
Syntax vs. semantics: a polarized approach

Olivier LAURENT
Preuves Programmes Systèmes

CNRS – Université Paris VII

UMR 7126 – Case 7014

2, place Jussieu – 75251 Paris Cedex 05 – FRANCE

Olivier.Laurent@pps.jussieu.fr

January 20, 2005

Abstract

We present a notion of sliced proof-nets for the polarized fragment of Linear Logic and a cor-
responding game model. We show that the connection between them is very strong through an
equivalence of categories (this contains soundness, full completeness and faithful completeness).

An important topic in the recent developments of denotational semantics has been the quest for
stronger and stronger connections between the syntactical systems and the denotational models.
Work towards bringing the two notions closer has come from both sides, and can be seen as an
attempt to solve the general question “what is a proof?”.

Full abstraction and full completeness (see [1, 8]) results have been initiated with game seman-
tics [1, 2, 15] and come with models containing only elements definable by the syntax. These results
have been mainly obtained in the last ten years for fragments of linear logic (for example MLL with
and without MIX [1, 14, 25, 5, 6], MALL [4], ILL [19], LLP [21], . . .) and for extensions of PCF (for
example PCF [2, 15], µPCF [18], Idealized Algol [3], . . .). This full completeness property can be
considered as a measurement of the precision of the semantics (whatever the syntax might be).

On the other side, the syntactical settings for logical systems have evolved progressively: sequent
calculus, natural deduction, proof-nets. Although natural deduction is satisfactory for intuitionistic
logic with →, ∧ and ∀, proof-nets permit intrinsic syntactical presentations of richer systems. Much
work has been done since the original version [7] to remove sequentiality (boxes) and to make them
more canonical. A way to evaluate the precision of a given syntax is to compare it with another
one and to show that it realizes a quotient. Another approach is to use semantical means to see the
identifications realized by a given model and that are not present in the syntax. In the spirit of a
tight connection between syntax and semantics, the perfect case would correspond to an injective
interpretation of the syntax in the model. The main results in this direction are due to L. Tortora de
Falco [30] for fragments of linear logic with respect to coherent semantics. Work on full completeness
led also to such faithfulness results (see [1, 2, 15]) but correspond to quite particular cases: MLL (and
MLL with MIX) or λ-calculus. The extension of faithfulness results to the additive connectives was
a very open question. Proof-nets for MALL recently given by D. Hughes and R. van Glabbeek [13]
are very likely to lead to faithfulness results with respect to various models such as coherence
spaces [7] or game semantics [4]. A solution for a polarized setting has also been given with proof-
nets [24] but with a restriction on the use of the exponential connectives. These faithfulness results

1

may be considered as a property of the syntax comparable to Böhm’s theorem and more generally
separation theorems. These syntactical theorems are about separation of terms by contexts. Here
the separation is based on semantics but these two points of view sometimes coincide in particular
in realizability models where terms are precisely interpreted by a set of accepting contexts (see for
example J.-L. Krivine’s classical realizability [17] or J.-Y. Girard’s ludics [11]).

In the spirit of J.-Y. Girard’s program [10] to remove the distinction between syntax and se-
mantics, this paper describes a strict correspondence between the polarized propositional fragment
of linear logic LLpol [20] (with all the connectives and the units) and a polarized game model. Com-
bining work from the syntactical side (sliced proof-nets) and work from the semantical side (game
semantics), we prove that we arrive to a meeting point for the polarized framework. The notion of
proof-nets we use is mainly the one described in [24] and our game model is a simplified version
of [21] for LLpol, also used in [22], which is enriched with variables. The polarization constraint
we deal with here is not too strong since our setting is expressive enough to encode propositional
classical logic with all connectives [23, 20] (using a variation on Girard’s embedding of intuitionistic
logic into linear logic).

The results we prove in this paper can be summarized in categorical terms through an equiva-
lence of categories between the syntax and the game model:

• Each object of the model is isomorphic to the interpretation of a formula.

• Each morphism of the model is the interpretation of a proof.

• The interpretations of two proofs are the same iff these proofs are βη-equal (with a canonical
representative in each class of βη-equivalence given by cut-free sliced proof-nets).

We do not claim that this paper contains completely new ideas and structures. It is mainly a
nice combination of (almost) known objects in order to get a precise comparison between them.
The two main really new ingredients are the extension of the game model to variables with full
completeness and the proof of the faithfulness result.

1 Polarized linear logic and proof-nets

The syntactical objects we are interested in are polarized sequent calculus proofs and polarized
proof-nets. We first present the sequent calculus LLpol based on a restriction of LL to polarized
formulas. Using the properties coming from polarization, we are then able to introduce the notion
of sliced proof-nets.

1.1 LLpol

The system LLpol is the fragment of LL obtained by the following restriction on formulas:

P ::= !X | 1 | 0 | P ⊗ P | P ⊕ P | !N
N ::= ?X⊥ | ⊥ | ⊤ | N ` N | N & N | ?P

2

The rules of the system LLpol are just the usual LL rules restricted to these polarized formulas:

ax
⊢ N,N⊥

⊢ Γ, N ⊢ N⊥,∆
cut

⊢ Γ,∆

⊢ Γ, N,M
`

⊢ Γ, N ` M

⊢ Γ, P ⊢ ∆, Q
⊗

⊢ Γ,∆, P ⊗ Q

⊢ Γ, N ⊢ Γ,M
&

⊢ Γ, N & M

⊢ Γ, P
⊕1

⊢ Γ, P ⊕ Q

⊢ Γ, Q
⊕2

⊢ Γ, P ⊕ Q

⊢ ?Γ, N
!

⊢ ?Γ, !N

⊢ Γ, P
?d

⊢ Γ, ?P
⊢ Γ

?w
⊢ Γ, ?A

⊢ Γ, ?A, ?A
?c

⊢ Γ, ?A

⊤
⊢ Γ,⊤

⊢ Γ
⊥

⊢ Γ,⊥
1

⊢ 1

where ?A is any negative formula starting with a ? symbol and where the context Γ of the ⊤-rule
contains at most one positive formula (which is the only difference with LL).

Lemma 1 (Positive formula)
If ⊢ Γ is provable in LLpol, Γ contains at most one positive formula.

Lemma 2 (Negative structural rules)

If N is a negative formula, the rules ⊢ Γ
⊢ Γ, N

and
⊢ Γ, N,N

⊢ Γ, N
are derivable in LLpol.

1.2 Sliced polarized proof-nets

Proof-nets permit the definition of a more parallel syntax than sequent calculus which is less
sensible to the order of rules and thus represent proofs up to certain commutations of rules. In our
polarized setting, we are able to introduce a sliced notion of proof-nets. This gives an independent
representation of the two premises of the &-rule which is the key ingredient in order to quotient
some “additive” commutations of rules (&/& or &/` for example).

Examples of the various objects and notions described in this section are given in appendix B.

Definition 1 (Flat proof-structure)
A flat proof-structure is a directed graph with edges labeled by types, where a type can be:

• either a polarized formula (P or N);

• or a ♭-formula ♭P where P is a positive formula;

• or a ♭-formula ♭X⊥ where X is a variable;

• or a variable X or X⊥.

Edges typed with negative formulas, ♭-formulas or variables X are called negative and edges typed
with positive formulas or variables X⊥ are called positive.

Nodes are given with constraints on the typing of their edges, on the number of incoming edges,
called the premises, and on the number of outgoing edges, called the conclusions, according to the
following rules:

3

(ax) An ax-node has no premise and two conclusions typed with X and X⊥ for some variable X.

(cut) A cut-node has two premises typed with dual types P and P⊥ or X and X⊥.

(⊗) A ⊗-node has two premises typed with positive formulas P and Q and one conclusion of type
P ⊗ Q.

(`) A `-node has two premises typed with negative formulas N and M and one conclusion of
type N ` M .

(⊕1) A ⊕1-node has one premise typed with a positive formula P and one conclusion of type P ⊕Q.

(⊕2) A ⊕2-node has one premise typed with a positive formula Q and one conclusion of type P ⊕Q.

(&1) A &1-node has one premise typed with a negative formula N and one conclusion of type
N & M .

(&2) A &2-node has one premise typed with a negative formula M and one conclusion of type
N & M .

(!) A !-node has no premise, one conclusion of type !N or !X and any number of other conclusions
typed with ♭-formulas.

(♭) A ♭-node has one premise typed with a positive formula P or a variable X⊥ and one conclusion
typed with the corresponding ♭-formula ♭P or ♭X⊥.

(?) A ?-node has any number of premises (possibly 0) with the same type ♭P or ♭X⊥ and one
conclusion of the corresponding type ?P or ?X⊥.

(1) A 1-node has no premise and one conclusion typed with the positive formula 1.

(⊥) A ⊥-node has no premise and one conclusion typed with the negative formula ⊥.

The nodes with only positive edges, that is ⊗, ⊕1, ⊕2 and 1, are called positive. The nodes with
only negative edges, that is `, &1, &2, ⊥ and ? are called negative.

Any edge must have a source but we allow edges without target and these edges are called the
conclusions of the flat proof-structure.

Remark: The main connective of a type specifies the nodes of which it can be a conclusion with
three particular cases: P ⊕ Q can be conclusion of a ⊕1 or ⊕2-node, N & M can be conclusion of
a &1 or &2-node, and ♭A can be conclusion of a ♭-node or of a !-node. For the other connectives,
there is only one possible kind of node.

