
ar
X

iv
:c

s/
06

09
10

9v
1

 [
cs

.L
O

]
 1

9
Se

p
20

06

The recognizability of sets of graphs

is a robust property1

Bruno Courcelle2, Pascal Weil3

Abstract

Once the set of finite graphs is equipped with an algebra structure
(arising from the definition of operations that generalize the concatena-
tion of words), one can define the notion of a recognizable set of graphs in
terms of finite congruences. Applications to the construction of efficient
algorithms and to the theory of context-free sets of graphs follow natu-
rally. The class of recognizable sets depends on the signature of graph
operations. We consider three signatures related respectively to Hyper-
edge Replacement (HR) context-free graph grammars, to Vertex Replace-
ment (VR) context-free graph grammars, and to modular decompositions
of graphs. We compare the corresponding classes of recognizable sets.
We show that they are robust in the sense that many variants of each
signature (where in particular operations are defined by quantifier-free
formulas, a quite flexible framework) yield the same notions of recog-
nizability. We prove that for graphs without large complete bipartite
subgraphs, HR-recognizability and VR-recognizability coincide. The same
combinatorial condition equates HR-context-free and VR-context-free sets
of graphs. Inasmuch as possible, results are formulated in the more general
framework of relational structures.

1 Introduction

The notion of a recognizable language is a fundamental concept in Formal Lan-
guage Theory, which has been clearly identified since the 1950’s. It is important
because of its numerous applications, in particular for the construction of com-
pilers, and also for the development of the Theory: indeed, these languages can
be specified in several very different ways, by means of automata, congruences,
regular expressions and logical formulas. This multiplicity of quite different def-
initions is a clear indication that the notion is central since one arrives at it in a
natural way from different approaches. The equivalence of definitions is proved
in fundamental results by Kleene, Myhill and Nerode, Elgot and Büchi.

1This paper was prepared in part while the second author was an invited Professor at the

University of Nebraska-Lincoln. The second author acknowledges partial support from the AS

93 of the Département STIC of CNRS, and the ACI Sécurité Informatique of the Ministère

de la Recherche.
2LaBRI, Université Bordeaux-1 – 351 cours de la Libération – 33405 Talence Cedex –

France. bruno.courcelle@labri.fr
3LaBRI, CNRS – 351 cours de la Libération – 33405 Talence Cedex – France.

pascal.weil@labri.fr

1

http://arxiv.org/abs/cs/0609109v1

The notion of a recognizable set has been extended in the 1960’s to trees
(actually to trees representing finite algebraic terms), to infinite words and to
infinite trees. In the present article we discuss its extension to sets of finite
graphs.

The recognizability of a set of finite words or trees can be defined in several
ways, as mentioned above, and in particular by finite deterministic automata.
This definition (together with the related effective translations from other defi-
nitions) provides linear-time recognition algorithms, which are essential for com-
piler construction, coding, text processing, and in other situations. Recognizable
sets of words can also be defined in an algebraic way by finite saturating con-
gruences relative to the monoid structure. These definitions, by automata and
congruences, extend smoothly to the case of finite trees (i.e., algebraic terms),
using the natural algebra structure. The notion of recognizability in a general
algebra is due to Mezei and Wright [37]. We will not discuss here the extensions
to infinite words and trees, which raise specific problems surveyed by Thomas
[43] and Perrin and Pin [40]. Our aim will be to consider sets of finite graphs.

For finite graphs, there is no automaton model, except in very special cases,
and in particular in the case of graphs representing certain labelled partially
ordered sets and traces (a trace is a directed acyclic graph, representing the
equivalence class of a word w.r.t. a partial commutation relation), see the
volume edited by Diekert [22] and the papers by Lodaya and Weil [32, 33]
and Ésik and Németh [24]. Algebraic definitions via finite congruences can
be given because the set of finite graphs can be equipped with an algebraic
structure, based on graph operations like the concatenation of words. However,
many operations on graphs can be defined, and there is no prominent choice
for a standard algebraic structure like in the case of words where a unique
associative binary operation is sufficient. Several algebraic structures on graphs
can be defined, and distinct notions of recognizability follow from these possible
choices. It appears nevertheless that two graph algebras, called the HR-algebra
and the VR-algebra for reasons explained below, emerge and provide robust
notions of recognizability. The main purpose of this paper is to demonstrate
the robustness of these notions. By robustness, we mean that taking variants of
the basic definitions does not modify the corresponding classes of recognizable
sets of graphs.

In any algebra, one can define two family of sets, the recognizable sets and
the equational sets. The equational sets are defined as the components of the
least solutions of certain systems of recursive set equations, written with set
union and the operations of the algebra, extended to sets in the standard way.
Equational sets can be considered as the natural extension of context-free lan-
guages in a general algebraic framework (Mezei and Wright [37], Courcelle [12]
for a thorough development). The two graph algebras introduced above, the
HR- and the VR-algebra, are familiar to readers interested in graph grammars,
because their equational sets are the (context-free) Hyperedge Replacement (HR)
sets of graphs on the one hand, and the (context-free) Vertex Replacement (VR)
sets on the other. Both classes of context-free sets of graphs can be defined in
alternative, more complicated ways in terms of graph rewritings, and are robust

2

in the sense that they are closed under certain transformations expressible in
Monadic Second-Order Logic (Courcelle [15]).

The main results of this paper, described below in more detail, are:
1) the robustness of the classes of VR- and HR-recognizable sets of graphs,
2) the robustness of the class of recognizable sets of finite relational structures

(equivalently of simple directed ranked hypergraphs), which extends the two
previous classes,

3) the exhibition of structural conditions on sets of graphs implying that
HR-recognizability and VR-recognizability coincide,

4) the comparison of the recognizable sets of the VR-algebra and those of
a closely related algebra representing modular decompositions (modular decom-
position is another useful notion for graph algorithms).

The notion of recognizability of a set of finite graphs is important for sev-
eral reasons. First, because recognizability yields linear-time algorithms for the
verification of a wide class of graph properties on graphs belonging to certain
finitely generated graph algebras. These classes consist of graphs of bounded
tree-width and of bounded clique-width. These two notions of graph complex-
ity are important for constructions of polynomial graph algorithms, see Downey
and Fellows [23] and Courcelle et al. [20]. Furthermore, these graph proper-
ties are not very difficult to identify because Monadic second-order (MS) logic
can specify them in a formalized and uniform way. (In many cases, an MS
formula can be obtained from the graph theoretical expression of a property).
More precisely, a central result [8, 9, 15, 20] says that every set of graphs (or
graph property) definable by an MS formula is recognizable (respectively admits
such algorithms), for appropriate graph algebras. This general statement covers
actually several distinct situations.

Another reason comes from the theory of Graph Grammars. The intersec-
tion of a context-free set of graphs and of a recognizable set is context-free (in
the appropriate algebraic framework). This gives immediately many closure
properties for context-free sets of graphs, via the use of MS logic as a specifi-
cation language for graph properties. Recognizability also makes it possible to
construct terminating and (in a certain sense) confluent graph rewriting rules by
which one can recognize sets of graphs of bounded tree-width by graph reduction
in linear time, see Arnborg et al. [2].

Finally, recognizability is a basic notion for dealing with languages and sets
of terms, and on this ground, its extension to sets of graphs is worth investi-
gating. Logical characterizations of recognizability can be given using MS logic,
extending many results in language theory [16, 28, 24, 29, 30]. Several questions
remain open in this research field.

We have noted above that defining recognizability for sets of graphs cannot
be done in terms of finite automata, so that the algebraic definition in terms
of finite congruences has no alternative. Another advantage of the algebraic
definition is that it is given at the level of universal algebra (Mezei and Wright
[37]), and thus applies to objects other than graphs. However, even in the
case of graphs, the algebraic setting is useful because it hides (temporarily) the

3

complexities of operations on graphs and makes it possible to understand what
is going on at a structural level.

We now present the main results of this article more in detail. The two
main algebraic structures on graphs called VR and HR, originate from algebraic
descriptions of context-free graph grammars. Definitions will be given in the
body of the text. It is enough for this introduction to retain that the operations
of VR are more powerful than those of HR. Hence every HR-context-free set of
graphs (i.e., defined by a grammar based on the operations of HR) is VR-context-
free, but not vice-versa. For recognizability, the inclusion goes in the opposite
direction : every VR-recognizable set is HR-recognizable but the converse is not
true. However, if the graphs of a set L have no subgraph of the form Kn,n

(the complete bipartite graph on n + n vertices) for some n, then L is HR-
recognizable if and only if it is VR-recognizable (this is the main theorem of
Section 6). A similar statement is known to hold under the same hypothesis for
context-free sets: if L is without Kn,n (i.e., no graph in L contains a subgraph
isomorphic to Kn,n), then it is HR-context-free if and only if it is VR-context-
free (Courcelle, [14]). The proofs of the two statements are however different
(and both difficult).

Up to now we have only discussed graphs, but our approach, which extends
the approach developped by Courcelle in [9], also works for hypergraphs and for
relational structures.

The operations on graphs, hypergraphs and structures are basically of three
types defined in Section 3: we use only one binary operation, the disjoint union;
we use unary operations defined by quantifier-free first-order formulas; and basic
graphs and structures corresponding to nullary operations. In this way we can
generate graphs and structures by finite algebraic terms. The quantifier-free
definable operations can modify vertex and edge labels, add or delete edges.
This notion is thus quite flexible. What is remarkable is that these numerous
operations can be added without altering the notion of recognizability.

The main result of Section 4 states that the same recognizable sets of graphs
are obtained if one uses the basic VR-algebra (closely connected to the definition
of clique-width), the same algebra enriched with quantifier-free definable oper-
ations, and even the larger algebra dealing with relational structures. Variants
of the VR-algebra which are useful, in particular for algorithmic applications,
are also considered, and they are proved to yield the same class of recognizable
sets.

In Section 5, we discuss similarly the HR-algebra which is very important
because of its relation with tree-width and with context-free graph grammars.
We prove a robustness result relative to the subclass such that the distinguished
vertices denoted by distinct labels (nullary operations) are different. The HR-
operations are appropriate to handle graphs and hypergraphs with multiple
edges and hyperedges (whereas the VR-operations are not). The original defi-
nitions (see Courcelle [8]) were given for graphs with multiple edges and hyper-
edges. In Section 7, we prove that for a set of simple graphs, HR-recognizability
is the same in the HR-algebra of simple graphs and in the larger HR-algebra of
graphs with multiple edges. Without being extremely difficult, the proof is not

4

just a routine verification.
In Section 8, we consider an algebra arising from the theory of modular

decomposition of graphs. We show that under a natural finiteness condition,
the corresponding class of recognizable sets is equal to that of VR-recognizable
ones.

In an appendix, we clarify the definitions of certain equivalences of logical
formulas, focusing on cases where they are decidable, and we give upper bounds
to the cardinalities of the quotient sets for these equivalences. These results
yield upper bounds to the number of equivalence classes in logically based con-
gruences. They are thus useful for the investigation of recognizability in view
of the cases where the sets under consideration are defined by logical formulas.
They also provide elements to appreciate (an upper bound of) the complexity
of the algorithms underlying a number of the effective proofs in the main body
of the paper.

This work has been presented in invited lectures by B. Courcelle [17] and P.
Weil [47].

2 Recognizability

The notion of a recognizable set is due to Mezei and Wright [37]. It was origi-
nally defined for one-sort structures, and we adapt it to many-sorted ones with
infinitely many sorts. We begin with definitions concerning many-sorted alge-
bras.

2.1 Algebras

We follow essentially the notation and definitions from [45], see also [12]. Let
S be a set called the set of sorts. An S-signature is a set F given with two
mappings α:F −→ seq(S) (the set of finite sequences of elements of S), called
the arity mapping, and σ:F −→ S, called the sort mapping. We denote by
ρ(f) the length of the sequence α(f), which we call also arity. The type of
f in F is the pair (α(f), σ(f)) that we shall rather write α(f) → σ(f), or
(s1, s2, . . . , sn) −→ s if α(f) = (s1, · · · , sn) and σ(f) = s. The sequence α(f) may
be empty (that is, n = 0), in which case f is called a constant of type σ(f) = s.

An F-algebra is an objectM = 〈(Ms)s∈S, (fM)f∈F〉, where for each s ∈ S,Ms

is a non-empty set, called the domain of sort s of M . For a nonempty sequence
of sorts µ = (s1, · · · , sn), we denote by Mµ the product Ms1 ×Ms2 × · · ·×Msn . If
ρ(f) > 0, then fM is a total mapping fromMα(f) to Mσ(f). If f is a constant of
type s, then fM is an element of Ms. The objects fM are called the operations
of M . We assume that Ms∩Ms′ = ∅ for s 6= s′. We also let M denote the union
of the Ms (s ∈ S). For d ∈ M , we let σ(d) denote the unique s ∈ S such that
d ∈Ms.

A mapping h:M → M ′ between F -algebras is a homomorphism (or F-
homomorphism if it is useful to specify the signature) if it maps Ms into M

′
s for

each sort s and it commutes with the operations of F .

5

We denote by T (F) the set of finite well-formed terms built with F (we will
call them F-terms), and by T (F)s the set of those terms of sort s (the sort of a
term is that of its leading symbol). If F has no constant the set T (F) is empty.

There is a standard structure of F -algebra on T (F). Its domain of sort s is
T (F)s, and T (F) can be characterized as the initial F-algebra. This means that
for every F -algebra M , there is a unique homomorphism valM :T (F) −→ M .
If t ∈ T (F)s, the image of t under valM is an element of Ms, also denoted by
tM . It is nothing but the evaluation of t in M , where the function symbols are
interpreted by the corresponding functions of M . One can consider t as a term
denoting tM , and tM as the value of t in M . The set of values in M of the
terms in T (F) is called the subset generated by F . We say that a subset of M
is finitely generated if it is the set of values of terms in T (F ′) for some finite
subset F ′ of F .

Let F be an S-signature, F ′ be an S′-signature where S′ ⊆ S. We say that
F ′ is a subsignature of F , written F ′ ⊆ F , if F ′ is a subset of F and the types
of every f in F ′ are the same with respect to F and to F ′. We say then that an
F ′-algebra M ′ is a subalgebra of an F -algebra M if M ′

s ⊆ Ms for every s ∈ S′,
and every operation of M ′ coincides with the restriction to the domains of M ′

of the corresponding operation of M .
We will often encounter the case where an F -algebra M is also the carrier

of a G-algebra, and the G-operations ofM can be expressed as F -terms: in that
case, we say that the G-operations of M are F-derived, and the G-algebra M is
an F-derived algebra (or it is derived from M).

More formally, an S-sorted set of variables is a pair (X, σ) consisting of a
set X and a sort mapping σ:X −→ S (usually denoted simply by X). We let
T (F , X) be the set of (F ∪X)-terms written with F ∪X , where it is understood
that the variables are among the nullary symbols (constants) of F∪X . T (F , X)s
denotes the subset of those terms of sort s. Now if X is a finite sequence of
pairwise distinct variables from X and t ∈ T (F , X)s, we denote by tM,X the
mapping fromMσ(X) to Ms associated with t in the obvious way (σ(X) denotes
the sequence of sorts of the elements of X). We call tM,X a derived operation of
the algebra M . If X is known from the context, we write tM instead of tM,X .
This is the case in particular if t is defined as a member of T (F , {x1, · · · , xk}) :
the sequence X is implicitly (x1, · · · , xk).

2.2 Recognizable subsets

Let F be an S-signature. An F -algebra M is locally finite if each domain Ms is
finite. IfM is an F -algebra and s ∈ S is a sort, a subset L ofMs isM -recognizable
if there exists a locally finite F -algebra A, a homomorphism h:M −→ A, and a
(finite) subset C of As such that L = h−1(C).

We denote by Rec(M)s the family of M -recognizable subsets of Ms. In
some cases it will be useful to stress the relevant signature and we will talk of
F -recognizable sets instead of M -recognizable sets.

An equivalent definition can be given in terms of finite congruences. A
congruence on M is an equivalence relation ≈ on M =

⋃
s∈SMs, such that each

6

setMs is a union of equivalence classes, and which is stable under the operations
of M . It is locally finite if for each sort s, the restriction ≈s of ≈ to Ms has
finite index. A congruence saturates a set if this set is a union of classes. A
subset L of Ms is M -recognizable if and only if it is saturated by a locally finite
congruence on M .

The following facts are easily verified from the definition of recognizability
or its characterization in terms of congruences (see [12]), and will be used freely
in the sequel.

Proposition 2.1 Let M be an F-algebra.

• For each sort s, the family Rec(M)s contains Ms and the empty set, and
it is closed under union, intersection and difference.

• If h is a unary derived operation of M or a homomorphism of M ′ into
M , (where M ′ is another F-algebra), then the inverse image under h of
an M -recognizable set is recognizable.

• If N is a G-algebra with the same domain as M , and if every G-congruence
of N is an F-congruence of M (e.g. N is derived from M , or G is ob-
tained from F by adding constants), then every M -recognizable set is N -
recognizable. If in addition G contains F , then M and N have the same
recognizable subsets.

• If M ′ is a subalgebra of M and L is an M -recognizable set, then L ∩M ′

is M ′-recognizable. This includes the case where M ′ has the same domain
as M , and is an F ′-algebra for some subsignature F ′ of F .

• Suppose that M is generated by F and let valM be the evaluation homo-
morphism from T (F) onto M . A subset L of Ms is F-recognizable if and
only if val−1

M (L) is a recognizable subset of T (F). If in addition F is
finite, then this is equivalent to the existence of a finite tree-automaton
recognizing val−1

M (L).

Example 2.2 On the set of all words over a finite alphabet A, let us consider
the binary operation of the concatenation product, and the unary operation u 7→
u2, which is derived from the concatenation product. Then the 3rd statement
in Proposition 2.1 shows that we have the same recognizable subsets as if we
considered only the concatenation product. It is interesting to note that, in
contrast, adding the operation u 7→ u2 to the signature adds new equational
languages, e.g. the set of all squares. ⊓⊔

We will see more technical conditions that guarantee the transfer of recog-
nizability between algebras in Section 2.4 below.

7

2.3 Remarks on the notion of recognizability

We gather here some observations on the significance of recognizability.
First, we note that if f is an operation of an F -algebra M , with arity k,

and if B1, . . . , Bk are M -recognizable, then f(B1, . . . , Bk) is not necessarily
recognizable. This is discussed for instance in [10], where sufficient conditions
are given to ensure that f(B1, . . . , Bk) is recognizable. It is well-known for
instance that the product of two recognizable subsets of the free monoid (word
languages) or of the trace monoid is recognizable; a similar result holds for
recognizable sets of trees.

Now, let M be an F -algebra and let F ′ be a signature which differs from
F only by the choice of constants and their values. In particular, F ′ may be
obtained from F by the addition of countably many new constants. Then the
congruences on M are the same with respect to F and to F ′ and it follows that
a subset of M is F -recognizable if and only if it is F ′-recognizable.

It is customary to assume that the F -algebraM is generated by the signature
F . If M is a countable F -algebra that is not generated by F , we can enrich F
to F ′ by adding to F one constant of the appropriate sort for each element of
M . Then F ′ generates M (in a trivial way). As noted above, M has the same
F - and F ′-recognizable subsets. If L is one of these subsets, the set val−1

M (L)
of F ′-terms is recognizable but we cannot do much with it, because we lack the
notion of a finite tree-automaton. See the conclusion of the paper for a further
discussion of this point.

Finally, we can question the interest of the notion of a recognizable set. Is
it interesting in every algebra? The answer is clearly no. Let us explain why.

If the algebraic structure over the considered set M is poor, for example
in the absence of non-nullary functions, then every set L is recognizable, by
a congruence with two classes, namely L and its complement. The notion of
recognizability becomes void.

Another extreme case is when the algebraic structure is so rich that there
are very few recognizable sets. For an example, consider the set N of natural
integers equipped with the successor and the predecessor functions (predecessor
is defined by pred(0) = 0, pred(n + 1) = n). The only recognizable sets are N

and the empty set. Indeed, if ∼ is a congruence and if n ∼ n+p for some n ≥ 0,
p > 0, then by using the function pred n + p − 1 times, we find that 0 ∼ 1.
It follows (using the successor function repeatedly) that any two integers are
equivalent.

Intuitively, if one enriches an algebraic structure by adding new operations,
one gets fewer recognizable sets.

For another example, let us consider the monoid {a, b}∗ of words over two
letters. Let us add a unary operation, the circular shift, defined by : sh(1) = 1
and sh(au) = ua, sh(bu) = ub, for every word u. The language a∗b is no
longer recognizable w.r.t. this new structure, however recognizability does not
degenerate completely since every commutative language that is recognizable in
the usual sense remains recognizable in the enriched algebraic structure.

It is not completely clear yet which algebraic condition makes recognizability

8

“interesting”.

2.4 Technical results on recognizability

The statements in this section explain how to transfer a locally finite congruence
from one algebra to another, possibly with a different signature, and hence how
to transfer recognizability properties between algebras. Proposition 2.1 above
contains examples of such results.

The statements that follow will be used in the proof of some of our main re-
sults, in Section 4. They are, unfortunately, heavily technical in their statements
(but not in their proofs. . .)

