
HAL Id: hal-00004059
https://hal.science/hal-00004059

Preprint submitted on 25 Jan 2005

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Completeness in standard and differential approximation
classes: Poly-(D)APX- and (D)PTAS-completeness

Cristina Bazgan, Bruno Escoffier, Vangelis Th. Paschos

To cite this version:
Cristina Bazgan, Bruno Escoffier, Vangelis Th. Paschos. Completeness in standard and differential
approximation classes: Poly-(D)APX- and (D)PTAS-completeness. 2005. �hal-00004059�

https://hal.science/hal-00004059
https://hal.archives-ouvertes.fr

Completeness in standard and differential approximation

classes:

Poly-(D)APX- and (D)PTAS-completeness

Cristina Bazgan Bruno Escoffier Vangelis Th. Paschos

LAMSADE, Université Paris-Dauphine
Place du Maréchal De Lattre de Tassigny, 75775 Paris Cedex 16, France

{bazgan,escoffier,paschos}@lamsade.dauphine.fr

27th May 2004

Abstract

Several problems are known to be APX-, DAPX-, PTAS-, or Poly-APX-PB-complete under suitably
defined approximation-preserving reductions. But, to our knowledge, no natural problem is known to
be PTAS-complete and no problem at all is known to be Poly-APX-complete. On the other hand,
DPTAS- and Poly-DAPX-completeness have not been studied until now. We first prove in this paper
the existence of natural Poly-APX- and Poly-DAPX-complete problems under the well known PTAS-
reduction and under the DPTAS-reduction (defined in “G. Ausiello, C. Bazgan, M. Demange, and
V. Th. Paschos, Completeness in differential approximation classes, MFCS’03”), respectively. Next, we deal
with PTAS- and DPTAS-completeness. We introduce approximation preserving reductions, called FT

and DFT, respectively, and prove that, under these new reductions, natural problems are PTAS-complete,
or DPTAS-complete. Then, we deal with the existence of intermediate problems under our reductions
and we partially answer this question showing that the existence of NPO-intermediate problems under
Turing-reduction is a sufficient condition for the existence of intermediate problems under both FT-
and DFT-reductions. Finally, we show that   is DAPX-complete under the DPTAS-
reduction. This is the first DAPX-complete problem that is not simultaneously APX-complete.

1 Introduction

Many NP-complete problems are decision versions of natural optimization problems. Since, unless P = NP,

such problems cannot be solved in polynomial time, a major question is to find polynomial algorithms

producing solutions “close to the optimum” (in some prespecified sense). Here, we deal with polynomial

approximation of NPO problems, i.e., of optimization problems the decision versions of which are in NP. A

polynomial approximation algorithm A for an optimization problem Π is a polynomial time algorithm that

produces, for any instance x of Π, a feasible solution y = A(x). The quality of y is estimated by computing

the so-called approximation ratio. Two approximation ratios are commonly used in order to evaluate the

approximation capacity of an algorithm: the standard ratio and the differential ratio.

By means of these ratios, NPO problems are then classified with respect to their approximability prop-

erties. Particularly interesting approximation classes are, for the standard approximation paradigm, the

classes Poly-APX (the class of the problems approximated within a ratio that is a polynomial, or the in-

verse of a polynomial when dealing with maximization problems, on the size of the instance), APX (the

class of constant-approximable problems), PTAS (the class of problems admitting a polynomial time ap-

proximation schemata) and FPTAS (the class of problems admitting a fully polynomial time approximation

schemata). Analogous classes can be defined under the differential approximation paradigm: Poly-DAPX,

1

DAPX, DPTAS and DFPTAS (see section 2 for formal definitions), are the differential counterparts of

Poly-APX, APX, PTAS and FPTAS, respectively. Note that FPTAS PTAS APX Poly-APX, and

DFPTAS DPTAS DAPX Poly-DAPX; these inclusions are strict unless P = NP.

During last two decades, several approximation preserving reductions have been introduced and, using

them, hardness results in several approximability classes have been studied. Consider two classes C1 and C2

with C1 ⊆ C2, and assume a reduction preserving membership in C1 (i.e., if Π reduces to Π′ and Π′ ∈ C1,

then Π ∈ C1). A problem C2-complete under this reduction is in C1 if and only if C2 = C1 (for example,

assume C1 = P and C2 = NP).

Consider, for instance, the P-reduction defined in [6]; this reduction, extended in [4, 7] (and renamed

PTAS-reduction), preserves membership in PTAS. Natural problems, such as maximum independent set in

bounded degree graphs (called   -B in what follows1), or   , are APX-

complete under the PTAS-reduction (see, respectively, [15, 16]). This implies that such problems are not in

PTAS unless P = NP (since, as we have mentioned previously, provided that P 6= NP, PTAS APX).

In differential approximation, analogous results have been obtained in [1], where a DPTAS-reduction,

preserving membership in DPTAS, is defined and natural problems such as   -B, or

  -B are shown to be DAPX-complete.

In the same way, the F-reduction of [6] preserves membership in FPTAS. Under this reduction, only

one (not very natural) problem (derived from  - ) is known to be PTAS-

complete. Despite some restrictive notions of DPTAS-hardness presented in [1], no systematic study of

DPTAS-completeness has been done until now.

Finally, another well known reduction is the E-reduction ([12]). It preserves membership in FPTAS and,

using it, the existence of Poly-APX-PB-complete problems has been shown in [12] (informally, Poly-APX-

PB is the class of problems of Poly-APX, the solution-values of which are bounded above by a polynomial

of the size of their instances), but the existence of Poly-APX-complete problems has been left open.

Reductions provide a structure in approximation classes, and are very useful in obtaining hardness ap-

proximability results. As in the case of NP-completeness with the result of [13], one can try to refine the

study of this structure by determining if there exist intermediate problems. For two complexity classes C1

and C2, C1 ⊆ C2, and a reduction R preserving membership in C1, a problem is called C2-intermediate, if it

is neither C2-complete under R, nor it belongs to C1. In [6], the existence of APX- and PTAS-intermediate

problems under P- and F-reductions, respectively, is proved.

The main results of this paper deal with the existence of complete problems for the following standard

and differential approximation classes:

• Poly-APX and Poly-DAPX under the PTAS- and DPTAS-reductions, respectively (the first one is

defined in [7] while the second one in [1]);

• FPTAS and DFPTAS under two new reductions called FT and DFT, respectively.

Finally, for reductions FT and DFT, we try to apprehend if they allow existence of intermediate problems and

we partially answer this question by proving that such problems do exist provided that there exist intermediate

problems in NPO under the seminal Turing-reduction.

Let us note that no problem was known to be Poly-APX-complete until now, since the results in [12]

only prove the existence of Poly-APX-PB-complete problems. On the other hand, the question about

the existence of Poly-DAPX-complete problems has not, to our knowledge, been handled until now. The

existence of PTAS-complete problems is proved here by means of a FPTAS-preserving reduction (called FT-

reduction). It is somewhat weaker than the F-reduction of [6], but it has the merit that natural problems are

shown to be PTAS-complete under it (while this seems to be not true for the F-reduction). Indeed, we show

that, under FT-reduction, any polynomially bounded NP-hard problem of PTAS is PTAS-complete. Next,

we propose a reduction preserving membership in DFPTAS and show that, under it, natural problems as

1All the problems mentioned in the paper are defined in Appendix A.

