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Abstract

We propose an approach for quantifying a quantum circuit’s quantumness as a means to understand the

nature of quantum algorithmic speedups. Since quantum gates that do not preserve the computational basis

are necessary for achieving quantum speedups, it appears natural to define the quantumness of a quantum

circuit using the number of such gates. Intuitively, a reduction in the quantumness requires an increase in

the amount of classical computation, hence giving a “quantum and classical tradeoff”.

In this paper we present two results on this direction. The first gives an asymptotic answer to the question:

“what is the minimum number of non-basis-preserving gates required to generate a good approximation to a

given state”. This question is the quantum analogy of the following classical question, “how many fair coins

are needed to generate a given probability distribution”, which was studied and resolved by Knuth and Yao

in 1976. Our second result shows that any quantum algorithm that solves Grover’s Problem of size n using

k queries and ℓ levels of non-basis-preserving gates must have k · ℓ = Ω(n).
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1 Introduction.

The importance of quantum computing lies in the possibility that quantum mechanical algorithms may

be dramatically more efficient than the best classical algorithms. In order to understand the nature of

quantum speedup, it is important to identify features of quantum computing that are uniquely quantum

and investigate their roles in quantum speedups. One example of this kind of study was taken by Jozsa and

Linden [8], which relates the amount of entanglement during the computation to the difficulty of simulating

the computation. Our work is alone a similar line, but instead of entanglement, we study another feature of

quantum computing: the number of gates that do not preserve the computational basis.

It is well known that any classical computation can be carried out, without much sacrifice in the efficiency,

using classical reversible gates, such as the Toffoli gate. In order to have nontrivial quantum speedup, gates

that do not preserve the computational basis must be used. Furthermore, the more such gates involved, the

more difficult a straightforward classical simulation is.

Recall that the state space of a qubit has an orthonormal basis, denoted by {|0〉, |1〉}, that is fixed a

priori and called the computational basis. The computational basis for the state space of n qubits is the

tensor products of their computational bases. Each qubit of a quantum computer is assumed to start in the

computational base state |0〉. We follow this convention throughout this paper.

Let us formally call a gate G basis-changing if there exist two computational base vectors |φ〉 and |ψ〉,
such that |〈φ|G|ψ〉| < 1. If G is not basis-changing, G is said to be basis-preserving. An important example

of a basis-changing gate is the Hadamard gate

H
def
=

1√
2
(|0〉〈0|+ |1〉〈0|+ |0〉〈1| − |1〉〈1|) .

It is well known (e.g. [11]) that any quantum circuit can be efficiently simulated by Toffoli and Hadamard

gates. It is also easy to observe that a quantum circuit that uses k Hadamard gates, together with some other

basis-preserving gates, can be simulated straightforwardly by a deterministic algorithm with a 2k factor of

slow-down.

Hence, it appears natural to quantify the amount of “quantumness” of a quantum circuit by the number

of basis-changing gates, and to investigate the tradeoffs between this amount of quantumness with the best

possible quantum speedup. This is precisely the theme of our investigation.

Many interesting questions can be asked in this diction. In particular, we present two results in this

paper. The first is on the following question: what is the minimum number of basis-changing gates required

to generate a good approximation of a given quantum state? This is in analogy to the following classical

question: what is the least number of fair coins required to produce a given probability distribution? In 1976,

Knuth and Yao [10] solved this problem completely: the minimum expected number of fair coins needed is

equal to the Shannon entropy of the distribution plus some universal constant. We find that the answer to

the quantum problem is similar.

The second result investigates the quantum-classical tradeoffs in solving Grover’s Problem [7], also called

the Unstructured Search Problem, an important and well studied problem in quantum computing. We

prove that any quantum algorithm that solves Grovers’ Problem of size n using k queries and ℓ levels of

basis-changing gates must have k · ℓ = Ω(n). This tradeoff relation is tight.

We shall present these two results in the following two sections, followed by a discussion of open problems.