Lemma 2.3 Let F be an S-signature and let G be a T-signature. Let S be an
F-algebra and let T be a G-algebra. Let also H be a collection (Ht,s) such that,
for each t ∈ T and s ∈ S, Ht,s consists of mappings from Tt into Ss with the
following property:

for each operation g ∈ G of type (t1, . . . , tr) 7→ t and for each h ∈ Ht,s,
there exist sorts s1, . . . , sr ∈ S, mappings hi ∈ Hti,si (1 ≤ i ≤ r) and
an F-derived operation f of type (s1, . . . , sr) 7→ s such that, for every
x1 ∈ T1, . . . , xr ∈ Tr, h(g(x1, . . . , xr)) = f(h1(x1), . . . , hr(xr)).

Finally, let ≡ be an F-congruence on S and let ≈ be the equivalence relation
defined, on each Tt, by

x ≈ y if and only if h(x) ≡ h(y) for every h ∈ Ht,s, s ∈ S.

Then ≈ is a G-congruence on T .

Proof. Let g be an operation in G, of type (t1, . . . , tr) 7→ t, and let x1, y1 ∈
Tt1 , . . . , xr, yr ∈ Ttr such that xi ≈ yi for each i = 1, . . . , r. Let also h ∈ Ht,s

with s ∈ S.
By hypothesis, there exist sorts s1, . . . , sr ∈ S, mappings hi ∈ Hti,si (for

i = 1, . . . , r) and an F -derived operation f of type (s1, . . . , sr) 7→ s such that

h(g(x1, . . . , xr)) = f(h1(x1), . . . , hr(xr))
h(g(y1, . . . , yr)) = f(h1(y1), . . . , hr(yr)).

Since xi ≈ yi for each i, we have hi(xi) ≡ hi(yi); and since≡ is an F -congruence,
it follows that h(g(x1, . . . , xr)) ≡ h(g(y1, . . . , yr)). Thus we have g(x1, . . . , xr) ≈
g(y1, . . . , yr), which concludes the proof. ⊓⊔

With the notation of Lemma 2.3, for each sort t ∈ T, let ≤t be the quasi-
order relation defined on Ht =

⋃
s∈S Ht,s by

h ≤t h
′ if there exists an F -derived unary operation f such that h′ = f ◦ h.

Lemma 2.4 With the notation of Lemma 2.3, if for each t the order rela-
tion associated with ≤t has a finite number of minimal elements, and if the
F-congruence ≡ on S is locally finite, then the G-congruence ≈ on T is locally
finite.

9

Proof. Let t ∈ T. We want to show that there are only finitely many ≈-classes
in T (t). By assumption, there exist elements h1, . . . , hk ∈ Ht such that every
mapping of Ht is of the form f ◦ hi for some 1 ≤ i ≤ k and some F -derived
operation f .

For each i, let Ssi be the range of hi and let ni be the number of ≡-classes
in Ssi . It is immediately verified from the definition of ≤t that if x, y ∈ Tt, then
x ≈ y if and only if hi(x) ≡ hi(y) for each 1 ≤ i ≤ k. In particular, Tt has at
most n1 · · ·nk ≈-classes, which concludes the proof. ⊓⊔

We will actually need even more technical versions of these lemmas.

Lemma 2.5 Let S, T , F , G and H be as in Lemma 2.3, and let ζ be a G-
congruence on T such that:

for each operation g ∈ G of type (t1, . . . , tr) 7→ t, for each h ∈ Ht,s

and for each ~z = (z1, . . . , zr) where each zi is a ζ-class of Tti , there
exist sorts s1,~z, . . . , sr,~z ∈ S, mappings hi,~z ∈ Hti,si,~z (1 ≤ i ≤ r) and
an F-derived operation f~z of type (s1,~z, . . . , sr,~z) 7→ s such that, in T ,
h(g(x1, . . . , xr)) = f~z(h1,~z(x1), . . . , hr,~z(xr)) if each xi is in zi.

Finally, let ≡ be an F-congruence on S and let ≈ be the equivalence relation
defined, on each Tt, by

x ≈ y if and only if x ζ y and h(x) ≡ h(y) for every h ∈ Ht,s, s ∈ S.

Then ≈ is a G-congruence on T . Moreover, if H satisfies the hypothesis of
Lemma 2.4 and ≡ and ζ are locally finite, then ≈ is locally finite as well.

Proof. The proof is the same as for Lemmas 2.3 and 2.4. ⊓⊔

3 Algebras of relational structures

Even though we are ultimately interested in studying sets of graphs, it will be
convenient to handle the more general case of relational structures. Further-
more, relational structures can be identified with simple directed hypergraphs.
Such hypergraphs form a natural representation of terms. See for instance the
chapter on hypergraphs in [15] for applications.

In this paper, all graphs and structures are finite or countable. Our proofs
will not usually depend on cardinality assumptions on the graphs or struc-
tures, and hence our results will hold for finite as well as for infinite graphs or
structures. However, recognizability in the algebraic sense we defined, is really
interesting only for dealing with finitely generated objects, and hence for finite
graphs and structures. For dealing with infinite words, trees and graphs, other
tools are necessary, see for instance [40, 43, 29, 30].

10

3.1 Relational structures

Let R be a finite set of relation symbols, and C be a finite set of nullary symbols.
Each symbol r ∈ R has an associated positive integer called its rank, denoted by
ρ(r). An (R,C)-structure is a tuple S = 〈DS , (rS)r∈R, (cS)c∈C〉 such that DS is
a (possibly empty) set called the domain of S, each rS is a ρ(r)-ary relation on

DS , i.e., a subset of D
ρ(r)
S , and each cS is an element of DS , called the c-source

of S.
We denote by StS(R,C) the class of (finite or countable) (R,C)-structures,

and we sometimes write StS(R) for StS(R, ∅). By convention, isomorphic struc-
tures will be considered as equal. In the notation StS, St stands for structures,
while the second S stands for sources.

A structure S ∈ StS(R,C) is source-separated if cS 6= c′S for c 6= c′. We will
denote by StSsep(R,C) the class of source-separated structures in StS(R,C).
See Corollary 3.11 and Section 3.5.2 below.

In order to handle graphs, we will consider particular kinds of structures in
the sequel. We let E = {edge} be the set of relation symbols consisting of a
single binary relation edge, intended to represent directed edges. Thus graphs
can be seen as the elements of StS(E), also written Graph. Clearly these graphs
are directed, simple (we cannot represent multiple edges) and they may have
loops. For a discussion of graphs with multiple edges, see Section 7.

We let GS(C) denote the set StS(E,C). These structures are called graphs
with sources. We let GSsep(C) denote the intersection GS(C) ∩ StSsep(R,C).

We will discuss also graphs with ports (Section 4): if P is a finite set of unary
relation symbols called port labels, then we denote by EP the set of relational
symbols E ∪ P and by GP(P) the class StS(EP). Port labels are useful for
studying the clique-width of graphs, see [18, 19] and Remark 4.11 below.

3.2 The algebra StS

We first define some operations on structures.

Disjoint union Let C and C′ be disjoint sets of constants and let S ∈
StS(R,C) and S′ ∈ StS(R′, C′). Let us also assume that S and S′ have dis-
joint domains. We denote by S ⊕ S′ the union of S and S′, which is naturally
a structure in StS(R ∪R′, C ∪C′).

If S and S′ are not disjoint, we replace S′ by a disjoint copy. We need not
be very precise on how to choose this copy because different choices will yield
isomorphic ⊕-sums, and we are interested in structures up to isomorphism.

Remark 3.1 It is also possible to define a similar operation, without the re-
striction that C and C′ are disjoint (as in, say, [9, 13]). See Section 3.5.1 below
for a discussion. ⊓⊔

11

Quantifier-free definable operations Our purpose is now to define func-
tions from StS(R,C) to StS(R′, C′) by quantifier-free formulas. We denote by
QF (R,C, {x1, ..., xn}) the set of quantifier-free formulas on (R,C)-structures
with variables in {x1, ..., xn}.

A qfd operation scheme from StS(R,C) to StS(R′, C′) is a tuple

(δ, (ϕr)r∈R′ , (κc,d)c∈C,d∈C′),

where δ ∈ QF (R,C, {x}), ϕr ∈ QF (R,C, {x1, . . . , xρ(r)}) if r is a ρ(r)-ary
relation symbol, κc,d ∈ QF (R,C, ∅), such that the following formulas are valid
in every structure in StS(R,C), for all c, c′ ∈ C, d ∈ C′ and r ∈ R′ of arity
ρ(r):

• κc,d ∧ κc′,d =⇒ c = c′;

•
∨

e∈C κe,d;

• κc,d =⇒ δ(c);

• ∀x1, . . . , xρ(r)

(
ϕr(x1, . . . , xρ(r)) =⇒

∧ρ(r)
i=1 δ(xi)

)
.

The reason for these conditions becomes apparent with the following definition
of the qfd operation g:StS(R,C) → StS(R′, C′) defined by such a scheme. Let
S ∈ StS(R,C). The domain of the structure g(S) is the subset of the domain
of S defined by formula δ and the relation r (r ∈ R′) on g(S) is described by
formula ϕr. Finally, if d ∈ C′, then dg(S) = cS if c ∈ C and S satisfies κc,d. The
first two conditions imposed above assert that relative to S, c is uniquely defined
for each d, the third condition asserts that dg(S) always lies in the domain of
g(S), and the fourth condition asserts that the relation ϕr (r ∈ R′) can only
relate elements of the domain of g(S).

Remark 3.2 Note that in the first condition, c = c′ does not mean that c and
c′ are the same constant, but that they have the same value in the considered
structure. ⊓⊔

Remark 3.3 The conditions to be verified by a qfd operation scheme are de-
cidable. It follows that the notion of a qfd operation scheme is effective. See
the appendix (Remark A.4 in particular) for a discussion of this decidability
result. ⊓⊔

Example 3.4 Let R be a finite set of relational symbols, C be a finite set of
source labels and let a, b be source labels. We define the following operations.

• if a ∈ C and b 6∈ C, srcrena→b is the unary operation of type (R,C) →
(R,C \ {a}∪{b}) which renames the a-source of a structure to a b-source;

• if a ∈ C, srcfga is the unary operation of type (R,C) → (R,C \{a}) which
forgets the a-source of a structure;

12

• if a 6= b ∈ C, fusa,b is the unary operation of type (R,C) → (R,C) which
identifies the a-source and the b-source of a structure (so the resulting
domain element is both the a-source and the b-source), and reorganizes
the tuples of the relational structure accordingly.

Note that the operation names srcrena→b, srcfga and fusa,b are overloaded:
they denote different operations when the sets R and C are allowed to vary. A
completely formal definition would use operation names such as srcrena→b,R,C ,
which would be inconvenient.

It is immediately verified that the operations of the form srcrena→b and srcfga
are qfd. It is probably worth showing explicitly a qfd operation scheme defining
the operation fusa,b.

Let δ(x) be the formula (a = b) ∨ ((a 6= b) ∧ (x 6= a)). If r ∈ R has arity
ρ(r) = n, let ϕr(x1, . . . , xn) be the formula

(
(a = b) ∧ r(x1, . . . , xn)

)
∨

(
(a 6= b) ∧

∨

I⊆{1,...,n}

(
∧

i∈I

(xi = b) ∧
∧

i6∈I

(xi 6= b) ∧ r(y1, . . . , yn))
)
,

where for each I, yi = a if i ∈ I and yi = xi otherwise. For each d ∈ C such
that d 6= a and for each c ∈ C, let κc,d be the formula c = d; let κb,a be the
formula true, and let κc,a be the formula c = a for each c 6= b. It is now routine
to verify that the scheme (δ, (ϕr)r∈R, (κc,d)c,d∈C) defines fusa,b. ⊓⊔

Remark 3.5 There is no qfd operation from StS(R) into StS(R′, C)′ if C′ 6= ∅,
because in the absence of constants in the input structure, we cannot define
constants in the output structure. ⊓⊔

Example 3.6 The natural inclusion of StS(R,C) into StS(R′, C) when R′

contains R is a qfd operation in natural way: the formulas intended to define
relations in R′ \R are taken to be identically false. ⊓⊔

The signature S We define the algebra StS of structures with sources as
follows. First, let us fix once and for all a countable set of relation symbols con-
taining edge and countably many relation symbols of each arity, and a countable
set of constants. In the sequel, finite sets of relation symbols R and finite sets
of constants C will be taken in these fixed sets. The set of sorts consists of all
such pairs (R,C). The set of elements of StS of sort (R,C) is StS(R,C).

The signature S consists of the following operations (interpreted in StS).
First, for each pair of sorts (R,C) and (R′, C′) such that C ∩ C′ = ∅, the
disjoint union ⊕ is an operation of type ((R,C), (R′, C′)) → (R ∪ R′, C ∪ C′).
Note that we overload the symbol ⊕, that is, we denote in the same way an
infinite number of operations on StS. Next, every qfd operation is a (unary)
operation in S.

13

Finally, we observe that the signature S contains the natural inclusions of
StS(R,C) into StS(R′, C) when R′ contains R, which are qfd (Example 3.6).

As for constants in S, one can pick a single source label a, and consider
a single constant a, denoting the structure with a single element, which is an
a-source, and no relations. Together with the operations in S, this constant
suffices to generate all finite relational structures. As noted in Section 2.3, the
choice of constants does not affect recognizability. It only affects the generating
power of the signature, but this is not our point in this paper.

3.3 Elementary properties of StS

We first consider the composition of qfd operations.

Proposition 3.7 Qfd operations in StS are closed under composition (when-
ever types fit for defining meaningful composition).

Proof. Let g:StS(R,C) −→ StS(R′, C′) and g′:StS(R′, C′) −→ StS(R′′, C′′)
be qfd operations, given respectively by the schemes (δ, (ψr)r∈R′ , (κc,d)c∈C,d∈C′)
and (δ′, (ψ′

r)r∈R′′ , (κ′c,d)c∈C′,d∈C′′).
The composite g′ ◦ g turns an (R,C)-structure into an (R′′, C′′)-structure.
Let δ0, ψ0

r (r ∈ R′′) and κ0c,d (c ∈ C′, d ∈ C′′) be obtained from δ′, ψ′
r and

κ′c,d by replacing every occurrence of r(y1, . . . , yρ(r)) (r ∈ R′) by ψr(y1, . . . , yρ(r));
our formulas are now in the language of (R,C′)-structures and we need to
“translate” the constants d ∈ C′ into elements of C. However, this translation,
a mapping from C′ to C, depends on the structure in which we operate.

To reflect this observation, for each mapping h:C′ → C, we let h(δ0) be the
conjunction of the formulas κh(d),d (d ∈ C′) and the formula obtained from δ0

by replacing each occurrence of d (d ∈ C′) by h(d). Finally, we let δ′′ be the
disjunction of the h(δ0) when h runs over all mappings from C′ to C.

We proceed in the same fashion to define ψ′′
r and κ′′c,d for each r ∈ R′′

and each c ∈ C′, d ∈ C′′. Finally, if b ∈ C and d ∈ C′′, we let λb,d =∨
c∈C′(κ′b,c ∧ κ

′′
c,d).

It is a routine verification that (δ′′, (ψ′′
r)r∈R′′ , (λb,d)b∈C,d∈C′′) is a qfd oper-

ation scheme, which defines the composite operation g′ ◦ g. This completes the
proof. ⊓⊔

For each S ∈ StS(R,C), we define the type of S, written ζ(S), to be the
restriction of S to its set of sources. That is: the domain of ζ(S) is the set of
C-sources of S, and the relations of ζ(S) are those tuples of C-sources that are
relations in S. In order to simplify notation, we also denote by ζ the equivalence
relation on StS given by

S ζ T if and only if ζ(S) and ζ(T) are isomorphic.

Lemma 3.8 Let S, T ∈ StS(R,C). Then S ζ T if and only if S and T satisfy
the same formulas in QF (R,C, ∅).

14

Proof. A formula in QF (R,C, ∅) is a Boolean combination of atoms of the form
c = d where c, d ∈ C, or r(x1, . . . , xn) where r ∈ R has arity n and the xi are
in C. It is immediate that such an atom is true in S if and only if it is true in
ζ(S). Thus S and ζ(S) satisfy the same formulas in QF (R,C, ∅): in particular,
ζ-equivalent structures satisfy the same formulas in QF (R,C, ∅). Thus, if we
denote by ThFO

0,R,C(S) the set of formulas in QF (R,C, ∅) that are satisfied by S

(see Section 3.4), we find that ThFO
0,R,C(S) = ThFO

0,R,C(ζ(S)).
Conversely, we observe that if S is a structure in StS(R,C), which consists

only of its C-sources (that is, S = ζ(S)), then S is entirely described by some
formula in QF (R,C, ∅). Thus, if ζ(S) 6= ζ(T), then ThFO

0,R,C(S) 6= ThFO
0,R,C(T).

This suffices to conclude the proof. ⊓⊔

The type relation ζ has the following important property.

Proposition 3.9 The type relation ζ is a locally finite congruence on StS.

Proof. The verification that ζ(S ⊕ S′) = ζ(S) ⊕ ζ(S′) (S ∈ StS(R,C), S′ ∈
StS(R′, C′) and C ∩ C′ = ∅) is immediate. Let us now consider a qfd op-
eration g:StS(R,C) −→ StS(R′, C′), specified by the qfd operation scheme
(δ, (ψr)r∈R′ , (κc,d)c∈C,d∈C′). By Lemma 3.8, S and ζ(S) satisfy the same for-
mulas of QF (R,C, ∅). In particular, for each c ∈ C and d ∈ C′, S and ζ(S)
both satisfy κc,d, or both satisfy its negation. Thus g(S) and g(ζ(S)) have the
same sources, and hence ζ(g(S)) = ζ(g(ζ(S))).

We have just shown that the type relation is a congruence. To complete
the proof, it suffices to show that for each sort (R,C), the set of types of sort
(R,C), that is, the set ζ(StS(R,C)) is finite. Note that if S ∈ StS(R,C), then
ζ(S) has cardinality at most card(C) (and also at most card(S)). It follows that

card(ζ(StS(R,C))) ≤ card(C)!
∏

r∈R 2card(C)ρ(r) . ⊓⊔

Remark 3.10 Proposition 3.9 can be seen as a particular case of a result of
Feferman and Vaught [25], Theorem 3.12 below, which will be used in Section
6. The simple formulation above will be very useful. ⊓⊔

Note that the knowledge of ζ(S) is sufficient to determine whether S is
a source-separated structure. This observation is used to prove the following
corollary.

Corollary 3.11 Let (R,C) be a sort in StS. Then StSsep(R,C) is a recogniz-
able subset of StS(R,C).

Proof. Whether a structure S is source-separated depends only on its type
ζ(S): in particular, the type congruence ζ saturates StSsep(R,C). By Propo-
sition 3.9, this relation is a locally finite congruence, and hence StSsep(R,C) is
recognizable. ⊓⊔

15

3.4 A result of Feferman and Vaught

If (R,C) is a sort of StS, we denote by FO(R,C) the set of closed first-order
formulas over R and C. For each integer d, we denote by FOd(R,C) the set
of those formulas of quantifier-depth at most d. Up to a decidable syntactic
equivalence (taking into account Boolean laws, properties of equality, renaming
of quantified variables, see Appendix A), there are only finitely many formulas
in each set FOd(R,C). Thus, we can reason as if FOd(R,C) was actually finite.

For an (R,C)-structure S, we let its FOd-theory be the set ThFO
d,R,C(S) of

formulas in FOd(R,C) that are valid in S. It is finite since it is a subset of the
finite set FOd(R,C).

Theorem 3.12 Let d ≥ 0.

(1) For every qfd operation f of type (R,C) → (R′, C′), there exists a mapping

f#
d such that, for every (R,C)-structure S

ThFO
d,R′,C′(f(S)) = f#

d (ThFO
d,R,C(S)).

(2) For every (R,C) and (R′, C′), where C and C′ are disjoint, there exists

a binary function ⊕#
d such that, for every (R,C)-structure S, and every

(R′, C′)-structure S′,

ThFO
d,R∪R′,C∪C′(S ⊕ S′) = ThFO

d,R,C(S)⊕
#
d ThFO

d,R′,C′(S′).

Remark 3.13 The second assertion was proved in [25] for first-order logic, and
extended by Shelah to monadic second-order logic [42]. The importance of this
result is discussed by Makowsky in [36]. ⊓⊔

Remark 3.14 The functions f#
d and ⊕#

d have finite domains and codomains.
However these sets are quite large. These functions can be (at least in principle)
effectively determined for given (R,C), (R′, C′), and d. ⊓⊔

3.5 Variants of the algebra of relational structures

In the literature on recognizable and equational graph languages, several vari-
ants of the signature S and the algebra StS are considered, notably a variant
where the definition of the disjoint union is replaced by a more general parallel
product, and a variant where all structures are assumed to be source-separated.
We verify in this section that these variants do not yield different notions of
recognizability.