2

  , or   , both in planar graphs, are DPTAS-complete. Here also,

we use another notion of polynomial boundness, called diameter polynomial boundness, and show that any

diameter polynomially bounded NP-hard problem of DPTAS is DPTAS-complete.

The paper is organized as follows: in Section 2, we recall some basic definitions and present the two

new reductions. In Sections 3 and 4, we show Poly-APX and Poly-DAPX-completeness, respectively. In

Sections 5 and 6, we present our completeness results for PTAS and DPTAS. The results on intermediate

problems are given in Section 7. Finally, in Section 8, it is proved that   is DAPX-complete

under DPTAS-reduction. This is the first problem that is DAPX-complete but not APX-complete. Defini-

tions of problems used and/or discussed in the paper, together with specifications of their worst solutions are

given in Appendix A.

2 Preliminaries

2.1 Polynomial approximation

We firstly recall some useful definitions about basic concepts of polynomial approximation that will be used

in the sequel.

Definition 1. A problem Π in NPO is a quadruple (I, Sol,m, opt) where:

• I is the set of instances (and can be recognized in polynomial time);

• given x ∈ I, Sol(x) is the set of feasible solutions of x; the size of a feasible solution of x is polynomial

in the size |x| of the instance; moreover, one can determine in polynomial time if a solution is feasible

or not;

• Given x ∈ I and y ∈ Sol(x),m(x, y) denotes the value of the solution y of the instance x;m is called

the objective function, and is computable in polynomial time; we suppose here that m(x, y) ∈ N;

• opt ∈ {min,max}; in what follows, we will use notations opt(Π) = max, or min to denote that Π
is a maximization, or a minimization problem, respectively.

Given a problem Π in NPO, we distinguish the following three different versions of it:

• the constructive version denoted also by Π, where the goal is to determine a solution y∗ ∈ Sol(x)
satisfying m(x, y∗) = opt{m(x, y), y ∈ Sol(x)};

• the evaluation problem Πe, where we are only interested in determining the value of an optimal

solution;

• the decision version Πd of Π where, given an instance x of Π and an integer k, we wish to answer the

following question: “does there exist a feasible solution y of x such that m(x, y) > k, if opt = max,

or m(x, y) 6 k, if opt = min?”.

Given an instance x of an optimization problem Π, let opt(x) be the value of an optimal solution, and ω(x)
be the value of a worst feasible solution. This value is the optimal value of the same optimization problem

(with respect to the set of instances and the set of feasible solutions for any instance) defined with the opposite

objective (minimize instead of maximize, and vice-versa) with respect to Π. We now define the two ratios

the most commonly used for the analysis of approximation algorithms, called standard and differential in the

sequel. For y ∈ Sol(x), the standard approximation ratio of y is defined as r(x, y) = m(x, y)/ opt(x). The

differential approximation ratio of y is defined as δ(x, y) = |m(x, y) − ω(x)|/| opt(x) − ω(x)|.
Following the above, standard approximation ratios for minimization problems are greater than, or equal

to, 1, while for maximization problems these ratios are smaller than, or equal to 1. On the other hand,

differential approximation ratio is always at most 1 for any problem.

3

Let λ be a function mapping the instances of a problem Π to [0, 1], or to [1,+∞). An algorithm A guar-

antees standard (resp., differential) ratio λ if and only if, for any instance x of Π, r(x,A(x)) > λ(x),
or r(x,A(x)) 6 λ(x), depending whether Π is a maximization or a minimization problem (resp.,

δ(x,A(x)) > λ(x)). A problem Π is standard (resp., differential) λ-approximable if and only if there

exists a polynomial algorithm that guarantees standard (resp., differential) ratio λ.

We now formally define the approximation classes Poly-APX, APX, PTAS and FPTAS with which we

deal in this paper.

• Poly-APX is the class of NPO problems approximable within ratios O(|x|η), for some η > 0, if

opt(Π) = min, or η 6 0, if opt(Π) = max.

• APX is the class of constant-approximable NPO problems, i.e., for which there exist polynomial

algorithms guaranteeing ratio λ for a λ that does not depend on any parameter of the instance.

• PTAS is the class of NPO problems admitting polynomial time approximation schemata; such

schemata are families of polynomial algorithms Aε, ε ∈]0, 1], any of them guaranteeing approximation

ratio 1 − ε (if opt(Π) = max), or 1 + ε (if opt(Π) = min).

• FPTAS is the class of NPO problems admitting a fully polynomial time approximation schemata; such

schemata are polynomial time approximation schemata (Aε)ε∈]0,1], where the complexity of any Aε is

polynomial in both the size of the instance and in 1/ε.

Classes Poly-DAPX, DAPX, DPTAS and DFPTAS for the differential approximation paradigm can be de-

fined analogously (recall that differential approximation ratio is always less than, or equal to, 1; so, differential

approximation classes are defined analogously to the standard ones for maximization problems).

We now recall what is called a polynomially bounded problem and introduce a notion of diameter bound-

ness, very useful and intuitive when dealing with the differential approximation paradigm.

Definition 2. An NPO problem Π is polynomially bounded if and only if there exists a polynomial q
such that, for any instance x and for any feasible solution y ∈ Sol(x), m(x, y) 6 q(|x|). It is diameter

polynomially bounded if and only if there exists a polynomial q such that, for any instance x, | opt(x) −
ω(x)| 6 q(|x|).

The class of polynomially bounded NPO problems will be denoted by NPO-PB, while the class of diameter

polynomially bounded NPO problems will be denoted by NPO-DPB. Analogously, for any (standard or

differential) approximation class C, we will denote by C-PB (resp., C-DPB) the subclass of polynomially

bounded (resp., diameter polynomially bounded) problems of C.

We also need the following definitions, introduced in [12], that will be used later.

• A problem Π ∈ NPO is said additive if and only if there exist an operator ⊕ and a function f , both

computable in polynomial time, such that:

– ⊕ associates with any pair (x1, x2) ∈ IΠ ×IΠ an instance x1 ⊕x2 ∈ IΠ with opt(x1 ⊕x2) =
opt(x1) + opt(x2);

– with any solution y ∈ solΠ(x1 ⊕ x2), f associates two solutions y1 ∈ solΠ(x1) and y2 ∈
solΠ(x2) such that m(x1 ⊕ x2, y) = m(x1, y1) +m(x2, y2).

• Let Poly be the set of functions from N to N bounded by a polynomial. A function F : N → N is

hard for Poly if and only if for any f ∈ Poly, there exist three constants k, c and n0 such that, for any

n > n0, f(n) 6 kF (nc).

4

• A maximization problem Π ∈ NPO is canonically hard for Poly-APX if and only if there exist a

transformation T from 3 to Π, two constants n0 and c and a function F , hard for Poly, such that,

given an instance x of 3 on n > n0 variables and a number N > nc, instance x′ = T (x,N)
belongs to IΠ and verifies the following properties:

1. if x is satisfiable, then opt(x′) = N ;

2. if x is not satisfiable, then opt(x′) = N/F (N);

3. given a solution y ∈ solΠ(x′) such that m(x, y′) > N/F (N), one can polynomially determine

a truth assignment satisfying x.

