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Abstract

In this paper we demonstrate the modelling and analysis of intrusion detection systems and their
environment using the process algebra Communicating Sequential Processes and its model checker
FDR. We show that this analysis can be used to discover attack strategies that can be used to blind
an intrusion detection system, even a hypothetically perfect one that knows all the weaknesses of
its protected host. We give an exhaustive analysis of all such attack possibilities. We discuss how to
strengthen the intrusion detection systems to prevent these attacks, and finally we show how we can
use data independence techniques to verify the corrected versions.
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1. Introduction

This paper introduces the use of the process algebra Communicating Sequential Processes
(CSP)[10,22] within the intrusion detection area. We will show how one can use CSP and
its model checker FDR [9] to analyse the interactions between intrusion detection systems
(IDSs) and their environment. Special attention is given to the unexpected side-effects that
allow an attacker to render the IDS useless.
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An intrusion detection system is used to detect security policy violations in a network,
caused by either insiders or outsiders. These systems identify intrusions by spotting known
patterns, or by revealing anomalous behaviour of protected resources (e.g., network traffic
or main memory usage).

There are techniques, known asdesynchronisation attacks, that make it possible to blind
an intrusion detection system, even a hypothetically perfect one that knows all weaknesses
of its protected host. Although these attacks are easy to understand, it took the security
community a long time to discover them[19,18].

In this paper we will show how to use CSP to discover such attacks automatically.
Briefly, our approach is as follows. We build a CSP model of a small network employing
an IDS; we also model the most general attacker who can inject packets into the network
(although not interfere with packets once they are within the network). We then use the
model checker FDR to search the state space, and to detect attacks upon a target that are not
detected by the IDS. We consider two examples, both based upon simplified versions of the
Internet Protocol version 4 (IPv4) [7]: the first displays an attack based upon the time-to-
live field; the second displays an attack based upon the target and IDS treating differently
a fragment of a packet that arrives after another fragment with the same offset within the
packet.

We show how to adapt the intrusion detection systems to prevent these attacks, and
give an exhaustive analysis of all attack possibilities that are based on this class. The
model checker fails to find any attacks upon the adapted versions. However, in order to
perform this analysis—for example, to keep the state space finite—we have to perform
various abstractions, particularly concerning the set of network packets and the set of at-
tack signatures in the model. It is not immediately clear that these abstractions are sound:
our failure to find attacks on the adapted models could be caused by an over-abstraction
that loses attacks. To show that our abstractions are valid we have to show that any at-
tack can be reduced to one that could be found by our model. We change the focus of
our models, and then use data independence techniques to show that our abstractions are
sound.

The next section provides background information regarding intrusion detection systems
and CSP. Section 3 describes our modelling and analysis of the time-to-live model. In
Section 4 we show the generality of our approach, by applying it to a different example,
based upon the packet reassembly algorithm of the Internet Protocol. In Section 5, we adapt
the focus of the models, so as to take a slightly different view; we then use results from
data-independence to show that this analysis is complete, in the sense that it is independent
of the underlying types of network packets and attack signatures used in the model. We
consider the effects of other abstractions in Section 6. We sum up, and discuss related and
future work in Section 7.

2. Background

In this section we describe relevant background information, about both intrusion detec-
tion systems and CSP.
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2.1. Intrusion detection systems

An intrusion detection system is used to detect security policy violations in a network,
caused by either insiders or outsiders. We briefly review the different types of intrusion
detection systems, and the different data sources they use.

2.1.1. Classes of intrusion detection techniques
Misusedetection: Misuse detection based systems look for known signatures of attacks. A

signatureis the pattern that is used by the IDS to spot attacks[13]; examples of such systems
can be found in [3]. The signatures that are necessary for these systems are mostly developed
by hand. The IDS usually obtains the required information from a network adaptor, which
feeds it with raw data packets, or from the log-files of the hosting operating system. In
industry the most used systems are network signature based IDSs, because of their low total
cost of ownership.

The system knows exactly how a certain attack manifests itself. This leads in theory to
a low false-positive ratio [3,6]. The detection algorithm is based on pattern matching, for
which efficient solutions exist. However, defining the manifestations of certain attacks is
a time consuming and difficult task. Due to the working principle of these systems, it is
nearly impossible for them to detect novel attacks. Moreover, subtle variations in the attack
can mislead them.

We deal only with misuse detection based systems in this paper.
Anomaly detection: Anomaly detection based systems distinguish between normal and

anomalous behaviour of guarded resources. Examples of monitored resource characteristics
include CPU utilisation, system call traces, and network links. The decision as to whether
observed behaviour is normal or anomalous is based on a set of profiles; the profiles of
normal behaviour for a resource are maintained by a self-learning algorithm. Examples of
such systems can be found in [3].
Specification-baseddetection: Specification-based intrusion detection systems [14,15,23]

distinguish between normal and intrusive behaviour by monitoring the traces of system calls
of the target processes. A specification that models the desired behaviour of a process tells
the IDS whether the actual observed trace is part of an attack or not.