3.5.1 Parallel composition vs. disjoint union

In the literature (e.g. [9, 13]), the operation of disjoint union ⊕ is sometimes
replaced by the so-called parallel composition (or product), written ‖, an oper-
ation of type ((R,C), (R′, C′)) → (R ∪R′, C ∪ C′) for which we do not assume

16

that C and C′ are disjoint. If S ∈ StS(R,C) and S′ ∈ StS(R′, C′), the parallel
composition S ‖ S′ is obtained by taking the (set-theoretic) disjoint union of S
and S′ and then identifying the c-sources of S and S′ for each c ∈ C ∩ C′. Let
S‖ denote the signature obtained from S by substituting ‖ for ⊕.

Proposition 3.15 Let L be a subset of StS. Then L is S-recognizable if and
only if it is S‖-recognizable.

Proof. We first observe that the operation⊕ is a particular case of ‖. Therefore
S is a sub-signature of S‖ and hence, every S‖-recognizable set is S-recognizable.

To prove the converse, it suffices to verify that ‖ is an S-derived operation
by Proposition 2.1. Indeed, if S ∈ StS(R,C) and S′ ∈ StS(R′, C′), the parallel
composition S ‖ S′ can be obtained by the following sequence of S-operations
(see Example 3.4 for their definition):

- for each c ∈ C ∩ C′, apply the qfd operation srcrenc→c̄ which renames the
c-source in S′ with a new source label, say c̄, not in C; let S̄′ be the resulting
structure;

- take the disjoint union S ⊕ S̄′;
- for each c ∈ C ∩C′, apply the operation fusc,c̄ which identifies the c-source

and the c̄-source in S ⊕ S̄′;
- apply the source-forgetting operation srcfgc̄ for each c ∈ C ∩ C′. ⊓⊔

3.5.2 Source-separated structures

The property that cS 6= c′S for c 6= c′ is called source separation. This property
makes it easier to work with operations on structures and graphs, and hence we
discuss a variant of the S-algebra StS, which handles source-separated struc-
tures. We will also use it in Section 6.

Recall that StSsep(R,C) denotes the set of source-separated structures in
StS(R,C). We now define a subsignature Ssep of S such that StSsep is a sub-
algebra of StS.

Disjoint union ⊕ clearly preserves source separation, and is part of Ssep.
Next we include in Ssep the operations specified by qfd operation schemes such
that, for each c ∈ C and d 6= d′ ∈ C′ (see the notation in Section 3.2),

κc,d =⇒ ¬κc,d′ , (1)

which guarantees that the operation preserves source separation.

Example 3.16 The operations srcrena→b and srcfga defined in Example 3.4 are
in Ssep. The operation fusa,b defined in the same example is not.

In contrast, the operation written fusa→b, which identifies the a-source and
the b-source of a structure as in fusa,b, and makes the resulting element of the
domain a b-source but not an a-source, preserves source separation. It can be
written as fusa→b = srcfga ◦ fusa,b.

The operation which, given a graph with source labels a and b, exchanges
the source labels a and b if the corresponding vertices are linked by an edge and
does nothing otherwise, is another example of a qfd operation in Ssep. ⊓⊔

17

Regarding the effectiveness of the definition of Ssep, we observe the following.

Proposition 3.17 Given a qfd operation scheme, one can decide whether the
corresponding qfd operation preserves source separation.

Proof. Let g be the qfd operation specified by the given qfd operation scheme,
and let StS(R,C) be the domain of g. One can effectively construct the images
under g of every type in StS(R,C), since there are only finitely many of them,
and they can all be enumerated. One can then verify whether the operation
preserves souce-separation on types.

Now it follows from the proof of Proposition 3.9 that for each S ∈ StS(R,C),
we have ζ(g(ζ(S))) = ζ(g(S)). In particular, g preserves source separation if
and only if it preserves it for the structures of the form ζ(S). Thus one can
effectively decide whether g ∈ Ssep. ⊓⊔

We now show that the restriction to source-separated structures does not
change the notion of recognizability.

Theorem 3.18 Let L be a subset of StSsep. Then L is S-recognizable if and
only if it is Ssep-recognizable.

Proof. By definition, Ssep is a subsignature of S, so every S-recognizable set is
Ssep-recognizable.

To prove the converse, we first define a mapping h, which maps a structure
S ∈ StS(R,C) to a source-separated structure h(S) ∈ StSsep(R,C) by splitting
sources that were identified in S.

We assume that the countable set of constant symbols (from which C is
taken, see Section 3.2) is linearly ordered. Let hS0 :C → C be given by

hS0 (c) = min{d ∈ C | cS = dS}.

We let CS
0 = hS0 (C) and CS

1 = C \ CS
0 . The structure h(S) has domain set

the disjoint union of S and CS
1 . For each c ∈ CS

0 , the c-source of h(S) is the
c-source of S, and for each c ∈ CS

1 , the c-source of h(S) is the element c ∈ CS
1 .

Finally, for each r ∈ R, the relation rh(S) equals the relation rS (so it does not
involve the elements of CS

1). Observe that h is not a qfd operation, and that
hS0 , C

S
0 and CS

1 depend only on ζ(S).
Now let L be an Ssep-recognizable subset of StSsep and let ≡ be a locally

finite Ssep-congruence recognizing it. We need to construct a locally finite S-
congruence ∼ on StS which recognizes L.

The relation ∼ on StS is defined as follows. If S, T ∈ StS(R,C), we say
that S ∼ T if ζ(S) = ζ(T) and h(S) ≡ h(T). It is immediately verified that ∼
is an equivalence relation. Moreover, the ∼-class of a structure S is determined
by its ζ-class, and by the ≡-class of h(S). Since both ζ and ≡ are locally finite,
∼ also is locally finite.

18

Let us now prove that ∼ is an S-congruence. Let S ∼ T ∈ StS(R,C) and
S′ ∼ T ′ ∈ StS(R′, C′), with C ∩ C′ = ∅. By Proposition 3.9, ζ(S ⊕ S′) =
ζ(T ⊕ T ′). It is not difficult to verify that

h(S ⊕ S′) = h(S)⊕ h(S′).

It follows that h(S ⊕ S′) ≡ h(T ⊕ T ′) since ⊕ is an operation in Ssep. Thus
S ⊕ S′ ∼ T ⊕ T ′.

Next let g be a qfd operation from StS(R,C) to StS(Q,B), given by the
qfd operation scheme (δ, (ψq)q∈Q, (κc,b)c∈C,b∈B). Let S and T be ∼-equivalent
elements of StS(R,C), which will remain fixed for the rest of this proof. We
need to show that g(S) ∼ g(T). We already know from Proposition 3.9 that
if S ∼ T ∈ StS(R,C), then ζ(g(S)) = ζ(g(T)), and we want to show that
h(g(S)) ≡ h(g(T)).

Since ζ(g(S)) = ζ(g(T)), the mappings h
g(S)
0 and h

g(T)
0 , from B to B, co-

incide. Let B0 = h
g(S)
0 (B) and B1 = B \ B0. Without loss of generality, we

may assume that B1 ∩C = ∅. The domain set of h(g(S)) (resp. h(g(T))) is the
disjoint union of the domain of g(S) (resp. g(T)) and B1.

It suffices to show that there exists a qfd operation k ∈ Ssep, depending on
g and ζ(S), such that h(g(S)) = k(h(S) ⊕ B1) and h(g(T)) = k(h(T) ⊕ B1)
(where B1 is the source-only element of StSsep(∅, B1)). Indeed, the fact that ≡
is an Ssep-congruence will then imply that h(g(S)) ≡ h(g(T)).

Let δ′ be obtained from δ by replacing every occurrence of c ∈ C by hS0 (c).
For each q ∈ Q, c ∈ C and b ∈ B, let ψ′

q be obtained from ψq and κ′c,b be
obtained from κc,b in the same fashion.

Let now k′:StS(R,C ∪B1) → StS(Q,B) be defined by the scheme

(γ′, (χ′
q)q∈Q, (λ

′
c,b)c∈C∪B1,b∈B) defined as follows:

γ′(x) =
(
δ′(x) ∧

∧

c∈CS
1

¬(x = c)
)
∨

∨

b∈B1

(x = b)

χ′
q = ψ′

q for each q ∈ Q

λ′b,b = true if b ∈ B1

λ′c,b = false if b ∈ B1 and c 6= b

λ′c,b = false if b ∈ B0 and c ∈ CS
1

λ′c,b =
∨

h
g(S)
0 (a)=b, hS

0 (d)=c

κ′d,a if b ∈ B0 and c ∈ CS
0 .

It is now a routine verification that (for our fixed structure S) k′(h(S) ⊕
B1) = h(g(S)). Since all our definitions depend only on ζ(S), we also have
k′(h(T)⊕B1) = h(g(T)).

One last step is required in this proof as the qfd operation k′ may not
preserve source separation for all structures, that is, k′ may not lie in Ssep. It
does for the particular structures h(S)⊕B1 and h(T)⊕B1, but perhaps not for
others. Actually, structures U such that ζ(U) 6= ζ(h(S) ⊕ B1) = ζ(h(T)⊕ B1)

19

do not matter in this context, so we can replace k′ by the operation k, with
the same domain and range as k′, which maps a structure U to k′(U) if ζ(U) =
ζ(h(S)⊕B1), and to the source-only source-separated structure B ∈ StS(Q,B)
where all relations are empty. This new operation k preserves source separation
by construction, and it is easily verified to be qfd. This completes (at last) the
proof. ⊓⊔

4 The algebra GP of graphs with ports

Graphs with ports were introduced in Section 3.1. Recall that if P is a set of
unary relation symbols, then EP denotes the set EP = {edge}∪P and the class
of graphs with ports in P , written GP(P) can be identified with StS(EP). We
observe that a vertex of a graph with ports in P can be a p-port for one or
several port labels p ∈ P , or for none at all.

For convenience, we will consider that P is a finite subset of the set N of
natural integers.

4.1 The signature VR on graphs with ports

We define the set of sorts of the algebra GP to be the set of finite subsets of N.
For each such subset P , the set of elements of GP of sort P is the set GP(P) of
graphs with ports in P .

The signature VR consists of constants, unary operations and binary opera-
tions. These operations (interpreted in GP) are as follows.

First, if P,Q are finite subsets of N, then ⊕ is as in StS, and is thus a binary
operation of type (EP , EQ) → EP∪Q. In GP , we consider ⊕ as an operation of
type (P,Q) → P ∪Q.

Next, the unary operations of VR are the following (clearly qfd) operations:

• if p, q are distinct integers, addp,q is an operation of type P → P for each
sort P such that p, q ∈ P : it modifies neither the domain (the set of
vertices) nor the unary relations p (p ∈ P); the new edge relation has the
existing edges, plus every edge from a p-port to a q-port: it is given by

edge (x, y) ∨ (p(x) ∧ q(y));

• if D is a finite subset of N×N, mdfD is an operation of type P → Q where
P is any finite set containing the domain of the relation D and Q is any
finite set containing the range of D; it modifies neither the domain (set of
vertices) nor the edge relation; for each q ∈ Q, the q-ports of the output
structure are the vertices of the input structure that are p-ports for some
p such that (p, q) ∈ D; that is, q(x) is given by

∨
(p,q)∈D p(x).

Finally, for each integer p, we let p be the constant of type {p} denoting the
graph with a single vertex, no edges, and whose vertex is a p-port. We also let
ploop be the same graph, with a single loop.

20

Remark 4.1 The following operations on graphs with ports occur in the liter-
ature, and are particular cases of VR-operations.

Let p 6= q be integers, P be a subset of N containing p and Q = P \{p}∪{q}.
The operation renp→q, of type P → Q which renames every p-port to a q-port, is
an operation of VR: it is equal tomdfD whereD = {(r, r) | r ∈ P \{p}}∪{(p, q)}.
Observe that this operation fuses the sets of vertices defined by p and q.

Let p be an integer, and let P be a subset of N containing p. The operation
fgp, of type P → P \{p}, which forgets p-ports is an operation of VR: it is equal
to mdfD where D = {(r, r) | r ∈ P \ {p}}. ⊓⊔

Remark 4.2 In our definition of graph with ports, an element of GP(Q) does
not need to have q-ports for each q ∈ Q. Thus, if P ⊆ Q, every graph with
ports in P can also be viewed as a graph with ports in Q. The natural inclusion
of GP(P) into GP(Q) is part of the signature VR: it is equal to mdfD where
D = {(p, p) | p ∈ P}. ⊓⊔

Remark 4.3 Again (as in Example 3.4), the operations introduced in this sec-
tion are denoted by overloaded symbols. A formal definition should specify the
type of the operation, and would read something like addp,q,P or mdfD,P,Q. We
prefer the more concise notation introduced here. ⊓⊔

4.2 A technical result

The following result describes the action of a qfd operation on a disjoint union of
structures. It is the key to the main results of this section, described in Section
4.3 below.

Proposition 4.4 Let ζ be the type congruence (see Section 3.3). Let h be
a unary qfd operation on StS, from StS(R,C) to StS(EQ, ∅) = GP(Q), let
(R1, C1) and (R2, C2) be sorts of StS such that R = R1 ∪R2, C1 ∩C2 = ∅ and
C = C1 ∪ C2, and let ~z = (z1, z2) with z1 a ζ-class in StS(R1, C1) and z2 a
ζ-class in StS(R2, C2).

Then there exist quantifier-free definable operations g1,~z:StS(R1, C1) → GP(Q1,~z),
g2,~z:StS(R2, C2) → GP(Q2,~z), and f~z:GP(Q1,~z ∪Q2,~z) → GP(Q), such that

• f~z is a composition of unary operations in VR;

• for each x1 ∈ StS(R1, C1) in class z1 and each x2 ∈ StS(R2, C2) in class
z2, h(x1 ⊕ x2) = f~z(g1,~z(x1)⊕ g2,~z(x2)).

Proof. Let (δ, ψedge, (ψq)q∈Q) be the qfd operation scheme defining the oper-
ation h: here ψedge defines the edge relation, ψq defines the q-ports (q ∈ Q),
and there is no formula of the form κc,d since the range of h is in GP(Q) =
StS(EQ, ∅). The formulas δ, ψedge and ψq, for q ∈ Q, are in the language of
(R,C)-structures.

21

The atoms of δ(v) are either of the form r(y1, . . . , yρ(r)) (r ∈ R), or v = c, or
c1 = c2 (c, c1, c2 ∈ C). Let δ1 be the formula obtained from δ(v) by substituting
the Boolean value 0 (false) for the following atoms, which are certainly false in a
disjoint sum x1⊕x2, with x1 ∈ StS(R1, C1), x2 ∈ StS(R2, C2) and the variable
v interpreted in x1:

• each r-atom such that r 6∈ R1 and an argument of r is v or a constant in
C1;

• each r-atom such that r 6∈ R2 and an argument of r is a constant in C2;

• each r-atom such that r ∈ R1 ∩R2, an argument of r is a constant in C2,
and another argument of r is v or a constant in C1;

• each atom of the form y = c such that c ∈ C2 and y is equal to v or to a
constant in C1.

The remaining atoms in δ1 are either in QF (R1, C1, {v}) or in QF (R2, C2, ∅).
Note that the ζ-class of an element of StS(R2, C2) determines entirely which
formulas in QF (R2, C2, ∅) it satisfies. For each ~z as in the statement of the
proposition, we let δ1,~z be the formula in QF (R1, C1, {v}) obtained from δ1 by
replacing each atom in QF (R2, C2, ∅) by the Boolean value 0 or 1 according to
the ζ-class z2. We observe that if v is a vertex of x1 ⊕ x2 which happens to be
in x1, then

δ(v) ⇐⇒ δ1,~z(v) whenever the ζ-class of x2 is z2.

For each q ∈ Q, let ψ1,~z
q be defined similarly. Then we also have, if v is a vertex

of x1 ⊕ x2 in x1,

ψq(v) ⇐⇒ ψ1,~z
q (v) whenever the ζ-class of x2 is z2.

Let also δ2,~z and ψ2,~z
q be defined dually. And again, if i, j ∈ {1, 2}, we let

ψi,j
edge(v, w) be the formula obtained from ψedge by substituting the Boolean value

0 for the atoms that are certainly false in a disjoint sum x1⊕x2 for the variable
v interpreted in xi and the variable w interpreted in xj :

• each r-atom such that r 6∈ Ri and v is an argument of r;

• each r-atom such that r 6∈ Rj and w is an argument of r;

• each r-atom such that r 6∈ R1 and a constant in C1 is an argument of r;

• each r-atom such that r 6∈ R2 and a constant in C2 is an argument of r;

• each r-atom such that r ∈ R1 ∩R2, an argument of r is a constant in C2,
and another argument of r is a constant in C1;

• each r-atom such that r ∈ R1 ∩ R2, an argument of r is v (resp. w) and
another argument of r is a constant in C3−i (resp. C3−j);

22

• each atom of the form v = c with c ∈ C3−i, w = c with c ∈ C3−j , or
c1 = c2 with c1 ∈ C1 and c2 ∈ C2;

• if i 6= j, each r-atom such that r ∈ R1 ∩ R2, and v and w are arguments
of r.

As above, the remaining atoms in ψ1,1
edge are inQF (R1, C1, {v, w})∪QF (R2, C2, ∅),

and for each ~z, we let ψ1,1,~z
edge be obtained from ψ1,1

edge by substituting the Boolean
values 0 or 1 for the atoms in QF (R2, C2, ∅) according to the ζ-class z2. If v, w
are vertices of x1 ⊕ x2 in x1, and if the ζ-class of x2 is z2, then

ψedge(v, w) ⇐⇒ ψ1,1,~z
edge (v, w).

We define ψ2,2,~z
edge similarly, and get the analogous equivalence.

If i 6= j, the atoms of ψi,j
edge are in QF (Ri, Ci, {v}) and in QF (Rj , Cj , {w})

– which may include atoms in QF (R1, C1, ∅) and in QF (R2, C2, ∅). Again, we

let ψi,j,~z
edge be obtained from ψi,j

edge by substituting the Boolean values 0 or 1 for
the atoms without free variables according to the ζ-classes z1 and z2. And we
observe that if v, w are vertices of x1 ⊕ x2, v is in xi and in the ζ-class zi, w is
in xj and in the ζ-class zj, then

ψedge(v, w) ⇐⇒ ψi,j,~z
edge (v, w).

Now let k = 1+max(Q), let Xk+1, . . . , Xℓ be an enumeration of the subsets
of QF (R1, C1, {y}), and let Yℓ+1, . . . , Ym be an enumeration of the subsets of
QF (R2, C2, {y}). Let us denote by Q1 the set Q∪ {k+ 1, . . . , ℓ} and by Q2 the
set Q ∪ {ℓ+ 1, . . . ,m}.

We define the qfd operation g1,~z:StS(R1, C1) → GP(Q1) defined by the
following operation scheme:

δ1,~z, ψ1,1,~z
edge , ψ1,~z

q (q ∈ Q), θn (k + 1 ≤ n ≤ ℓ)

where for each k + 1 ≤ n ≤ ℓ, θn(v) holds if the set of quantifier-free formulas
in QF (R1, C1, {y}) satisfied by v is exactly Xn.

Similarly, the qfd operation g2,~z:StS(R2, C2) → GP(Q2) is defined by the
operation scheme

δ2,~z, ψ2,2,~z
edge , ψ2,~z

q (q ∈ Q), θn (ℓ+ 1 ≤ n ≤ m)

where for each ℓ + 1 ≤ n ≤ m, θn(v) holds if the set of quantifier-free formulas
in QF (R2, C2, {y}) satisfied by v is exactly Xn.

Finally, we consider structures x1 ∈ StS(R1, C1) and x2 ∈ StS(R2, C2),
with ζ-classes respectively z1 and z2, and we compare the graphs with ports
g1,~z(x1) ⊕ g2,~z(x2) and h(x1 ⊕ x2). The above remarks show that these two
graphs have the same set of vertices, the same q-ports (q ∈ Q), and the same
edges between two vertices of x1 or two vertices of x2. On the other hand,
g1,~z(x1) ⊕ g2,~z(x2) misses the edges of h(x1 ⊕ x2) that connect a vertex of x1
with a vertex of x2.

23

These edges are captured by the formulas ψ1,2,~z
edge and ψ2,1,~z

edge . Now, if v is a
vertex of x1 and w is a vertex of x2, we already observed that the truth values
of ψ1,2,~z

edge (v, w) and ψ2,1,~z
edge (w, v) are entirely determined by the quantifier-free

formulas with one free variable satisfied by v in x1 and by w in x2: that is, they
are entirely determined by the (unique) index k + 1 ≤ n ≤ ℓ such that θn(v)
and by the (unique) index ℓ + 1 ≤ n ≤ m such that θn(w). In other words,

ψ1,2,~z
edge (a, b) and ψ

2,1,~z
edge (b, a) are equivalent to disjunctions of conjunctions of the

form
θn(a) ∧ θu(b) for some k + 1 ≤ n ≤ ℓ and ℓ+ 1 ≤ u ≤ m.

Thus the edges in h(x1 ⊕ x2) from a vertex of x1 to a vertex of x2 can be
created from g1,~z(x1) ⊕ g2,~z(x2) by applying repeatedly the operations (in VR)

of the form addn,u such that n ∈ [k + 1, ℓ], θn ∧ θu is a disjunct of ψ1,2,~z
edge .