Definition 2 (Sliced proof-structure)
Sliced proof-structures and slices with conclusions Γ, ♭∆ are defined inductively by:

• A flat proof-structure without !-node and with conclusions Γ, ♭∆ is a slice s with conclusions
Γ, ♭∆. Its nodes are said to have depth 0 in s.

• A flat proof-structure with conclusions Γ, ♭∆ and with, for each !-node n with conclusions
!N, ♭Ξ, an associated sliced proof-structure Sn with conclusions N, ♭Ξ (called the box of n) is
a slice s with conclusions Γ, ♭∆. If a node has depth d in Sn, it has depth d + 1 in the slice s
and if it is in the flat proof-structure, it has depth 0 in s.

4

• A finite set (possibly empty) of k slices si with conclusions Γ, ♭∆i (1 ≤ i ≤ k) is a sliced
proof-structure S with conclusions Γ, ♭∆ if ∆ = ∆1, . . . ,∆k. If a node has depth d in si, it
has the same depth in the sliced proof-structure S.

The depth of a sliced proof-structure is the maximal depth of its nodes.

Definition 3 (Correction graph)
The correction graph of a flat proof-structure is the directed graph obtained by orienting each
positive edge upwardly and each negative edge downwardly.

Definition 4 (Acceptable proof-structure)
A sliced proof-structure S is acceptable if:

• it is acyclic: the correction graphs of all the flat proof-structures of S are acyclic.

• it is connected : all the flat proof-structures of S contain exactly one ♭-node or one positive
conclusion.

• it is type completed : all its conclusions are typed with polarized formulas (no ♭-formula, no
X, no X⊥).

Definition 5 (Cut elimination)
The cut elimination procedure for acceptable sliced proof-structures is defined as usual for proof-
nets [28] except that we work independently in each slice. The only particular case is a cut between
a &1-node and a ⊕2-node (or a &2-node and a ⊕1-node) which is reduced by erasing the slice [24].

The main properties of sliced proof-nets are proved in [24, 20]. We just recall here the definitions
and statements.

Proposition 1 (Confluence)
If R →∗ R1 and R →∗ R2, there exists R0 such that R1 →∗ R0 and R2 →∗ R0.

Proposition 2 (Strong normalization)
If R is an acceptable sliced proof-structure, there is no infinite sequence of reductions starting from
R.

Definition 6 (Translation of sequent calculus)
The translation of a sequent calculus proof π of ⊢ Γ as a sliced proof-structure Rπ with conclusions
Γ is defined for an η-expanded proof (that is with axioms introducing only ⊢ ?X⊥, !X sequents) by
induction on the structure of this proof. If π is not η-expanded, we first expand all its axioms (see
appendix A).

(ax) The sliced proof-structure Rπ contains one flat proof-structure reduced to a !-node with
conclusions !X and ♭X⊥ and a unary ?-node under this ♭X⊥ conclusion introducing ?X⊥.
The sliced proof-structure associated with the !-node contains one flat proof-structure with
an ax-node with conclusions X and X⊥ and one ♭-node under this X⊥ introducing ♭X⊥.

(cut) If the sliced proof-structures associated with the two premises of this rule are Rπ1
and Rπ2

,
the slices of Rπ are obtained for each slice s1 ∈ Rπ1

and each slice s2 ∈ Rπ2
by putting a

cut-node between the conclusions of s1 and s2 cut in π.

5

(⊗) If the sliced proof-structures associated with the two premises of this rule are Rπ1
and Rπ2

,
the slices of Rπ are obtained for each slice s1 ∈ Rπ1

and each slice s2 ∈ Rπ2
by putting a

⊗-node between the conclusions of s1 and s2 corresponding to the active formulas.

(`) If the sliced proof-structure associated with the premise of this rule is Rπ1
, the slices of Rπ

are obtained by adding a `-node in each slice of Rπ1
.

(⊕1) If the sliced proof-structure associated with the premise of this rule is Rπ1
, the slices of Rπ

are obtained by adding a ⊕1-node in each slice of Rπ1
.

(⊕2) If the sliced proof-structure associated with the premise of this rule is Rπ1
, the slices of Rπ

are obtained by adding a ⊕2-node in each slice of Rπ1
.

(&) If the sliced proof-structures associated with the two premises of this rule are Rπ1
and Rπ2

,
the slices of Rπ are obtained by adding a &1-node to each slice of Rπ1

and by adding a
&2-node to each slice of Rπ2

.

(!) If the sliced proof-structure associated with the premise of this rule is Rπ1
with conclusions

?Γ and N , we remove in each slice s1 of Rπ1
the concluding ?-nodes and we obtain a sliced

proof-structure R′
π1

with the conclusion N and many ♭-conclusions ♭Γ′. The sliced proof-
structure Rπ contains a unique flat proof-structure with one !-node with conclusions !N and
♭Γ′ (with associated sliced proof-structure R′

π1
) and the required ?-nodes corresponding to

the erased ones of R′
π1

, so that we obtain Rπ with conclusions ?Γ and !N .

(?d) If the sliced proof-structure associated with the premise of this rule is Rπ1
, the slices of Rπ

are obtained by adding a ♭-node and a unary ?-node under it in each slice of Rπ1
.

(?w) If the sliced proof-structure associated with the premise of this rule is Rπ1
, the slices of Rπ

are obtained by adding a 0-ary ?-node in each slice of Rπ1
.

(?c) If the sliced proof-structure associated with the premise of this rule is Rπ1
, the slices of Rπ

are obtained by merging the two ?-nodes above the contracted conclusions in each slice of
Rπ1

.

(⊤) The sliced proof-structure Rπ associated with a ⊤-rule introducing ⊢ Γ,⊤ is the empty set
of slices with conclusions Γ and ⊤.

(⊥) If the sliced proof-structure associated with the premise of this rule is Rπ1
, the slices of Rπ

are obtained by adding a ⊥-node in each slice of Rπ1
.

(1) The sliced proof-structure Rπ associated with a 1-rule contains a unique flat proof-structure
reduced to a unique 1-node.

Proposition 3 (Correctness of the translation)
The sliced proof-structure Rπ associated with the proof π is acceptable.

Proposition 4 (Simulation)
If π0 is a normal form of the proof π, the normal form of Rπ is Rπ0

.

To get a sequentialization theorem we need to add some requirements to be sure that enough
slices are present in the proof-structure and that no contradiction appears between slices. In order to
give the appropriate definitions, we have to restrict ourselves to the case of cut-free proof-structures.

6

Definition 7 (Equivalence of negative nodes)
We define a partial equivalence relation ≡ on the 0-depth negative nodes of a sliced cut-free proof-
structure S:

• if n1 and n2 are two conclusion negative nodes of two slices of S with the same conclusion,
they are equivalent: n1 ≡ n2;

• if n1 and n2 are two negative nodes of S above the same premise (left or right for binary
nodes) of two nodes m1 and m2 (that must be negative) of the same kind such that m1 ≡ m2,
then n1 ≡ n2.

Two equivalent nodes are of the same kind except if we have a &1-node and a &2-node but in
this case the nodes above their premise are not equivalent. The equivalence classes of nodes for ≡
correspond to occurrences of connectives in the types of the conclusions of the sliced proof-structure.

To compare the use of the &-nodes in different slices we use Girard’s notion of additive
weights [9].

Definition 8 (Weights)
Let S be a sliced cut-free proof-structure, we denote by &i the equivalence classes of the &-nodes
of S with respect to ≡. With each such equivalence class &i, we associate a boolean variable pi

and we denote its negation by pi.

• the weight of a slice s is:

w(s) =
∏

&i
1∈s

pi

∏

&i
2∈s

pi

• the weight of a sliced proof-structure S is:

w(S) =
∑

s∈S

w(s)

• if the types of the conclusions of a sliced proof-structure S are A1, . . . , An, the variables pi

are associated with occurrences of the & connective in these types and we define the ⊤-weight
of a sub-type of Ai by:

w⊤(A) = 0 if A is positive

w⊤(♭A) = 0

w⊤(?A) = 0

w⊤(⊥) = 0

w⊤(⊤) = 1

w⊤(N ` M) = w⊤(N) + w⊤(M)

w⊤(N & M) = pw⊤(N) + pw⊤(M) where p is the associated variable of the &

and the ⊤-weight of S is w⊤(S) = w⊤(A1) + · · · + w⊤(An).

Definition 9 (Sliced cut-free proof-net)
A sliced cut-free proof-structure S is correct or is a sliced proof-net if it is acceptable and moreover:

7

• it is full : w(S) + w⊤(S) = 1 and for each sliced proof-structure S ′ associated with a !-node
w(S ′) + w⊤(S ′) = 1.

• it is compatible: for any two slices s 6= t of S, w(s)w(t) = 0 and for each sliced proof-structure
S ′ associated with a !-node if s′ 6= t′ ∈ S ′, w(s′)w(t′) = 0.

Proposition 5 (Correctness of the cut-free translation)
The sliced cut-free proof-structure Rπ associated with the cut-free proof π is a sliced cut-free proof-
net.

Proposition 6 (Sequentialization)
If R is a sliced cut-free proof-net, there exists a proof π in LLpol such that R = Rπ.

