD outputs the value
of the variable or its complement. Hence, it suffices for Alice to perform the computation of
the gmQOBDDs of the first k levels for the given setting of her x-variables and to send the
(mixed) state of the gmQOBDD after her computation to Bob. Bob can then compute the
output as described. The communication complexity is bounded above by the logarithm of the
size (or even the width) of the gmQOBDD. Together with the lower bound on the quantum
communication complexity for INDk, the theorem follows. �

8. Open Problems

In this paper, we have explored the foundations of space-bounded nonuniform quantum com-
plexity to some extent, but several interesting problems nevertheless remain open.

– It is not clear whether algebraic amplitudes for nonuniform QTMs and short amplitudes for
QBPs are the most general reasonable sets of amplitudes. Is it possible to provide some formal
argument that excludes more general sets of amplitudes (as done by Adleman, DeMarrais,
and Huang [3] for the uniform case and arbitrary complex amplitudes)?

– For space-bounded nonuniform QTMs with algebraic amplitudes we have proved that the
general model can be simulated by the unidirectional one. It is open so far whether an analo-
gous simulation also exists for the uniform case. Furthermore, for QBPs it is straightforward
to define a variant without the requirement of unidirectionality. Can this generalized model
be simulated by the unidirectional model or is it unreasonably powerful?
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– It remains open whether there is a space-efficient simulation of QBPs by nonuniform QTMs for
the cases of error-free and exact quantum computation and, if not, to provide some evidence
showing that such a simulation is unlikely to exist.

– With respect to the comparison of OBDDs and QOBDDs, the relationship between the classes
BQP-OBDD and BPP-OBDD for total functions is left open.

– Prove lower bounds for more general variants of QBPs. While lower bounds for QOBDDs
can be obtained using tools from quantum communication complexity, already the proof of
lower bounds for (possibly unordered) read-once QBPs seems to require new arguments.

– The model of gmQBPs remains largely open to investigation. In particular, the relationship
between the standard model of QBPs and gmQBPs needs to be further clarified. Show
separation results as that for QOBDDs and gmQOBDDs presented here also for more general
variants of QBPs or investigate simulations of gmQBPs by usual QBPs.
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