Similarly, the edges in h(x1 ⊕ x2) from a vertex of x2 to a vertex of x1 can
be created from g1,~z(x1) ⊕ g2,~z(x2) by applying the appropriate operations of
the form addu,n. The last operation consists in forgetting the auxiliary ports
numbered k+1 to m, that is, in applying the operation mdfD, with D = {(q, q) |
q ∈ Q}. ⊓⊔

4.3 Recognizable sets of graphs with ports

In this section, we consider different notions of recognizability that can be used
for sets of graphs with ports. Let L ⊆ GP(P). Then L can be VR-recognizable,
as a subset of the VR-algebra GP . It can also be S-recognizable, as a subset
of the S-algebra StS since GP(P) = StS(EP). Finally, we introduce another
signature, written VR+, on GP : it is obtained from VR by adding all the qfd
operations between the sorts of GP .

Theorem 4.5 Let P be a finite subset of N and let L be a subset of GP(P).
The following properties are equivalent:

1 L is S-recognizable;

2 L is VR+-recognizable;

3 L is VR-recognizable;

Proof. Since the operations of VR are operations of VR+, and the operations
of VR+ are operations of S, it follows from Proposition 2.1 that (1) implies (2),
and (2) implies (3). Thus, we only need to verify that (3) implies (1).

We use Lemma 2.5, with F = VR, S = GP , G = S, T = StS, and ζ the
type congruence (see Section 3.3), which relates structures with sources of the
same sort, provided they satisfy the same quantifier-free formulas. We use the
collection H of sets H(R,C),P of unary qfd operations from StS(R,C) to GP(P).

Let L be a VR-recognizable subset of GP(P) and let ≡ be a locally finite
VR-congruence on GP such that L is a union of ≡-classes. Since ζ is a locally
finite S-congruence on StS (Proposition 3.9), its restriction to GP is also a

24

locally finite VR-congruence; and the intersection of ≡ and ζ is a locally finite
VR-congruence on GP which saturates L. Thus we can assume, without loss of
generality, that ≡-equivalent elements of GP are also ζ-equivalent.

Next we consider the equivalence relation ≈ on StS defined as in Lemma 2.5.
Note that the identity of GP(P) belongs to H(EP ,∅),P , so that ≈-equivalent ele-
ments of GP(P) = StS(EP , ∅) are also ≡-equivalent. In particular, ≈ saturates
L and it suffices to show that ≈ is locally finite and is a S-congruence. In view of
Lemma 2.5, it is enough to verify that H satisfies the assumptions of Lemma 2.3
and 2.4.

We first verify the hypothesis of Lemma 2.3. Let g be an operation of S:
either g is a unary qfd operation or g = ⊕. In the latter case, Proposition 4.4
states precisely that the required property holds.

If g is a qfd operation of type (R1, C1) → (R,C), and h ∈ H(R,C),P , then
h ◦ g is a qfd operation (Lemma 3.7) and hence, h1 = h ◦ g ∈ H(R1,C1),P . Now
letting f be the identity mapping of GP(P), we find that h(g(x)) = f(h1(x)) as
required. In this case, h1 and f do not depend on the ζ-class of x.

Next, we turn to the verification of the hypothesis of Lemma 2.4. Let ϕ1,
. . . , ϕk be an enumeration of the elements of QF (R,C, {x}) and let χ1, . . . , χℓ

be an enumeration of the elements of QF (R,C, {x, y}).
Thus, a qfd operation scheme from StS(R,C) into GP(Q) consists in the

choice of a formula δ = ϕi0 (1 ≤ i0 ≤ k), a formula ψedge = χj (1 ≤ j ≤ ℓ), a
sequence of formulas ϕi1 , . . . , ϕir (1 ≤ i1 < . . . < ir ≤ k), and a partition of Q
as Q = Q1 ∪ · · · ∪Qr: if q ∈ Qj , then ψq = ϕij . (If Q = ∅, then r = 0.)

Let us now consider two unary qfd operations g:StS(R,C) → GP(Q) and
g′:StS(R,C) → GP(Q′), associated with the same choice of values i0, j and
i1 < . . . < ir. Let Q = Q1∪· · ·∪Qr and Q

′ = Q′
1∪· · ·∪Q′

r be the corresponding
partitions of Q and Q′. Finally let π, π0, π1, . . . , πr be the following operations
in the signature VR. These operations have the common particularity to not
alter the graph structure, and to modify only the port predicates.

The mapping π0 shifts every port index of an element of GP(Q) by m =
max(Q′), to yield a graph with ports in Q + m, whose port names do not
intersect Q′. We let Rh = Qh +m for 1 ≤ h ≤ r.

For 1 ≤ h ≤ r, πh = mdfDh
where

Dh = {(a, a) | a ∈
⋃

i<h

Q′
i ∪

⋃

i>h

Ri} ∪ (Rh ×Q′
h).

Thus πh turns a graph with ports in Q′
1+ · · ·+Q′

h−1+Rh+Rh+1+ · · ·Rr into a
graph with ports in Q′

1+ · · ·+Q′
h−1+Q

′
h+Rh+1+ · · ·Rr, with the same vertex

set, the same edge relation, the same q-ports for each q ∈
⋃

i<hQ
′
i ∪

⋃
i>hRi,

and with each r-port (r ∈ Rh) turned into a q-port for each q ∈ Q′
h.

It is now an easy verification that, if π = πr◦· · ·◦π1◦π0, then g′(x) = π(g(x))
for each x ∈ StS(R,C). Thus the quasi-order ≤(R,C) defined in Lemma 2.4 is
in fact a finite index equivalence relation, and this concludes the proof. ⊓⊔

Remark 4.6 This actually proves also that we get the same recognizable sets
of graphs with ports, if we consider GP(Q) as a domain of sort Q in the alge-

25

bra of structures without sources — which consists of the domains StS(R, ∅)
equipped with the operations of S between them. If we were only interested
in the equivalence of this recognizability with VR- and VR+-recognizability (or
just the equivalence between VR- and VR+-recognizability), we could do with
Lemmas 2.3 and 2.4 instead of Lemma 2.5, and with a simpler version of Propo-
sition 4.4, making no reference to ζ. ⊓⊔

4.4 Variants of the algebra of graphs with ports

The first variant considered here replaces the signature VR by a smaller sig-
nature, which we will see is equivalent to VR in terms of recognizability. The
second one concerns a certain class of graphs with ports, and is central in the
definition of the clique-width of a finite graph.

4.4.1 A variant of VR on GP

In Section 4.3, we exhibited signatures larger than VR, for which all the VR-
recognizable sets of graphs with ports are recognizable: namely the signature
VR+ on GP and the signature S on the wider algebra StS. In contrast, we
exhibit in this section a smaller signature (in fact, a signature consisting of
VR-derived operations) which does not create new recognizable subsets.

The basic idea behind the definition of this new signature is the following:
when we evaluate a VR-term t of the form addp,q(t

′), then we add edges from
each p-port of G′, the value of t′, to each of its q-ports. It may happen that
some edges from a p-port to a q-port already exist in G′. In this case, we do
not add a parallel edge since we are dealing with simple graphs. Thus the term
t presents a form of redundancy, since some of its edges may be, in some sense,
defined twice.

For disjoint sets of port labels P and Q, we denote by J(P,Q) the set of
VR-derived unary operations defined by terms of the form f1(f2(. . . (fn(x)) . . .)),
where the fi are of the forms addp,q or addq,p for p in P and q in Q. Since the
operations addp,q are idempotent and commute with one another, an operation
in J(P,Q) is completely described by a subset of (P × Q) ∪ (Q × P). Thus
J(P,Q) is finite, although one can write infinitely many terms specifying its
elements. For each element J ∈ J(P,Q), we let ⊗J denote the binary operation
defined, for G ∈ GP(P) and H ∈ GP(Q), by G⊗J H = J(G⊕H).

We observe that in the evaluation of a term of the form t⊗J t
′, the application

of ⊗J does not recreate edges that already exist in G, the value of t, or in G′, the
value of t′ since the addp,q operations forming ⊗J add edges between the disjoint
graphs G and G′ (because p and q are not port labels of the same argument
graphs).

Now the signature NLC consists of the operations ⊗J as above, the unary
qfd operations of the form fgp and renp→q as defined in Remark 4.1, and the

constants p and ploop as in VR. We denote by GPNLC the NLC-algebra of graphs
with ports.

26

Remark 4.7 The notation NLC refers to a very similar algebra used by Wanke
[44]. ⊓⊔

Example 4.8 We have in fact already encountered NLC-operations and NLC-
derived operations.

The VR-derived operation f~z whose existence is proved in Proposition 4.4
is actually NLC-derived. Consider indeed the last paragraphs of the proof of
that proposition: the operation f~z is obtained by first composing operations
of the form addn,u and addu,n, where the pairs (n, u) lie in a certain subset of
[k+1, ℓ]×[ℓ+1,m] and the pairs (u, n) lie in another subset of [ℓ+1,m]×[k+1, ℓ],
and then composing operations of the form fgp.

One can also check that the operations π0, . . . , πr at the end of the proof of
Theorem 4.5 are NLC-derived. ⊓⊔

Proposition 4.9 Let P be a finite subset of N and let L be a subset of GP(P).
Then L is VR-recognizable if and only if L is NLC-recognizable.

Proof. The proof is a simple extension of the proof of Theorem 4.5.
Since the operations of NLC are VR-derived, every VR-recognizable subset

of GP is NLC-recognizable. For the converse, we observe that the proof that (1)
implies (3) in Theorem 4.5 can be modified to show that an NLC-recognizable
set of GP is S-recognizable.

Again, we rely on Lemma 2.5, but now with F = NLC, S = GP , and G, T ,
ζ and H as in Theorem 4.5.

In order to justify the fact that the arguments used in the proof of Theo-
rem 4.5 are also valid with these assumptions, we refer to Example 4.8. Indeed
this example shows two things: on one hand, the operation f~z in Proposition 4.4
is in fact NLC-derived, so that the first hypothesis of Lemma 2.5 is satisfied by
this new choice of F and S. On the other hand the finiteness hypothesis of
Lemma 2.4 is also satisfied with this new value of F = NLC. This completes
the proof. ⊓⊔

4.4.2 Graphs whose port labels partition the vertex set

In certain contexts, and in particular in the definition of the clique-width of a
graph (see Remark 4.11 below), one needs to consider graphs with ports where
port labels partition the vertex set. More precisely, for each set of port labels P ,
let GPπ(P) be the set of elements of GP(P) such that each vertex is a port, and
no vertex is both a p-port and a q-port for p 6= q. Let also GPπ = (GPπ(P)).

Note that GPπ is preserved by the operations of the form ⊕, addp,q and
renp→q. These operations form the signature VRπ, and GPπ is a VRπ-algebra.

Remark 4.10 The operation addp,q is written αp,q in [19]. ⊓⊔

27

Remark 4.11 The clique-width of a finite graph G, denoted by cwd(G), is
defined as the smallest cardinality of a set P such that G is the value of a
(finite) VRπ-term using a set P of port labels, see [19, 7].

For algorithmic applications [20], it is useful to have efficient recognition
algorithms for classes of graphs of clique-width at most k. At the moment we
only know that this problem is NP . It is polynomial for k ≤ 3, see [7]. ⊓⊔

Proposition 4.12 Let L be a subset of GPπ(P). Then L is VRπ-recognizable
if and only if L is VR-recognizable.

Proof. Since VRπ consists of operations in VR, every locally finite VR-cong-
ruence on GP induces a locally finite VRπ-congruence on GPπ. In particular, if
L is VR-recognizable, and hence is saturated by a locally finite VR-congruence
on GP , then L is saturated by a locally finite VRπ-congruence on GPπ, and
hence L is VRπ-recognizable.

To prove the converse, we first introduce the mapping σ:GP → GPπ defined
as follows. If G ∈ GP(P), then σ(G) is the graph in GPπ(2P) with the same
set of vertices and the same edge relation as G, and such that for each vertex
v and each X ⊆ P , v is an X-port in σ(G) if and only if X is the set of p ∈ P
such that v is a p-port in G. We say that a port label p is void in G if there are
no p-ports in G.

Now let us assume that L is VRπ-recognizable, and let ≡ be a locally finite
congruence on GPπ saturating it. If G,H ∈ GP(P), we let G ∼ H if σ(G) and
σ(H) have the same non-void port labels, and σ(G) ≡ σ(H). It is immediately
verified that ∼ is a locally finite equivalence relation.

We now verify that ∼ is a VR-congruence. If G ∈ GP(P) and H ∈ GP(Q),
it is easily seen that σ(G⊕H) = σ(G)⊕σ(H). If p, q ∈ P , then σ(addp,q(G)) =
f(σ(G)) where f is the composition of the operations addX,Y for each X,Y ⊆ P
such that p ∈ X and q ∈ Y . Finally, one can verify that if D ⊆ P × Q, then
σ(mdfD(G)) = g(σ(G)) where g is the composition of the operations renX→Y ,
where X ⊆ P , Y ⊆ Q and Y = D−1(X) = {q ∈ Q | (p, q) ∈ D for some p ∈ P}.

It is a routine task to derive from these observations the fact that ∼ is a
VR-congruence. We now need to verify that ∼ saturates L. Let G ∈ L and
G ∼ H . In particular, G ∈ GPπ, so that the non-void port labels of σ(G) are
exactly the sets {p} where p is a non-void port label of G. Since σ(G) and σ(H)
have the same non-void port labels, H is also in GPπ. Moreover, if h is the
composition of the operations ren{p}→p (p non-void in G), then G = h(σ(G))
and H = h(σ(H)). Since h is VRπ-derived, it follows that G ≡ H , and hence
H ∈ L. This concludes the proof. ⊓⊔

5 The algebra of graphs with sources

Recall that we call graphs with sources the elements of StS of sort (E,C), where
E = {edge} and C is some finite set of source labels, and that we write GS(C)
for StS(E,C) (see Section 3.1).

28

5.1 The signature HR

The disjoint union ⊕ and the operations of the form srcrena→b, srcfga and fusa,b
(defined in Example 3.4) preserve graphs with sources. We denote by HR the
signature consisting of all these operations, so GS is an HR-algebra.

We note the following properties of HR-recognizability.

Proposition 5.1 Let C be a finite set of source labels. Every S-recognizable
subset of StS(E,C) is HR-recognizable.

Proof. This is a simple consequence of Proposition 2.1 and of the observation
given above that the operations of HR are also operations of S. ⊓⊔

Note that the class Graph of graphs, defined in Section 3.1, is equal to GP(∅)
as well as to GS(∅) = StS(E). Thus VR-recognizability and HR-recognizability
are properties of subsets of Graph.

Corollary 5.2 Let L be a set of graphs (a subset of Graph). If L is VR-
recognizable, then it is HR-recognizable.

Proof. This follows immediately from Proposition 5.1 and Theorem 4.5. ⊓⊔

Remark 5.3 Intuitively, the VR-operations are more powerful than the HR-
operations (every HR-context-free set of simple graphs is VR-context-free but
the converse is not true, Courcelle [14]), but the HR-operations are not among
the VR-operations, nor are they derived from them. ⊓⊔

We will see in Sections 6.1 and 6.2 sufficient conditions for HR-recognizable
sets to be VR-recognizable, and in Section 6.3, examples of HR-recognizable sets
which are not VR-recognizable.

5.2 Variants of the algebra of graphs with sources

We find in the literature a number of variants of the signature HR or of the
algebra GS. We now discuss these different variants, to verify that they do not
introduce artefacts from the point of view of recognizability.

5.2.1 The signature HR‖

Let HR‖ denote the signature on GS obtained by substituting the parallel com-
position ‖ for ⊕ (see Section 3.5.1). With the same proof as Proposition 3.15,
we get the following result.

Proposition 5.4 Let L be a subset of GS. Then L is HR-recognizable if and
only if it is HR‖-recognizable.

29

5.2.2 Source-separated graphs

As in Section 3.5.2, we now discuss the class GSsep of source separated graphs.
The operations of HR all preserve source separation, except for fusa,b, but we
defined in Example 3.16 the operation fusa→b = srcfga ◦ fusa,b which does. Let
HRsep be the signature on GSsep consisting of ⊕ and the qfd unary operations of
the form srcrena→b, srcfga and fusa→b.

Proposition 5.5 Let L be a subset of GSsep. Then L is HR-recognizable if and
only if it is HRsep-recognizable.

Proof. Since HRsep consists only of HR-derived operations, every HR-recog-
nizable set subset of GSsep is also HRsep-recognizable.

The proof of the converse is a variant of the proof of Theorem 3.18. First we
note that the type relation ζ (see Section 3.3) is also an HR-congruence on GS.
We use the same mapping h defined in the proof of Theorem 3.18, that maps a
graph with sources S ∈ GS(C) to a source-separated graph h(S) ∈ GSsep(C) by
splitting sources that were identified in S. We refer to that proof for notation
used here.

If L is an HRsep-recognizable subset of GSsep and ≡ is a locally finite HRsep-
congruence recognizing it, we define a relation ∼ on GS as follows. If S, T ∈
GS(C), we say that S ∼ T if ζ(S) = ζ(T) and h(S) ≡ h(T). As in the proof of
Theorem 3.18, ∼ is easily seen to be a locally finite equivalence relation. It is
also easily seen that ∼ is preserved under the HRsep-operation ⊕.

We now need to verify that if S ∼ T ∈ GS(C) and g is one of the unary
operations of HRsep defined on GS(C), then g(S) ∼ g(T). Again, Proposi-
tion 3.9 shows that ζ(g(ζ(S))) = ζ(g(ζ(T))) and we want to show that h(g(S)) ≡
h(g(T)). The graphs S and T are fixed for the rest of this proof. We write h0,
C0 and C1 for hS0 , C

S
0 and CS

1 .
As in the proof of Theorem 3.18, it suffices to construct an HRsep-derived op-

eration k, depending on g and ζ(S), such that h(g(S)) = k(h(S)) and h(g(T)) =
k(h(T)). There is no reason why the operation k constructed in the proof of
Theorem 3.18 should be HRsep-derived, but the operations g considered here,
namely srcrena→b, srcfga and fusa→b are simple enough that we can directly
construct a suitable k in each case.

If g = srcrena→b Then g is defined on GS(C) (where a ∈ C and b 6∈ C) and
its range is GS(C \ {a} ∪ {b}). One verifies that h(srcrena→b(S)) is equal to:

• srcrena→b(h(S)) if a ∈ C1 and b > h0(a);

• srcrena→h0(a)(srcrenh0(a)→b(h(S))) if a ∈ C1 and b < h0(a);

• srcrena→b(h(S)) if a ∈ C0 and b < c for every c ∈ C1 such that h0(c) = a;

• srcrenc→b(srcrenb→c(h(S))) if a ∈ C0 and b > c = min{d ∈ C1 | h0(d) = a.

30

If g = srcfga Then g is defined on GS(C) (where a ∈ C) and its range is
GS(C \ a). One verifies that h(srcfga(S)) is equal to:

• fusa→h0(a)(h(S)) if a ∈ C1;

• fusa→c if a ∈ C0, h0
−1(a) 6= ∅ and c = min{h0

−1(a)};

• srcfga(h(S)) if a ∈ C0 and h0
−1(a) = ∅.

If g = fusa→b Then g is defined on GS(C) (where a 6= b ∈ C) and its range is
GS(C \ a). One verifies that h(fusa→b(S)) is equal to:

• srcrena→h0(a)(fush0(a)→h0(b)(h(S))) if a ∈ C1 and h0(b) < h0(a);

• srcrena→h0(b)(fush0(b)→h0(a)(h(S))) if a ∈ C1 and h0(b) > h0(a);

• srcrena→h0(a)(h(S)) if a ∈ C1 and h0(b) = h0(a);

• fusa→h0(b)(h(S)) if a ∈ C0 and a > h0(b);

• srcrena→c(fush0(b)→a(h(S))) if a ∈ C0, and c = min{h0(b), h
−1
0 (a)}, and

a < h0(b);

• srcrena→c(fusa→c(h(S))) if a ∈ C0, a = h0(b) and c = min{d ∈ C1 |
h0(d) = a}.

This concludes the proof. ⊓⊔

Again with the same proof as for Proposition 3.15, we can show that the
operation ⊕ can be replaced by ‖ in the signature HRsep – yielding the signature
HRsep,‖.

Proposition 5.6 Let L be a subset of GSsep. Then L is HRsep-recognizable if
and only if it is HRsep,‖-recognizable.

5.2.3 Other variants

The equivalence between HRsep,‖- and HR‖-recognizability for a set of source-
separated graphs – a consequence of Propositions 5.4, 5.5 and 5.6 – was already
established by Courcelle in [10] for graphs with multi-edges (see Section 7). In
the same paper, Courcelle established the equivalence between HRsep- and B-
recognizability for several variants B of the signature HR, which we now describe.
We refer to [10] for the proofs.

For each finite set C of source labels, let srcfgall be the composition of the
operations srcfgc for each c ∈ C (in any order). Let also ✷C be the follow-
ing binary operation on GSsep, of type (C,C) → ∅: if G,H ∈ GSsep(C), then
G✷CH = srcfgall(G ‖ H): G ✷C H is obtained by first taking the parallel
composition G ‖ H , and then forgetting all source labels.