2.1.2. Classes of intrusion detection data sources
Another classification style that is important is to distinguish IDSs according to their data

source.
Network intrusion detection systems: A network intrusion detection systems (NIDS) gets

its information from a network adapter operating in promiscuous mode. It examines the
traffic for an attack signature. Although anomaly detection has been implemented for these
systems, the main detection principle is misuse detection. A NIDS can provide surveillance
for a whole network, because it is working with the raw network packets. In this paper we
model a NIDS, because it is the most used system type [3,11,17,24].

Due to the fact that a single NIDS can monitor a whole network, its implementation and
maintenance costs are low. Additionally these systems, since they work at the packet level,
have all the information to detect the difference between hostile and friendly intentions.
However, these systems are largely unable to read the traffic of encrypted connections.
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Further, increasingly networks are switched rather than broadcasted: due to the Ethernet
working principle[4], the NIDS is only able to collect packets that travel through its collision
domain; in a switched environment there is no real collision domain, hence the NIDS is not
able to retrieve vital information [12].
Host intrusion detection systems: A host intrusion detection system runs on a specific

host and watches its logging activity. Hence, these systems are operating system dependent
and every protected host needs a separate IDS [11]. They can keep track of all actions
that are made by the users of that host, which include browsing for files with the wrong
read/write permissions, the adding and deleting of accounts, and the opening and closing of
specific files. This gives these systems a greater aptitude for surveillance of security policy
violations.

2.2. CSP

An event represents an atomic communication; this might either be between two processes
or between a process and the environment. Channels carry sets of events; for example,c.5
is an event of channelc.

The processSTOPrepresents a deadlocked process, that can perform no events. The
processa → P can perform the eventa, and then act likeP. The processc?x → Px inputs
a valuex from channelc and then acts likePx .

The processP � Q represents an internal or nondeterministic choice betweenP and
Q; the process can act like eitherP or Q, with the choice being made according to some
criteria that we do not model. The process�i:I Pi represents a replicated nondeterministic
choices, indexed over setI.

The processP ‖
A

Q represents the processesPandQcomposed in parallel, synchronising

on event from the setA. Note that in larger parallel compositions, several processes may
synchronise on the same event; for example, in the process(P ‖

A

(Q) ‖
B

R), all three processes

will synchronise on events fromA ∩ B.
A trace is a sequence of events that a process can perform. ProcessP is trace-refined by

processQ if all the traces ofQ are also traces ofP

P �T Q ⇔ traces(P ) ⊇ traces(Q).

A failureof a process is a pair(tr , X), representing that the process can perform the tracetr
to reach a stable state (i.e. where no internal activity is possible), where none of the events
fromX can be performed. ProcessP is failures-refined by processQ if all the failures ofQ
are also failures ofP

P �F Q ⇔ failures(P ) ⊇ failures(Q).

The model checker FDR can be used to test whether a model of a system trace-refines or
failures-refines a specification process. Typically, the specification will capture all allowable
traces or failures.
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Fig. 1. The network topology.

3. The time-to-live model

In this section we present our first model. We consider whether a simplified version of
the Internet Protocol version 4 (IPv4)[7] gives an attacker the opportunity to launch an
undetected attack against the target.

We model just two fields of the protocol:
• We model the data field, so as to capture network communication, and possible network-

based attacks.
• We also model the time-to-live (TTL) field. The TTL represents the distance a packet can

travel; every router decreases its value by one; once zero is reached the packet is discarded.
As shown in[19], the TTL offers an interesting evasion possibility; our analysis below
reveals this attack.
Modelling assumptions: We assume that the IDS itself is perfect, in the sense that it

knows all signatures corresponding to vulnerabilities that could be used to cause a security
breach. Of course, representing attacks by signatures is unsatisfactory: it would be better to
talk about the effects on the target itself; however, signatures are a de facto standard, and it
seems very difficult to do better.

Additionally we consider only one-way, in-order communication.
The network topology will be as in Fig. 1. We model a network with just one receiver

node, ortarget. We use ademilitarised zone configuration[5], which consists of an exterior
filtering router and an internal filtering router; the exterior one is responsible for protecting
the network from most attacks; the interior one is the most restrictive one, as it only allows
traffic that is permitted for the internal network. The demilitarised zone resides between
these two routers; this is the place where companies maintain their public servers, such as
the web server. It is also the preferred place for the IDS: it is the only place where the IDS
can receive all the traffic that originates outside the local network. The use of a demilitarised
zone is not necessary to discover the attack below: many other topologies would reveal the
same attack; we consider a demilitarised zone because they are commonly deployed in
industry.

Note, that the IDS monitors communications passing between the two routers. We will
model this as a three-way synchronisation between the corresponding processes.