2 Quantum State Generation.

A classical problem studied by Knuth and Yao in [10] is the following: how many independent 0/1 variables

are needed in order to generate a given probability distribution? They prove that the minimum expected

number of coins is precisely H(D), the Shannon entropy of D, plus some universal constant. In this section
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we study the quantum analog of the question: how many basis-changing gates are needed in order to generate

a good approximation of a given quantum state?

For a quantum state |φ〉, denote by H(φ) the Shannon entropy of the probability distribution obtained

from measuring |φ〉 in the computational basis. We prove both upper and lower bounds to the quantum

problem in terms of H(φ).

2.1 Upper bound.

We first consider a special case, and then reduce the general case to it.

Lemma 2.1. Let |φ〉 be a state over n qubits with nonnegative amplitudes, and ǫ > 0 be a real constant.

Then there is a quantum algorithm that uses O(n log n
ǫ
) basis-changing gates and maps |0〉⊗n to a state |φ′〉,

such that ‖|φ′〉 − |φ〉‖ ≤ ǫ.

The algorithm is along the lines of the algorithm in [9] for approximating an operator that maps |q〉⊗|0〉⊗n

to |q〉 ⊗
(

∑

j=0..q−1
1√
q
|j〉

)

.

Proof. Suppose

|φ〉 =
∑

y∈{0,1}n

√
py|y〉.

For 0 ≤ t ≤ n, and y ∈ {0, 1}t, let

qy
def
=

∑

z∈{0,1}n−t

pyz, and, |φt〉 def
=

∑

y∈{0,1}t

√
qy|y〉 ⊗ |0〉⊗n−t.

Then |φ0〉 = |0〉⊗n, and |φn〉 = |φ〉.
The algorithm has n stages. At the ith stage, the algorithm transforms |φi〉 to a state |φ′i+1〉 such that

‖|φ′i+1〉 − φi+1〉‖ ≤ ǫ/n, and uses ℓ
def
= ⌈log n

ǫ
⌉ basis-changing gates. This can be done by the following.

1. For each y ∈ {0, 1}t, let θy def
= arccos(

√

qy0/qy). Compute on the ancilla and using Toffoli gates the

first ℓ bits of θy/π, ay,1, ay,2, · · · , ay,ℓ. This maps |φt〉 ⊗ |0〉⊗ℓ to

∑

y∈{0,1}t

√
qy|y〉 ⊗ |0〉⊗n−t ⊗ |ay,1, ay,2, · · · , ay,ℓ〉.

2. Denote by R(θ) the single qubit rotation operator of an angle θ. Let θ′y =
∑

s=1..ℓ ay,sπ/2
s. For

s = 1..ℓ, apply the Controlled-R(ay,sπ/2
s) gate with the sth qubit in the ancilla as the control qubit

and the (t+ 1)
th

qubit in the output state as the destination qubit. This results in mapping

∑

y∈{0,1}t

√
qy |y〉 ⊗ |0〉 →

∑

y∈{0,1}t

√
qy |y〉 ⊗R(θ′y)|0〉.

Since ‖R(θ′y)−R(θy)‖ ≤ π/2ℓ, and

|φt+1〉 =
∑

y∈{0,1}t

√
qy|y〉 ⊗R(θy)|0〉 ⊗ |0〉⊗n−t−1,

the resulted vector |φ′t+1〉 satisfies

‖|φ′t+1〉 − |φt+1〉‖ ≤ π/2ℓ.
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Hence, setting ℓ = ⌈log2(πn/ǫ)⌉, the algorithm outputs a state |φ′〉 def
= |φ′n+1〉 that satisfies

‖|φ′〉 − |φ〉‖ ≤
n
∑

t=1

‖|φ′t〉 − |φt〉‖ ≤ ǫ.

The total number of basis-changing gates used is n · ℓ = O(n log n
ǫ
). ⊓⊔

We now consider the the general case.