Let CS be the signature on GSsep, which consists only of the ✷C operations.

31

Let HRfg be the derived signature of HR‖, which consists of the operations
srcfgall and ‖.

Let HRren be the subsignature of HR‖, which consists of the operations
srcrenp→q and ‖.

Let HRren
sep be the subsignature of HRsep,‖, which consists of the operations ‖

and those operations srcrenp→q which preserve source separation.
The following result is a compilation of [10, Section 4].

Proposition 5.7 If L ⊆ GS, then L is HR-recognizable if and only if L is
HRren-recognizable.

If L ⊆ GSsep, then L is HRsep-recognizable if and only if L is HRren
sep-recognizable.

If L ⊆ Graph, the following are equivalent:

• L is HR-recognizable;

• L is CS-recognizable;

• L is HRfg-recognizable.

Remark 5.8 The notation CS refers to the notion of fully cutset-regular sets
of graphs, introduced by Abrahamson and Fellows [1]. Full cutset-regularity is
equivalent to CS-recognizability. ⊓⊔

In [10], Courcelle also shows a number of closure properties of the class of
HRsep-recognizable sets of source-separated graphs with sources. In particular,
it is shown that this class contains all singletons and it is closed under the
operations of HRsep [10, Section 6].

Finally Courcelle shows the following result [10, Theorem 6.7].

Proposition 5.9 Let L ∈ GS(C). Then L is HR-recognizable if and only if
srcfgall(L) is HR-recognizable.

6 Finiteness conditions ensuring that HR- and

VR-recognizability coincide

We saw that a VR-recognizable set of graphs is always HR-recognizable (Corol-
lary 5.2). The converse does not hold in general, as we discuss in Section 6.3. We
first explore structural conditions on graphs, which are sufficient to guarantee
that an HR-recognizable set of graphs is also VR-recognizable.

Let
−→
Kn,n be the directed complete bipartite graph with n + n vertices. A

directed graph G ∈ Graph is without
−→
Kn,n if it has no subgraph isomorphic to

−→
Kn,n. The main result in this section is the following.

Theorem 6.1 Let n be an integer. An HR-recognizable set of graphs without
−→
Kn,n is VR-recognizable.

32

This theorem is proved in Section 6.1, and some of its corollaries are discussed
in Section 6.2.

Note that results similar to Corollary 5.2 and Theorem 6.1 hold for VR- and
HR-equational sets of graphs. As explained in the introduction, such sets are
exactly the context-free sets of graphs, formally specified in terms of recursive
sets of equations using the operations of VR and HR respectively. Specifically,
the following results are known to hold:

• every HR-equational set of simple directed graphs is VR-equational (Cour-
celle [15]);

• if a VR-equational set of directed graphs is without
−→
Kn,n for some n, then

it is HR-equational (by the main theorem in Courcelle [14] and Lemma 6.6
below).

Thus the same combinatorial condition is sufficient to guarantee the equiv-
alence between VR- and HR-recognizability, as well as between VR- and HR-
equationality. A further similar result concerning monadic second-order defin-
ability and using a stronger combinatorial property will be discussed in Sec-
tion 6.4.

6.1 Proof of Theorem 6.1

We first record the following observation.

Lemma 6.2 Let G be a directed graph and let x, y be two vertices of G that are
not adjacent, and such that there is no vertex z such that both (x, z) and (y, z)
(resp. both (z, x) and (z, y)) are edges. Let H be obtained from G by identifying

x and y. If G contains
−→
Km,m as a subgraph, then so does H.

Proof. Let K be a subgraph of G isomorphic to
−→
Km,m. From the hypothesis,

the vertices x and y are not both in K. It follows that K is still isomorphic to
a subgraph of H . ⊓⊔

The proof of Theorem 6.1 will proceed as follows. We consider an HR-
recognizable set L of finite graphs without

−→
Kn,n and we denote by m the largest

integer such that
−→
Km,m is a subgraph of a graph in L. Such an integer exists

by hypothesis.
Since we are talking about source-less graphs, the set L is HRsep-recognizable

by Proposition 5.5, and we consider a locally finite HRsep-congruence ≡ satu-
rating L. We will define a locally finite NLC-congruence ∼ on GP that also
saturates L. By Proposition 4.9, this suffices to show that L is VR-recognizable.
The definition of ∼ makes use of the notion of expansion of a graph, defined
below.

Note that the following definitions depend on the integer m, even though
terminology and notation do not make this dependence explicit.

33

Small and large port labels and formulas Let G ∈ GP(P) be a graph with
ports. If p ∈ P , we denote by pG the set of p-ports of G. We say that a port label
p is void in G if pG is empty, we say that p is small in G if 1 ≤ card(pG) ≤ m
and that p is large in G if card(pG) > m.

Observe that if the port labels p and q are both large in G, then addp,q(G)

contains
−→
Km+1,m+1 as a subgraph.

Moreover, if p is large in G, if r1, . . . , rk are small in G, let

H = addp,r1addp,r2 · · · addp,rk(G).

For i = 1, . . . , k, let ni = card(riG). If H does not contain
−→
Km+1,m+1, then we

must have n1 + · · ·+ nk ≤ m. If G already contains edges from the p-ports to
other vertices, then n1+ · · ·+nk < m. The notion of expansion below will make
it possible to handle this sort of complicated situation (see Example 6.3 below).

Let us say that a closed first-order formula is small if it has quantifier-depth
at most 2m+2. Note that the existence of a subgraph isomorphic to

−→
Km+1,m+1

can be expressed by a first-order formula of quantifier-depth 2m+ 2.

Expansions We will define supergraphs of G ∈ GP(P) called expansions, that
contain information relevant to the distribution of small and large port labels,
and where ports are represented by sources. Furthermore, it will be possible
to simulate an NLC-operation on G that does not create

−→
Km+1,m+1 subgraphs

by HR-operations on expansions of G. These expansions will then be used to
transform the HRsep-congruence ≡ into an NLC-congruence ∼.

Furthermore, we will define ∼ in such a way that two equivalent graphs
satisfy the same small first-order formulas.

We now give formal definitions. For each port label p, we define a set C(p)
of source labels,

C(p) = {in(p, i), out(p, i), s(p, i) | 1 ≤ i ≤ m}.

If P is a set of port labels, C(P) denotes the union of the C(p), for p in P .
Let G ∈ GP(P) be a graph with ports, let C ⊆ C(P), and let Ḡ be a graph

in GSsep(C). We say that Ḡ is an expansion of G if the following conditions
hold:

(1) Ḡ has no subgraph isomorphic to
−→
Km+1,m+1.

(2) Except for the labeling of ports and sources, G is a subgraph of Ḡ. The
sources of Ḡ, and its vertices and edges not in G, are specified by Condi-
tions (3) and (4).

(3) If p is small in G, then each p-port of G is an s(p, i)-source of Ḡ for some
integer i ≤ m. Different p-ports are of course labelled by different source
labels. There are no in(p, j)- or out(p, j)-sources.

(4) If p is large in G, then there may be vertices of Ḡ that are not in G, with
source labels of the form in(p, i) or out(p, i) for some i ≤ m. Moreover,

34

there is an edge in Ḡ from each vertex of pG to each in(p, i)-source, and
from each out(p, i)-source to each vertex in pG. There are no s(p, j)-
sources.

In particular, G may have several different expansions, but it has only a
finite number of expansions (up to isomorphism). This number is bounded by a
function depending on m and the cardinality of P . Indeed, for each small port
label p, there is only a bounded number of ways to make p-ports into s(p, i)-
sources (see (3)), and for each large port label p, there is a bounded number of
ways to create in(p, i)- and out(p, i)-sources (see (4)).

Example 6.3 Letm = 2, and let G be a graph with port labels p, q, r. Suppose
that G has 4 p-ports, 2 q-ports and 1 r-port, so that p is large, and q, r are
small in G, see Figure 1. Then in any expansion of G, every q- and r-port
will be a source, say labeled by s(q, 1), s(q, 2) and s(r, 2) (there is only one
s(r, i)-source, but it is not required that these sources should be labeled with
consecutive numbers starting at 1).

H G

p p p p q

q

r

s(q, 1)

s(q, 2)

s(r, 2)

out(p, 2) in(p, 1) in(p, 2)

x

Figure 1: H is an expansion of G

Moreover, an expansion of G may have up to two new vertices that are
in(p, j)-sources, and at most one out(p, j)-source. Say, an expansion H could
have new vertices as in(p, 1)- and in(p, 2)-sources, with edges from each of the
4 p-ports to each in(p, j)-source; and it could have a new vertex as a, say,
out(p, 2)-source, with edges from that vertex to each of the p-ports.

Note that if G has a vertex x with an edge from x to at least 3 p-sources,
then an expansion cannot have 2 out(p, j)-sources: otherwise it would contain

a copy of
−→
K3,3, which is not allowed for an expansion. ⊓⊔

Remark 6.4 It is not always the case that G is determined by each of its
expansions Ḡ. If p is large in G but Ḡ has no in(p, i)- or out(p, i)-sources, then
it is not possible to determine which of its vertices are p-ports. ⊓⊔

35

Construction of an NLC-congruence from an HRsep-congruence Let ≡
be a locally finite HRsep-congruence saturating L. We define a relation ∼ on GP
as follows. For G and G′ in GP(P) we let G ∼ G′ if and only if

(a) either G and G′ both contain
−→
Km+1,m+1 as a subgraph, or neither does

and in that case, the following two conditions hold:

(b) G and G′ satisfy the same small first-order formulas (i.e., with quantifier-
depth at most 2m+ 2) on graphs with ports.

(c) for every expansion Ḡ of G, there exists an expansion Ḡ′ of G′ such that
Ḡ ≡ Ḡ′ and Ḡ and Ḡ′ satisfy the same small first-order formulas on
graphs with sources (we say that Ḡ and Ḡ′ are equivalent expansions);
and conversely, for every expansion Ḡ′ of G′ there exists an expansion Ḡ
of G equivalent to Ḡ′.

Note that Condition (b) implies that G and G′ have the same void, small
and large port labels, and Condition (c) implies that Ḡ and Ḡ′ have the same
source labels.

The relation ∼ is clearly an equivalence relation on each set GP(P). It has
finitely many classes on each GP(P) since a finite graph has a uniformly bounded
number of expansions (up to isomorphism), the HRsep-congruence ≡ is locally
finite, and there are finitely many first-order formulas of each quantifier-depth
on graphs with sources in a subset of C(P).

Now a graph without ports and without
−→
Km+1,m+1 has a unique expansion:

itself. It follows that, for graphs without ports and without
−→
Km+1,m+1, the

equivalences ≡ and ∼ coincide. In particular, ∼ saturates L since ≡ does.
It remains to prove that ∼ is an NLC-congruence. Recall that the signature

NLC consists of the operations of the form fgp, renp→q and ⊗J .

The port forgetting operation We first consider the operation fgp. We
consider G,G′ with G ∼ G′ and we want to prove that H ∼ H ′, where H =
fgp(G) and H

′ = fgp(G
′).

First of all, the underlying graphs ofG andH (resp. G′ andH ′) are identical,

so that G and G′ contain
−→
Km+1,m+1 if and only if so do H and H ′. If this is

the case, then G ∼ G′ and H ∼ H ′. We now exclude this case and assume that
G and G′ are without

−→
Km+1,m+1. Note also that if p is void in G, then it is in

G′ as well, and we have H = G, H ′ = G′, so that H ∼ H ′. We now assume
that p is not void in G.

It is an immediate consequence of Theorem 3.12 that H and H ′ satisfy the
same small first-order formulas on graphs with ports, so Condition (b) is verified.

We now consider Condition (c). Let H̄ be an expansion of H . We will show
that there exists an expansion Ḡ of G and a unary HRsep-term t such that H̄ =
t(Ḡ). Since G ∼ G′, there exists an equivalent expansion Ḡ′ of G′, and t(Ḡ′) will
be the desired expansion of H ′. Using the fact that ≡ is an HRsep-congruence
and Theorem 3.12, we will have H ∼ H ′ as expected.

36

If p is large in G, the situation is particularly simple: H̄ is also an expansion
of G, so we can choose t to represent the identity. If Ḡ′ is an expansion of G′,
equivalent to H̄ , then Ḡ′ does not use source labels of the form s(p, i), in(p, i)
or out(p, i), so Ḡ′ is also an expansion of H ′.

If p is small in G, let Ḡ be a graph with source obtained from H̄ by letting
each p-port of G be an s(p, i)-source (where distinct source labels are used for
distinct p-ports). Then Ḡ is an expansion of G, and H̄ = t(Ḡ) where t is the
composition of the operations srcfgs(p,i) (1 ≤ i ≤ m). Using the definition of ∼,

there exists an expansion Ḡ′ of G′ which is equivalent to Ḡ, and we only need
to verify that H̄ ′ = t(Ḡ′) is an expansion of H ′. The only point to check here
is the fact that H ′ is a subgraph of H̄ ′: this follows from the facts that G is a
subgraph of Ḡ and the operations t and fgp do not change the underlying graph
structures.

The renaming operation We now consider the operation renp→q. Let G,G
′

with G ∼ G′: as with the port forgetting operation, we want to prove that
H ∼ H ′ where H = renp→q(G) and H

′ = renp→q(G
′). As above, we can reduce

the proof to the case where neither G nor G′ contains
−→
Km+1,m+1, and where

p is not void in G (if p is void in G, then H = G and H ′ = G′). Moreover,
Condition (b) follows from Theorem 3.12.

We consider Condition (c), following the same strategy as above. Let H̄ be
an expansion of H .

If q is void in G, then the transformation renp→q is a reversible renaming,
that is, G = renq→p(H). Moreover, if t is the composition of the operations
of the form srcrens(p,i)→s(q,i), srcrenin(p,i)→in(q,i) and srcrenout(p,i)→out(q,i), and
if t′ is the composition of the operations srcrens(q,i)→s(p,i), srcrenin(q,i)→in(p,i)

and srcrenout(q,i)→out(p,i), then Ḡ = t′(H̄) is an expansion of G, H̄ = t(Ḡ).
Moreover, if Ḡ′ is an expansion of G′, equivalent to Ḡ, then H̄ ′ = t(Ḡ′) is an
expansion of H ′.

We now assume that q is not void in G. We need to consider several cases.

Case 1. p and q are both large in G. Then p is void and q is large in H .
In order to build the desired Ḡ, we split each in(q, i)-source of H̄ into an

in(p, i)-source and an in(q, i)-source. The in(p, i)-source is linked by incoming
edges to all p-ports of G, and the in(q, i)-source is linked similarly to all q-ports.
In the same fashion, we split each out(q, i)-source of H̄ into an out(p, i)-source
and an out(q, i)-source linked by ougoing edges to all p-ports of G and to all
q-ports respectively. The term t such that H̄ = t(Ḡ) is the composition of the
operations fusin(p,i)→in(q,i) and fusout(p,i)→out(q,i).

The graph Ḡ does not contain
−→
Km+1,m+1, since H̄ does not (by Lemma 6.2).

Hence Ḡ is an expansion of G. Let now Ḡ′ be an expansion of G′ equivalent to
Ḡ, and let H̄ ′ = t(Ḡ′). It is easily verified that H̄ ′ is an expansion of H ′, and
as above, it follows that H ∼ H ′.

Case 2. p is small and q is large in G.

37

In order to build Ḡ from H̄ , we make the p-ports of G into s(p, i)-sources, we
delete the edges between the in(q, i)- and the out(q, i)-sources and the p-ports
of G. The term t which must do the opposite (that is, construct H̄ from Ḡ) is a
composition of source forgetting operations and of additions of new edges. More
precisely, for each i, j such that s(p, i) and in(q, j) are source labels in Ḡ, we use
the operation Z 7−→ Z ⊕ (α −→ ω), where (α −→ ω) is the 2-vertex, 2-source,
1-edge graph, followed by the operations fusα→s(p,i) and fusω→in(q,j). We then
apply similar operations to create edges from the out(q, j)- to the s(p, i)-sources.
And we finally apply the operations srcfgs(p,i).

The graph Ḡ is a subgraph of H̄ (up to source labels), so Ḡ does not contain
−→
Km+1,m+1, and hence it is an expansion of G. The proof continues as in the
previous case.

Case 3. q is small and p is large in G.
To build Ḡ from H̄ , we make the q-ports of G into s(q, i)-sources, we delete

the edges between the in(p, i)-sources or the out(p, i)-sources and the q-ports
of G. In addition we rename each in(p, i)-source to an in(q, i)-source, and each
out(p, i)-source to an out(q, i)-source. We can use the same reasoning as in Case
2 to conclude in this case.

Case 4. p and q are small in G, and card(pG) + card(qG) ≤ m.
To build Ḡ from H̄ , we rename s(q, i) into s(p, i) whenever the s(q, i)-source

of H̄ is a p-port in G. The term t which does the opposite is a composition
of source renamings. The graph Ḡ does not contain

−→
Km+1,m+1, otherwise H̄

would do, since Ḡ is equal to H̄ up to source labels, and hence Ḡ is an expansion
of G. The other parts of the proof are the same.

Case 5. p and q are small in G, and card(pG) + card(qG) ≥ m+ 1.
To build Ḡ from H̄ , we make the p-ports (resp. q-ports) of G into s(p, i)-

sources (resp. s(q, i)-sources), we delete the edges between the in(q, i)- and
out(q, i)-sources and the p- and q-ports of G, and we delete the in(q, i)- and
out(q, i)-sources. The term t which does the opposite is a composition of addi-
tions of new edges and of srcfg operations, as in Case 2, see Figure 2. The graph
Ḡ does not contain

−→
Km+1,m+1, otherwise H̄ would too, since Ḡ is a subgraph of

H̄ (up to source labels), and hence Ḡ is an expansion of G. The proof continues
as in the previous cases.

This concludes the proof that G ∼ G′ implies renp→q(G) ∼ renp→q(G
′).

The operation ⊗J We now consider the operation ⊗J where J ⊆ (P ×Q)∪
(Q × P), P and Q are disjoint. Let G ∼ G′ in GP(P), K ∼ K ′ in GP(Q),
H = G⊗J K and H ′ = G′ ⊗J K

′. We want to prove that H ∼ H ′.
We first consider the very special case where J = ∅, and the operation ⊗J

is simply the disjoint union. Then H contains
−→
Km+1,m+1 if and only if G or K

does, if and only if G′ or K ′ does, if and only if H ′ does.
Asuming thatH does not contain

−→
Km+1,m+1, an application of Theorem 3.12

ensures, as for the operations of port forgetting or renaming that H and H ′ sat-
isfy the same small first-order formulas.

38

G H

p p q q q q q q

Ḡ H̄

s(p,1) s(p,2) s(q,1) s(q,2)

out(q,1) in(q,2)

s(p,1) s(p,2) s(q,1) s(q,2)

out(q,1) in(q,2)

E =

Figure 2: m = 2 and H̄ = t(Ḡ) = srcfgs(p,1),s(p,2),s(q,1),s(q,2)(Ḡ ‖ E)

We now consider an expansion H̄ of H . It is necessarily of the form H̄ =
Ḡ ⊕ K̄ where Ḡ and K̄ are expansions of G and K respectively. Then there
exist expansions Ḡ′ and K̄ ′ of G′ and K ′ respectively, which are equivalent to
Ḡ and K̄. One then verifies that H̄ ′ = Ḡ′ ⊕ K̄ ′ is an expansion of H ′, which is
equivalent to H̄.

Next we assume that J is a singleton, J = {(p, q)}, that is, G ⊗J K =
addp,q(G⊕K) with p ∈ P and q ∈ Q.

Since G and G′ on one hand, and K and K ′ on the other satisfy the same
small first-order formulas, Theorem 3.12 shows that H = addp,q(G⊕K) contains
−→
Km+1,m+1 if and only if H ′ = addp,q(G

′ ⊕ K ′) does. Assume now this is not
the case and consider an expansion H̄ of H .

Again there are several cases. Note that p and q cannot both be large in
G and K respectively. We claim that H̄ can defined as t(Ḡ, K̄) where t is an
HRsep-term, Ḡ is an expansion of G and K̄ is an expansion of K. As for the
other operations, we consider expansions Ḡ′ and K̄ ′ of G′ and K ′, equivalent to
Ḡ and K̄. Although it is a bit tedious, we verify formally that H̄ ′ = t(Ḡ′ ⊕ K̄ ′)
is an expansion of H ′. It follows that H̄ ′ is equivalent to H̄, and hence H ∼ H ′.

Case 1. p is large in G and q is small in K.
ThenH has edges from all p-ports of G to all q-ports ofK, which are actually

s(q, i)-sources in H̄ . For each of these s(q, i)-sources, say x, we create a new
vertex x′, and each edge coming from G to x is redirected towards x′. We make
x′ into an in(p, j)-source (for some appropriate j) of the expansion Ḡ of G we are
constructing. The desired expansion K̄ of K is just the subgraph of H̄ induced

39

by the set of vertices of K. And Ḡ consists of the subgraph of H̄ induced by
the vertices of G together with x′ and all these redirected edges. Then the
HRsep-term t needs only to fuse in Ḡ ⊕ K̄ the above described in(p, j)-sources
with the corresponding s(q, i)-sources. This can be done by a combination of
the operation ⊕ and those of the form fusin(p,j)→s(q,i). The only point to check

is that Ḡ does not contain
−→
Km+1,m+1. We can apply Lemma 6.2 because H̄ is

obtained from Ḡ⊕ K̄ by fusions of pairs of vertices which are not adjacent and
have no incoming edges with the same source (because G and K are disjoint)
and no outgoing edge at all.