Note that, since 3 is NP-complete, a problem Π is canonically hard for Poly-APX if and only if any

decision problem Π′ ∈ NP reduces to Π along Items 1 and 2 just above.

2.2 Reductions

First, let us recall that, given a reduction R and a set C of problems, a problem Π ∈ C is C-complete

under R if and only if any problem in C R-reduces to Π. If R preserves membership in C′ ⊆ C, then Π is

C-intermediate under R if and only if it is neither C-complete nor in C′ (provided that P 6= NP). Moreover,

we will say that a problem Π ∈ NPO is NP-hard if its decision version Πd is NP-complete.

Five basic and two new reductions will be used in this paper. Among the former, the first one is the

seminal Turing-reduction between optimization problems as it appears in [10]. It preserves optimality of

solutions and hence membership in PO (the optimization problems solvable in polynomial time; obviously,

PO ⊆ NPO).

Let Π and Π′ be two problems in NPO. Then, Π reduces to Π′ under Turing-reduction (denoted by

Π ≤T Π′) if and only if, given an oracle � optimally solving Π′, we can devise an algorithm optimally

solving Π, in polynomial time if � is polynomial.

The other four basic reductions, PTAS, E, DPTAS and F that will be discussed or used in what follows,

are defined in [7, 12, 1, 6], respectively, and mentioned here for reasons of readability.

Let Π and Π′ be two maximization NPO-problems (the case of minimization is completely analogous).

Then, Π PTAS-reduces to Π′ (denoted by Π ≤PTAS Π′), if and only if there exist three functions f , g and c
such that:

• for any x ∈ IΠ and any ε ∈]0, 1[, f(x, ε) ∈ IΠ′ ; f is computable in time polynomial with |x|;

• for any x ∈ IΠ, any ε ∈]0, 1[and any y ∈ solΠ′(f(x, ε)), g(x, y, ε) ∈ solΠ(x); g is computable in

time polynomial with |x| and |y|;

• c :]0, 1[→]0, 1[;

• for any x ∈ IΠ and any ε ∈]0, 1[, rΠ′(f(x, ε), y) > 1 − c(ε) ⇒ rΠ(x, g(x, y, ε)) > 1 − ε.

PTAS-reduction preserves membership in PTAS. Using it, natural problems as   -B,

or   -B are shown APX-complete.

As we have already mentioned, the E-reduction has been defined in [12] in an attempt to be applied

uniformly at all levels of approximability. It is slightly weaker than the L-reduction of [15] and preserves

membership in FPTAS. We say that a problem Π E-reduces to Π′ (Π ≤E Π′) if and only if there exist two

polynomially computable functions f and g and a constant c such that:

• for any x ∈ IΠ, f(x) ∈ IΠ′ ; moreover, there exists a polynomial p such that opt(f(x)) 6

p(|x|) opt(x);

5

• for any x ∈ IΠ and any y ∈ solΠ′(f(x)), g(x, y) ∈ solΠ(x); furthermore, ǫ(x, g(x, y)) 6

cǫ(f(x), y) where for x ∈ IΠ and z ∈ solΠ(x), ǫ(x, z) = r(x, z) − 1, if opt(Π) = min and

ǫ(x, z) = (1/r(x, z)) − 1, if opt(Π) = max.

As it is proved in [12], if a problem Π is additive and canonically hard for Poly-APX, then any problem in

Poly-APX-PB E-reduces to Π. As    is additive and canonically hard for Poly-APX, it

is Poly-APX-PB-complete, under the E-reduction.

The DPTAS-reduction has been introduced in [1] in order to provide DAPX-completeness results. It

preserves membership in DPTAS. For two NPO problems Π and Π′, Π ≤DPTAS Π′ if and only if there exist

three functions f , g and c, computable in polynomial time, such that:

• ∀x ∈ IΠ, ∀ε ∈]0, 1[∩Q, f(x, ε) ∈ IΠ′ ; f is possibly multi-valued;

• ∀x ∈ IΠ, ∀ε ∈]0, 1[∩Q, ∀y ∈ solΠ′(f(x, ε)), g(x, y, ε) ∈ solΠ(x);

• c :]0, 1[∩Q→]0, 1[∩Q;

• ∀x ∈ IΠ, ∀ε ∈]0, 1[∩Q, ∀y ∈ solΠ′(f(x, ε)), δΠ′(f(x, ε), y) > 1 − c(ε) ⇒ δΠ(x, g(x, y, ε)) >

1 − ε; if f is multi-valued, i.e., f = (f1, . . . , fi), for some i polynomial in |x|, then the former

implication becomes: ∀x ∈ IΠ, ∀ε ∈]0, 1[∩Q, ∀y ∈ solΠ′((f1, . . . , fi)(x, ε)), there exists j 6 i
such that δΠ′(fj(x, ε), y) > 1 − c(ε) ⇒ δΠ(x, g(x, y, ε)) > 1 − ε.

One of the basic features of differential approximation ratio is that it is stable under affine transformations

of the objective functions of the problems dealt. In this sense, problems for which the objective functions

of the ones are affine transformations of the objective functions of the others are approximate equivalent

for the differential approximation paradigm (this is absolutely not the case for standard paradigm). The

most notorious case of such problems is the pair    and   . Affine

transformation is nothing else than a very simple kind of differential-approximation preserving reduction,

denoted by AF, in what follows. Two problems Π and Π′ are affine equivalent if Π ≤AF Π′ and Π′ ≤AF Π.

Obviously affine transformation is a DPTAS-reduction.

Finally, the F-reduction has been introduced in [6] and, as the E-reduction, it preserves membership

in FPTAS. For two NPO problems Π and Π′, Π F-reduces to Π′ if and only if there exist three polynomially

computable functions f , g and c such that:

• ∀x ∈ IΠ, f(x) ∈ IΠ′ ;

• ∀x ∈ IΠ, ∀y ∈ SolΠ′(f(x)), g(x, y) ∈ SolΠ(x);

• c : IΠ×(]0, 1[∩Q) →]0, 1[∩Q; there exists a polynomial p such that,for all ε > 0 and for all x ∈ IΠ,

c(x, ε) = 1/p(|x|, 1/ε); moreover, ∀x ∈ IΠ, ∀ε ∈]0, 1[∩Q, ∀y ∈ SolΠ′(f(x)), ǫ(f(x), y) 6

c(x, ε) ⇒ ǫ(x, g(x, y)) 6 ε.

Under F-reduction,   - -B has been proved PTAS-complete in [6].

We now introduce two new reductions, denoted by FT and DFT, preserving membership in FPTAS and

DFPTAS, respectively.

Let Π and Π′ be two NPO maximization problems. Let �Π′

α be an oracle for Π′ producing, for any

α ∈]0, 1] and for any instance x′ of Π′, a feasible solution �Π′

α (x′) of x′ that is an (1 − α)-approximation

for the standard ratio.

Definition 3. Π FT-reduces to Π′ (denoted by Π ≤FT Π′) if and only if, for any ε > 0, there exists an

algorithm Aε(x,�
Π′

α) such that:

• for any instance x of Π, Aε returns a feasible solution which is a (1 − ε)-standard approximation;

6

• if �Π′

α (x′) runs in time polynomial in both |x′| and 1/α, then Aε is polynomial in both |x| and 1/ε.