Theorem 2.2. Let |φ〉 be a quantum state over n qubits and ǫ > 0 be a constant. Then there exists a

quantum algorithm that uses O(1
ǫ
H(φ) log H(φ)

ǫ
) = O(H(φ) logH(φ)) number of basis-changing gates, and

maps |0〉⊗n to a state |φ′〉 such that

‖|φ′〉 − |φ〉‖ ≤ ǫ. (1)

Proof. Suppose for some N > 0 and αi ∈ [0, 2π), pi ≥ 0, 0 ≤ i ≤ N − 1,

|φ〉 =

N−1
∑

i=0

eiαi
√
pi |i〉,

where
∑N−1

i=0 pi = 1.

We first observe that the basis-preserving gate

Gφ
def
=

∑

i

eiαi |i〉〈i|

maps

|φ〉 →
∑

i=0..N−1

√
pi |i〉,

and vice verser. Therefore we can assume that αi = 0, for all i.

For a real λ > 1 to be determined later, define

Wλ
def
= {i : pi ≥ 2−λH(φ)}, p

def
=

∑

i6∈Wλ

pi, and,

|φλ〉 def
=

∑

i∈Wλ

√

pi
1− p

|i〉.

Then we have p ≤ 1
λ
. Hence, |Wλ| ≤ 2λH(φ), and

‖|φ〉 − |φλ〉‖ ≤ p ≤ 1

λ
.

Now set k
def
= λH(φ). After an appropriate permutation σ on {0, 1}k, |φλ〉 can be written as

|ψλ〉 def
= σ|φλ〉 =

∑

x∈{0,1}k

√
qx|x〉.

By Lemma 2.1, we can generate a state |ψ′
λ〉 using O(k log(λk)) basis-changing gates and

‖|ψ′
λ〉 − |ψλ〉‖ ≤ 1

λ
.

The output state is |φ′λ〉
def
= σ−1|ψ′

λ〉, which satisfies

‖|φ′λ〉 − |φ〉‖ ≤ ‖|φ′λ〉 − |φλ〉‖ + ‖|φλ〉 − |φ〉‖ ≤ ‖ψ′
λ〉 − |ψλ〉‖ + 1/λ ≤ 2/λ.
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Setting λ = 2/ǫ, this gives the required precision. The total number of basis-changing gates used is

O(k log(λk)) = O(
1

ǫ
H(φ) log

H(φ)

ǫ
) = O(H(φ) logH(φ)).

⊓⊔

Remark 2.3 (Improving the upper bound). Since for some quantum states |φ〉, a small perturbation may

reduce H(φ) dramatically, the upper bound in Theorem 2.2 may be improved by approximating such a lower

entropy approximation state. For example, consider

|φδ〉 = (1− δ)|0〉+
∑

i∈[K]

√
2δ − δ2√
K

|i〉.

Then Hφδ
= Θ(logK). On the other hand, if ǫ ≥ 2δ, the constant state |0〉 is an ǫ-approximation of |φδ〉.

Hence no basis-changing gate is needed at all.

2.2 Lower bound.

We can generalize the definition of H(φ) to H(ρ) for a mixed state ρ in the obvious way. Denote the trace

norm of a matrix M by ‖M‖tr. Given a state |φ〉 and a real ǫ > 0 let

Hǫ(φ)
def
= inf {H(ρ) : ‖ρ− |φ〉〈φ|‖tr ≤ ǫ}.

Note that Hǫ(φ) could be substantially smaller than H(φ), as demonstrated by the example in Remark 2.3.

On the other hand, for some family of states, such as the uniform superpositions { 1√
N

∑

i=0..N−1 |i〉 : N > 0},
Hǫ(φ) = Θ(H(φ)), for small ǫ.

Theorem 2.4. Let |φ〉 be a quantum state and ǫ > 0 be a constant. Then any quantum algorithm that

generates a mixed state ρ that satisfies ‖ρ−|φ〉〈φ|‖tr ≤ ǫ must use Ω(Hǫ(φ)) number of basis-changing gates.