3.1. The CSP model

Each channel carries some data and a TTL value. In order to keep the state space of our
model finite, we need to take fixed finite ranges for these types.
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• The data field will range over the typeDATA= {A,B,C}.
• The TTL value will only range from 1 to 3; we believe that this range for the TTL is

enough, because the diameter of the resulting network will be smaller than 3.
Further, we need to model a particular set of attack signatures:
• We will take the setsigsof attack signatures to be{〈A,B〉}.

For modelling an appropriate network we require two routers, an attacker, one target and
one IDS, as shown in Fig.1; we describe each of these below.
The routers: The main purpose of the routers is for navigating packets from source to

destination; however, we will completely ignore this routing functionality, and concentrate
on their effect on the TTL field; we therefore treat them as relay-stations. The router receives
a packet, and decreases the TTL value by one; if the resulting value is zero, the packet is
dropped; otherwise, the packet is forwarded. From this we get the following CSP description:

Router(in,out) =
in?x?y →
lety′ = y − 1
within if y′ > 0 thenout.x.y′ → Router(in,out).

x contains the data andy the TTL value. The parametersin andoutare channel names that
represent the input and output ports of the router.
The attacker: The attacker process should be able to execute all the actions a real-world

attacker could perform. We consider here only anexternalattacker, who can inject packets
into the network, but not delete or modify packets once they are within the network; further,
we assume that the attacker cannot compromise the components of the system.

We model the attacker nondeterministically, so as to impose no limitation on the sequence
of packets it sends. Consequently, FDR has to explore every possible input stream that the
attacker process may create. The process is modelled by the following CSP description:

Attacker= �x:DATA,y:T T L a.x.y → Attacker� STOP.

The target: The target process receives packets. If a sequence of packets corresponding
to an attack signature is received, then this corresponds to a violation of the security policy,
which we model by the eventfail. The following CSP description describes this process:

Target(sigs, vulnerabilities) =
c?x?y →
letvulnerabilities′ = {s | 〈x〉�s ∈ sigs∪ vulnerabilities}
within if 〈x〉 ∈ vulnerabilities

thenfail → Target(sigs, vulnerabilities′)
elseTarget(sigs, vulnerabilities′).

This process has two parameters,sigsandvulnerabilities. sigsis the set of a set of all attack
signatures.vulnerabilitieskeeps track of the progress of security breaches, and indicates
what the target has to receive in order to fail; the set comprehension is used to update
vulnerabilities.
The IDS: The IDS monitors the traffic that travels through the network. We assume here

that the IDS is a perfect signature based IDS and therefore knows all vulnerabilities that
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cause the target to fail. The following CSP description for the IDS differs from the above
target component by engaging in analertevent rather than in afail event once it has received
an attack pattern:

IDS(sigs,alerts) =
b?x?y →
letalerts′ = {s | 〈x〉�s ∈ sigs∪ alerts}
within if 〈x〉 ∈ alerts thenalert → IDS(sigs,alerts′)

elseIDS(sigs,alerts′).

The complete system: We combine these processes in parallel, as depicted in Fig.1, and
then hide all events other thanfail andalert (i.e. turn them into internal events). LetSystem
be the resulting process.
The specification: The specification expresses that for everyfail event, there should be a

correspondingalert (and vice versa). In other words, the IDS should have a log-entry for
each successful attack. However, because of the asynchronous nature of the system, thefail
might precede thealert, but in this case thealertmust subsequently become available (i.e.
cannot be refused). We can model this with a simple recursive CSP process.

Spec= alert → fail → Spec� fail → alert → Spec� STOP.

We use FDR to check whetherSpec �F Systemholds, that is, whether the failures ofSystem
are a subset of the failures ofSpec. The processSpecallows precisely the valid behaviours,
so if the refinement holds then the behaviours ofSystemare just valid ones, where the IDS
detects all attacks; if not, then we have discovered an attack not detected by the IDS.

3.2. Results

FDR reveals that the refinement check fails, and provides us with the following trace:

〈a.A.4, b.A.3, c.A.3, a.C.2, b.C.1, d.A.2,
c.C.1, a.B.4, b.B.3, c.B.3, d.B.2, fail 〉

after which the system refusesalert. That is, a successful attack has been launched by the
attacker, without the IDS detecting it. This trace is displayed in the sequence diagram in
Fig. 2. This is similar to the attack noted in [19]. The attacker sends three packets with
dataA, C andB, respectively, where the packet with dataC has a TTL value that is lower
than its distance to the target. Therefore, this fragment will be discarded by the last router,
so the target receives the sequence〈A,B〉, corresponding to an attack signature. The IDS,
however, takes theC fragment into account, so receives the sequence〈A,C,B〉, which does
not correspond to an attack signature. Hence the target fails, but the IDS does not raise an
alert.

The attack, as presented, supposes that the packets are accepted in the order in which
they are received, i.e. they do not have sequence numbers, as in TCP. However, it is straight-
forward to adapt the model to include sequence numbers, and a similar attack would be
found.

Attacks like these, where the states of the IDS and target become desynchronised, are
calleddesynchronisation attacks.
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Fig. 2. TTL attack.