For the case where at least one among Π and Π′ is a minimization problem it suffices to replace 1− ε or/and

1 − α by 1 + ε or/and 1 + α, respectively. Reduction DFT, dealing with differential approximation, can be

defined analogously.

Clearly, FT- (resp., DFT-) reduction transforms a fully polynomial time approximation schema for Π′

into a fully polynomial time approximation schema for Π, i.e., it preserves membership in FPTAS (resp.,

DFPTAS). Observe also that AF-reduction, mentioned above, is also a DFT-reduction.

The F-reduction is a special case of FT-reduction since the latter explicitly allows multiple calls to ora-

cle � (this fact is not explicit in F-reduction; in other words, it is not clearly mentioned if f and g are allowed

to be multi-valued). Also, FT-reduction seems allowing more freedom in the way Π is transformed into Π′;

for instance, in F-reduction, function g transforms an optimal solution for Π′ into an optimal solution for Π,

i.e., F-reduction preserves optimality; this is not the case for FT-reduction. This freedom will allow us to

reduce non polynomially bounded NPO problems to NPO-PB ones. In fact, it seems that FT-reduction is

larger than F. This remains to be confirmed. Such proof is not trivial and is not tackled here.

In what follows, given a class C ⊆ NPO and a reduction R, we denote by C
R

the closure of C under R,

i.e., the set of problems in NPO that R-reduce to some problem in C.

3 Poly-APX-completeness

As mentioned in [12], the nature of the E-reduction does not allow transformation of a non-polynomially

bounded problem into a polynomially bounded one. In order to extend completeness in the whole Poly-APX

we have to use a larger (less restrictive) reduction than E. In what follows, we show that PTAS-reduction can

do it. The basic result of this section is the following theorem.

Theorem 1. If Π ∈ NPO is additive and canonically hard for Poly-APX, then any problem in Poly-APX

PTAS-reduces to Π.

Proof. Let Π′ be a maximization problem of Poly-APX and let A be an approximation algorithm for Π
achieving approximation ratio 1/c(·), where c ∈ Poly (the case of minimization will be dealt later in Re-

mark 1). Let Π be an additive problem, canonically hard for Poly-APX, let F be a function hard for Poly

and let k and c′ be such that (for n > n0, for a certain value n0) nc(n) 6 k(F (nc
′

) − 1). Let, finally,

x ∈ IΠ′ , ε ∈]0, 1[and n = |x|.

Construction of f(x, ε)

Set m = m(x, A(x)); then m > optΠ′(x)/c(n). If we try to reproduce identically the analogous proof

of [12], we would be faced to the problem that quantitymc(n) is not always polynomially bounded; in other

words, transformation f might be not-polynomial. In order to remedy to this, we will uniformly partition

the interval [0,mc(n)] of possible values for optΠ′(x) into q(n) = 2c(n)/ε sub-intervals (remark that q is

a polynomial). Consider, for i ∈ {1, . . . , q(n)}, the set of instances Ii = {x : optΠ′(x) > imc(n)/q(n)}.

Set N = nc
′

. We construct, for any i, an instance χi of Π such that:

• if x ∈ Ii, then optΠ(χi) = N ;

• otherwise, optΠ(χi) = N/F (N).

Define f(x, ε) = χ = ⊕16i6q(n)χi and observe that c(n)/q(n) = ε/2. Then,

optΠ(χ) = N ×

∣∣∣∣
{
i : optΠ′(x) >

imε

2

}∣∣∣∣ +
N

F (N)

(
q(n) −

∣∣∣∣
{
i : optΠ′(x) >

imε

2

}∣∣∣∣
)

(1)

7

Construction of g(x, y, ε)

Let y be a solution of χ and let j be the largest i for which m(χi, yi) > N/F (N), where yi is the track of y
on χi. Then, one can compute a solution ψ′ of x such that:

m
(
x, ψ′

)
> jm

ε

2
(2)

Furthermore, by definition of j, we have:

m(χ, y) 6 Nj + (q(n) − j)
N

F (N)
(3)

We define ψ = g(x, y, ε) = argmax{m(x, ψ′),m(x, A(x))}. Note that m(x, ψ) > max{m, jmε/2}.

Transfer of approximation ratios

Using (1) and (3), we get:

r (χ, y) 6

j
(
N − N

F (N)

)
+ Nq(n)

F (N)
(∣∣{i : optΠ′(x) > imε

2

}∣∣)
(
N − N

F (N)

)
+ Nq(n)

F (N)

6
j + q(n)

F (N)−1∣∣{i : optΠ′(x) > imε
2

}∣∣ + q(n)
F (N)−1

(4)

Since q(n) = 2c(n)/ε 6 (2k(F (N) − 1))/(εn), we obtain from (4):

r (χ, y) 6
j + 2k

nε∣∣{i : optΠ′(x) > imε
2

}∣∣ + 2k
nε

6
j + 2k

nε

2opt
Π′ (x)
mε

− 1 + 2k
nε

6
j + 2k

nε

2opt
Π′ (x)
mε

− 1
(5)

We now consider two cases, namely, j 6 2/ε and j > 2/ǫ.
When j 6 2/ε, taking into account that r(x, ψ) = m/ optΠ′(x), we have from (5):

r (χ, y) 6
1 + k

n
1

r(x,ψ) −
ε
2

6
r(x, ψ)

(
1 + k

n

)

1 − ε
2

(6)

For case j > 2/ǫ, observing that, from (2), r(x, ψ) > jmε/(2 optΠ′(x)), we get from (5):

r (χ, y) 6
j + 2k

εn

2opt
Π′ (x)
mε

− 1
6
j
(
1 + k

n

)

j
r(x,ψ) − 1

6
r(x, ψ)

(
1 + k

n

)

1 − ε
2

(7)

Assuming n > 4k/ε (otherwise, Π′ can be solved in time polynomial with |x|) and combining (6) and (7),

we finally get:

r(x, ψ) > r(χ, y)
1 − ε

2

1 + ǫ
4

> r(χ, y)
(
1 −

ε

2

) (
1 −

ε

4

)
> r(χ, y)

(
1 −

3ε

4

)

In other words, reduction just described is a PTAS-reduction with c(ε) = ε/(4 − 3ε). The proof of the

theorem is complete.

Remark 1. For the case where the problem Π′ (in the proof of Theorem 1) is a minimization problem, one

can reduce it to a maximization problem (for instance using the E-reduction of [12], p. 12) and then one can

use the reduction of Theorem 1. Since the composition of an E- and a PTAS-reduction is a PTAS-reduction,

the result of Theorem 1 applies also for minimization problems.

Combination of Theorem 1, Remark 1 and of the fact that    is additive and canoni-

cally hard for Poly-APX ([12]), produces the following concluding theorem.

Theorem 2.    is Poly-APX-complete under PTAS-reduction.

8

4 Poly-APX-completeness under the differential paradigm

We now deal with the existence of Poly-DAPX-complete problems. This section consists of two parts. The

former is about Poly-DAPX-PB-completeness, while the latter one deals with Poly-DAPX-completeness.