Notice that if ‖|φ〉 − |φ′〉‖ ≤ ǫ, then

‖|φ〉〈φ| − |φ′〉〈φ′|‖tr ≤ 2ǫ.

Therefore, in general, the algorithm in Theorem 2.2 is almost tight (up to a logarithmic factor) for sufficiently

small ǫ and family of states that have Hǫ(φ) = Θ(H(φ)).

Proof of Theorem 2.4. Suppose k number of basis-changing gates are used to generate ρ. We will prove

that k = Ω(Hǫ(φ)).

Denote the state after the ith basis-changing gate by |φi〉, 0 ≤ i ≤ k. Note that ρ = F (|φk〉〈φk|), for
some physically realizable operator F , which is a composition of a permutation (with some phase) of the

computational basis followed a partial trace. Hence

H(φk) ≥ H(ρ) ≥ Hǫ(φ). (2)

Since H0 = 0, it suffices to prove that Hi+1 ≤ Hi + C, for all 0 ≤ i ≤ k − 1, and some constant C.

Fix a t, 0 ≤ t ≤ k − 1. Let Ut be the tth basis-changing gate, which is applied to a set of qubits A. The

other qubits are denoted by B. Note that the number of qubits in A, denoted by C, is a constant. Denote by

A′ and B′ two new systems that have the same number of qubits as in A and B, respectively. Let Copy[A;A′]

be the product of Controlled-Not gates that use qubits in A as the control and the corresponding qubits in

A′ as the destination. Similarly define Copy[B;B]. Let

|ψt〉 def
= (Copy[A;A] · Copy[B;B]) |φt〉AB ⊗ |00 · · ·0〉A′B′ .

5



Define |ψt+1〉 similarly. Denote the von Neumann entropy of a mixed state by E(·). Then

Ht = E ((|ψt〉〈ψt|)AB) = E ((|ψt〉〈ψt|)A′B′) .

The second equality follows from that |ψt〉 is a pure state. Similarly,

Ht+1 = E ((|ψt+1〉〈ψt+1|)AB) = E ((|ψt+1〉〈ψt+1|)A′B′) .

By the subadditivity of von Neumann entropy,

E((|ψt+1〉〈ψt+1|)A′B′) ≤ E((|ψt+1〉〈ψt+1|)A′) + E((|ψt+1〉〈ψt+1|B′).

Since

|ψt〉 =
(

Copy[A;A′] · U †
t · Copy[A;A′]

)

|ψt+1〉,

we have

E((|ψt+1〉〈ψt+1|)B′) = E((|ψt〉〈ψt|)B′).

The latter is exactly

E((|ψt〉〈ψt|)ABA′ ≤ E((|ψt〉〈ψt|)AB) + E((|ψt〉〈ψt|)A′),

by the subadditivity again. Putting the above together, we have

Hk+1 ≤ Hk + E((|ψt〉〈ψt|)A) + E((|ψt+1〉〈ψt+1|)A′) ≤ Hk + 2C.

Together with (2), this implies k = Ω(Hǫ(φ)). ⊓⊔

3 Quantum and Classical Tradeoffs in solving Grover’s Problem.

In this section, we prove a quantum and classical tradeoff relation for Grover’s Problem [7], which is also

called Unstructured Search Problem. We start with the framework in which Grover’s Problem is formulated

and then present the main result.

3.1 Grover’s Problem.

The input to Grover’s Problem (or, the Unstructured Search Problem) of size n is a binary string x =

x0x2 · · ·xn−1, where xi ∈ {0, 1}, 0 ≤ i ≤ n− 1, with the promise that there exists one and only one index i

such that xi = 1. The task is to identify i. The complicacy is that x is known only to an oracle, which can

only be accessed by applying the oracle gate Ox:

Ox|i, b〉 = |i, b⊕ xi〉, 0 ≤ i ≤ n− 1, b ∈ {0, 1}.