Then there exist expansions Ḡ′ and K̄ ′ of G′ and K ′ respectively, equivalent
to Ḡ and K̄. By letting H̄ ′ = t(Ḡ′, K̄ ′), we get the desired expansion of H ′,
equivalent to H̄.

This case is illustrated in Figure 3, where m = 3 and N is the constructed
expansion of G⊗J K.

G

K

G

K

G⊗J K = addp,q(G⊕K)

p p p

q

q

p p p

q

q

Ḡ

K̄

N

in(p,1) in(p,2) in(p,3)

s(q,1)

s(q,2)

Figure 3: N = t(Ḡ, K̄) = srcfgall(Ḡ ‖ srcrens(q,1)→in(p,2),s(q,2)→in(p,3)(K̄))

Case 2. p is small in G and q is large in K.
It is fully similar to the first case, creating new out(q, j)-sources instead of

in(p, j)-sources. We omit the details.

Case 3. p is small in G and q is small in K.
Let Ḡ be the subgraph with sources of H̄ consisting of the vertices of G,

and let K̄ be defined similarly in terms of K. Then H̄ is obtained from Ḡ⊕ K̄
by the addition of edges from each s(p, i)-source of Ḡ to each s(q, j)-source of
K̄, which can be done by an HRsep-term (see Case 2 of the discussion of the

40

renaming operation). Since Ḡ and K̄ are subgraphs of H̄ , they cannot contain
−→
Km+1,m+1 and hence, they are in fact expansions of G and K as desired. The
proof continues as above.

Case 4. p is void in G or q is void in K.
Then addp,r acts as the identity on G ⊕K, so ⊗J acts as ⊕ on (G,K) and

we are back to a previously studied case. Recall that if p (resp. q) is void in G
(resp. K), then it is void in every ∼-equivalent graph with source.

This concludes the study of the case where J is a singleton in P × Q. The
case where J is a singleton in Q× P is of course similar.

The proof is actually the same in the general case where J is not a singleton.
We need only do the same constructions for all elements (p, q) in J . The only
possible difficulty could arise from the use of Lemma 6.2 to verify that the
graphs Ḡ and K̄ obtained from H̄ by the creation of vertices (like x′ in Case 1

above) and the redirection of edges do not contain
−→
Km+1,m+1, and hence are

expansions. Thus let us consider the transformation of Ḡ⊕K̄ into H̄. It consists
in a sequence of fusions of pairs of vertices. Whenever we fuse an in(p, i)-source
of Ḡ, say x, with an s(q, j)-source of K̄, say y, we must verify that the fusions
performed previously keep the hypothesis of Lemma 6.2 valid. It is clear that x
and y are not adjacent, since x is adjacent with vertices of G only. Because of
previous fusions, there may exist an edge from some z in G to y. However, this
edge comes from a previously applied operation addp′,q with p′ 6= p. It follows
that there is no edge from z to x. An analogous argument also applies to fusions
between an out(p, i)-source of G and an s(q, j)-source of K, and also when we
exchange the roles of G and K. Hence, finally, we can apply Lemma 6.2 to
deduce that Ḡ and K̄ do not contain

−→
Km+1,m+1 because H̄ does not. Hence,

they are expansions of G and K, as we needed to check.

This concludes the proof of Theorem 6.1.

6.2 Other finiteness conditions

We now consider some consequences of Theorem 6.1. LetKn,n be the undirected
complete bipartite graph with n + n vertices, that is, Kn,n is the undirected

graph underlying
−→
Kn,n. We say that a (directed) graph is without Kn,n if its

undirected underlying graph has no subgraph isomorphic to Kn,n.
We say that a graph G is uniformly k-sparse if card(E(H)) ≤ k card(V (H))

for every finite subgraph H of G, where V (H) and E(H) are the sets of vertices
and edges of H . A set of graphs is uniformly k-sparse if each of its elements is.

Proposition 6.5 Let L ⊆ Graph be a set of graphs, satisfying one of the fol-
lowing properties:

L is without
−→
Kn,n for some n

or L is without Kn,n for some n

or L consists only of planar graphs

41

or L is uniformly k-sparse for some k

or L consists only of graphs of tree-width at most k for some k.

Then L is HR-recognizable if and only if L is VR-recognizable.

Proof. By Corollary 5.2, it is always the case that a VR-recognizable set of
graphs is HR-recognizable.

If L is without
−→
Kn,n for some n, the converse implication was proved in

Theorem 6.1. Lemma 6.6 below shows that L is without Kp,p for some p if and

only if it is without
−→
Kn,n for some n.

It is well-known that planar graphs are without K3,3 (planarity is a property
of the underlying undirected graph, and K3,3 is the undirected graph underlying
−→
K3,3). It follows that planar graphs are also without

−→
K3,3, and the result follows

from Theorem 6.1.
It is easily seen that

−→
K2k+1,2k+1 is not k-sparse. So if L is uniformly k-sparse,

then it is without
−→
K2k+1,2k+1.

Finally, it is known that graphs of tree-width at most k are uniformly (k+1)-
sparse (see for instance [16]), which yields the last assertion. ⊓⊔

Lemma 6.6 Let p be an integer. There exists an integer n such that a directed
graph without

−→
Kp,p, is without Kn,n.

Proof. We use the particular case of Ramsey’s Theorem for bipartite graphs,
given as Theorem 1 in [27, p. 95]. It states that for each p, there exists an
integer n such that, if the edges of Kn,n are partitioned into two sets A and B,
then either A or B contains the edges of a subgraph isomorphic to Kp,p.

So let us assume that U,W ⊆ V (G), where U and W are disjoint sets of n
elements and there is an edge between u and w (in one or both directions) for
each (u,w) ∈ U ×W . Let A be the set of pairs (u,w) ∈ U ×W such that the
edge is from u to w, and let B = (U ×W) \ A. Then there exist sets U ′ ⊆ U
and W ′ ⊆ W , with cardinality p, such that U ′ ×W ′ ⊆ A or W ′ × U ′ ⊆ B. In
either case, we get a subgraph of G isomorphic to

−→
Kp,p.

Note hat a quick and direct proof can be given with n = p22p, but we do
not know the minimal n yielding the result. ⊓⊔

Remark 6.7 The statement relative to bounded tree-width sets of graphs in
Proposition 6.5 is also a consequence (in the case of finite graphs) of Lapoire’s
result [31], which states that, in a graph of tree-width at most k, one can con-
struct a width-k tree-decomposition by monadic second-order (MSO) formulas.
This can be used to show that every HR-recognizable set of graphs of bounded
tree-width is definable in Counting Monadic Second-order (CMSO) logic, using
edge set quantifications. Courcelle showed [11] that, for finite graphs of bounded
tree-width, edge set quantifications can be replaced by vertex set quantifications.
The considered set is therefore definable in CMSO logic with vertex set quan-
tifications only, and hence is VR-recognizable by another of Courcelle’s results
[9]. ⊓⊔

42

Remark 6.8 It is proved in [8] that every set of square grids is HR-recognizable.
It follows from Theorem 6.1 that every such set is also VR-recognizable. Hence,
there are uncountably many VR-recognizable sets of graphs, so we cannot hope
for an automata-theoretic or a logical characterization of VR-recognizability —
in contrast with the situation prevailing for words, trees and some special classes
of graphs, see [43, 32, 33, 24, 29, 30]. ⊓⊔

6.3 HR-recognizable sets which are not VR-recognizable

The aim of this short section is to establish the existence of HR-recognizable
sets which are not VR-recognizable. We first establish a lemma.

Lemma 6.9 Every set of cliques (of the form Kn, n ≥ 1) is HR-recognizable.

Proof. Let L be a set of undirected cliques (recall that an undirected graph is
a graph where the edge relation is symmetric). We provide a locally finite CS-
congruence on GSsep which saturates L (see Section 5.2.3). By Proposition 5.7,
this establishes that L is HR-recognizable.

For each finite set C of source labels, let Gi(C) be the set of graphs in
GSsep(C) having at least one internal vertex (i.e., a vertex which is not a source),
and let Gs(C) be the set of graphs in GSsep(C), in which every vertex is a source.
In particular, Gs(C) is finite.

Let ≡ be the following equivalence relation on GSsep. We use the operation
✷C , as in Section 5.2.3. If G,G′ ∈ GSsep(C), we let G ≡ G′ if and only if
either G = G′, or G,G′ ∈ Gi(C) and for every H ∈ Gs(C), G ✷C H ∈ L iff
G′

✷C H ∈ L.
Note that for each C, there are only finitely many ≡-classes in GSsep(C), —

namely at most p+ 2p, where p is the cardinality of Gs(C).
Moreover, ≡ saturates L. Indeed, suppose that G,G′ ∈ GSsep(C), G ≡ G′

and G ∈ L. Let H be the graph in GSsep(C) consisting of distinct c-sources
(c ∈ C) and no edges. Then we have G = G✷CH and G′ = G′

✷CH . It follows
from the definition of ≡ that G′ ∈ L.

Finally, we check that ≡ is a CS-congruence. Let G,G′, H,H ′ ∈ GSsep(C),
with G ≡ G′ and H ≡ H ′: we want to show that G ✷C H ≡ G′

✷C H ′. We
observe that if both G and H have internal vertices, then G✷CH is not a clique
(by definition of operation ✷C), and hence cannot be in L. The rest of the proof
is a straightforward verification. ⊓⊔

We can now prove the following.

Proposition 6.10 There is an HR-recognizable set of graphs which is not VR-
recognizable.

Proof. Let A be a set of integers which is not recognizable in 〈N, succ, 0〉, for
instance the set of prime numbers, and let L be the set of cliques Kn for n ∈ A.
Then L is HR-recognizable by Lemma 6.9.

43

We now consider a set of VR-terms describing L and using exactly 2 port
labels, p and q. Recall that p denotes the VR-constant of type {p}, that is, the
graph with a single vertex that is a p-port and no edges. The constant q is
defined similarly. Now let k1 = p, and kn+1 = renq→paddp,qaddq,p(kn ⊕ q). It is
not difficult to verify that kn denotes the clique Kn where all the vertices are p-
ports, Kn itself is denoted by the term mdf∅kn, and the set K of all VR-terms of
the form kn is recognizable (as a set of terms, or trees). If L is VR-recognizable,
then the set of VR-terms in K that denote graphs in L is recognizable. This
set consists of all the terms of the form mdf∅kn with n ∈ A, and it can be
shown by standard methods that it is not recognizable. It follows that L is not
VR-recognizable. ⊓⊔

6.4 Sparse graphs and monadic second-order logic

Since graphs are relational structures, logical formulas can be used to specify
sets of graphs. Monadic second-order logic is especially interesting because

every monadic second-order definable set of finite graphs is VR-recognizable
(Courcelle [9, 15]).

There is actually a version of monadic second-order logic allowing quantifi-
cations on edges and sets of edges (one replaces the graph under consideration
by its incidence graph; we omit details). We say that a set is MS2-definable
if it is definable by a monadic second-order formula with edge and edge set
quantifications, and that we use the phrase MS1-definable to refer to the first
notion. It is immediately verified (from the definition) that

Every MS1-definable set is MS2-definable.

The two following statements are more difficult.

EveryMS2-definable set of simple graphs is HR-recognizable (Courcelle [8]).

If a set of simple graphs is uniformly k-sparse for some k andMS2-definable,
then it is MS1-definable (Courcelle [16]).

This is somewhat analogous to the situation of Theorem 6.1 (see Proposi-
tion 6.5). However the combinatorial conditions are different: if a set of graphs
is uniformly k-sparse for some k, it is without Kt,t for some t, but the converse
does not hold. It is proved in the book by Bollobas [5] that, for each t ≥ 2,
there is a number a such that for each n, there is a graph with n vertices and
anb edges that does not contain Kt,t, where b = 2t/(t + 1). For these graphs,
the number of edges is not linearly bounded in terms of the number of vertices,
so they are not uniformly k-sparse for any k.

It is not clear how to extend Courcelle’s proof in [16], to use the condition
without Kt,t instead of uniformly k-sparse.

7 Simple graphs vs multi-graphs

The formal setting of relational structures is very convenient to deal with simple
graphs, as we have seen already. It can also be used to formalize multi-graphs

44

(i.e., graphs with multiple edges), if we consider two-sorted relational structures.
Formally, a multi-graph with sources in C is a structure of the form G =

〈V,E, inc, (cG)c∈C〉 where V is the set of vertices, E is the set of edges, each cG
is an element of V , and inc is a ternary relation of type E×V ×V . We interpret
the relation inc(e, x, y) to mean that e is an edge from vertex x to vertex y. We
denote by GSm(C) the set of multi-graphs with sources in C. As in the study
of StS or GS, we assume that the finite sets of source labels C are taken in a
fixed countable set. We let GSm be the union of the GSm(C) for all finite sets
C of source labels.

Graphs and hypergraphs with multiple edges and hyperedges are often used,
see the volume edited by Rozenberg [41]. In this context, it is in fact frequent to
consider operations on multi-graphs that are very similar to the HR-operations
on GS. More precisely, the operations of disjoint union, source renaming,
source forgetting and source fusion can be defined naturally on multigraphs
with sources: thus GSm can be seen naturally as an HR-algebra.

It is clear that each simple graph in GS(C) can be considered as an element
in GSm(C). It is important to note however that the HR-operations on GSm,
when applied to such simple graphs, do not necessarily yield the same result as
in GS. For instance, let a, b be distinct elements of C, and let G ∈ GS(C) be
a simple graph. The action of fusing the a-source and the b-source of G may
now result in multiple edges: if there were arrows in both directions between
aG and bG, or if there were arrows to (resp. from) a vertex of G from (resp. to)
both aG and bG. In contrast, the same operation in GS(C) yields fusa,b(G), an
element of GS(C) by definition. To avoid confusion, we will denote by mfusa,b
this operation when used in GSm.

Fortunately, we do not have this sort of problem with the other operations:
applying the operations of disjoint union, source renaming or source forgetting to
simple graphs considered as elements of GSm yields the same result as applying
the same operations within the algebra GS.

We let HRm be the signature on GSm consisting of the operations of the form
⊕, srcfga, srcrena→b and mfusa,b. Thus, GSm is an HRm-algebra. We observe
that, as a signature (that is, as a set of symbols denoting operations), HRm

is in natural bijection with HR. So we don’t really need to introduce the new
notation HRm, and we could very well say that GSm is an HR-algebra. We
simply hope, by introducing this notation, to clarify our comparative study of
recognizable subsets in the algebras GS and GSm. This distinction will be useful
in the proofs of Theorems 7.3 and 7.4.

To summarize and amplify the above remarks, let us introduce the following
notation. We denote by ı:GS → GSm the natural injection. For each multi-
graphG, we denote by u(G) the simple graph obtained fromG by fusing multiple
edges (with identical origin and end): that is, u is a mapping from GSm onto
GS. Elementary properties of ı and u are listed in the next proposition.

Proposition 7.1 The mapping u:GSm → GS is a homomorphism of HR-algebras.
The mapping ı:GS → GSm is not a homomorphism, but it commutes with the
operations of the form ⊕, srcfga and srcrena→b.

45

ı does not commutes with the operations of the form fusa,b, but if G ∈ GS,
then ı(fusa,b(G)) = ı(u(mfusa,b(ı(G)))).

Finally, if G ∈ GS, then ı(G) = u−1(G) ∩ ı(GS) and u(ı(G)) = G.

We now prove the following theorems, which describe the interaction between
HRm-recognizability of sets of multi-graphs and HR-recognizability of sets of
simple graphs.

Theorem 7.2 The set of simple graphs is HRm-recognizable. More precisely,
for each finite set of source labels C, ı(GS(C)) is HRm-recognizable.

Theorem 7.3 Let C be a finite set of source labels and let L ⊆ GS(C). Then
L is HR-recognizable if and only if ı(L) is HRm-recognizable.

Theorem 7.4 Let C be a finite set of source labels and let L ⊆ GSm(C). If L
is HRm-recognizable, then u(L) is HR-recognizable.

7.1 Proof of Theorem 7.2

We first introduce the notion of the type of a multi-graph: as for the elements
of StS, if G ∈ GSm(C), we let ζ(G) be the restriction of G to its C-sources and
to the edges between them. We also denote by ζ the relation on GSm induced
by this type mapping: two multi-graphs G,H ∈ GSm(C) are ζ-equivalent if
ζ(G) = ζ(H).

Lemma 7.5 The type relation ζ is an HRm-congruence on GSm. Moreover, for
each finite set of source labels C, the elements of ı(GS(C)) can be found in only
a finite number of ζ-classes.

Proof. The result follows from the following, easily verifiable identities, where
the multi-graphs G, H are assumed to have the appropriate sets of sources.

ζ(G⊕H) = ζ(G) ⊕ ζ(H)

ζ(srcrena→b(G)) = srcrena→b(ζ(G))

ζ(mfusa,b(G)) = mfusa,b(ζ(G))

ζ(srcfga(G)) = ζ(srcfga(ζ(G))).

The finiteness of the number of ζ-classes containing elements of ı(GS(C)) follows
from the fact that there are only finitely many source-only simple graphs with
sources in C. ⊓⊔

We also introduce the following finite invariant for a simple graph G ∈
GS(C). We define η(G) to be the set of all pairs {a, b} of elements of C such
that a 6= b, aG 6= bG and there exists a vertex x of G with either edges from x
to both aG and bG, or edges to x from both aG and bG. The set η(G) can be
viewed as a symmetric anti-reflexive relation on C.

46

Lemma 7.6 Let G be a simple graph in GS(C) and let a 6= b be elements of C.
Then mfusa,b(G) has multiple edges if and only if {a, b} ∈ η(G) or mfusa,b(ζ(G))
has multiple edges.

Proof. We first observe that mfusa,b(G) has multiple edges if and only if aG 6=
bG and at least one of the following situations occurs: there are edges in both
directions between aG and bG, or there is a vertex x of G with edges from (resp.
to) both aG and bG (this includes the case where there is a loop at aG or bG
and an edge in either direction between aG and bG). That is, mfusa,b(G) has
multiple edges if and only {a, b} ∈ η(G) or there are edges in both directions
between aG and bG.

We also observe that mfusa,b(ζ(G)) is a subgraph ofmfusa,b(G), so the former
is simple if the latter is. Finally, the existence of edges in both directions between
aG and bG is sufficient to ensure that mfusa,b(ζ(G)) has multiple edges.

These observations put together suffice to prove the lemma. ⊓⊔

We are now ready to prove Theorem 7.2. Let ≃ be the following relation,
defined on each GSm(C). We let G ≃ G′ if both G and G′ have multiple edges,
or both G and G′ are simple graphs, ζ(G) = ζ(G′) and η(G) = η(G′).

It is immediate that ≃ is an equivalence relation, saturating ı(GS(C)). It
follows from Lemma 7.5 and from the fact that η(G) is a subset of the finite
set C × C, that ≃ is locally finite. So we only need to show that ≃ is an
HRm-congruence.

We need to describe the interaction between the mapping η and the HRm-
operations. As observed in Proposition 7.1, all HRm-operations preserve simple
graphs except for the operations of the form mfusa,b. Assuming that G,H are
simple graphs with the appropriate sets of sources, we easily verify the following:

η(G ⊕H) = η(G) ∪ η(H)

η(srcfga(G)) = η(G) \ {{a, b} | b ∈ C, {a, b} ∈ η(G)}

η(srcrena→b(G)) = η(G) \ {{a, c} | c ∈ C, {a, c} ∈ η(G)}

∪{{b, c} | c ∈ C, {a, c} ∈ η(G)}

Moreover, if aG 6= bG and mfusa,b(G) is simple (if it isn’t, its η-image is not
defined), then η(mfusa,b(G)) consists of:

(1) all pairs in η(G),
(2) all pairs {c, d} such that there are edges in ζ(G) from a to c and from b

to d, or from c to a and from d to b,
(3) all pairs {a, c} (resp. {b, c}) such that {b, c} ∈ η(G) (resp. {a, c} ∈

η(G)),
(4) all pairs {a, c} and {b, c} such that there are edges in ζ(G) between a

and b (in either direction) and between a or b and c (in any direction).
Let us justify this statement: it is easy to see that all these pairs belong

to η(mfusa,b(G)). In particular, η(G) ⊆ η(mfusa,b(G)) since, as mfusa,b(G) is
assumed to be simple, there is no {c, d} ∈ η(G) such that aG = cG and bG = dG.