Let us note that the former, studied in Section 4.1, will not be used for proving the existence of Poly-DAPX-

complete problems. We include it just for showing that Poly-APX-PB-completeness is natural also for the

differential paradigm.

4.1 Poly-DAPX-DPB-completeness

The main result of this section is the following theorem proving a sufficient condition for a problem to be

Poly-DAPX-DPB-hard.

Theorem 3. If a (maximization) problem Π ∈ NPO is canonically hard for Poly-APX, then any problem in

Poly-DAPX-DPB DPTAS-reduces to Π.

Proof. Let Π be a problem canonically hard for Poly-APX, for some function F hard for Poly. Let

Π′ ∈ Poly-DAPX-DPB be a maximization problem (the minimization case is analogous), let A be an

approximation algorithm for Π′ achieving differential approximation ratio 1/c(·), where c ∈ Poly. Let

finally x be an instance of Π′ of size n, and p be a polynomial such that p(| · |) 6 opt(·) − ω(·).
Consider the set of NP-instances Ii = {x ∈ IΠ′ : optΠ′(x) − ωΠ′(x) > i}, i = 1, . . . , p(n). Let k

and c′ be such that (for n > n0, for some n0) nc(n) 6 kF (nc
′

). In the sequel, we consider, without loss of

generality, that n > k (and hence c(n) 6 F (nc
′

)).

Construction of f(x, ε)

Set N = nc
′

. One can build, for any i, an instance χi of Π such that, if x ∈ Ii, then optΠ(χi) = N ,

otherwise, optΠ(χi) = N/F (N). We define f(x, ε) = (χi, 1 6 i 6 p(n)). In other words, f is

multi-valued (and does not depend on ε).

Construction of g(x, y, ε)

Let y = (y1, . . . , yp(n)) be a solution of f(x, ε). Set Ly = {i : m(χi, yi) > N/F (N)}. For any i ∈ Ly,

one can determine a witness of the fact that x ∈ Ii, i.e., two solutions ψi1 and ψi2 of x such that

m
(
x, ψi1

)
−m

(
x, ψi2

)
> i (8)

Define ψ = g(x, y, ε) = argmaxi∈Ly
{m(x, A(x)),m(x, ψi1)}.

Transfer of differential ratios

Set q = |opt(x) − ω(x)|. Then, x ∈ Iq; hence opt(χq) = N . Consider the two following cases:

• if q ∈ Ly, then, using (8), we get:

m (x, ψq1) −m
(
x, ψiq

)
> q = opt(x) − ω(x) (9)

ψq1 (and hence ψ) is necessarily an optimal solution for x;

• if m(χq, yq) 6 N/F (N), then, since opt(χq) = N (and ω(χq) > 0), we get:

δ (χq, yq) 6
1

F (N)
6

1

c(n)
6 δ(x,A(x)) 6 δ(x, ψ) (10)

From (9) and (10), the reduction just described is a DPTAS-reduction with c(ε) = ε and the proof of the

theorem is complete.

9

4.2 Poly-DAPX-completeness

We now generalize Theorem 3 to the whole Poly-DAPX by proving the following theorem.

Theorem 4. If a (maximization) problem Π ∈ NPO is canonically hard for Poly-APX, then any problem in

Poly-DAPX DPTAS-reduces to Π.

Proof. Let Π be canonically hard for Poly-APX, for some function F hard for Poly, let Π′ ∈ Poly-DAPX be

a maximization problem and let A be an approximation algorithm for Π′ achieving differential approximation

ratio 1/c(·), where c ∈ Poly. Finally, let x be an instance of Π′ of size n. As in the case of the standard

approximation paradigm, we cannot directly use the proof of Theorem 3 because quantity opt(x) − ω(x)
may be non-polynomially bounded.

We will use the central idea of [1] (see also [2] for more details). We will define a set Π′
i,l of problems

derived from Π′. For any pair (i, l), Π′
i,l has the same set of instances and the same solution-set as Π′; for

any instance x and any solution y of x,

mi,l(x, y) = max

{
0,

⌊
m(x, y)

2i

⌋
− l

}

Note that, for some pairs (i, l), Π′
i,l may be not in Poly-DAPX (hence, use of an algorithm for Π′, supposed

to be in Poly-DAPX, may be impossible for Π′
i,l). Next, considering x as instance of any of the prob-

lems Π′
i,l, we will build an instance χi,l of Π, obtaining so a multi-valued function f . Our central objective

is, informally, to determine a set of pairs (i, l) such that we will be able to build a “good” solution for Π′

using “good” solutions of χi,l.
Let ε ∈]0, 1[; set Mε = 1 + ⌊2/ε⌋ and let c′ and k be such that (for n > n0 for some n0) nc(n) 6

kF (nc
′

) (both c′ and k may depend on ε). Assume finally, without loss of generality, that n > k and set

N = nc
′

. Then, 1/F (N) 6 1/c(n). Set m = m(x, A(x)). In [1], a set F of pairs (i, l) is built such that:

• |F| is polynomial with n;

• there exists a pair (i0, l0) in F such that:

δi0,l0(x, y) > 1 − ε =⇒ δ(x, y) > 1 − 3ε (11)

opti0,l0(x, y) 6 Mε (12)

Construction of f(x, ε)

Let q be an integer. Consider, for any pair (i, l) ∈ F , the set of instances Iqi,l = {x ∈ IΠ′

i,l
: opti,l(x) > q}.

More precisely, consider these instance-sets for q ∈ {0, . . . ,Mε}. For any pair (i, l) ∈ F and for any

q ∈ {0, . . . ,Mε}, one can build an instance χqi,l of Π such that:

optΠ

(
χqi,l

)
=

{
N if opti,l(x) > q
N

F (N) if opti,l(x) < q

We have just defined the function f : f(x, ε) = (χqi,l, (i, l) ∈ F , q ∈ {0, . . . ,Mε}).

Construction of g(x, y, ε)

Let y = (yqi,l, (i, l) ∈ F , q ∈ {0, . . . ,Mε}) be a solution of f(x, ε). Set Ly = {(i, l, q) : m(χqi,l, y
q
i,l) >

N/F (N)}. For each (i, l, q) ∈ Ly, one can determine a solution ψqi,l of x (seen as instance of Π′
i,l) with

value at least q.

Define ψ = g(x, y, ε) = argmax{m(x, A(x)),m(x, ψqi,l), (i, l, q) ∈ Ly}.

10

Transfer of differential ratios

Consider a pair (i0, l0) verifying (11) and (12) and set q0 = opti0,l0(x). Consider a solution y of f(x, ε)
and the following two cases:

• if (i0, l0, q0) ∈ Ly, then m(xi0,l0 , ψ
q
i0,l0

) = opti0,l0(x); by (11), we get: δ(x, ψ) > 1 − 3ε;

• if (i0, l0, q0) 6∈ Ly, then m(χq0i0,l0 , y
q0
i0,l0

) 6 N/F (N); since opt(χq0i0,l0) = N (and ω(χq0i0,l0) > 0),

we have: δ(χq0i0,l0 , y
q0
i0,l0

) 6 1/F (N) 6 1/c(n) 6 δ(x, y).