2 Game semantics

2.1 Polarized games

The game model we are interested in can be seen both as a simplification for LLpol of the polarized
model described in [21] and as a generalization of Laird’s model [18]. We extend the usual Hyland-
Ong/Nickau games [15, 27] (HON) with explicit polarities on arenas and with new constructions
× and ˜. The explicit polarization leads to some variations in the interpretations of contraction,
weakening, . . .

For more explanations on this kind of HON games, more details and more intuitions, the reader
may look at [12].

Definition 10 (Forest)
A forest is a partial order (E,≤) such that for any x ∈ E, ({y ∈ E | y ≤ x},≤) is a finite total
order.

The nodes of a forest (E,≤) are the elements of E and the forest is finite if E is finite. The
roots are the minimal elements. The set of the roots of a forest is denoted by Er. The leaves are
the maximal elements and a strict leaf is a leaf which is not a root. If x is the maximal element
under y, we say that y is a son of x.

Definition 11 (Arena)
A polarized arena (A,≤A, πA,VA) is a finite forest (A,≤A) whose nodes are called moves with a
polarity πA which is P or O (also denoted by + or −) and a given set VA of strict leaves.

A labeled polarized arena is a polarized arena with a function from VA to variables X, Y , . . .
The polarity of a move m is πA (resp. πA) if the length of the path (i.e. its number of edges)

going from a root of A to m is even (resp. odd).
A move m of A is initial, denoted by ⊢A m, if it is a root of A. If m is a son of n in A, we say

that n enables m, denoted by n ⊢A m. We will usually describe arenas by means of ⊢A instead of
≤A.

Definition 12 (Constructions of arenas)
We consider the following constructions on arenas:

Dual. If A is an arena, its dual is obtained by changing its polarity with the same set VA⊥ = VA.

8

Empty. There are two empty polarized arenas: the positive one (∅, ∅, P, ∅) and the negative one
(∅, ∅, O, ∅).

Unit. The two unit arenas are the forests reduced to one node: ({⋆}, ∅, P, ∅) and ({⋆}, ∅, O, ∅).

Sum. If A and B are two arenas of the same polarity, A + B is the union of the two forests:

• the underlying set of A + B is the disjoint union of A and B;

• if a ∈ A, a′ ∈ A and a ⊢A a′ then a ⊢A+B a′;

• if b ∈ B, b′ ∈ B and b ⊢B b′ then b ⊢A+B b′;

• πA+B = πA = πB;

• VA+B = VA + VB .

Product. If A and B are two arenas of the same polarity, the trees of A × B are obtained by
taking a tree in A and a tree in B and by identifying their roots. More formally:

• the underlying set of A × B is (Ar × Br) + ((A \ Ar) × Br) + (Ar × (B \ Br));

• if (a0, b0) ∈ Ar × Br, (a, b0) ∈ (A \ Ar) × Br, and a0 ⊢A a then (a0, b0) ⊢A×B (a, b0);

• if (a0, b0) ∈ Ar × Br, (a0, b) ∈ Ar × (B \ Br), and b0 ⊢B b then (a0, b0) ⊢A×B (a0, b);

• if (a, b0) ∈ (A \Ar)×Br, (a′, b0) ∈ (A \Ar)×Br, and a ⊢A a′ then (a, b0) ⊢A×B (a′, b0);

• if (a0, b) ∈ Ar × (B \Br), (a0, b
′) ∈ Ar × (B \Br), and b ⊢B b′ then (a0, b) ⊢A×B (a0, b

′);

• πA×B = πA = πB;

• VA×B = VA × Br + Ar × VB .

Lift. If A is an arena, ˜A is obtained by adding a new root ⋆ under all the trees of A:

• the underlying set of ˜A is the disjoint union of A and {⋆};

• if a ⊢A a′ then a ⊢˜A a′;

• if ⊢A a then ⋆ ⊢˜A a;

• ⊢˜A ⋆;

• π˜A = πA;

• V˜A = VA.

In the spirit of categories, we will use the notation A → B for the arena ˜A⊥ × B.

Definition 13 (Justified sequence)
Let A be an arena, a justified sequence s on A is a sequence of moves of A with, for each non-initial
move b of s, a pointer to an earlier occurrence of move a of s, called the justifier of b, such that
a ⊢A b.

Definition 14 (Projections)
If s is a justified sequence on A + B, the projection s ↾A (resp. s ↾B) is the justified sequence
containing only the moves of s in A (resp. in B).

If s is a justified sequence on A × B, the projection s ↾A (resp. s ↾B) is the justified sequence
containing only the moves a (resp. b) such that (a, b0) (resp. (a0, b)) is a move of s for some initial

9

move b0 (resp. a0). In this spirit, we will say that a move of the shape (a, b0) in A × B with a
non-initial and b0 initial (resp. (a0, b) with a0 initial and b non-initial) is a move in A (resp. in B).

If s is a justified sequence on ˜A, the projection s ↾A is the justified sequence containing only
the moves of s in A.

In these three cases, s ↾A (resp. s ↾B) is a justified sequence on A (resp. on B).

Definition 15 (Play)
Let A be an arena, a play s on A is a justified sequence on A with moves of alternated polarity.

The set of plays of A is denoted by PA. We use the notation t ≤P s if t is a prefix of s ending
with a P -move. We say that t is a P -prefix of s.

In the sequel we will use the following notations:

• A, B, C, . . . for arenas and formulas;

• A, . . . for arenas (when confusion with the corresponding formula is possible);

• a, b, c, . . . , m, n, . . . for moves;

• s, t, . . . for justified sequences and plays and also u, v, . . . but mainly for interaction
sequences;

• σ, τ , . . . for strategies;

• ϕ for view functions.

Definition 16 (View)
Let A be an arena and s be a play on A, the view psq of s is the sub-play of s defined by:

• psaq = a if a is an initial move;

• psaq = psqa if a is a non-initial P -move;

• psatbq = psqab if b is an O-move justified by a.

A play s on A is called a view if s = psq.

Definition 17 (Strategy)
A strategy σ on a negative arena A, denoted by σ : A, is a non-empty P -prefix-closed set of even
length plays of A such that:

• determinism: if sab ∈ σ and sac ∈ σ, then sab = sac.

• visibility : if sab ∈ σ, the justifier of b is in psaq.

• innocence: if sab ∈ σ, t ∈ σ, ta ∈ PA and psaq = ptaq then tab ∈ σ.

Definition 18 (View function)
Let A be a negative arena, a view function ϕ on A is a non-empty P -prefix-closed set of even length
views of A which is deterministic: if sab ∈ ϕ and sac ∈ ϕ then sab = sac (this can also be seen as
a partial function from odd length views to P -moves with a pointer). If σ : A is a strategy, its view
function is ϕσ = {psq | s ∈ σ}.

10

According to the following lemma, a strategy can be described as before or by its view function.

Lemma 3 (Innocence and view function)
If ϕ is a view function, there exists a unique strategy σ : A such that ϕσ = ϕ.

Definition 19 (Linear strategy)
A strategy σ : A → B = ˜A⊥ × B is linear, denoted by σ : ‡A⊥ × B, if in any play s of σ, each
initial move (⋆, b) is immediately followed by a move (a, b) in Ar × Br justified by (⋆, b) and no
other move of s in Ar × Br is justified by (⋆, b).

Definition 20 (Total strategy)
Let σ : A be a strategy, σ is total if whenever s ∈ σ and sa ∈ PA, there exists some b such that
sab ∈ σ.

Definition 21 (Finite strategy)
The size of a strategy σ is the sum of the lengths of the views of its view function ϕσ. A strategy
is finite if its size is finite.

Definition 22 (Balanced strategy)
A strategy σ : A is balanced if, for any play sab of σ, a is in V if and only if b is in V. If A is
labeled, σ is label-balanced if it is balanced and moreover the variables associated with these pairs
of moves are the same.

This definition is very similar to Murawski’s token-reflecting strategies [26].

Definition 23 (Identity)
Let A be a negative arena, the identity strategy idA is idA = {s ∈ PA1→A2

| ∀t ≤P s, t ↾A1
=

t ↾A2
} : A → A (the indexes are only used to distinguish occurrences).

Definition 24 (Composition)
Let A, B and C be three negative arenas, an interaction sequence u on A, B and C is a justified
sequence on (A → B) → C such that u ↾A→B ∈ PA→B, u ↾B→C ∈ PB→C and u ↾A→C ∈ PA→C . A
move of u in A pointing to a move in B is an initial move of A and its justifier is an initial move of
B. The play u ↾A→C is obtained by choosing as a pointer for these initial moves of A the justifier
of their justifier which is an initial move of C. The set of the interaction sequences on A, B and C
is denoted by int(A,B,C).

Let σ : A → B and τ : B → C be two strategies, the composition of σ and τ is the strategy
σ; τ = {u ↾A→C | u ∈ int(A,B,C) ∧ u ↾A→B ∈ σ ∧ u ↾B→C ∈ τ} : A → C.

Remark: If A is the empty arena, (A → B) → C is the same as B → C, so that we can generalize
the previous definition to the notion of interaction sequences on B and C (denoted by int(B,C))
and to composition of a strategy σ : B with a strategy τ : B → C which gives the strategy σ; τ on
C.

Lemma 4 (Composition of balancing)
If σ : A → B and τ : B → C are two balanced (resp. label-balanced) strategies, then σ; τ : A → C
is a balanced (resp. label-balanced) strategy.