The attack presented above uses the fact that the IDS does not consider information
about the topology of the network. The obvious way to solve this is to adapt the model
so that the IDS only considers packets with a TTL high enough to reach the target. When
we make this change, FDR finds that,for this model, the IDS detects all attacks. However,
it is not clear whether the same would be true if we consider different instantiations of
the setsDATAandsigs, or whether we over-abstracted; this is the question we consider in
Section5.

4. The packet reassembly model

In this section we consider another example, so as to demonstrate the general nature of our
technique. We will examine the behaviour of a system where data packets are fragmented
and reassembled based upon RFC 791 [7].

Sometimes an IP packet has to be routed through different networks. Not all networks
have the same properties. Therefore, a packet might have to be split up into fragments,
tagged with their position in the original packet (fragment offset); this process is termed
fragmentation. The target receives an increased supply of smaller fragments instead of
one IP packet, and therefore has to reconstruct the initial packet; this process is called
reassembly. The algorithm in [7] collects the fragments and puts them into the right place
in the reserved buffer.

Sometimes data is received at the same fragment offset as a previously received fragment.
In such a case, a decision has to be made whether to favour old or new data. RFC 791 [7]
leaves unspecified which should be preferred, but the recommendation is to prefer new
data, so that if the algorithm receives data for the same position twice, the new data will
overwrite the old. However, not all implementations follow this suggestion. Combining
operating systems that favour new data (e.g. 4.4 BSD and Linux) with those that favour
old data (e.g. Windows NT 4.0 and Solaris 2.6) introduces an evasion possibility if the IDS
does not know what type of operating system the target is running; this was first discovered
by Ptacek and Newsham [19].
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4.1. The CSP model

To analyse the interactions between the various types of operating systems and IDSs we
have designed the following CSP model. The network topology is similar to that in Fig.1,
although, for simplicity, we omit the routers.
Channels: The channels of this model have to be extended. We require all fields that are

necessary to reassemble the fragment stream, namely:
• the more fragments (MF) bit, which indicates whether this is the last fragment in the

reassembled packet (although it might not be the last to arrive);
• the fragment offset (FO) bit, which indicates the offset of this fragment within the packet;
• the time-to-live field, as in the previous model;
• the data field, as in the previous model.
Therefore, eventa.1.0.3.A represents a packet that travels along channela with its more
fragment bit set to one, a fragment offset of zero, a TTL value of three, and a data field
containing bit sequenceA.
Attacker: The attacker process remains unchanged.
Target: The target should satisfy the same properties as the target process of the TTL

model. Additionally, it should be able to deal with fragments and out-of-order traffic. Thus,
it should be able to reassemble an out-of-order fragment stream, as described in RFC 791.

In order to consider the behaviour of the different types of operating system—favouring
old or new data—we arrange for the target process to choose an operating system initially.
For the purposes of this model, we take the reassembly buffer to be of size five, which is
sufficient to discover the attack below; we model an unfilled entry in the buffer by the null
valueN; hence the reassembly buffer is initialised toemptyBuff= 〈N,N,N,N,N〉

Target(sigs)=�os:OS os target.os→ Target(os,emptyBuff, sigs,0),

emptyBuff= 〈N,N,N,N,N〉.

The processTarget(os,buff, sigs,max) uses the following parameters:os indicates
whether the operating system favours old or new data (with old represented by 0, and
new by 1);buffrepresents the reassembly buffer;sigsrepresents the set of attack signatures;
andmax represents the maximum size of the original packet. The target first receives a
datagram and calculates the new buffer using the functionoverwrite

Target(os,buff, sigs,max) =
in?mf?fo?ttl?data→
Target′(os,buff, sigs,max,mf, fo,data,overwrite(buff, fo,data)).

The following process models the case where the more fragments flag is equal to zero,
indicating that this will be the last fragment. First the process checks whether a fragment
with this offset has already been received,1 and if so, if its update policy favours old data,
this fragment is ignored. Otherwise, it checks whether the packet is complete.2 If the packet

1 The functionnth(a, b) returns the value stored in positionb of buffera.
2 allFilled(a, b) checks whether all data in buffera up to positionb has been received.



G.T. Rohrmair, G. Lowe / Theoretical Computer Science 340 (2005) 82–101 91

is complete, it tests whether it has received an attack or not,3 failing if so; in either case the
buffer is reinitialised to an empty buffer. If the packet is not complete it stores the fragment
offset as the new maximum size of the packet

Target′(os,buff, sigs,max,0, fo,data, b1) =
if nth(buff, fo) �= N ∧ os= 0 thenTarget(os,buff, sigs,max)
else ifallFilled(b1, fo)

then ifcheck(b1, sigs, fo) thenfail → Target(os,emptyBuff, sigs,0)
elseTarget(os,emptyBuff, sigs,0)

elseTarget(os, b1, sigs, fo).