In both cases, if δ(χq0i0,l0 , y
q0
i0,l0

) > 1− 3ε, then δ(x, ψ) > 1− 3ε. Considering ε′ = 3ε and c(ε′) = ε′, the

reduction just described is a DPTAS-reduction, completing so the proof of the theorem.

Using the fact that    is canonically hard for Poly-APX, Theorem 4 directly

exhibits the existence of a Poly-DAPX-complete problem.

Theorem 5.    is Poly-DAPX-complete under the DPTAS-reduction.

Note that we could obtain the Poly-DAPX-completeness of canonically hard problems for Poly-APX even if

we forbade DPTAS-reduction to be multi-valued. However, in this case, we should assume (as in Section 3)

that Π is additive (in this case, the proof of Theorem 4 would be much longer).

5 PTAS-completeness

We now study PTAS-completeness under FT-reduction. The basic result of this section (Theorem 6) follows

immediately from Lemmata 1 and 2. Lemma 1 introduces a property of Turing-reduction for NP-hard

problems. In Lemma 2, we transform (under certain conditions) a Turing-reduction into a FT-reduction.

Proofs of the two lemmata are given for maximization problems. The case of minimization is completely

analogous.

Lemma 1. If an NPO problem Π′ is NP-hard, then any NPO problem Turing-reduces to Π′.

Proof. Let Π be an NPO problem and q be a polynomial such that |y| 6 q(|x|), for any instance x of Π and

for any feasible solution y of x. Assume that encoding n(y) of y is binary. Then 0 6 n(y) 6 2q(|x|) − 1.

We consider the following problem Π̂ (see also [4]) which is the same as Π up to its objective function that

is defined by mΠ̂(x, y) = 2q(|x|)+1mΠ(x, y) + n(y).
Clearly, if mΠ̂(x, y1) > mΠ̂(x, y2), then mΠ(x, y1) > mΠ(x, y2). So, if y is an optimal solution for x

(seen as instance of Π̂), then it is also an optimal solution for x (seen, this time as instance of Π).

Remark now that for Π̂, the evaluation problem Π̂e and the constructive problem Π̂ are equivalent.

Indeed, given the value of an optimal solution y, one can determine n(y) (hence y) by computing the

remainder of the division of this value by 2q(|x|)+1.

Since Π′ is NP-hard, we can solve the evaluation problem Π̂e if we can solve the (constructive) prob-

lem Π′. Indeed,

• we can solve Π̂e using an oracle solving, by dichotomy, the decision version Π̂d of Π̂;

• Π̂d reduces to the decision version Π′
d of Π′ by a Karp-reduction (see [3, 10] for a formal definition

of this reduction);

• finally, one can solve Π′
d using an oracle for the constructive problem Π′.

So, with a polynomial number of queries to an oracle for Π′, one can solve both Π̂e and Π̂, and the proof of

the lemma is complete.

We now show how, starting from a Turing-reduction (that only preserves optimality) between two NPO

problems Π and Π′ where Π′ is polynomially bounded, one can devise an FT-reduction transforming a fully

polynomial time approximation schema for Π′ into a fully polynomial time approximation schema for Π.

11

Lemma 2. Let Π′ ∈ NPO-PB. Then, any NPO problem Turing-reducible to Π′ is also FT-reducible to Π′.

Proof. Let Π be an NPO problem and suppose that there exists a Turing-reduction between Π and Π′.

Let �Π′

α be an oracle computing, for any instance x′ of Π′ and for any α > 0, a feasible solution y′ of x′

such that r(x′, y′) > 1−α. Moreover, let p be a polynomial such that for any instance x′ of Π′ and for any

feasible solution y′ of x′, m(x′, y′) 6 p(|x′|).
Let x be an instance of Π. The Turing-reduction claimed gives an algorithm solving Π using an oracle

for Π′. Consider now this algorithm where we use, for any query to the oracle with the instance x′ of Π′,

the approximate oracle �Π′

α (x′), with α = 1/(p(|x′|) + 1). This algorithm produces an optimal solution,

since a solution y′ being an (1 − (1/(p(|x′|) + 1)))-approximation for x′ is an optimal one (recall that we

deal with problems having integer-valued objective functions, cf., Definition 1). Indeed,

mΠ′ (x′, y′)

optΠ′ (x′)
> 1 −

1

p (|x′|) + 1
=⇒ mΠ′

(
x′, y′

)
> optΠ′

(
x′

)
− 1

=⇒ mΠ′

(
x′, y′

)
= opt

(
x′

)

It is easy to see that this algorithm is polynomial when �Π′

α (x′) is polynomial in |x′| and in 1/α. Further-

more, since any optimal algorithm for Π can be a posteriori seen as a fully polynomial time approximation

schema, we immediately conclude Π ≤FT Π′ and the proof of the lemma is complete.

Combination of Lemmata 1 and 2, immediately derives the basic result of the section expressed by the

following theorem.

Theorem 6. Let Π′ be an NP-hard a problem of NPO. If Π′ ∈ NPO-PB, then any NPO problem FT-reduces

to Π′.

From Theorem 6, one can immediately deduce the two corollaries that ensue.

Corollary 1. PTAS
FT

= NPO.

Corollary 2. Any polynomially bounded problem in PTAS is PTAS-complete under FT-reduction.

For instance,     and     are in both PTAS ([5])

and NPO-PB. What has been discussed in this section concludes then the following result.

Theorem 7.     and     are PTAS-complete under

FT-reduction.

Remark that the results of Theorem 7 cannot be trivially obtained using the F-reduction of [6].

6 DPTAS-completeness

We study in this section DPTAS-completeness under DFT-reduction. The results we shall derive are analo-

gous to the case of the PTAS-completeness of Section 5: we show that any NPO-DPB NP-hard problem in

DPTAS is DPTAS-complete. The basic result of this paragraph (Theorem 8) is an immediate consequence

of Lemma 1 and of the following Lemma 3, differential counterpart of Lemma 2.

Lemma 3. If Π′ ∈ NPO-DPB, then any NPO problem Turing-reducible to Π′ is also DFT-reducible to Π′.

Proof. Let Π ∈ NPO and suppose that Π ≤T Π′. Let �Π′

α be an oracle computing, for any instance x′

of Π′ and for any α > 0, a feasible solution y′ such that δ(x′, y′) > (1 − α). Let p be a polynomial such

that for any instance x′ of Π′, | opt(x′) − ω(x′)| 6 p(|x′|).
In the same way as in Lemma 2, we modify the algorithm of the Turing-reduction between Π and Π′

using the approximate oracle �Π
α with α = 1/(p(|x′|) + 1). This algorithm computes, as in Lemma 2,

an optimal solution and it is polynomial if the oracle is polynomial in |x′| and in 1/α. This algorithm is

obviously a differential fully polynomial time approximation schema, and hence, Π ≤DFT Π′.

12

Theorem 8. Let Π′ ∈ NPO-DPB be NP-hard. Then any problem in NPO is DFT-reducible to Π′.

Corollary 3. DPTAS
DFT

= NPO.

Corollary 4. Any NPO-DPB problem in DPTAS is DPTAS-complete under DFT-reductions.

The following concluding theorem deals with the existence of DPTAS-complete problems.