Hence, in general, an algorithm would start with a constant vector |φ0〉 in its state space, apply a sequence

of unitary transformations U0, Ox, U1, Ox, · · · , Ox, UT , which is followed by a measurement that would

output i with a high probability (say≥ 2/3). The complexity of the algorithm is T , the number of applications

of Ox.

In one of the most important papers in quantum computing, Grover [7] discovered a surprising quantum

algorithm that makes only O(
√
n) queries, a quadratic speedup over the best possible classical algorithm.

Because Grover’s Problem is formulated in such a general way, Grover’s Algorithm can be used in solving

many other problems with a quantum speedup. A recent example is Ambainis’ quantum algorithm for the

classical problem of Element Distinctness [3]. In fact, Grover’s Problem is an example of problems formulated

in the so-called “black-box model”, which has been widely studied by many authors (see, e.g., the survey of

Ambainis [2]).
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3.2 Quantum and classical tradeoffs for Grover’s Problem.

Much work has been done on proving lower bounds in the quantum black-box model (see, e.g., two repre-

sentative papers by Beals, Buhrman, Cleve, Mosca, and de Wolf [4], and by Ambainis [1]). In fact, the tight

lower bound for Grover’s Problem was known before Grover’s work due to Bennett, Bernstein, Brassard,

and Vazirani [5], and was refined by Boyer, Brassard, Høyer, and Tapp [6], and by Zalka [12].

Theorem 3.1 ([5]). Any quantum algorithm for solving Grover’s Problem of size n must query Ω(
√
n)

times.

A quantum black-box algorithm can viewed as a sequence of blocks of classical reversible computation

that may include oracle queries and are separated by layers of basis-changing gates. For example, for some

T = Θ(
√
n), Grover’s Algorithm uses 2T+O(1) Fourier transforms, and in between, T oracle queries together

with other classical reversible computation. We are interested in the tradeoff of the number of basis-changing

layers and the number of queries.

Theorem 3.2. Any quantum algorithm solving Grover’s problem of size n using T queries and ℓ Fourier

transforms must satisfy T · ℓ = Ω(n).

A special case where the algorithm is required to make s queries non-adaptively, for a fixed s, before

making a local computation was studied by Zalka [12], which implies the same lower bound as the above for

this case.

It is not hard to see that this tradeoff relation is optimal as long as T = Ω(
√
n):

Proposition 3.3. For any T ≥ √
n, there exists a quantum algorithm that solves Grover’s Problem of size

n using Θ(T ) queries and Θ(n/T ) layers of basis-changing gates.

3.3 Proofs.

We shall prove Theorem 3.2 by a generalized form of the “quantum adversary” technique of Ambainis [1],

which we now briefly review.

Let f be a function defined on two disjoint sets X and Y , where X, Y ⊆ {0, 1}n, and for any pair x ∈ X ,

and y ∈ Y , f(x) 6= f(y). Let R ∈ X × Y , and

m
def
= min

x∈X
|{y : (x, y) ∈ R}| , ℓ

def
= max

x∈X,i∈[n]
|{y : (x, y) ∈ R and xi 6= yi}| ,

and m′ and ℓ′ are defined similarly with X (x) and Y (y) switched. Then

Lemma 3.4 ([1]). Any quantum algorithm that computes f with error probability ≤ ǫ, 0 ≤ ǫ < 1/2, must

make Ω(
√

mm′/ℓℓ′) queries.

This can be proved by considering the changes on a “progress indicator” after each query of the algorithm.

Specifically, suppose we fix an algorithm that makes T queries. Let |φtz〉 be the state with oracle z and after

the tth oracle query. Define the progress indicator

pt
def
= Ex∈X,y∈Y [ 〈φtx|φty〉 ], t = 0, · · · , T.