47

Conversely, let us consider distinct edges in G′ = mfusa,b(G), from y to x
and from z to x, as in Figure 4 (note that x and y may be equal), such that
y = eG′ and z = fG′ for e, f ∈ C. If neither x, nor y nor z is the a- and b-source

y

z

x z x=y

Figure 4: Distinct edges in mfusa,b(G)

in G′, then we are in case (1), i.e., {e, f} ∈ η(G). If x is the a- and b-source in
G′ but neither y nor z is, then {e, f} satisfies case (1) or (2). If y is the a- and
b-source in G′ but neither x nor z is, then {e, f} satisfies case (3). The same
holds by symmetry if z is the only one of these three vertices to be the a- and
b-source in G′. Finally if x = y (resp. x = z) and is the a- and b-source,in G′

then there is an edge between the a- and the b-source in G and {e, f} satisfies
case (4). The case of edges from x to y and to z is symmetrical.

In particular, η(G ⊕ H), η(srcfga(G)), η(srcrena→b(G)) and η(mfusa,b(G))
are entirely determined by η(G), ζ(G) and η(H).

Let us now consider G,G′, H,H ′ in GSm (with the appropriate sets of
sources) such that G ≃ G′ and H ≃ H ′. If G is not simple, then neither
are G′, G⊕H , srcfga(G), srcrena→b(G) and mfusa,b(G). In particular, we have
G ⊕ H ≃ G′ ⊕ H ′, srcfga(G) ≃ srcfga(G

′), srcrena→b(G) ≃ srcrena→b(G
′) and

mfusa,b(G) ≃ mfusa,b(G
′).

Assume now that G and H are simple. Then so are G ⊕H , srcfga(G) and
srcrena→b(G), and we have seen that their η-images are determined by η(G) and
η(H). Since ζ is an HRm-congruence (Lemma 7.5), it follows that ≃ is preserved
by the operations ⊕, srcfga and srcrena→b.

By Lemma 7.6, whether mfusa,b(G) is simple, is determined by ζ(G) and
η(G), and hence mfusa,b(G) and mfusa,b(G

′) are both non-simple (and then ≃-
equivalent) or both simple. In the latter case, their η-images are equal since they
are both determined by η(G) = η(G′) and ζ(G) = ζ(G′). Thus ≃ is preserved
by the operation mfusa,b. This concludes the proof of Theorem 7.2.

7.2 Proof of Theorem 7.3

Recall that we want to show that for each L ∈ GS(C), L is HR-recognizable if
and only if ı(L) is HRm-recognizable.

One direction is quickly established: we know from Proposition 7.1 that
ı(L) = u−1(L) ∩ ı(GS(C)). If L is HR-recognizable, then u−1(L) is HRm-
recognizable since u is a homomorphism. In view of Theorem 7.2, it follows
that ı(L) is HRm-recognizable as well.

48

Conversely, let us assume that ı(L) is HRm-recognizable and let ≡ be a
locally finite HRm-congruence on GSm saturating ı(L). We want to define a
locally finite HR-congruence ∼ on GS saturating L.

For each symmetric anti-reflexive relation A on a finite set of source labels
D and for each graph G ∈ GS(D), let delA(G) ∈ GS(D) be the graph obtained
from G by deleting the edges between the a-source and the b-source for each
pair {a, b} in D. Let also fusA be the composition of the operations fusa,b for
all {a, b} ∈ D, in any order.

For G,G′ ∈ GS(D), we let G ∼ G′ if ı(G) ≡ ı(G′), ζ(G) = ζ(G′) and, for
each symmetric anti-reflexive relation A on D,

ıfusAdelA(G) ≡ ıfusAdelA(G
′).

The relation ∼ is clearly an equivalence relation, and it is locally finite since
≡ and ζ are. Moreover, it saturates L since G ∈ L if and only if ı(G) ∈ ı(L),
and ≡ saturates ı(L). The rest of the proof consists in showing that ∼ is an
HR-congruence.

The source renaming operation Let G ∼ G′ in GS(D). Then ı(G) ≡ ı(G′).
Since ≡ is a congruence and in view of Proposition 7.1, ı(srcrena→b(G)) =
srcrena→b(ı(G)) ≡ srcrena→b(ı(G

′)) = ı(srcrena→b(G
′)). It also follows from

Lemma 3.9 that ζ(srcrena→b(G)) = ζ(srcrena→b(G
′)).

Let us now consider a symmetric anti-reflexive relation A on the set of source
labels of srcrena→b(G). It is easily verified that

delAsrcrena→b = srcrena→bdelB,

where B = {{c, d} ∈ A | {c, d} ∩ {a, b} = ∅} ∪ {{a, d} | {b, d} ∈ A}. We also
note that if c, d ∈ C \ {a, b}, then fusc,d and srcrena→b commute. Moreover
fusb,dsrcrena→b = srcrena→bfusa,d and fusc,bsrcrena→b = srcrena→bfusc,a. Thus
fusAsrcrena→b = srcrena→bfusB.

Now, using the fact that ı commutes with srcrena→b we have

ıfusAdelAsrcrena→b(G) = ıfusAsrcrena→bdelB(G)

= ısrcrena→bfusBdelB(G)

= srcrena→bıfusBdelB(G).

Since ≡ is an HRm-congruence, it follows that

ıfusAdelAsrcrena→b(G) ≡ ıfusAdelAsrcrena→b(G
′)

and, finally, that srcrena→b(G) ∼ srcrena→b(G
′).

The source forgetting operation The proof is the same as for the source re-
naming operation, with this simplifying circumstance that delAsrcfga = srcfgadelA
and fusAsrcfga = srcfgafusA (since a is not a source label of srcfga(G), and hence
does not occur in A).

49

The source fusion operation Let G ∼ G′ in GS(D). Here it is not immedi-
ate that ı(fusa,b(G)) ≡ ı(fusa,b(G

′)). However, if we let A = {{a, b}}, we know
that

ıfusAdelA(G) ≡ ıfusAdelA(G
′).

We note that fusAdelA(G) is equal to fusa,b(G) if G has no edge between its
a- or b-source, or if it has a loop at either. Otherwise, fusa,b(G) is equal to
fusAdelA(G) with a loop added to its a-source, that is:

fusa,b(G) = srcfgαsrcfgβfusa,αfusb,β(fusAdelA(G)⊕ E) (∗)

where α and β are source labels not in D and E is the graph in GS({α, β}) with
2 vertices and a single edge from its α-source to its β-source.

Observe also that the existence of loops at, or edges between the a- and
b-source of G is a condition that depends only on ζ(G), so it will be satisfied by
both G and G′ or by neither.

In the first case, where fusAdelA(G) = fusa,b(G), we find immediately that
ı(fusa,b(G)) ≡ ı(fusa,b(G

′)). In the second case, the same ≡-equivalence is de-
rived from Proposition 7.1 and Equation (∗) above.

By Lemma 3.9, ζ-equivalence is preserved by the operation fusa,b.
Now let A be a symmetric anti-reflexive relation on D: we consider the graph

ıfusAdelAfusa,b(G). Our first observation is that delAfusa,b = fusa,bdelB where

B = A ∪ {{a, c} | {b, c} ∈ A} ∪ {{b, c} | {a, c} ∈ A}.

Next, we observe that fusAfusa,b = fusa,bfusB. Thus we have

ıfusAdelAfusa,b(G) = ıfusAfusa,bdelB = ıfusa,bdelBfusB(G),

and hence ıfusAdelAfusa,b(G) ≡ ıfusAdelAfusa,b(G
′). It follows that fusa,b(G) ∼

fusa,b(G
′).

The disjoint union operation Let G ∼ G′ in GS(C) and H ∼ H ′ in GS(D)
(where C and D are disjoint). Since ı and ζ preserve ⊕, we have ı(G ⊕H) ≡
ı(G′ ⊕H ′) and ζ(G ⊕H) = ζ(G′ ⊕H ′).

Now let A be a symmetric anti-reflexive relation on C ∪D. Let Q (resp. R)
be the restriction of A to C (resp. D) and let P = A∩ ((C ×D) ∪ (D×C)). It
is easily verified that

delA(G⊕H) = delQ(G)⊕ delR(H)

fusAdelA(G⊕H) = fusP (fusQdelQ(G)⊕ fusRdelR(H)).

It now follows from Proposition 7.1 that

ıfusAdelA(G⊕H) = ıfusP (fusQdelQ(G) ⊕ fusRdelR(H))

= ıumfusP ı(fusQdelQ(G)⊕ fusRdelR(H))

= ıumfusP (ıfusQdelQ(G)⊕ ıfusRdelR(H)).

Thus ıfusAdelA(G⊕H) ≡ ıfusAdelA(G
′ ⊕H ′), and hence G⊕H ∼ G′ ⊕H ′.

This concludes the proof of Theorem 7.3.

50

7.3 Proof of Theorem 7.4

Let L ∈ GSm(C) be HRm-recognizable, and let ≡ be a locally finite HRm-
congruence saturating L. We want to show that u(L) (a subset of GS(C)) is
HR-recognizable.

Let G,G′ ∈ GS(D). We let G ∼ G′ if, for each H ∈ u−1(G), there exists
H ′ ∈ u−1(G′) such that H ≡ H ′, and symmetrically, for each H ′ ∈ u−1(G′),
there exists H ∈ u−1(G) such that H ≡ H ′.

The relation ∼ is easily seen to be a locally finite equivalence relation on
GS, saturating u(L). There remains to see that ∼ is an HR-congruence.

We first establish the following lemma.

Lemma 7.7 Let G ∈ GSm and let H,K ∈ GS.

• u(G) = H ⊕ K if and only if there exist multi-graphs H ′,K ′ such that
G = H ′ ⊕K ′, u(H ′) = H and u(K ′) = K.

• u(G) = srcfga(H) if and only if there exists a multi-graph H ′ such that
G = srcfga(H

′) and u(H ′) = H.

• u(G) = srcrena→b(H) if and only if there exists a multi-graph H ′ such that
G = srcrena→b(H

′) and u(H ′) = H.

• u(G) = fusa,b(H) if and only if there exists a multi-graph H ′ such that
G = mfusa,b(H

′) and u(H ′) = H.

Proof. Recall that G and u(G) have the same set of vertices, and each edge
e of u(G) arises from the identification n(e) ≥ 1 edges of G between the same
vertices.

If u(G) = H ⊕K, each edge of u(G) is in exactly one of H and K. Let H ′

(resp. K ′) be the graph obtained from H (resp. K) by replacing each edge e
by n(e) parallel edges. Then G = H ′ ⊕ K ′, u(H ′) = H and u(K ′) = K, as
required.

The proof of the statements relative to the operations srcfga and srcrena→b

is done in the same fashion.
Let us finally consider the case where u(G) = fusa,b(H). If aH = bH , that

is, H = u(G), then G = mfusa,b(G) and we can let H ′ = G.
If aH 6= bH , we let H ′ be obtained from H be obtained from H as follows:

for each vertex x, each edge e from x to y (y 6= a, b) is replaced by n(e) parallel
edges, and the edges from x to a and b are duplicated to a total of n(e) edges. ⊓⊔

We can now conclude the proof of Theorem 7.4, by proving that ∼ is an HR-
congruence. Let G ∼ G′ and H ∼ H ′. Let K ∈ u−1(G ⊕H). By Lemma 7.7,
K = L⊕M for some L ∈ u−1(G) and M ∈ u−1(H). Since G ∼ G′ and H ∼ H ′,
there exist L′ ∈ u−1(G′) and M ′ ∈ u−1(H ′) such that L′ ≡ L and M ′ ≡ M .
Let K ′ = L′ ⊕M ′. Then K ′ = L′ ⊕M ′ ≡ L⊕M = K and K ′ ∈ u−1(G′ ⊕H ′).
By symmetry, this shows that G⊕H ∼ G′ ⊕H ′.

The verification that ∼ is preserved by the other HR-operations proceeds
along the same lines. This concludes the proof of Theorem 7.4.

51

8 Graph algebras based on graph substitutions

The class Graph, defined in Section 3.1, has already been discussed in terms of
the signatures S, VR and HR since it is a domain in each of the three algebras
StS, GP and GS. In this section, we consider a different set of operations on
Graph, arising from the theory of the modular decomposition of graphs, which
makes Graph an algebra (one-sorted for a change!). This algebraic framework
was considered by the authors, in [13] and [46].

We first recall the definition of the composition operation on graphs. Let H
be a graph with vertex set [n] = {1, . . . , n} (n ≥ 2). If G1, . . . , Gn are graphs,
then the composite H〈G1, . . . , Gn〉 is obtained by taking the disjoint union of
the graphs G1, . . . , Gn, and by adding, for each edge (i, j) of H where i 6= j, an
edge from every vertex of Gi to every vertex of Gj .

We say that a graph is indecomposable, or prime, if it cannot be written
non-trivially as a composition (a composition is trivial if each of its arguments
is a singleton). It is easily verified that if H and H ′ are isomorphic graphs,
then the corresponding composition operations yield isomorphic graphs. So we
fix a set F∞ of representatives of the isomorphism classes of indecomposable
graphs. In particular, we may assume that every graph in F∞ has a vertex set
of the form [n] for some n ≥ 2. We also denote by F∞ the resulting modular
signature, consisting of the composition operations defined by these graphs. The
F∞-algebra of graphs is denoted by GraphF∞ .

It turns out that every finite graph admits a modular decomposition, that
is, it can be expressed from the single-vertex graph using only operations from
F∞. This fact has been rediscovered a number of times in the context of graph
theory and of other fields using graph-theoretic representations. We refer to [38]
for a historical survey, and to [35] for a concise presentation. In other words,
Graph is generated by the signature F∞ augmented with the constants vloop and
v, which denote a single vertex graph, respectively with and without a single
loop edge.

Remark 8.1 The modular decomposition of a graph is unique up to certain
simple (equational) rules, see for instance [46]. Moreover, the modular decom-
position of a graph can be computed in linear time [34, 35, 21]. ⊓⊔

Our first results connect VR-recognizability and F∞-recognizability.

Proposition 8.2 Every VR-recognizable set of graphs is F∞-recognizable.

Proof. In view of Proposition 2.1 and Theorem 4.5, it suffices to show that
every operation in F∞ is VR+-derived.

For each integer i, let marki be the unary operation on GP , of type ∅ → {i},
defined as follows: given a graph without ports, it simply marks every vertex
with port label i (leaving the set of vertices and the edge relation unchanged).
Note that marki is a qfd unary operation, and hence a VR+-operation.

52

Let H be an n-ary operation, that is, a graph in F∞ with vertex set [n], and
let edgeH be its edge relation. If G1, . . . , Gn are finite graphs, the construction
of H〈G1, . . . , Gn〉 can be described as follows:

- construct the disjoint union, mark1(G1) ⊕ · · · ⊕markn(Gn), an element of
GP([n]);

- apply (in any order) to this disjoint union the operations addi,j for all
i, j ∈ [n] such that (i, j) is an edge of H and i 6= j;

- forget all ports, that is, apply the operation mdf∅.
This completes the verification that the operation defined byH can be expressed
as a VR+-term, and hence the proof. ⊓⊔

The following result shows that the converse of Proposition 8.2 does not
hold.

Proposition 8.3 Every set of prime graphs is F∞-recognizable, and there is a
set of prime graphs which is not VR-recognizable.

Proof. Let L be a set of prime graphs, and let ≡ be the relation on Graph

defined as follows. We let G ≡ H if one of the following holds:

• neither G nor H is prime;

• G and H are both 1 (the graph with one vertex and no edge);

• G and H are both not 1, prime and in L;

• G and H are both not 1, prime and not in L.

This is clearly an equivalence relation with four classes, which saturates L.
Moreover, ≡ is an F∞-congruence. Indeed, let K be a graph with n vertices;
for i = 1, . . . , n, let Gi ≡ Hi for each i. If for some i, Gi 6= 1, then Hi 6= 1, and
neither K〈G1, ..., Gn〉 nor K〈H1, ..., Hn〉 is prime: therefore they are equivalent.
Otherwise, Gi = Hi = 1 for each i, K〈G1, ..., Gn〉 and K〈H1, ..., Hn〉 are both
equal to K, and hence they are equivalent. This concludes the proof that every
set of prime graphs is F∞-recognizable.

Before we exhibit a set of prime graphs which is not VR-recognizable, we
define inductively a sequence of VR-terms written with three port labels a, b, c.
We let

t0 = adda,b(a⊕ b), tn+1 = renc→b(renb→a(addb,c(tn ⊕ c))).

The term mdf∅(tn) (forgetting all port labels in tn) denotes the string graph
Pn+2, with n + 2 vertices, say 1, . . . , n + 2 and edges from i to i + 1 for each
1 ≤ i ≤ n+ 1. Each of these graphs is prime.

Now let A be a set of positive integers that is not recognizable in 〈N, succ, 0〉
and let L be the set of all terms Pn with n ∈ A. From the above discussion, we
know that L is F∞-recognizable. If L was VR-recognizable, standard arguments
would show that the set of VR-terms tn (n ∈ A) would be recognizable as well,
and it would follow that A is recognizable, contradicting its choice. ⊓⊔

53

Now let F be a finite subsignature of the modular signature F∞. A graph
which can be constructed from one-vertex graphs using only operations from
F is called an F -graph. The next result deals with sets of F -graphs. This
finiteness condition (the elements of L are built by repeated composition of
a finite number of graph-based operations) is non-trivial. In fact, for many
natural classes of graphs such as rectangular grids, it is not satisfied: since grids
are indecomposable, a set of graphs containing infinitely many grids cannot
satisfy our finiteness condition. But that condition is satisfied by other classical
classes (e.g. cographs, series-parallel posets), see [13, 46].

Using results of Courcelle [13], we can show the following result, which yields
in particular a weak converse of Proposition 8.2.

Theorem 8.4 Let F be a finite subsignature of F∞ and let L be a set of F-
graphs. The following properties are equivalent:

1. L is S-recognizable;

2. L is VR-recognizable.

3. L is F∞-recognizable.

4. L is F-recognizable.

Proof. The equivalence of (1) and (2) can be found in Theorem 4.5. Propo-
sition 8.2 shows that (2) implies (3). And (3) implies (4) as an immediate
consequence of Proposition 2.1 since F is a subsignature of F∞. The fact that
(4) implies (1) is a consequence of two results of Courcelle: [13, Theorem 4.1],
which states that if a set of F -graphs is F -recognizable, then it is definable in
a certain extension of MS-logic; and [13, Theorem 6.11], which states that all
sets definable in this logical language are S-recognizable. ⊓⊔

Remark 8.5 Theorem 8.4 states that for sets of graphs with only finitely many
prime subgraphs, all four notions of recognizability are equivalent. Presented in
this fashion, the statement is somewhat similar to that of Theorem 6.1. ⊓⊔

9 Conclusion

In this article, we have investigated the recognizability of sets of graphs quite
in detail, focusing on the robustness of the notion, which was not immediate
since many signatures on graphs can be defined. Although we had in mind sets
of graphs, we have proved that embedding graphs in the more general class of
relational structures does not alter recognizability. We have proved that the
very same structural conditions that equate VR-equational and HR-equational
sets of graphs, also equates HR-recognizability and VR-recognizability.

Summing up, we have defined a number of tools for handling recognizability.
Some questions remain to investigate.

54

• When is it true that a quantifier-free operation preserves recognizability?

Results in this direction have been established in Courcelle [10]. Are they
applicable to quantifier-free definable operations? In particular, is it true that
the set of disjoint unions of two graphs, one from each of two VR-recognizable
sets is VR-recognizable ?

• Which quantifier-free definable operations can be added to the signature HR,
in such a way that the class of HR-recognizable sets is preserved (as is the case
when we extend VR to VR+)? The paper by Blumensath and Courcelle [3],
which continues the present research, considers unary non qfd operations that
can be added to VR+ and to StS while preserving the classes of equational and
recognizable sets.

• Our example of an HR-recognizable, not VR-recognizable set of cliques, is
based on the weakness of the parallel composition of graphs with sources, i.e.,
the fact that this operation is not able to split large cliques. Can one find
another example, based on a different argument? If one cannot, what does this
mean?

We conclude with an observation concerning the finiteness of signatures.
Whereas all finite words on a finite alphabet can be generated by this alphabet
and only one operation, dealing with finite graphs (by means of grammars,
automata and related tools) requires infinite signatures. More precisely, one
needs infinitely many operations to generate all finite unlabelled graphs (see
Remark 9.1 below). On the other hand, applications to testing graph properties
require the consideration of algebras generated by a finite signature. Here is the
reason.

Let M be an F -algebra of graphs. If the unique valuation homomorphism
valM :T (F) → M (which evaluates a term into an element of M) is surjective,
i.e., if F generates M , then a subset L of M is recognizable if and only if
val−1

M (L) is a recognizable set of terms (see Proposition 2.1 and Section 2.3).
And the membership of a term in a recognizable set can be verified in linear
time by a finite deterministic (tree) automaton. Hence the membership of a
graph G in L can be checked as follows:

(1) One must first find some term t such that valM (t) = G,
(2) then one checks whether t belongs to val−1

M (L).

The latter step can be done in time proportional to the size of t, usually
no larger than the number of vertices of G. Although any term t with value G
gives the correct answer, it may be difficult to find at least one (graph parsing
problems may be NP -complete).

Because of this fact many hard problems (in particular if they are expressed
in Monadic Second-order logic) can be solved in linear time on sets of graphs
of bounded tree-width, and also on sets of graphs of bounded clique-width,
provided the graphs are given with appropriate decompositions, see Courcelle
[15], Courcelle and Olariu [19] or Downey and Fellows [23]. If the decompositions
are not given, one can achieve linear time for graphs of bounded tree-width and

55

MS2 problems using a result by Bodlaender [4], and polynomial time for graphs
of bounded clique-width andMS1 problems using a result by Oum and Seymour
[39].