Proof: Let smn be a play in σ; τ and u be an interaction sequence such that u ↾A→C = smn,
u ↾A→B ∈ σ and u ↾B→C ∈ τ , we decompose u into u′mu′′nu′′′ and we prove by induction on
the length of u′′ that if m (resp. n) is in V then all the moves of u′′ and n (resp. m) are in V:

11

• If u′′ is empty, m and n are both in A (or both in C which is similar) and, by balancing
of σ, m is in V if and only if n is in V.

• If u′′ = va, if m is in V, by induction hypothesis, all the moves of v are in V and if a is a
P -move (resp. O-move), by balancing of τ (resp. σ), a is in V and then by balancing of
σ (resp. τ), n is in V. In the other direction, we decompose u′′ into bw and in the same
way, if n is in V, both w, b, and m are in V.

The label-balanced case is proved exactly like the balanced case. 2

2.2 The game model of LLpol

The game model of LLpol is given by an interpretation of polarized formulas by polarized arenas of
the same polarity and of proofs by strategies.

The interpretation of the polarized formula A is the labeled polarized arena A⋆ defined by:

(!X)⋆ = ({q,X}, {(q,X)}, P, {X}) (?X⊥)⋆ = ({q,X}, {(q,X)}, O, {X})
with X 7→ X with X 7→ X

0⋆ = (∅, ∅, P, ∅) ⊤⋆ = (∅, ∅, O, ∅)
1⋆ = ({⋆1}, ∅, P, ∅) ⊥⋆ = ({⋆⊥}, ∅, O, ∅)

(P ⊕ Q)⋆ = P ⋆ + Q⋆ (N & M)⋆ = N⋆ + M⋆

(P ⊗ Q)⋆ = P ⋆ × Q⋆ (N ` M)⋆ = N⋆ × M⋆

(!N)⋆ = ˜N⋆ (?P)⋆ = ˜P ⋆

with the property A⋆⊥ = A⊥⋆
.

For the non-labeled case, we just forget the variable informations.

Example 1
The polarized arenas associated with ?X⊥ and ?(1 ⊕ !(?X⊥ & ⊥)) & (?(!Y ⊕ 1) ` ?!(⊥ & ⊥)) are:

X

and

X

Y

with polarity O and V is denoted with nodes.
For another example, see the end of appendix B

Lemma 5 (Product of strategies)
If A and B are two positive arenas, C and D are two negative arenas, σ : ‡A × C and τ : ‡B × D
are two linear strategies, the set σ×τ = {s ∈ P˜(A×B)×C×D | s ↾˜A×C ∈ σ∧s ↾˜B×D ∈ τ} is a linear
strategy on ‡(A × B) × C × D. Moreover, if σ and τ are label-balanced, σ × τ is label-balanced.

Proof: We first prove by induction on the length of s that if sab ∈ σ × τ then a ∈ ˜A × C ⇐⇒
b ∈ ˜A × C. If s is empty, a is an initial move thus in C × D and by linearity of σ and τ , b
corresponds to an initial move in A × B. If s is not empty, if a ∈ ˜A × C then b ∈ ˜A × C
otherwise sab ↾˜A×C ends with an O-move and sab ↾˜A×C ∈ σ is impossible; if b ∈ ˜A × C
then a ∈ ˜A × C otherwise sab ↾˜A×C is not alternated.

12

We can now easily verify that σ × τ is a non-empty P -prefix-closed set of even length plays
of ˜(A × B) × C × D.

If sab ∈ σ× τ and sac ∈ σ× τ , if a = (a′, a′′) ∈ C ×D then we must have b = (b′, b′′) ∈ A×B
(resp. c = (c′, c′′) ∈ A × B) and a′b′ ∈ σ (resp. a′c′ ∈ σ) and a′′b′′ ∈ τ (resp. a′′c′′ ∈ τ)
so that b′ = c′ and b′′ = c′′. If a ∈ ˜A × C (the case a ∈ ˜B × D is very similar), by our
preliminary result, b ∈ ˜A × C and c ∈ ˜A × C so that sab ↾˜A×C = s ↾˜A×Cab ∈ σ and
sac ↾˜A×C = s ↾˜A×Cac ∈ σ which entails b = c by determinism of σ.

We now show a second intermediary result by induction on the length of s: if sab ∈ σ × τ
and a ∈ ˜A × C then psaq ⊂ sa ↾˜A×C . If s is empty or s is not empty and a is initial, then
a ∈ C × D. If s is not empty and a is not initial, we decompose sa into s′bta where b is the
justifier of a. We have psaq = ps′qba. If b ∈ ˜A×C then the last move of s′ is in ˜A×C and
by induction hypothesis ps′q ⊂ s′ ↾˜A×C thus psaq ⊂ sa ↾˜A×C . If b /∈ ˜A×C then b ∈ A×B
and ps′q is reduced to one initial move in C × D so that psaq ⊂ sa ↾˜A×C .

If sab ∈ σ × τ , we consider the case where b ∈ ˜A × C which entails a ∈ ˜A × C thus
psaq ⊂ sa ↾˜A×C and by visibility of σ, b points in its view in sa ↾˜A×C thus it points in its
view in sab.

If sab ∈ σ × τ , t ∈ σ × τ , ta ∈ P˜(A×B)×C×D and psaq = ptaq, we assume b ∈ ˜A × C thus
a ∈ ˜A × C and psa ↾˜A×Cq = psaq ↾˜A×C = ptaq ↾˜A×C = pta ↾˜A×Cq and by innocence of
σ we have tab ↾˜A×C ∈ σ. Moreover we have tab ↾˜B×D = t ↾˜B×D ∈ τ so that tab ∈ σ × τ . 2

If σ : ‡A × B is a linear strategy, we use the notation σ × C for σ × idC : ‡(A × C⊥) × B × C.

Lemma 6 (Exponential of a strategy)
If A and ˜B are two negative arenas and σ : A×˜B is a strategy, we define ϕ = {ε, (⋆, ⋆˜B)(⋆˜A, ⋆˜B)}∪
{(⋆, ⋆˜B)(⋆˜A, ⋆˜B)(a, ⋆˜B)s | (a, ⋆˜B)s ∈ ϕσ} where ⋆ is the initial move of ˜˜A, ⋆˜A is the initial
move of ˜A and ⋆˜B is the initial move of ˜B.

The set ϕ is a view function on ˜˜A× ˜B and we denote by !σ : ‡˜A× ˜B the associated linear
label-balanced strategy.

Proof: If (a, ⋆˜B)s ∈ ϕσ then (⋆, ⋆˜B)(⋆˜A, ⋆˜B)(a, ⋆˜B)s is an even length view, thus ϕ is a
non-empty set of even length views, and we easily see that it is P -prefix-closed. If sab ∈ ϕ
and sac ∈ ϕ, either s = ε and ab = ac = (⋆, ⋆˜B)(⋆˜A, ⋆˜B) or we conclude by determinism of
ϕσ . 2

Lemma 7 (Contraction)
If ˜A is a negative arena and s is a play in ˜(˜A1 × ˜A2)

⊥× ˜A0 (indexes are for occurrences), we
define si (i = 1, 2) to be the sub-sequence of s defined by:

• the initial moves (⋆, ⋆) are in si;

• the moves in ˜Ai are in si;

• a P -move in ˜A0 following a move of si is in si;

• an O-move in ˜A0 pointing to a move of si is in si.

The set c˜A = {s ∈ P˜(˜A1×˜A2)⊥×˜A0
| ∀t ≤P s, t1 ∈ id˜A ∧ t2 ∈ id˜A} is a linear label-balanced

strategy on ‡(˜A × ˜A)⊥ × ˜A.

13

According to lemma 1, a proof π in LLpol has a conclusion ⊢ N ,Π where N = N1, . . . , Nk

contains only negative formulas and Π is either empty or contains one positive formula. If Π is
empty, π is interpreted as a label-balanced strategy π⋆ on N ⋆ = N⋆

1 × · · · × N⋆
k . If Π = P , π is

interpreted as a linear label-balanced strategy π⋆ on ‡P ⋆ ×N ⋆. In the particular case where N is
empty we have a linear strategy on ‡P ⋆.

In order to simplify the following definitions, we introduce the notation σ : ‡Π⋆ × N ⋆ which
means that either Π is empty and σ is a strategy on N ⋆ or Π = P and σ is a linear strategy on
‡P ⋆ ×N ⋆. The strategy π⋆ is defined by induction on the structure of π by:

(ax) The strategy π⋆ is the identity strategy on ‡N⊥⋆
× N⋆.

(cut) If σ1 : ‡Π⋆ × N⋆ × Γ⋆ and σ2 : ‡N⊥⋆
× ∆⋆ are the interpretations of the two premises, the

strategy π⋆ is σ1; (σ2 × Γ⋆) : ‡Π⋆ × ∆⋆ × Γ⋆.

(⊗) If σ1 : ‡P ⋆ × Γ⋆ and σ2 : ‡Q⋆ × ∆⋆ are the interpretations of the two premises, the strategy
π⋆ is σ1 × σ2 : ‡(P ⊗ Q)⋆ × Γ⋆ × ∆⋆.