Theorem 9. Problems    ,     and  

are DPTAS-complete under DFT-reductions.

Proof. For DPTAS-completeness of    , just observe that, for any instance G,

ω(G) = 0. So, standard and differential approximation ratios coincide for this problem; moreover, it is in

both NPO-PB and NPO-DPB. Then, inclusion     in PTAS suffices to

conclude its inclusion in DPTAS and, by Corollary 4, its DPTAS-completeness.

    and     are affine equivalent; hence

    ≤AF    . Since AF-reduction is a particular

kind of DFT-reduction, the DPTAS-completeness of     is immediately con-

cluded.

Finally, the DPTAS-completeness of   is concluded from the facts: (i)   ∈
DPTAS ([8]) and (ii)   ∈ NPO-DPB (since, for any instance L of size n, ω(L) = n and

opt(L) > 0).

7 About intermediate problems under FT- and DFT-reductions

FT-reduction is weaker than the F-reduction of [6]. Furthermore, as mentioned before, this last reduction

allows existence of PTAS-intermediate problems. The question of existence of such problems can be posed

for FT-reduction too. In this section, we partially answer this question via the following theorem.

Theorem 10. If there exists an NPO-intermediate problem for the Turing-reduction, then there exists a problem

PTAS-intermediate for FT-reduction.

Proof. Let Π be an NPO problem, intermediate for the Turing-reduction. Suppose that Π is a maximization

problem (the minimization case is completely similar). Let p be a polynomial such that, for any instance x
and any feasible solution y of x, m(x, y) 6 2q(|x|). Consider the following maximization problem Π̃ where:

• instances are the pairs (x, k) with x an instance of Π and k an integer in {0, . . . 2q(|x|)};

• for an instance (x, k) of Π̃, its feasible solutions are the feasible solutions of the instance x of Π;

• the objective function of Π̃ is:

meΠ
((x, k), y) =

{
|(x, k)| if m(x, y) > k
|(x, k)| − 1 otherwise

We will now show the three following properties:

1. Π̃ ∈ PTAS;

2. if Π̃ were in FPTAS, then Π would be polynomial;

3. if Π̃ were PTAS-complete, then Π would be NPO-complete under Turing-reductions2.

If Properties 1, 2 and 3 hold, then since Π is supposed to be intermediate, one can conclude that Π̃ is

PTAS-intermediate, under FT.

2We emphasize this expression in order to avoid confusion with usual NPO-completeness considered under the strict-
reduction ([14]).

13

Proof of Property 1

Remark that Π̃ is clearly in NPO-PB. Consider ε ∈]0, 1] and the algorithm Aε which, on the instance (x, k)
of Π̃, solves exactly (x, k), if |(x, k)| 6 1/ε; otherwise, it produces some solution. Algorithm Aε is polyno-

mial and guarantees standard approximation ratio 1 − ε. Therefore, Π̃ is in PTAS.

Proof of Property 2

Remark that Π ≤T Π̃. Indeed, let x be an instance of Π. We can find an optimal solution of x solving

log(2p(|x|)) = p(|x|) instances (x, k) of Π̃ (by dichotomy). Note that if Π̃ were in FPTAS, it would

be polynomial since the fully polynomial time approximation schema Aε applied on instance (x, k) with

ε = 1/(|(x, k)|+ 1) is an optimal and polynomial algorithm. The fact that Π ≤T Π̃ would imply in this

case that Π is polynomial.

Proof of Property 3

Assume that Π̃ is PTAS-complete (under some FT-reduction). Then,    

FT-reduces to Π̃. Let � be an oracle solving Π. Then, we immediately obtain an optimal algorithm

for Π̃, polynomial if � is so. Clearly, this algorithm can be considered as a fully polynomial time approx-

imation schema for Π̃. Reduction     ≤FT Π̃ provides a fully polynomial

time approximation schema for     and, since it is in NPO-PB, we get

an optimal (and polynomial, if � is so) algorithm for it. In other words, if Π̃ is PTAS-complete, then

    ≤T Π. To conclude,     is NPO-complete

under Turing-reduction, since it is NP-hard (cf., Lemma 1). Therefore, if Π̃ were PTAS-complete, Π would

be NPO-complete under Turing-reduction. The proof of Property 3 and of the theorem are now completed.

We now state an analogous result about the existence of DPTAS-intermediate problems under DFT-

reduction.

Theorem 11. If there exists an NPO-intermediate problem under Turing-reduction, then there exists a problem

DPTAS-intermediate, under DFT-reduction.

Proof. The proof is analogous to one of Theorem 10, up to modification of definition of Π̃ (otherwise,

Π̃ /∈ DPTAS, because the value of the worst solution of an instance (x, k) is |(x, k)| − 1; we have to change

it in order to get ω((x, k)) = 0 for any instance (x, k)). We define Π̃ as follows:

• instances of Π̃ are, as previously, the pairs (x, k) where x is an instance of Π and k is an integer

between 0 and 2q(|x|);

• for an instance (x, k) of Π̃, its feasible solutions are the feasible solutions of the instance x of Π, plus

a solution y0
x;

• the objective function of Π̃ is:

meΠ
((x, k), y) =





0 if y = y0
x

|(x, k)| if m(x, y) > k
|(x, k)| − 1 otherwise

Then, the result claimed is get in exactly the same way as in the proof of Theorem 10.

8 A new DAPX-complete problem not APX-complete

All DAPX-complete problems given in [1] are also APX-complete under the E-reduction ([12]). An interest-

ing question is if there exist DAPX-complete problems that are not also APX-complete for some standard-

approximation preserving reduction. In this section, we positively answer this question by the following

theorem.

14

Theorem 12.   is DAPX-complete under DPTAS-reductions.

Proof. Consider problem    and remark that standard ratio for it coincides with differ-

ential ratio of  . In fact, these problems are affine equivalent; so,

   ≤AF   (13)

   is MAX-SNP-hard under L-reduction ([11]) that is, as mentioned already, a

particular kind of the E-reduction. On the other hand, MAX-SNP
E

= APX-PB ([12]). Since

  -B ∈ APX-PB,   -B ≤E   . Fur-

thermore, E-reduction is a particular kind of PTAS-reduction; hence,   -B ≤PTAS

  . Standard and differential approximation ratios for   -B, on

the one hand, standard and differential approximation ratios for   , and differential ratio

of  , on the other hand, coincide. So,

  -B ≤DPTAS    (14)

Reductions (13) and (14), together with the fact that the composition DPTAS ◦ AF is obviously a DPTAS-

reduction, establish immediately the DAPX-completeness of   and the proof of the theorem

is complete.

As we have already mentioned,   is, until now, the only problem known to be DAPX-

complete but not APX-complete. In fact, in standard approximation paradigm, it belongs to the class Poly-

APX and is inapproximable, in a graph of order n, within n1−ε, ∀ε > 0, unless NP coincides with the class

of problems that could be optimally solved by slightly super-polynomial algorithms ([9]).