However, even if F is infinite or is finite without generating the setM , recog-
nizability remains interesting as an algebraic concept, and for every restriction
to a finitely generated subset of M , we are back to the “good” case of a finitely
generated algebra.

Finally, we think that infinite signatures can be used for checking graph
properties defining recognizable sets. This will not be possible by finite tree-
automata if the graph algebra is not finitely generated, but it can perhaps be
done with automata using “oracles”. An oracle would be a subroutine han-
dling some verifications for big subgraphs that cannot be decomposed by the
operations under consideration. This idea needs of course further elaboration.

Remark 9.1 We asserted above that finite unlabelled graphs cannot be gen-
erated with a finite signature. This is not entirely correct, and we briefly de-
scribe here a signature with 6 operations on a 2-sorted algebra which generates,
somewhat artificially, all finite graphs (undirected and without loops). These
operations have no good behaviour with respect to automata and verification
questions, and such an “economical” generation of graphs is useless.

The 2 sorts are o, the set of finite graphs equipped with a linear order of their
vertex set, and u, the set of ordinary, unordered graphs. There is one unary
operation of type o → u, which forgets the order on the vertex set. All other
operations are unary, of type o → o: one consists in adding one new vertex,
to be the new least element; one adds an (undirected) edge between the two
least vertices; one performs a circular shift of the vertices; and one swaps the
two least vertices. The three last operations leave the graph unchanged if it has
less than 2 vertices. Finally, one adds a 6th, nullary operation, of type o: the
constant 0, standing for the empty graph with no vertices. ⊓⊔

A Equivalences of logical formulas

In this appendix, we discuss some equivalences and transformations of logical
formulas which can be used to give upper bounds for the index of congruences
considered in this paper, and to complete the proof of the effectiveness of certain
notions (e.g. quantifier-free definition schemes).

More specifically, we make precise in what sense we can state, as we do in
the body of the paper, that the set of first-order (resp. monadic second-order)
formulas over finite sets of relations, constants and free variables, and with a
bounded quantification depth, can be considered as finite. Moreover, explicit
upper bounds on the size of these finite sets are derived, which can be used
to justify the termination of some of our algorithms, and in evaluating their
complexity. That these upper bounds have unbounded levels of exponentiation
is not unexpected, and even unavoidable by Frick and Grohe [26].

56

A.1 Boolean formulas

Let p1, . . . , pn be Boolean variables and let Bn be the set of Boolean formulas
written with these variables. It is well known that Bn is finite up to logical
equivalence. For further reference, we record the following more precise state-
ment.

Proposition A.1 There exists a subset Bred
n of Bn, of cardinality 22

n

such that
every formula in Bn can be effectively transformed into an equivalent formula
in Bred

n .

Proof. We let Bred
n be the set of Boolean formulas in disjunctive normal form,

where in each disjunct, variables occur at most once and in increasing order,
no two disjuncts are equal, and disjuncts are ordered lexicographically. These
constraints guarantee the announced cardinality of Bred

n ; the rest of the proof
is classical. ⊓⊔

Of course, the formula in Bred
n equivalent to a given formula, is not always

the shortest possible.

A.2 First-order formulas, semantic equivalence

Let us consider finite sets R and C, of relational symbols and of constants
(nullary relations, source labels) as in Section 3.1. Recall that, ifX is a finite set,
FO(R,C,X) denotes the set of first-order formulas in the language of (R,C)-
structures, with free variables in X . For unproved results in this section, we
refer the reader to [6].

Several notions of semantic equivalence of formulas can be defined. If ϕ, ψ ∈
FO(R,C,X), say that ϕ ≡ ψ if for every (R,C)-structure S and for every
assignment of values in S to the elements of X , ϕ and ψ are both true or both
false. Say also that ϕ ≡ω ψ if the same holds for every finite or countable
(R,C)-structure S, and ϕ ≡f ψ if S is restricted to being finite.

The equivalences ≡ and ≡ω coincide by the Löwenheim-Skolem theorem.
Indeed this theorem states that if a closed formula has an infinite model, then
it has one of each infinite cardinality: to prove our claim, it suffices to apply it
to the formula ∃~x ¬(ϕ(~x) ⇔ ψ(~x)). We note that this equivalence cannot be
extended to monadic second-order formulas: there exists an MS formula with a
unique model, isomorphic to the set of integers N with its order.

Each of these three equivalences is known to be undecidable.
The equivalence≡ (or ≡ω since we consider only first-order formulas) is semi-

decidable: by Gödel’s completeness theorem, ϕ ≡ ψ if and only if the formula
∀~x (ϕ(~x) ⇔ ψ(~x)) has a proof, which is a recursively enumerable property.

Trakhtenbrot proved that one cannot decide whether a first-order formula is
true in every finite structure, thus proving that ≡f is not decidable. However,
the negation of ≡f is semi-decidable: if ϕ 6≡f ψ, a counter-example can be
produced by exploring systematically all finite (R,C)-structures. This is a proof
also that ≡ and ≡f do not coincide.

57

A.3 First-order formulas, a syntactic equivalence

We now describe a syntactic equivalence ≈ on formulas, which refines the se-
mantic equivalences ≡ and ≡f : that is, if ϕ ≈ ψ, then ϕ ≡ ψ and ϕ ≡f ψ.

If b ∈ Bn, and if ϕ1, . . . , ϕn ∈ FO(R,C,X), we denote by b(ϕ1, . . . , ϕn)
the formula in FO(R,C,X) obtained by replacing each occurrence of pi in
b by ϕi. It is clear that if b and b′ are equivalent Boolean formulas, then
b(ϕ1, . . . , ϕn) ≡ b′(ϕ1, . . . , ϕn).

A Boolean transformation step consists in replacing in a first-order formula,
a sub-formula of the form b(ϕ1, . . . , ϕn) by the equivalent formula b′(ϕ1, . . . , ϕn),
where b, b′ ∈ Bn are equivalent. Then we let ϕ ≈ ψ if ϕ can be transformed
into ψ by a sequence of Boolean transformation steps and of renaming of bound
variables.

It is clear that if ϕ ≈ ψ, then ϕ ≡ ψ. We want to show that each first-
order formula is effectively equivalent to an ≈-equivalent formula of the same
quantifier height, and to give an upper bound on the number of ≈-equivalence
classes of formulas of a given height.

A.3.1 Quantifier-free formulas

Let QF (R,C,X) be the set of quantifier-free formulas in FO(R,C,X). Such
formulas are Boolean combinations of atomic formulas. Let Atom(R,C,X) be
the set of these atomic formulas. Note that each atomic formula is either of the
form x = y, where x and y are in X ∪C, or r(x1, . . . , xρ(r)) where r is a ρ(r)-ary
relation in R and the xi are in X ∪C. Letting n = card(X) and c = card(C), it
is easily verified that

card(Atom(R,C,X)) = (n+ c)2 +
∑

r∈R

(n+ c)ρ(r).

We let f(R, c, n) be this function. Note that if we allow for the (effective)
syntactic simplifications of identifying the formulas of the form x = x with the
constant true, and of identifying the formulas x = y and y = x, we can lower
the value of f(R, c, n) to 1 + 1

2 (n+ c)(n+ c− 1) +
∑

r∈R(n+ c)ρ(r).
We then have the following.

Proposition A.2 There exists a subset QF red(R,C,X) of QF (R,C,X), of

cardinality 22
f(R,c,n)

, such that every formula in QF (R,C,X) can be effectively
transformed to an ≈-equivalent formula in QF red(R,C,X).

Proof. By definition of quantifier-free formulas, QF (R,C,X) is the set of all
formulas of the form b(ϕ1, . . . , ϕn), where b is a Boolean formula and the ϕi are
atomic formulas. Now let QF red(R,C,X) be the set of all formulas of the form
b(ϕ1, . . . , ϕn), where b ∈ Bred

n and the ϕi are pairwise distinct atomic formulas.
The proof of the precise statement is now immediate, using Proposition A.1. ⊓⊔

58

Example A.3 Let us consider graphs with sources, so that R consists of a
single, binary edge relation. Then f(R, c, 0) = 2c2 and card(QF red(R,C, ∅)) =

22
2c2

= q(c). Thus the type equivalence ζ (see Section 3.3 and Lemma 3.8) has
at most 2q(c) classes in GS(C). ⊓⊔

Remark A.4 Again, we are not claiming that the set QF red(R,C,X) is as
small as possible. On quantifier-free formulas, the equivalence ≡ is decidable,
because ϕ ≡ ψ is false if and only if the closed formula ∃~x(ϕ(~x) 6⇔ ψ(~x))
is satisfiable, and the satisfiability problem for existential formulas in prenex
normal form is decidable (see [6]). Thus one can modify Proposition A.2 by
letting QF red(R,C,X) be the set of lexicographically minimal formulas in each
≡-class: the same statement of Proposition A.2 would then hold with ≡ instead
of ≈. In particular, the transformation would still be effective, although very
inefficient. It is not clear whether the cardinality of the new set of reduced
quantifier-free formulas would be significantly smaller. ⊓⊔

A.3.2 Quantifier depth of first-order formulas

Recall that the quantifier depth of a first-order formula is the maximal num-
ber of nested quantifiers. If we let FOk(R,C,X) be the set of formulas in
FO(R,C,X) of quantifier depth at most k, a formal definition is as follows:
FO0(R,C,X) = QF (R,C,X) and, for each k ≥ 0, FOk+1(R,C,X) is the set
of Boolean combinations of formulas in

F̂Ok(R,C,X) = FOk(R,C,X)

∪ {∃y ϕ | ϕ ∈ FOk(R,C,X ∪ {y})}

∪ {∀y ϕ | ϕ ∈ FOk(R,C,X ∪ {y})}.

Using the same recursion, let us define sets of “reduced” formulas of every
quantifier depth. First we fix an enumeration of the countable set of variables.
Next, we let FOred

0 (R,C,X) = QF red(R,C,X). For each k ≥ 0, we then let
FOred

k+1(R,C,X) be the set of formulas of the form b(ϕ1, . . . , ϕn) where b ∈ Bred
n

and the ϕi’s are in

F̂O
red

k (R,C,X) = FOred
k (R,C,X)

∪ {∃y ϕ | ϕ ∈ FOred
k (R,C,X ∪ {y}), y minimal not in X}

∪ {∀y ϕ | ϕ ∈ FOred
k (R,C,X ∪ {y}), y minimal not in X}.

Proposition A.5 For each k ≥ 0, the set FOred
k (R,C,X) is finite. Moreover,

every formula in FOk(R,C,X) can be effectively transformed to an ≈-equivalent
formula in FOred

k (R,C,X).

Proof. Let n = card(X) and c = card(C), let g(k,R, c, n) be the cardinality of

FOred
k (R,C,X), and let h(k,R, c, n) be the cardinality of F̂O

red

k (R,C,X). It is

59

elementary to verify that these functions can be bounded as follows:

g(0, R, c, n) ≤ 2f(R,c,n) and for k > 0

g(k,R, c, n) ≤ 22
h(k,R,c,n)

h(k,R, c, n) ≤ 3g(k − 1, R, c, n+ 1).

The rest of the proof is immediate, from the recursive definitions. ⊓⊔

Remark A.6 Since there is a procedure to transform each first-order formula
into an ≈-equivalent formula in “reduced form”, we can consider a new equiva-
lence relation on first-order formulas: to yield the same reduced formula. This
equivalence is decidable and it refines ≈ (and hence ≡). ⊓⊔

Remark A.7 In Proposition A.5, we can still consider replacing each formula
by the lexicographically least equivalent formula, but this method is not effec-
tive, since the equivalence of first-order formulas is not decidable. ⊓⊔

A.4 Monadic second-order formulas

A very similar analysis can be conducted for monadic second-order formulas of
bounded quantifier depth. One difference is that the Löwenheim-Skolem theo-
rem does not hold for these formulas, so the semantic equivalence of formulas
based on coincidence on all finite or countable models does not imply coinci-
dence on all models. Moreover, since there is no complete proof systems for
such formulas, the equivalences ≡ and ≡ω are not semi-decidable.

For the rest, one can follow the same techniques as above, to prove the
following result. We denote by MSk(R,C,W) the set of monadic second-order
formulas of quantification depth k in the language of (R,C)-structures, with
their first- and second-order free variables in W .

Proposition A.8 For every finite R,C,W, k, one can construct a finite subset
MSred

k (R,C,W) ofMSk(R,C,W) such that, for every formula inMSk(R,C,W),
one can construct effectively an ≡-equivalent formula in MSred

k (R,C,W).

References

[1] K. Abrahamson, M. Fellows, Finite automata, bounded tree-width and well-
quasiordering. In: N. Robertson, P. Seymour (eds) Graph Structure Theory.
Contemporary Mathematics 147 (1993), 539-564.

[2] S. Arnborg, B. Courcelle, A. Proskurowski, D. Seese, An algebraic theory
of graph reduction. J. ACM 40 (1993), 1134-1164.

[3] A. Blumensath, B. Courcelle, Recognizability and hypergraph operations
using local information. Submitted (2004).

60

[4] H.L. Bodlaender, A linear-time algorithm for finding tree-decompositions of
small treewidth. SIAM J. Comput. 25 (1996), 1305-1317.

[5] B. Bollobas, Extremal graph theory. Academic Press (1978).

[6] E. Börger, E. Grädel, Yu. Gurevich, The classical decision problems.
Springer, 1997.

[7] D. G. Corneil, M. Habib, J.-M. Lanlignel, B. Reed, U. Rotics, Polyno-
mial time recognition of clique-width ≤ 3 graphs, Extended abstract. In: G.H.

Gonnet, D. Panario, A. Viola (eds.) LATIN’2000. LNCS 1776 (2000), 126-
134.

[8] B. Courcelle, The monadic second-order logic of graphs I: recognizable sets of
finite graphs. Information and Computation 85 (1990), 12-75.

[9] B. Courcelle, The monadic second-order logic of graphs VII: Graphs as rela-
tional structures. Theoretical Computer Science 101 (1992) 3-33.

[10] B. Courcelle, Recognizable sets of graphs: equivalent definitions and closure
properties. Mathematical Structures in Computer Science 4 (1994), 1-32.

[11] B. Courcelle, The monadic second-order logic of graphs VI: on several repre-
sentations of graphs by relational structures. Discrete Applied Mathematics 54

(1994) 117-149. Erratum 63 (1995) 199-200.

[12] B. Courcelle, Basic notions of universal algebra for language theory and graph
grammars. Theoretical Computer Science 163 (1996), 1-54.

[13] B. Courcelle, The monadic second-order logic of graphs X: Linear orders. The-
oretical Computer Science 160 (1996), 87-143.

[14] B. Courcelle, Structural properties of context-free sets of graphs generated by
vertex-replacement. Information and Computation 116 (1995), 275-293.

[15] B. Courcelle, The expression of graph properties and graph transformations
in monadic second order logic. In: G. Rozenberg (ed.) Handbook of Graph

Grammars and Computing by Graph Transformations, vol. 1, chapter 5. World
Scientific, 1997, 313-400.

[16] B. Courcelle, The monadic second-order logic of graphs XIV: Uniformly sparse
graphs and edge set quantifications. Theoretical Computer Science 299 (2003),
1-36.

[17] B. Courcelle, Recognizability of graphs, hypergraphs and relational structures:
a survey. In: DLT 2004, LNCS 3340, Springer, 2004, 1-11.

[18] B. Courcelle, J. Engelfriet, G. Rozenberg, Handle rewriting hypergraph
grammars. J. Comput. and System Sci. 46 (1993), 218-246.

[19] B. Courcelle, S. Olariu, Upper bounds to the clique-width of graphs. Discrete

Applied Mathematics 101 (2000), 77-114.

61

[20] B. Courcelle, J.A. Makowsky, U. Rotics, Linear time solvable optimization
problems on graphs of bounded clique-width. Theory of Computing Systems, 33
(2000), 125-150

[21] A. Cournier, M. Habib, A new linear algorithm for modular decomposition.
In: S. Tison (ed.) CAAP 1994. LNCS 787, Springer, 1994, 68-84.

[22] V. Diekert, The book of traces. World Scientific (1995).

[23] R. Downey, M. Fellows, Parametrized complexity. Springer, 1997.

[24] Z. Ésik, Z. Németh, Higher dimensional automata. J. Automata, Languages

and Combinatorics, to appear.

[25] S. Feferman, R. Vaught, The first order properties of products of algebraic
systems. Fundamenta Mathematicae 47 (1959) 57-103.

[26] M. Frick, M. Grohe, The complexity of first-order and monadic second-order
logic revisited. Annals of Pure and Applied Logic 130 (2004), 3-31.

[27] R. Graham, B. Rothschild, J. Spencer, Ramsey theory. J. Wiley, New York,
1980.

[28] H.J. Hoogeboom, P. ten Pas, Monadic second-order definable text languages.
Theory Comput. Systems 30 (1997) 335-354.

[29] D. Kuske, Towards a language theory for infinite N-free pomsets. Theoretical
Computer Science 299 (2003) 347-386.

[30] D. Kuske, Regular sets of infinite message sequence charts. Information and

Computation 187 (2003), 90-109.

[31] D. Lapoire, Recognizability equals Monadic Second-Order definability, for sets
of graphs of bounded tree-width. In: STACS 98. LNCS 1373, Springer, 1998,
618-628.

[32] K. Lodaya, P. Weil, Series-parallel languages and the bounded-width property.
Theoretical Computer Science 237 (2000), 347-380.

[33] K. Lodaya, P. Weil, Rationality in algebras with a series operation. Information

and Computation 171 (2001), 269-293.

[34] R. McConnell, J. Spinrad, Linear-time modular decomposition and efficient
transitive orientation of comparability graphs. In: Fifth Annual ACM-SIAM Sym-

posium on Discrete Algorithms, ACM, 1994, 536-545.

[35] R. McConnell, J. Spinrad, Modular decomposition and transitive orientation.
Discrete Mathematics 201 (1999), 189-241.

[36] J. Makowsky, Algorithmic aspects of the Feferman-Vaught Theorem. Annals of
Pure and Applied Logic 126 (2004), 159-213.

[37] J. Mezei, J. Wright, Algebraic automata and context-free sets. Information

and Control 11 (1967), 3-29.

62

[38] R.H. Möhring, F.J. Radermacher, Substitution decomposition for discrete
structures and connections with combinatorial optimization. Annals of Discrete

Mathematics 19 (1984), 257-356.

[39] S. Oum, P. Seymour, Approximating clique-width and branch-width. Submitted
(2004).

[40] D. Perrin, J.-E. Pin, Infinite words, Pure and Applied Mathematics, vol. 141.
Elsevier, 2004

[41] G. Rozenberg, Handbook of Graph Grammars and Computing by Graph Trans-

formations. World Scientific (1997).

[42] S. Shelah, The monadic theory of order. Annals of Mathematics 102 (1975),
379-419.

[43] W. Thomas, Automata on infinite objects. In J. van Leeuwen ed. Handbook of

Theoretical Computer Science, vol. B. Elsevier, 1990, 133-192.

[44] E. Wanke, k-NLC graphs and polynomial algorithms. Discrete Applied Mathe-

matics 54 (1994), 251-266.

[45] W. Wechler, Universal algebra for Computer Scientists. Springer, 1992.

[46] P. Weil, On the logical definability of certain graph and poset languages. J.

Automata, Languages and Computation 9 (2004), 147-165

[47] P. Weil, Algebraic recognizability of languages. In: MFCS 2004 (J. Fiala, V.
Koubek, J. Kratochv́ıl eds.), LNCS 3153, Springer, 2004, 149-175.

63

	Introduction
	Recognizability
	Algebras
	Recognizable subsets
	Remarks on the notion of recognizability
	Technical results on recognizability

	Algebras of relational structures
	Relational structures
	The algebra StS
	Elementary properties of StS
	A result of Feferman and Vaught
	Variants of the algebra of relational structures
	Parallel composition vs. disjoint union
	Source-separated structures

	The algebra GP of graphs with ports
	The signature VR on graphs with ports
	A technical result
	Recognizable sets of graphs with ports
	Variants of the algebra of graphs with ports
	A variant of VR on GP
	Graphs whose port labels partition the vertex set

	The algebra of graphs with sources
	The signature HR
	Variants of the algebra of graphs with sources
	The signature HR
	Source-separated graphs
	Other variants

	Finiteness conditions ensuring that HR- and VR-recognizability coincide
	Proof of Theorem ??
	Other finiteness conditions
	HR-recognizable sets which are not VR-recognizable
	Sparse graphs and monadic second-order logic

	Simple graphs vs multi-graphs
	Proof of Theorem ??
	Proof of Theorem ??
	Proof of Theorem ??

	Graph algebras based on graph substitutions
	Conclusion
	Equivalences of logical formulas
	Boolean formulas
	First-order formulas, semantic equivalence
	First-order formulas, a syntactic equivalence
	Quantifier-free formulas
	Quantifier depth of first-order formulas

	Monadic second-order formulas