Notice that only the oracle gate may change the progress indicator. Clearly p0 = 1. Furthermore, since

the algorithm succeeds with a probability at least 1− ǫ > 1/2,

Proposition 3.5 ([1]). For some constant c, 0 ≤ c < 1, pT ≤ c.
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The lower bound is then established by proving

|pt − pt−1| = O(
√

ℓℓ′/mm′), ∀t ∈ [T ].

In our context, we shall consider the change on the progress indicator pt after a sequence of classical

reversible computation with oracle queries.

Lemma 3.6. Let f , X, Y , and pt be as described above. Let k ∈ [n], and

αk
def
= max

x∈X,s⊆[n],|s|=k

|{y : (x, y) ∈ R, y differs from x when restricted to s}|
|{y : (x, y) ∈ R}| .

Similarly define βk with x switched with y and X switched with Y . Then for any t, after a sequence of

classical reversible computation that uses k queries,

|pt − pt+k| = O(
√

αk · βk).

Proof. Denote the computational basis by C. Denote the starting state (before the sequence of classical

reversible computation) with oracle z by

|φz〉 =
∑

c∈C
γz,c|c〉.

For an input z ∈ {0, 1}n, denote by σz the permutation on the computational basis specified by the algorithm.

Then after the classical reversible computation, |φz〉 → σz|φz〉. Hence the change of the progress indicator

|pt − pt+k| =
∣

∣ Ex,y [〈φx|φy〉]− Ex,y [〈φx|σ†
xσy|φy〉]

∣

∣

is upper bounded by

E[|〈φx|σ†
xσy − I|φy〉|] (3)

≤ 1

|R|
∑

(x,y)∈R

∑

c,c′

|γx,c| · |γy,c′ | · |〈c|σ†
xσy − I|c′〉| (4)

≤ 1

|R|
∑

(x,y)∈R, c, c′

c′ 6=c, σy(c′)=σx(c)

|γx,c| · |γy,c′ | (5)

+
1

|R|
∑

(x,y)∈R, c

σx(c) 6=σy(c)

|γx,c| · |γy,c|. (6)

Let us bound the second summation (6) first. After applying Cauchy-Schwartz, we have the upper bound

1

|R|

√

√

√

√

∑

x,c

∑

y:(x,y)∈R

σx(c) 6=σy(c)

|γx,c|2 ·
√

√

√

√

∑

y,c

∑

x:(x,y)∈R

σx(c) 6=σy(c)

|γy,c|2. (7)

A fixed combination of x and c determines a set of k coordinates being queried. If y is identical to x in these

coordinates then σy(c) = σx(c). Therefore, with

mx = max
s⊆[n],|s|=k

|{y : (x, y) ∈ R and y differs from x when restricted to s}| ,

and my similarly defined, the above equation is further upper bounded by

1

|R|

√

∑

x

mx ·
∑

y

my ≤
√

αkβk,
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since
∑

x mx

|R| ≤ αk and
∑

y my

|R| ≤ βk.

Now we bound the first summation (5). By Cauchy-Schwartz, it is upper-bounded by

1

|R|

√

√

√

√

∑

x,c

∑

c′, y:(x,y)∈R

c′ 6=c, σx(c)=σy(c′)

|γx,c|2 ·
√

√

√

√

∑

y,c′

∑

c, x:(x,y)∈R

c 6=c′, σx(c)=σy(c′)

|γy,c′ |2.

The constraints on y and c′ in the first summation are equivalent to that σx(c) 6= σy(c) and c
′ = σ†

yσx(c),

therefore the above is upper bounded by Equation 7, hence by
√
αkβk as well. Therefore, the change on the

progress indicator is at most 2
√
αkβk. ⊓⊔

Remark 3.7. A lower bound better than 2
√
αkβk is 2

|R|

√

(
∑

xmx) · (
∑

ymy), where mx and my are defined

in the above proof. However, for our purpose of proving Theorem 3.2, both bounds are the same.