(`) If σ : ‡Π⋆ ×Γ⋆×N⋆×M⋆ is the interpretation of the premise, π⋆ = σ : ‡Π⋆ ×Γ⋆× (N `M)⋆.

(⊕1) If σ : ‡P ⋆ × Γ⋆ is the interpretation of the premise, π⋆ = σ : ‡(P ⊕ Q)⋆ × Γ⋆.

(⊕2) If σ : ‡Q⋆ × Γ⋆ is the interpretation of the premise, π⋆ = σ : ‡(P ⊕ Q)⋆ × Γ⋆.

(&) If σ1 : ‡Π⋆ × Γ⋆ × N⋆ and σ2 : ‡Π⋆ × Γ⋆ × M⋆ are the interpretations of the two premises,
the strategy π⋆ is σ1 + σ2 : ‡Π⋆ × Γ⋆ × (N & M)⋆ where σ1 + σ2 is the strategy such that
ϕσ1+σ2

= ϕσ1
∪ ϕσ2

.

(!) If σ : (?Γ)⋆×N⋆ is the interpretation of the premise, π⋆ is the linear strategy !σ : ‡(!N)⋆×(?Γ)⋆.

(?d) If σ : ‡P ⋆ × Γ⋆ is the interpretation of the premise, π⋆ = σ : (?P)⋆ × Γ⋆.

(?w) If σ : ‡Π⋆×Γ⋆, the views of the strategy π⋆ : ‡Π⋆×Γ⋆×(?A)⋆ are ε and {(m, ⋆)(s, ⋆) | ms ∈ ϕσ}
where (s, ⋆) is obtained by replacing each move n of s by (n, ⋆).

(?c) If σ : ‡Π⋆ × Γ⋆ × (?A)⋆ × (?A)⋆, the strategy π⋆ is σ; (Γ⋆ × c(?A)⋆) : ‡Π⋆ × Γ⋆ × (?A)⋆.

(⊤) The strategy π⋆ is the strategy {ε} : ‡Π⋆ × Γ⋆ ×⊤⋆.

(⊥) If σ : ‡Π⋆×Γ⋆, the views of the strategy π⋆ : ‡Π⋆×Γ⋆×⊥⋆ are ε and {(m, ⋆)(s, ⋆) | ms ∈ ϕσ},
this is a particular case of (?w) with A = 0.

(1) The views of the linear strategy π⋆ : ‡1⋆ are ε and ⋆⋆1.

Proposition 7 (Soundness for η-expansion)
Given a formula A, the strategies associated with the proof ax

⊢ A,A⊥ and with its η-expansion

(see appendix A) are the same.

Lemma 8 (Model of proof-nets)
If π1 and π2 are two proofs such that Rπ1

= Rπ2
, then π⋆

1 = π⋆
2. As a consequence if R is a

proof-net and π is a proof such that Rπ = R, we define R⋆ = π⋆.

Moreover it is easily possible to directly define the strategy R⋆ associated with any proof-net
R in the same spirit as for sequent calculus proofs, in such a way that (Rπ)⋆ = π⋆.

14

3 Between syntax and semantics

We have defined our two main objects: sliced polarized proof-nets and polarized HON games. The
goal of this section is to describe the very tight connection between them. We are going to show
that the two objects are almost “isomorphic” in the following way: the interpretation of proof-nets
by strategies is compatible with cut elimination (soundness), any strategy is the interpretation of a
proof-net (completeness) and if two proof-nets have the same interpretation they are equal up to cut
elimination (faithfulness). This gives a bijection between cut-free sliced proof-nets and strategies.

3.1 Soundness

Lemma 9 (Binoidal product)
The product of strategies is bifunctorial for linear strategies:

• If A and B are two negative arenas, idA × idB = idA×B.

• If σ : ‡A⊥×C and τ : ‡B⊥×D are two strategies, σ×τ = (σ×B); (C×τ) = (A×τ); (σ×D).

Lemma 10 (Projection of sum)
If σ1 : A, σ2 : B and τ : ‡A⊥×C are three strategies, we can also see τ as a strategy on ‡(A⊥ + B⊥)×
C and we have (σ1 + σ2); τ = σ1; τ : C.

Lemma 11 (Duplication of exponential)
If σ : A × ˜B is a strategy, c˜A⊥ ; !σ = (!σ × !σ); c˜B : ‡(˜A × ˜A) × ˜B.

Lemma 12 (Bang lemma)
If σ : ‡˜A × ˜B is a strategy, we have σ = !(idA; (σ × A)).

Proof: We first prove that ϕidA;(σ×A) = {ε} ∪ {(⋆˜B , a)s | (⋆, ⋆˜B)(⋆˜A, ⋆˜B)(a, ⋆˜B)s ∈ ϕσ}. If

(⋆, ⋆˜B)(⋆˜A, ⋆˜B)(a, ⋆˜B)s ∈ ϕσ, we consider the interaction sequence u on ˜A⊥
1 ×A2 and ˜B×

A0 (we use the indexes only to distinguish the occurrences of A) such that u ↾A0
= u ↾A⊥

1
=

u ↾A2
and u ↾˜˜A1×˜B = (⋆, ⋆˜B)(⋆˜A, ⋆˜B)(a, ⋆˜B)s, we have u ↾

˜A⊥

1 ×A2
∈ idA, u ↾A2→A0

∈

idA thus u ↾˜B×A0
= (⋆˜B , a)s ∈ idA; (σ × A). Conversely, if (⋆˜B , a)s ∈ ϕidA;(σ×A), there

exists an interaction sequence u such that u ↾˜A⊥

1
×A2

∈ idA, u ↾˜A⊥

1
×A2→˜B×A0

∈ σ × A and

u ↾˜B×A0
= (⋆˜B , a)s this entails u ↾˜˜A1×˜B ∈ σ and u ↾A2→A0

∈ idA so that u ↾˜˜A1×˜B =
(⋆, ⋆˜B)(⋆˜A, ⋆˜B)(a, ⋆˜B)s and finally (⋆, ⋆˜B)(⋆˜A, ⋆˜B)(a, ⋆˜B)s ∈ σ.

By definition of the exponential of a strategy, we have ϕ!(idA;(σ×A)) = {ε, (⋆, ⋆˜B)(⋆˜A, ⋆˜B)}∪
{(⋆, ⋆˜B)(⋆˜A, ⋆˜B)(a, ⋆˜B)s | (⋆˜B , a)s ∈ ϕidA;(σ×A)} and we immediately conclude ϕ!(idA;(σ×A)) =
ϕσ thus σ = !(idA; (σ × A)). 2

Theorem 1 (Soundness)
If π → π′ then π⋆ = π′⋆.

Proof: According to lemma 8, it suffices to prove the preservation of the semantics for the cut-
elimination steps that correspond to a cut-elimination step in proof-nets. We do not have to
prove all the commutative steps ignored by proof-nets.

We use the notations of section 2.2 for the interpretation of proofs.

15

(ax) If the cut formula is the negative formula N in the ax-rule, and if π1 is the proof
of the other premise of the cut-rule, the interpretation of π is idN⋆ ;π⋆

1 = π⋆
1 = π′⋆.

If the cut formula is the positive formula P in the ax-rule, the interpretation of π is
π⋆

1 ; (idP⊥⋆ × Γ⋆) = π⋆
1; idP⊥⋆

×Γ⋆ = π⋆
1 = π′⋆ (with lemma 9).

(⊗−`) If π1 and π2 are the premises of the ⊗-rule and π0 is the premise of the `-rule, the
interpretation of π is π⋆

0 ; (π
⋆
1 ×π⋆

2 ×Γ⋆) = π⋆
0 ; (π

⋆
1 ×M⋆×Γ⋆); (∆⋆ ×π⋆

2 ×Γ⋆) = π′⋆ (with
lemma 9).

(⊕− &) We consider the case of a ⊕1-rule with premise π0. If π1 and π2 are the premises of
the &-rule, the interpretation of π is (π⋆

1 + π⋆
2); (π

⋆
0 × Γ⋆) = π⋆

1; (π
⋆
0 × Γ⋆) = π′⋆ (with

lemma 10).

(! − ?d) If π1 is the premise of the ?d-rule and π2 is the premise of the !-rule, the interpretation
of π is π⋆

1 ; (!π
⋆
2 × Γ⋆). A play in π⋆ comes from an interaction sequence u ∈ int(˜N⊥⋆

×
Γ⋆, (?∆)⋆ × Γ⋆) such that u ↾˜N⊥⋆

×Γ⋆ ∈ π⋆
1 and u ↾˜(˜N⊥⋆

×Γ⋆)⊥×(?∆)⋆×Γ⋆ ∈ !π⋆
2 × Γ⋆. We

build an interaction sequence v ∈ int((?∆)⋆×N⋆, (?∆)⋆×Γ⋆) by induction on the length
of u:

– If u is empty, v is empty.

– If u = u′(⋆,m) where (⋆,m) is an initial move in (?∆)⋆×Γ⋆, and v′ is the interaction
sequence obtained from u′, we define v = v′(⋆,m).

– If u = u′(⋆,m) where (⋆,m) is an initial move in ˜N⊥⋆
×Γ⋆, and v′ is the interaction

sequence obtained from u′, we define v = v′.

– If u = u′n where n is an initial move in N⊥⋆
, we define v = v′(⋆, n).

– If u = u′n where n is a non-initial move in N⊥⋆
, we define v = v′n.