The following process models the case where a fragment with the more fragments bit
set to one arrives, indicating that more fragments are following. The structure is nearly the
same, except that we do not change the maximum packet size

Target′(os,buff, sigs,max,1, fo,data, b1) =
if nth(buff, fo) �= N ∧ os= 0 thenTarget(os,buff, sigs,max)
else ifallFilled(b1,max) ∧max �= 0

then ifcheck(b1, sigs,max)
thenfail → Target(os,emptyBuff, sigs,0)
elseTarget(os,emptyBuff, sigs,0)

elseTarget(os, b1, sigs,max).

The IDS: The IDS process is capable of reassembling fragments arriving out-of-order,
similar to the target process presented above. It also takes the time-to-live field into account,
as in the adapted TTL model. We will not give a full account here because of the similarities
to the target. The IDS raises analert instead of afail event, and indicates its operating
system withos ids instead ofos target.
The completemodel: The complete system model is composed of an attacker, a target, and

an IDS. The specification and refinement assertion remain the same as in the TTL example.

4.2. Results

FDR discovers two distinct attacks that could both elude the IDS.
Attack 1: The first attack is illustrated in Fig.3. The IDS chooses to use an operating

system that favours new data (indicated by the eventos ids.1), whereas the target chooses
to favour old data(os target.0). The attacker sends two fragments with fragment offset
zero, the first containing a bit sequenceA (1.0.1.A), the second containing an innocent bit
sequenceC (1.0.2.C). The result is that the IDS receives theA fragment and then overwrites
it with C. However, the target receives theA fragment and refuses to store theC fragment,
because it favours old data. Therefore, in the reassembly buffer of the IDS aCbit sequence is
stored, and in the buffer of the target process anAbit sequence is stored. Finally the attacker
creates the last packet(0.1.3.B), with a fragment offset of one, and the more fragment bit
set to zero. Hence on receiving this fragment, both the target and the IDS reassemble their

3 check(a, b, c) compares the bufferawith the setb to depthc to test for the existence of any attack patterns in
the buffer.
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Fig. 3. Attack 1.
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Fig. 4. Attack 2.

packets. The IDS reassembles〈C,B〉 and the target reassembles〈A,B〉, which causes a
fail event without analert.
Attack 2: The second attack is illustrated in Fig.4. This attack is the opposite of the

former. The IDS chooses to be based on a type zero operating system (favouring old data)
and the target chooses to be based on a type one operating system (favouring new data).
The attacker sends a fragment with fragment offset one, more fragment bit set to zero, and
a C bit sequence to the IDS(0.1.0.C). Afterwards he submits a fragment with the same
fragment offset but with a different bit sequence(0.1.2.B). This leads to a deviation of the
IDS buffer from the target buffer: the IDS stores aC, whereas the target overwrites theC
with aB. The attacker then sends the final packet(1.0.3.A). The IDS reassembles〈A,C〉,
which is innocent, and the target reassembles〈A,B〉, which leads to afail event without an
alert.

4.3. Discussion

Assuming the IDS cannot be sure of the operating system used by the target, it appears
that the IDS needs to take account of both possibilities for the target, i.e. favouring either
old or new data. When we do this, FDR finds no attacks on our revised version. We will see
in Section 5 that this result still holds for more general model parameters.
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However, this general strategy for avoiding desynchronisation attacks does not appear to
scale well to a more general setting. There are many differences in the way implementations
treat the TCP/IP stacks, and it would appear that the IDS needs to consider all such possibil-
ities. Even if we only consider the drop points—operations where the packet is completely
rejected—described in[19], there are a vast number of desynchronisation possibilities. The
consequent state-space explosion in the IDS would appear unmanageable.

Whenever it is possible to create a difference between the input stream of the IDS and the
protected system, an attack can be successfully hidden. More generally, both the protected
system and the IDS have state transition graphs; if we create a situation where these systems
change into different states, they require different stimuli to reach the deprecated state where
the target fails and the IDS raises the alert. We can therefore distinguish between three
desynchronising possibilities:
(1) Desynchronisation due to the systems behaving exactly the same, but the input streams

being different; this is the type of flaw exploited in our first model.
(2) Desynchronisation because the input streams are the same, but the systems behave

differently under certain conditions; this is the type of flaw exploited in our second
model.

(3) Desynchronisation because both the input streams and the behaviour of the systems are
different.

5. Towards a more complete analysis

As stated above, our analysis in the preceding sections is not complete, since we do not
know whether the inability to spot attacks in the improved models stems from an over-
abstraction or from the case that there is really no attack. In this section, we generalise our
results, so that we are able to verify the model forall values of the type of network packets
and the set of attack signatures.

We begin by describing the relevant parts of the theory of data independence. We then
show how to generalise the network packet and attack signatures parameters for the time-
to-live model. Finally we show that precisely the same technique works for the packet
reassembly model.