9 Conclusion

We have defined suitable reductions and obtained natural complete problems for important approximability

classes, namely, Poly-APX, Poly-DAPX, PTAS and DPTAS. Such problems did not exist until now. This

work extends also the ones in [1, 2] further specifying and completing a structure for differential approxima-

bility. The only among the most notorious approximation classes for which we have not studied complete-

ness is Log-DAPX (the one of the problems approximable within differential ratios of O(1/ log |x|)). This

is because, until now, no natural NPO problem is known to be differentially approximable within inverse

logarithmic ratio. Work about definition of Log-DAPX-hardness is in progress.

Another point that, to our opinion merits particular studies, is the structure of approximability classes

beyond DAPX that are defined not with respect to the size of the instance but to the size of other param-

eters as natural as |x|. For example, dealing with graph-problems, no research is conducted until now on

something like ∆-APX-, or ∆-DAPX-completeness where ∆ is the maximum degree of the input graph.

Such works miss to both standard and differential approximation paradigms. For instance, a question we

are currently trying to handle is if    is, under some reduction, ∆-APX-complete, or

∆-DAPX-complete. Such notion of completeness, should lead to achievement of inapproximability results

(in terms of graph-degree) for several graph-problems.

Finally, the existence of natural PTAS-, or DPTAS-intermediate problems (as   for APX

under AP-reduction) for F-, FT- and DFT-reductions remains open.

References

[1] G. Ausiello, C. Bazgan, M. Demange, and V. Th. Paschos. Completeness in differential approximation

classes. In Mathematical Foundations of Computer Science, MFCS’03, number 2747 in Lecture Notes in

Computer Science, pages 179–188. Springer-Verlag, 2003.

15

[2] G. Ausiello, C. Bazgan, M. Demange, and V. Th. Paschos. Completeness in differential approximation

classes. Cahier du LAMSADE 204, LAMSADE, Université Paris-Dauphine, 2003. Available on http:

//www.lamsade.dauphine.fr/cahiers.html.

[3] G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, A. Marchetti-Spaccamela, and M. Protasi. Complexity

and approximation. Combinatorial optimization problems and their approximability properties. Springer,

Berlin, 1999.

[4] G. Ausiello, P. Crescenzi, and M. Protasi. Approximate solutions of NP optimization problems. Theoret.

Comput. Sci., 150:1–55, 1995.

[5] B. S. Baker. Approximation algorithms for NP-complete problems on planar graphs. J. Assoc. Comput.

Mach., 41(1):153–180, 1994.

[6] P. Crescenzi and A. Panconesi. Completeness in approximation classes. Information and Computation,

93(2):241–262, 1991.

[7] P. Crescenzi and L. Trevisan. On approximation scheme preserving reducibility and its applications.

Theory of Computing Systems, 33(1):1–16, 2000.

[8] M. Demange, J. Monnot, and V. Th. Paschos. Bridging gap between standard and differential polyno-

mial approximation: the case of bin-packing. Appl. Math. Lett., 12:127–133, 1999.

[9] U. Feige and J. Kilian. Zero knowledge and the chromatic number. In Proc. Conference on Computa-

tional Complexity, pages 278–287, 1996.

[10] M. R. Garey and D. S. Johnson. Computers and intractability. A guide to the theory of NP-completeness.

W. H. Freeman, San Francisco, 1979.

[11] M. M. Halldórsson. Approximating discrete collections via local improvements. In Proc. Symposium on

Discrete Algorithms,SODA, pages 160–169, 1995.

[12] S. Khanna, R. Motwani, M. Sudan, and U. Vazirani. On syntactic versus computational views of

approximability. SIAM J. Comput., 28:164–191, 1998.

[13] R. E. Ladner. On the structure of polynomial time reducibility. J. Assoc. Comput. Mach., 22:155–171,

1975.

[14] P. Orponen and H. Mannila. On approximation preserving reductions: complete problems and robust

measures. Technical Report C-1987-28, Dept. of Computer Science, University of Helsinki, Finland,

1987.

[15] C. H. Papadimitriou and M. Yannakakis. Optimization, approximation and complexity classes. J. Com-

put. System Sci., 43:425–440, 1991.

[16] C. H. Papadimitriou and M. Yannakakis. The traveling salesman problem with distances one and two.

Math. Oper. Res., 18:1–11, 1993.

A A list of NPO problems

This is the list of NPO problems mentioned and/or discussed in the paper, together with a characterization of

their worst-value solutions. For most of these problems, comments about their approximability in standard

approximation can be found in [3].

16

Maximum variable-weighted satisfiability.

Given a boolean formula ϕ with non-negative integer weights w(x) on any variable x appearing in ϕ,

 -  consists of computing a truth assignment to the variables of ϕ that

both satisfies ϕ and maximizes the sum of the weights of the variables set to 1. We consider that the

assignment setting all the variables to 0, even if it does not satisfy ϕ, is feasible and represents the

worst-value solution for the problem.   - -B denotes the version

of  - , where the variable-weights are polynomially bounded and their

sum lies in the interval [B, (n/(n−1))B]. For this problem, it is assumed that the assignment setting

all variables to 0 is feasible and that its value is B. Obviously, this assignment represents the worst

feasible value.

Maximum independent set (MAX INDEPENDENT SET).

Given a graph G(V,E), an independent set is a subset V ′ ⊆ V such that whenever {vi, vj} ⊆ V ′,

vivj /∈ E, and    consists of finding an independent set of maximum size. 

 -B denotes    in bounded-degree graphs and  

  denotes    in planar graphs. Worst-value solution: the

empty set.

Minimum coloring (MIN COLORING) and maximum color saving (MAX UNUSED COLORS).

Given a graph G(V,E), we wish to color V with as few colors as possible so that no two adjacent ver-

tices receive the same color.    is the problem consisting, given a a graphG(V,E)
and a set of |V | colors, of coloring G using colors from the set given, in such a way that the number

of unused colors is maximized. Clearly, both problems have the same set of feasible solutions. It can

be immediately seen that if C is a coloring for G, |V | − |C| is the value of C for   -

 and vice-versa; in other words,   and    are affine equivalent.

Worst-value solutions: V for the former and the empty set for the latter.

Minimum vertex-covering (MIN VERTEX COVER).

Given a graph G(V,E), a vertex cover is a subset V ′ ⊆ V such that, ∀uv ∈ E, either u ∈ V ′,

or v ∈ V ′, and    consists of determining a minimum-size vertex cover. 

 -B denotes    in bounded-degree graphs and   

 denotes    in planar graphs. Worst-value solution: V .

Bin packing (BIN PACKING).

Given a finite set L = {x1, . . . , xn} of n rational numbers and an unbounded number of bins, each

bin having a capacity equal to 1, we wish to arrange all these numbers in the least possible bins in such

a way that the sum of the numbers in each bin does not violate its capacity. Worst solution: L.

Minimum traveling salesman problem (MIN TSP).

Given a complete graph on n vertices, denoted by Kn, with positive costs on its edges,  

consists of minimizing the cost of a Hamiltonian cycle (an ordering 〈v1, v2, . . . , vn〉 of V such that

vnv1 ∈ E and, for 1 6 i < n, vivi+1 ∈ E), the cost of such a cycle being the sum of the costs of

its edges. We denote by    the version of   where edge distances satisfy triangle

inequalities. Worst-value solution: the total distance of the longest Hamiltonian cycle (determination

of which is also NP-hard).

17