– If u = u′m where m is a move in the rightmost Γ⋆, we define v = v′m.

– If u = u′m where m is a move in the leftmost Γ⋆, we define v = v′.

– If u = u′m where m is a move in (?∆)⋆, we define v = v′m1m2 if m is an O-move
and v = v′m2m1 if m is a P -move, where m1 (resp. m2) is an occurrence of m in
the rightmost (resp. leftmost) (?∆)⋆.

We can verify that v ↾(?∆)⋆×N⋆ ∈ π⋆
2, v ↾˜((?∆)⋆×N⋆)⊥×(?∆)⋆×Γ⋆ ∈ (?∆)⋆×π⋆

1 and v ↾(?∆)⋆×Γ⋆ =
u ↾(?∆)⋆×Γ⋆ thus π⋆ ⊂ π⋆

2; ((?∆)⋆ × π⋆
1) = π′⋆. The other direction is proved in a similar

way.

(! − ?c) If π1 is the premise of the ?c-rule and π2 is the premise of the !-rule, the interpretation of
π is π⋆

1 ; (Γ
⋆×c(?P)⋆); (Γ⋆×!π⋆

2) = π⋆
1; (Γ

⋆×(c(?P)⋆ ; !π⋆
2)) = π⋆

1 ; (Γ
⋆×((!π⋆

2×!π⋆
2); c(?∆)⋆)) =

π⋆
1 ; (Γ

⋆ × !π⋆
2 × (?P)⋆); (Γ⋆ × (?∆)⋆ × !π⋆

2); (Γ
⋆ × c(?∆)⋆) = π′⋆ (with lemma 11).

(! − ?w) If π1 is the premise of the ?w-rule and π2 is the premise of the !-rule, a play in the
interpretation of π comes from an interaction sequence u ∈ int(Π⊥⋆

,Γ⋆ × (?A)⋆,Γ⋆ ×
(?∆)⋆) such that u ↾˜Π⋆×Γ⋆×(?A)⋆ is a play in π⋆

1 if we replace every initial moves (⋆,m, ⋆)
by (⋆,m) and u ↾˜(Γ⋆×(?A)⋆)⊥×Γ⋆×(?∆)⋆ ∈ Γ⋆ × !π⋆

2 so that the only moves in (?A)⋆ in u
are initial moves ⋆. The play u ↾˜Π⋆×Γ⋆×(?∆)⋆ is u ↾˜Π⋆×Γ⋆×(?A)⋆ if we identify the initial
move ⋆ of (?A)⋆ with the initial move ⋆ of (?∆)⋆ and thus belongs to π′⋆. The converse
is similar.

(! − !) If π1 is the premise of the !-rule which does not introduce the cut !-formula and π2 is

16

the premise of the !-rule which introduces the cut !-formula, the interpretation of π is:

!π⋆
1 ; ((?Γ)⋆ × !π⋆

2 × N⋆) = !(idN⋆ ; (π⋆
1 × N⋆); ((?Γ)⋆ × !π⋆

2 × N⋆)) lemma 12

= !(π⋆
1 ; ((?Γ)⋆ × (!M)⋆ × idN⋆); ((?Γ)⋆ × !π⋆

2 × N⋆)) (! − ?d) case

= !(π⋆
1 ; ((?Γ)⋆ × !π⋆

2 × N⋆))

= π′⋆

(1 −⊥) This can be seen as a particular case of the (! − ?w) reduction step.

(⊤) If π1 is the premise of the cut-rule which is not the ⊤-rule, the interpretation of π is
{ε}; (π⋆

1 × Γ⋆) = {ε} = π′⋆. 2

Corollary 1.1 (Soundness for proof-nets)
If R → R′ then R⋆ = R′⋆.

Using the game model, it is possible to extract from the strategy interpreting a proof π, the
minimal identification of variables in π really required for π to be a correct proof.

Proposition 8 (Generalization of variables)
Let π be a proof of ⊢ Γ in LLpol, there exists a proof π′ of ⊢ Γ′ and a substitution θ of variables by
variables such that Γ = Γ′θ, π = π′θ and moreover (π′,Γ′, θ) is the most general such triple.

Proof: The strategy π⋆ is a label-balanced strategy on Γ⋆. Let A be the non-labeled arena
obtained from Γ⋆ by removing the variable names, π⋆ is a balanced strategy on A. We can
derive from it a (finest) partition p of the elements of VA such that if A′ is the labeled arena
obtained from A by associating the same variable to the elements of each class of p, π⋆ is a
label-balanced strategy on A′. Let θ be the substitution such that A′θ = Γ⋆, let Γ′ be the
sequent such that Γ′θ = Γ and Γ′⋆ = A′, and let π′ be the proof of ⊢ Γ′ such that π′θ = π (and
thus π′⋆ = π⋆), we can show that (π′,Γ′, θ) is the most general triple such that π′θ = π and
Γ′θ = Γ: for any other triple (π′′,Γ′′, θ′′), we must have π′′⋆ = π⋆ = π′⋆ and Γ′′⋆ is a labeling
of A so that A′θ′ = Γ′′⋆ for some substitution θ′ and we have θ = θ′′ ◦ θ′ and π′′ = π′θ′ and
Γ′′ = Γ′θ′. 2

In a model of non-labeled arenas and balanced strategies, two such proofs π and π′ are identified.

3.2 Full completeness

Proposition 9 (Essentially surjective interpretation of formulas)
If A is a polarized arena, there exists a formula A such that A⋆ is isomorphic to A.

Proof: By induction on the size of A, we define A and an order-preserving bijection f from A⋆

to A. We only consider the case A positive, the negative case is then easy to derive.

• If A is empty, we have A = 0 and f is the empty function.

• If A contains at least two trees, let A′ and A′′ be two non-empty sub-forests of A. By
induction hypothesis, there exist two formulas A′ and A′′ and two functions f ′ and f ′′

such that f ′ (resp. f ′′) is an order-preserving bijection from A′⋆ (resp. A′′⋆) to A′ (resp.
A′′). We choose A = A′ ⊕ A′′ and f is the union of f ′ and f ′′.

17

• If A is a tree reduced to one node, we choose A = 1 and f associates the unique node of
A with the unique node of 1⋆.

• If A is a tree with exactly one leaf above the root which is in V, let X be the label of
this leaf, we choose A = !X and f associates the root of A with the root of (!X)⋆ and
the leaf of A with the leaf of (!X)⋆.

• If A is a tree with exactly one node above the root which is not in V, let A′ be the tree
above the unique root of A. By induction hypothesis, there exists a formula A′ and a
function f ′ such that f ′ is an order-preserving bijection from A′⋆ to A′⊥. We choose
A = !A′⊥ and f is defined by extending f ′ with the root of A as image of the root of A⋆.

• If A is a tree with more than one node above the root, let A′ and A′′ be two non-
empty sub-forests of the forest above the root (so that A ≈ ˜A′ × ˜A′′). By induction
hypothesis, there exist two formulas A′ and A′′ and two functions f ′ and f ′′ such that f ′

(resp. f ′′) is an order-preserving bijection from A′⋆ (resp. A′′⋆) to ˜A′ (resp. ˜A′′). We
choose A = A′ ⊗ A′′ and f is defined by associating f ′(x) (resp. f ′′(x)) with each node
x of A′⋆ (resp. A′′⋆) which is not the root and by associating the root of A with the root
of A⋆.

The strategy σf = {s ∈ PA⋆→A | ∀t ≤P s, t ↾A = f(t ↾A⋆)} : A⋆ → A is an isomorphism
between A⋆ and A. 2

According to the convention of section 2.2, a strategy σ on Γ⋆ is required to be linear if Γ
contains a positive formula and we apply this convention for the following statement.

Theorem 2 (Full completeness)
Let σ be a finite total label-balanced strategy on the arena Γ⋆, there exists a proof π of ⊢ Γ in LLpol

such that π⋆ = σ.

In section 2.2, we have described how to “apply an LLpol rule” to strategies on the arenas corre-
sponding to the premises of the rule to get a strategy on the arena associated with its conclusion.
Using this, we will be able to consider, for example, the strategy:

σ
⊢ Γ, A

ax
⊢ A⊥, A

cut
⊢ Γ, A

if σ is a strategy on the arena associated with ⊢ Γ, A, by applying the appropriate constructions to
σ. This allows us to describe constructions on strategies with sequent calculus rules.

Proof: By induction on the pair (size of σ, size of Γ). Let Γ = A1, . . . , An, we look at the main
connectives of the Ais:

(`) Let assume that A1 = B1 ` B2, σ is also a strategy on the arena corresponding to
⊢ B1, B2, A2, . . . , An. By induction hypothesis we get a proof of ⊢ B1, B2, A2, . . . , An

and by adding a `-rule, we obtain a proof of ⊢ Γ.