5.1. Data independence

Often the behaviour of a CSP process is dependent on various parameters, such as the
underlying types used in events, or the number of nodes in a network. However, analysis
using explicit model checking, for example with FDR, can consider only a single value for
each parameter at a time. We would like to be able to verify a system for all values of the
parameters via a small number of explicit checks; this is often known as theParameterised
Verification Problem.

Data independence is a tool that can be used to address this problem. The goal of this
approach is to come up with a boundNsuch that if a refinement holds when a type parameter
is instantiated with a type of sizeN, then the refinement also holds for all larger types.
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Fig. 5. Network topology for the revised time-to-live model.

A processP is said to be data independent with respect to a typeT if the only operations
it performs on values ofT are to input them, store them, and output them; in particular,P
never performs any computation on values ofT that constrains whatTmight be.

A process satisfies the conditionNoEqT if it performs no test of equality between
members ofT: such tests could be explicit, for example within ‘if–then–else’ constructs,
or implicit via synchronisations between parallel components on single elements ofT.
A process satisfiesNormT if, essentially, it contains no nondeterminism the effects of
which are not immediately apparent (see[16,22] for a formal definition).

The following theorem is from [16,22].

Theorem 1. Suppose that Spec and Impl are data independent processes, that both satisfy
NoEqT , and that Spec satisfiesNormT . If Spec� Impl when T is taken to be of size2, then
Spec� Impl for all finite or infinite values of T of size at least1.

5.2. Generalising the types of packets and signatures

We now change the focus of the time-to-live model from Section3, in order to move
towards a more complete analysis, independent of the setsigsof attack signatures. We
observe that the IDS is really doing two things: filtering out packets that will not reach the
target; and performing pattern matching on the remaining packets. It is therefore possible
to split the IDS into two different processes corresponding to these functions. In related
models, such as the packet reassembly model of Section 4, the target process similarly
performs a combination of filtering and pattern matching, and so it is possible to split the
target into two processes. This gives a topology as in Fig. 5.

We can then make the following observation.

Observation 1. If the stream of packets passed to the pattern matching component of the
IDS is the same as the stream of packets passed to the pattern matching component of the
target, then the IDS will detect all attacks.

The hypothesis of Observation1—that the two components see the same stream of
packets—is an easy property to test. In fact it does not even require us to model the two
pattern matching components, simply the messages passed to them on the channelsseeIDS
andseeTarget. The advantage of this change of focus is that is allows us to remove the
parametersigsfrom the model, thus leading towards a more general verification.



G.T. Rohrmair, G. Lowe / Theoretical Computer Science 340 (2005) 82–101 95

The two filtering processes (where the IDS takes into account the distance to the target)
can be modelled by

IDS= b?x?y → if dist�y thenseeIDS.x → IDSelseIDS,

Target= c?x?y → seeTarget.x → Target,

wheredist is the distance from the IDS to the target. The rest of the network is unchanged.
It is easy to capture the hypothesis of Observation1 as a refinement assertion; there is a

certain amount of buffering in the system, and the specification has to take this into account

Spec= �
x:T
(seeIDS.x → Spec′(x) � seeTarget.x → seeIDS.x → Spec)

�
STOP,

Spec′(x)= seeTarget.x → Spec
��
y:T

seeIDS.y → seeTarget.x → Spec′(y).

The specification captures the property that the IDS and target see the same stream of
packets, except that the IDS might at any point have seen up to two more packets than the
target, or the target might have seen one more packet than the IDS.

We can then use FDR to check that the system failures-refinesSpec. The refinement
holds, and we can then use Observation 1 to deduce that the IDS detects all attacksfor all
possible sets of attack signatures.

However, this appears to leave us only slightly better off than before: we can verify the
system for a fixed typeDATA; but does this tell us anything about systems with differ-
ent values forDATA? It turns out that we can use Theorem 1 to show that this is indeed
the case. The system and specification processes are both data independent with respect
to the typeDATA (when the pattern matching against attack signatures was included, the
IDS and target were not data independent); both satisfyNoEqDATA; and the specification
satisfiesNormDATA. The theorem therefore tells us that we have only to check the refine-
ment for a typeDATAof size 2, sayDATA= {A,B}, to have verified it for all values of
DATA.

5.3. The packet reassembly model

The same technique can be used for our second example, from Section 4. We can model
the reassembly algorithms, at both the target and IDS, as separate processes. We can then
ask whether the stream of packets passed to the pattern-matching components are the same,
using essentially the same specification as for the time-to-live model; this generalises our
analysis to all possible sets of attack signatures. We can then use Theorem 1 to show that
we need only perform this analysis for a typeDATAof size 2 to deduce that the same result
holds for all larger types.
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6. Remaining points

In this section we generalise the parameters of the system further. We show that the
range{1 . . 3} for the TTL field is sufficient to capture all essentially-distinct behaviours
of the system for arbitrary TTL values. We further show that a buffer size of five (in the
buffer-reassembly model) is sufficient. We also discuss why the network topology is not as
restricted as it appears to be.