We are now ready to prove Theorem 3.2

Proof of Theorem 3.2. For the purpose of proving lower bound, it suffices to consider the following decision

version of Grover’s problem: determine whether or not the oracle is e0 = 0n or ei, the n bit binary string

that has the single 1 at the i-th position, for some i ∈ [n]. Let f in Lemma 3.6 be this decision problem and

set

X
def
= { e0 }, Y

def
= { ei : 1 ≤ i ≤ n }, and, R

def
= X × Y.

Fix an algorithm that makes T queries and ℓ levels of basis-changing gates. Then the algorithm can be

divided into ℓ+1 blocks of classical reversible computation with the ℓ basis-changing layers separating them.

Number the blocks by 1, 2, · · · , ℓ + 1. For each block s, let ks be the number of queries in this block, and

ps−1 be the progress indicator at the beginning of the block. The progress indicator at the end of the last

block is denoted by pℓ+1. We have
∑ℓ+1

s=1 ks = T , p0 = 1, and pℓ+1 ≤ c for some constant c with 0 ≤ c < 1.

Furthermore, for each ks,

αks
=
ks
n
, and, βks

= 1.

Then, by Lemma 3.6,

|ps − ps−1| = O(
√

ks/n), ∀s ∈ [ℓ+ 1].

Hence
∑

s∈[ℓ+1]

√

ks/n = Ω(1).

By the Cauchy-Swartz Inequality, the left hand side is upper-bounded by

√

(ℓ + 1) · (
∑

s=1..ℓ+1

ks)/n = Θ(
√

ℓ · T/n).

Hence ℓ · T = Ω(n). ⊓⊔

Proposition 3.3 can be proved by using a mixture of classical exhaustive algorithm and Grover’s algorithm.

Proof of Proposition 3.3. Consider the following algorithm. Divide the n bits binary string into h
def
= ⌈(n/t)2⌉

blocks. Apply Grover’s algorithm to search for a block that contains the 1, and within each block, query all

the bits. The total number of queries is Θ(
√
h · n

h
) = Θ(T ), and the total number of layers of basis-changing

gates is Θ(
√
h) = Θ(n/T ). ⊓⊔
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4 Discussion.

We initiate the study of what we called “quantum and classical tradeoffs”, which in essence is the relation of

the number of basis-changing gates in a quantum circuit with the computation power of the quantum circuit.

Specifically, we prove lower and upper bounds on the number of basis-changing gates for generating a given

quantum state, and prove an optimal tradeoff relation between the number of a layers of basis-changing

gates and the number of queries for algorithms that solve Grover’s Problem. We shall conclude this paper

by formulating a class of open problems in this direction.

Since Toffoli and Hadamard are universal for quantum computing (see, e.g., Shi [11]), we can assume that

any quantum circuit involves only these two gates. Notice that the composition of a set of Hadamard gates

is just a Fourier transform over a tensor product of Z2.

For each integer k ≥ 0, define the complexity class FHk (FH meant to stand for “Fourier Hierarchy)

to be languages that can be decided with a bounded error probability by a quantum circuit of polynomial

size and ≤ k Fourier transforms. Notice that if only uniform families of quantum circuits are considered,

FH0 = P , and FH1 = BPP . When k = 2, FH2 starts to have nontrivial quantum computation power.

For example, the oracle version of FH2 includes Simon’s problem, and Factoring can be done in FH2 via

Kitaev’s Phase Estimation Algorithm.

It appears a reasonable conjecture that in general, the number of Fourier transforms can not be reduced

without substantial increase of the circuit size.

Conjecture 4.1. For any k ≥ 0, FHk ( FHk+1.

Since we do not know how to prove strong lower bounds in a general model, one may have to consider first

oracle versions of the problem, that is, show an exponential separation between FHk and FHk+1 relative to

an oracle for any k. Simon’s Problem provides an oracle separation for FH1 and FH2. The iterated version

of it, as well as the Recursive Fourier Sampling problem in [5] appear to be good candidates for an oracle

separation for a general k.
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