We can also proceed as for the next cases by using the reversibility of `. Let σ′ be the
strategy given by:

18

σ
⊢ B1 ` B2, A2, . . . , An

ax
⊢ B⊥

1 , B1

ax
⊢ B⊥

2 , B2
⊗

⊢ B⊥
1 ⊗ B⊥

2 , B1, B2
`

⊢ B⊥
1 ⊗ B⊥

2 , B1 ` B2
cut

⊢ B1 ` B2, A2, . . . , An

By proposition 7 and theorem 1, we have σ′ = σ. Moreover, by theorem 1, this strategy
is also the same as:

σ
⊢ B1 ` B2, A2, . . . , An

ax
⊢ B⊥

1 , B1

ax
⊢ B⊥

2 , B2
⊗

⊢ B⊥
1 ⊗ B⊥

2 , B1, B2
cut

⊢ B1, B2, A2, . . . , An
`

⊢ B1 ` B2, A2, . . . , An

Let σ′′ be the strategy obtained without the last rule, by induction hypothesis, we obtain
a proof π′′ of ⊢ B1, B2, A2, . . . , An such that σ′′ = π′′⋆. The strategy σ′ = σ is then the
interpretation of:

π′′

⊢ B1, B2, A2, . . . , An
`

⊢ B1 ` B2, A2, . . . , An

(⊥) If Γ = ⊥, A2, . . . , An, let σ′ be the strategy given by:

σ
⊢ ⊥, A2, . . . , An

1
⊢ 1

⊥
⊢ 1,⊥

cut
⊢ ⊥, A2, . . . , An

By proposition 7 and theorem 1, we have σ′ = σ. Moreover, by theorem 1, this strategy
is also the same as:

σ
⊢ ⊥, A2, . . . , An

1
⊢ 1

cut
⊢ A2, . . . , An

⊥
⊢ ⊥, A2, . . . , An

Let σ′′ be the strategy obtained without the last rule, by induction hypothesis, we
obtain a proof π′′ of ⊢ A2, . . . , An such that σ′′ = π′′⋆. The strategy σ′ = σ is then the
interpretation of:

π′′

⊢ A2, . . . , An
⊥

⊢ ⊥, A2, . . . , An

(&) Let assume that A1 = B1 & B2, let σ′ be the strategy given by:

σ
⊢ B1 & B2, A2, . . . , An

ax
⊢ B⊥

1 , B1
⊕1

⊢ B⊥
1 ⊕ B⊥

2 , B1

ax
⊢ B⊥

2 , B2
⊕2

⊢ B⊥
1 ⊕ B⊥

2 , B2
&

⊢ B⊥
1 ⊕ B⊥

2 , B1 & B2
cut

⊢ B1 & B2, A2, . . . , An

19

By proposition 7 and theorem 1, we have σ′ = σ. Moreover, by theorem 1, this strategy
is also the same as:

σ′′
1

⊢ B1, A2, . . . , An

σ′′
2

⊢ B2, A2, . . . , An
&

⊢ B1 & B2, A2, . . . , An

with σ′′
1 =

σ
⊢ B1 & B2, A2, . . . , An

ax
⊢ B⊥

1 , B1
⊕1

⊢ B⊥
1 ⊕ B⊥

2 , B1
cut

⊢ B1, A2, . . . , An

and σ′′
2 =

σ
⊢ B1 & B2, A2, . . . , An

ax
⊢ B⊥

2 , B2
⊕2

⊢ B⊥
1 ⊕ B⊥

2 , B2
cut

⊢ B2, A2, . . . , An

By induction hypothesis, we obtain a proof π′′
1 of ⊢ B1, A2, . . . , An and a proof π′′

2 of
⊢ B2, A2, . . . , An such that σ′′

1 = π′′⋆
1 and σ′′

2 = π′′⋆
2 . The strategy σ′ = σ is then the

interpretation of:

π′′
1

⊢ B1, A2, . . . , An

π′′
2

⊢ B2, A2, . . . , An
&

⊢ B1 & B2, A2, . . . , An

(⊤) If Γ = ⊤, A2, . . . , An, σ = {ε} is the interpretation of the proof:

⊤
⊢ ⊤, A2, . . . , An

We now assume that none of these connectives is a main one in Γ, so that we have Γ =
Π, ?P1, . . . , ?Pn, ?X⊥

1 , . . . , ?X⊥
k . If Π is not empty, we look at its main connective:

(0) A strategy on ⊢ 0, ?P1, . . . , ?Pn, ?X⊥
1 , . . . , ?X⊥

k cannot be linear.

(1) A maximal view of a linear strategy on ⊢ 1, ?P1, . . . , ?Pn, ?X⊥
1 , . . . , ?X⊥

k is (⋆, ?, . . . , ?, q, . . . , q)⋆1

(where ? is the unique initial move of (?Pi)
⋆, q is the unique initial move of (?X⊥

j)⋆ and
⋆ and ⋆1 are the two moves of ˜1⋆), and this corresponds to the interpretation of the
proof:

1
⊢ 1

?w
⊢ 1, ?P1, . . . , ?Pn, ?X⊥

1 , . . . , ?X⊥
k

(⊕) Let assume that Π = Q1 ⊕ Q2, by linearity and innocence, there is exactly one move
played by σ in Q1⊕Q2 and justified by the unique first move of ?P1, . . . , ?Pn, ?X⊥

1 , . . . , ?X⊥
k .

This implies that all the moves of σ in Q1⊕Q2 are in one of the Qis depending on this par-
ticular move. If this move is in Qi, then σ is also a strategy on (Qi, ?P1, . . . , ?Pn, ?X⊥

1 , . . . , ?X⊥
k)⋆

and by induction hypothesis we get a proof of ⊢ Qi, ?P1, . . . , ?Pn, ?X⊥
1 , . . . , ?X⊥

k that can
be completed into a proof of ⊢ Q1⊕Q2, ?P1, . . . , ?Pn, ?X⊥

1 , . . . , ?X⊥
k by adding a ⊕i-rule

and its interpretation is σ.

(⊗) If Π = Q1 ⊗ Q2, let ρi be the strategy associated with the following proof:

20

ax
⊢ Q⊥

i , Qi
lemma 2

⊢ Q⊥
1 , Q⊥

2 , Qi
`

⊢ Q⊥
1 ` Q⊥

2 , Qi

By induction hypothesis we get a proof π1 of ⊢ Q1, ?P1, . . . , ?Pn, ?X⊥
1 , . . . , ?X⊥

k from
ρ1;σ and a proof π2 of ⊢ Q2, ?P1, . . . , ?Pn, ?X⊥

1 , . . . , ?X⊥
k from ρ2;σ, and if we add a ⊗-

rule between π1 and π2 and n+k ?c-rules, we obtain a proof of ⊢ Γ whose interpretation
is ((ρ1;σ)× (ρ2;σ)); (c(?P1)⋆ × ?P2 × ?P2 × · · · × ?Pn × ?Pn × ?X⊥

1 × ?X⊥
1 × · · · × ?X⊥

k ×

?X⊥
k); · · · ; (?P1 × · · · × ?Pn × ?X⊥

1 × · · · × ?X⊥
k−1 × c(?X⊥

k
)⋆) = σ.

Remark: this could be made more similar to the &-case, by studying the proof:

ax
⊢ Q⊥

1 , Q1
lemma 2

⊢ Q⊥
1 , Q⊥

2 , Q1
`

⊢ Q⊥
1 ` Q⊥

2 , Q1

ax
⊢ Q⊥

2 , Q2
lemma 2

⊢ Q⊥
1 , Q⊥

2 , Q2
`

⊢ Q⊥
1 ` Q⊥

2 , Q2
⊗

⊢ Q⊥
1 ` Q⊥

2 , Q⊥
1 ` Q⊥

2 , Q1 ⊗ Q2
lemma 2

⊢ Q⊥
1 ` Q⊥

2 , Q1 ⊗ Q2

and by showing that its interpretation is the identity.

(!N) If Π = !N , let σ′ be the strategy given by:

σ

⊢ !N, ?P1, . . . , ?Pn, ?X⊥
1 , . . . , ?X⊥

k

ax
⊢ N⊥, N

?d
⊢ ?N⊥, N

!
⊢ ?N⊥, !N

cut
⊢ !N, ?P1, . . . , ?Pn, ?X⊥

1 , . . . , ?X⊥
k

By proposition 7 and theorem 1, we have σ′ = σ. Moreover, by theorem 1, this strategy
is also the same as:

σ

⊢ !N, ?P1, . . . , ?Pn, ?X⊥
1 , . . . , ?X⊥

k

ax
⊢ N⊥, N

?d
⊢ ?N⊥, N

cut
⊢ N, ?P1, . . . , ?Pn, ?X⊥

1 , . . . , ?X⊥
k

!
⊢ !N, ?P1, . . . , ?Pn, ?X⊥

1 , . . . , ?X⊥
k

Let σ′′ be the strategy obtained without the last rule, by induction hypothesis, we obtain
a proof π′′ of ⊢ N, ?P1, . . . , ?Pn, ?X⊥

1 , . . . , ?X⊥
k such that σ′′ = π′′⋆. The strategy σ′ = σ

is then the interpretation of:

π′′

⊢ N, ?P1, . . . , ?Pn, ?X⊥
1 , . . . , ?X⊥

k
!