6.1. The TTL-value range

Consider the network in Fig.1. It is obvious that the diameter of the network, counted
in TTL-decreasing hops, is two. Hence there appears to be no need to consider TTL values
greater than three. We formalise this argument in this section.

LetSystem(N) be the CSP process representing a system using TTL values{1 . . N}, and
let System0(N) be the corresponding process before internal events are hidden, i.e. such
that all channels are visible.

The technique we use is to define a collapsing function� over events, that maps behaviour
of a system using arbitrary-sized TTL values to corresponding behaviours of the small
system:4

∀ tr : �∗ ;X : P� • (tr ,�−1(X)) ∈ failures(System0(N))⇒
(�(tr),X) ∈ failures(System0(3)).

(1)

We define� over events, to replace TTL values greater than 3 on the channelaby 3, and
similarly for other channels

�(a.x.y)= if y�3 thena.x.y elsea.x.3,

�(b.x.y)= if y�2 thenb.x.y elseb.x.2,

�(c.x.y)= if y�1 thenc.x.y elsec.x.1

and� is the identity function over all other events. We lift� to traces, pointwise.
It is then straightforward to see that each component of the system respects�—i.e. such

that, analogously to Eq. (1), if (tr ,�−1(X)) is a behaviour of the component withN TTL
values, then(�(tr),X) is a behaviour of the component with 3 TTL values. Hence Eq. (1)
itself is satisfied. However, withinSystem, the channelsa, b andc are hidden, so� is the
identity function over the visible events, and we deduce

failures(System(N)) = failures(System(3)).

But we already know thatSpec �F System(3); hence we can deduce that
Spec �F System(N), for all N.

4 � represents the set of all events;�(tr) represents� applied point-wise to tracetr; �−1(X) represents the
inverse image ofX under�.
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6.2. Buffer size

We now argue that in the reassembly model it is sufficient to consider a buffer size of
five, in the sense that if there is an attack upon a system that uses a larger buffer, then there
is also an attack upon a system that uses a buffer of size five.

Suppose there is an attack tracetr in the general case. We map this onto an attack trace
tr ′ in the restricted case of buffer size five; we do this by uniformly remapping fragment
offsets onto the set{0. .4}. The construction is slightly complicated by the fact that we need
to ensure that the target and IDS reassemble packets at the same points intr ′ as they did
in tr.

Suppose, firstly, that the attack tracetr is such that the IDS and target reassemble the
initial packet differently. We arrange that intr ′ they again reassemble the initial packet
differently. We perform a case analysis.
Case1: The IDS and target reassemble packets of different sizes,mandn, respectively.

Without loss of generality supposem < n. Suppose the last fragments of those packets to
be received by the IDS and target (i.e. last according to the order of the trace, as opposed to
necessarily the fragments with the greatest offsets) are at offsetsx andy, respectively. We
perform a further case analysis:
• Case x, y, m, n all distinct: With x, y < m < n. We define the remapping function�

over fragment offsets as follows:

�(i)= if i = x then 1 else ifi = y then 2
else ifi = m then 3 else ifi = n then 4 else 0.

We then lift� to events by, for example

�(a.mf.fo.ttl .data) = a.mf.�(fo).ttl .data.
Consider the effect of applying� pointwise to all communications on channels other
thanseeIDSandseeTarget. It is then easy to see that the routers and the attacker respect
�. It is also easy to see that the IDS and target reassemble different packets: the IDS
reassembles a packet of size 4 when it receives the fragment with offset 1; and the target
reassembles a packet of size 5 when it receives the fragment with offset 2.

• Case otherwise: One can construct a similar remapping function in each case, mapping
onto a proper subset of{0 . . 4} if some ofx, y, m, n coincide.
Case2: The IDS and target reassemble packets of the same size,n say, but that differ at

some point, say at offsetz. Again suppose the last fragments of those packets to be received
by the IDS and target are at offsetsx andy respectively.
• Case x, y, z, n all distinct: We define the remapping function� over fragment offsets as

follows:

�(i)= if i = x then 1 else ifi = y then 2
else ifi = z then 3 else ifi = n then 4 else 0.

We lift � to events as above. Then it is easy to see that the IDS and target both reassemble
packets of size 4, after receiving the fragments with offsets 1 and 2, respectively. However,
these packets differ at offset 3: the two components receive the same sequence of data
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packets at this offset as they received at offsetz in the general case; and so they will, as
in the general case, reassemble packets that differ at this offset.

• Case otherwise: All other cases are similar.
Suppose now that the IDS and target reassemble a packet other than the first differently,

say thenth packet. Then the above construction will either cause the IDS and target to
reassemble a packet earlier than thenth differently (introducing a new undetected attack);
or the construction will leave the firstn − 1 packets matching, but again cause them to
construct differentnth packets.

Finally the case where one agent reassembles a packet and the other does not can be
treated in a similar manner.

6.3. Network topology

We have considered only a single, fixed, network topology. This turns out to be an
important consideration. If there are two or more routes between the IDS and the target,
then it is possible for the IDS and target to see fragments in a different order, which opens
up the possibility of another desynchronisation attack. However, most local networks have
only a single route from the gateway to each host, which prevents such attacks. Under this
condition, we believe that our abstraction has not lost any attacks:
• It is safe to abstract away from the parts of the network before the IDS, because the

attacker can effectively choose what fragments are sent past the IDS (channelb in the
earlier models).

• It is also safe to abstract away those parts of the local network not on the direct route
from the IDS to the target, because they do not affect what the target sees.

• The remaining issue is the number of routers between the IDS and the target; there does
not seem to be any intrinsic difference between one router reducing the TTL field by one,
andN routers reducing the TTL byN, because the attacker is able to choose the TTL
appropriately; however, the number of routers does affect the buffering of the system and
hence the appropriate specification process.

6.4. Protocol abstractions

Finally, we have, of course, abstracted away from many of the details of the underlying
network protocol, such as length of packets, proper routing functionality, or packets being
dropped because of congestion. Our long-term aim is to remove these abstractions, so as to
model the whole of a real network protocol, such as the Internet Protocol.

7. Conclusion

In this paper we have demonstrated how one can automatically detect desynchroni-
sation attacks upon intrusion detection systems. We modelled a small network deploy-
ing an intrusion detection system, together with a completely general attacker, and used
a model checker to explore the state space to discover attacks that went undetected by
the IDS.
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We then described how to perform a more complete analysis, so as to show the absence of
such attacks. We changed the focus of our previous models so as to ask whether the IDS and
target, after appropriate filtering, see the same stream of packets; this makes our analysis
independent of the set of attack signatures. We then used a result from data independence to
show that the analysis is independent of the underlying type of data. Finally, we argued that
our analysis was independent of the range of time-to-live values, the size of the reassembly
buffer, and—to a certain extent—the network topology.

We have seen how small deviations in implementations can have a considerable impact
on the security of a system. Even when the individual subcomponents of a system are secure,
the overall system may still not be free from flaws. Such emergent faults can be spotted
easily by testing the system as a whole against a specification.

It is worth noting that the converse of Observation1 is not, in general, true: if the attacker
can cause the target and IDS to see different streams of packets, this does not necessarily
mean that a desynchronisation attack is possible. However, we believe that the converse of
Observation 1 is true in all but contrived examples. Even if this is not the case, the worst
that will happen is that we detect a false attack, which will give us a better understanding
of the system.

There is a further abstraction that we have not addressed, namely time: both the IDS and
target will timeout if a packet is not completely received within a certain time. The use of
timeouts allows a different desynchronisation attack. Consider the case where the timeout
value of the IDS is smaller than the value for the target: then the attacker can send its first
fragment and wait until the IDS times-out before sending the remaining fragments, causing
the agents to become desynchronised.

This attack reveals an interesting point: it is very hard to be certain in analy ses such
as these that abstractions have not removed details that allow attacks. Because of this
we need a proper framework to prove formally that abstractions have not lost essential
details.

We intend to extend our analyses, so as to model more aspects of the Internet Protocol,
and other network protocols, with the aim of detecting further desynchronisation attacks.

We close by briefly discussing some other approaches to automatic vulnerability identi-
fication and analysis.

One of the first attempts to build an automatic vulnerability detector was COPS [8]. It
fires known attack patterns against a particular host. However, this kind of direct testing is
not suitable for spotting unknown attacks.

In [21], Ritchey and Ammann propose a high level approach to detect whether it is
possible for an attacker to leverage existing vulnerabilities in the network to get a higher
degree of access. The configurations of the network nodes were abstracted to state machines,
and the attacks were represented as state transitions in these machines.

In contrast to that, [20] uses a low level description of a UNIX file system to spot
single configuration vulnerabilities. The focus is more on finding new attacks rather than
finding a combination of attacks that enables the attacker to penetrate the system more.
The differences between that approach and ours lies in the state space: they use an infinite
model, whereas we use abstraction and data independence to restrict our model to a finite
one. This allows to use a common model checker such as FDR. Also, they use invariants to
manifest their security policy, in contrast to using a specification as we do. The difference
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becomes clear during the examination of the counter examples: they have to establish an
intentions model to prune away all paths that are against the defined invariant but do not
violate the security policy; we have no such paths.

Another approach of using model checkers for vulnerability identification is proposed
in [1,2]. However, they use a model checker combined with mutation testing techniques to
generate and recognise test sets rather than testing directly.

The advantages of our approach are:
• The approach finds all possible attacks, modulo the abstractions of the model. Although

the attacks detected in this paper were known ones, there is no reason why new, novel,
attacks could not be detected using this technique.

• It generates easily understood counter examples.
• Due to the modularity of our models, the workload to add new processes or to change

the network is low.
• We use a finite model, which allows us to use common model checkers.
• Our testing is specification based, which keeps the effort of encoding security policies

low.
• We can deal with unbounded models by using data independence techniques.
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