⊢ !N, ?P1, . . . , ?Pn, ?X⊥
1 , . . . , ?X⊥

k

21

(!X) If Π = !X, by linearity, a (long enough) view in σ starts like this:

˜!X ?P1 . . . ?Pn ?X⊥
1 . . . ?X⊥

k

⋆ ? . . . ? q . . . q
q
XX

and then contains a move m that must be a XXj
in one of the ?X⊥

j s (which is an

occurrence of ?X⊥ thus Xj = X) by the label-balancing condition. A view cannot
continue after that. This means that σ is the interpretation of the proof:

ax
⊢ !X, ?X⊥

?w
⊢ !X, ?P1, . . . , ?Pn, ?X⊥

1 , . . . , ?X⊥
k

We now arrive to the case of a sequent of the shape ⊢ ?P1, . . . , ?Pn, ?X⊥
1 , . . . , ?X⊥

k . If
a view of σ contains two moves justified by the first one in the same formula, we lin-
earize this formula in the sequent to obtain a strategy σ′ on the arena associated with
⊢ · · · ?P i

1 · · · , . . . , · · · ?P i
n · · · , ?X⊥

1 , . . . , ?X⊥
k (we do not need to linearize the ?X⊥

j formu-
las since a view cannot contain two moves justified by the first one) such that σ′ composed
with the corresponding contraction strategies is σ (this corresponds to ?c-rules). By deter-
minism, the first P -move is always in the same formula, and by linearization there is at most
one move justified by the first one in this formula in a view of σ′. We have two possible cases
for this formula:

(?Pi0) σ′ can be transformed into a strategy on ⊢ · · · ?P i
1 · · · , . . . , Pi0 , . . . , · · · ?P

i
n · · · , ?X⊥

1 , . . . , ?X⊥
k

and by induction hypothesis we obtain a proof such that the interpretation of this proof
followed by a ?d-rule is σ′;

(?X⊥
j0
) this is impossible because this P -move in ?X⊥

j0
must be after a move in V according

to the balancing condition. 2

Corollary 2.1 (Full completeness for proof-nets)
Let σ be a finite total label-balanced strategy on an arena Γ⋆, there exists a sliced proof-net R with
conclusions Γ such that R⋆ = σ.

3.3 Faithful completeness

Theorem 3 (Faithful completeness)
If R1 and R2 are two cut-free sliced proof-nets such that R⋆

1 = R⋆
2 then R1 = R2.

Proof: First, if one of the conclusions of R1 and R2 is positive, we can add a ♭-node and a ?-node
in both R1 and R2 to get purely negative conclusions. Let σ be the strategy R⋆

1 = R⋆
2, we

prove the result by induction on the size of R1.

• If one of the conclusions of R1 and R2 has a ` (resp. ⊥) as main connective both R1

and R2 must have a ` (resp. ⊥) node above it. We can remove it and we obtain two
proof-nets R′

1 and R′
2 with the same interpretation so that, by induction hypothesis,

R′
1 = R′

2 and finally R1 = R2.

22

• If one of the conclusions of R1 and R2 has a & as main connective we denote by R′
1

(resp. R′′
1) the set of the slices of R1 containing the corresponding &1 (resp. &2) node

in which we remove this node, and the same for R′
2 and R′′

2 . Since both R′
1 and R′

2 are
obtained from R1 and R2 by eliminating cut with the translation of the proof:

ax
⊢ N⊥, N

⊕1
⊢ N⊥ ⊕ M⊥, N

this entails R′
1
⋆ = R′

2
⋆ (and in the same way R′′

1
⋆ = R′′

2
⋆), thus by induction hypothesis

R′
1 = R′

2 (and R′′
1 = R′′

2) so that R1 = R2.

• If one of the conclusions of R1 and R2 has a ⊤ main connective, both R1 and R2 are
empty.

• If all the conclusions of R1 and R2 are ?-formulas: ?A1, . . . , ?Ak, both R1 and R2

contain a ?-node for each ?Ai. We look at the answer m2 of σ to the unique initial move
m1 of the corresponding arena. The move m2 is in one of the Ais and the corresponding
?-node must have a ♭-node above it in both R1 and R2. Moreover we can show that
m2 describes the structure of the “positive tree” T above Ai. That is the sub-graph
containing positive nodes and !-nodes and with conclusion Ai. We do it by induction on
the positive type Ai:

– if its main connective is a ⊗, T must end with a ⊗-node;

– if its main connective is a ⊕, the move m2 is in an arena of the shape P + Q and
if m2 belongs to P , T ends with a ⊕1-node and if m2 belongs to Q, T ends with a
⊕2-node;

– if its main connective is a 1, T is reduced to a 1-node;

– if its main connective is a !, T is reduced to a !-node.

Since we have found the unique ♭-node at this depth, all the other ♭-formulas (of the
shape ♭Ai) are conclusions of !-nodes and these !-nodes are leaves of T . Given such
a !-node n, we consider the proof-net Rn

1 , without ♭-conclusions, obtained by adding
to the proof-net associated with n, k ?-nodes (corresponding to those with conclusions
?A1, . . . , ?Ak) in such a way that two conclusions of n are premises of the same ?-node
in R1 if and only if they are premises of the same ?-node in Rn

1 .

If the premise of n has type X, the proof-net associated with n must be the following:
above this X we can only have an ax-node and the other conclusion of this node (of
type X⊥) must be the premise of a ♭-node. Using the correctness criterion and the fact
that the conclusions of this proof-net which are not X are ♭-formulas, we can see that
no other node appears in this proof-net and we easily have Rn

1 = Rn
2 .

Otherwise, let m3 be the move corresponding to the premise of n, we consider the strategy
σ′ with views (m1,m3)s where m1m2m3s is a view of σ. We can show that σ′ = Rn

1
⋆ (and

in the same way σ′ = Rn
2

⋆) so that Rn
1

⋆ = Rn
2

⋆ and by induction hypothesis Rn
1 = Rn

2 .

We have shown that the 0-depth parts of R1 and R2 are the same, except maybe for the
♭-typed edges. Moreover for each !-node n, the associated proof-nets coming from Rn

1 and
Rn

2 are the same. But, by definition of Rn
1 , we can rebuild the 0-depth ♭-typed edges of R1

since a ♭-conclusion of the node n has an edge to a given ?-node if it has an edge to the
corresponding ?-node in Rn

1 , and the same for R2 and Rn
2 . We can conclude R1 = R2. 2

23

3.4 Categorical interpretation

To explain the relation between our results and the terminology coming from categories we refor-
mulate them in (control) categorical terms. This leads to an equivalence of categories.

In order to build categories, we have to break the symmetry between positive and negative
objects. Both choices are possible and we focus on the negative case since this corresponds to what
we have already done with strategies.

Definition 25 (Syntactical category)
Our syntactical category of sliced proof-nets is given by:

• objects: objects are negative formulas.

• morphisms: a morphism from N to M is a cut-free sliced proof-net with conclusions ?N⊥

and M .

• identity : the identity morphism from N to N is the proof-net associated with the proof:

ax
⊢ N⊥, N

?d
⊢ ?N⊥, N

• composition: if R1 is a proof-net with conclusions ?N⊥ and M and R2 is a proof-net with
conclusions ?M⊥ and L, the composition of R1 and R2 is obtained by the normalization of
R1 in a !-box cut on !M with the conclusion ?M⊥ of R2 which gives a cut-free proof-net with
conclusions ?N⊥ and L.

Definition 26 (Game category)
The game category is given from game semantics by:

• objects: objects are negative labeled arenas;

• morphisms: a morphism from A to B is a finite total label-balanced strategy on ˜A⊥ × B.

• identity : the identity morphism from A to A is the identity strategy idA on ˜A⊥ × A.

• composition: if σ : ˜A⊥ × B and τ : ˜B⊥ × C are two strategies, the composition of these
strategies gives a strategy σ; τ on ˜A⊥ × C.

Theorem 4 (Equivalence completeness)
There exists an equivalence of categories between the syntactical category of sliced proof-nets and
the game category.

Proof: Corollary 1.1 allows to show that R 7→ R⋆ defines a functor from the syntactical category
to the game category and by proposition 9, corollary 2.1 and theorem 3, it is an equivalence
of categories. 2

Corollary 4.1 (Isomorphisms of types)
If A and B are two polarized formulas and if there exists an isomorphism between A⋆ and B⋆ in
the game category, then A and B are isomorphic in the syntactical category.

24

Remark: We have shown in [22] how it is possible to use the game model described here to
characterize the isomorphisms of types of classical logic. This requires a model that contains
exactly the isomorphisms of the logic (not more) and in which these isomorphisms are possible to
compute. In [22] we obtained the first point in a indirect way by computing isomorphisms and
by verifying that all of them are valid in the syntax. We have here a direct proof that syntactical
isomorphisms and game isomorphisms are the same.

The equivalence result can also be expressed in the particular setting of Selinger’s control
categories [29].

Proposition 10 (Control categories)
Both the category of sliced proof-nets and the category of games are control categories.

Lemma 13
If σ : ‡A × B is a linear strategy, it is a central morphism.

Proof: By theorems 2 and 3, σ is the interpretation of a proof-net which ends with a unary
?-node and we can verify that such a proof-net is central in the syntactical category thus σ
is central in the game category by theorem 1. 2

The converse is also true and proved in [20].

Corollary 4.2 (Equivalence of control categories)
There exists an equivalence of control categories between the syntactical category of sliced proof-nets
and the game category.

Proof: According to Selinger’s definition of equivalence of control categories [29], we just have
to remark that in the proof of proposition 9 the isomorphism σf is linear thus central by
lemma 13. 2

The main direction to extend the previous results is the introduction of second order quantifi-
cation which is not very problematic on the syntactical side but more tricky for the game model.

Whereas proof-nets seem to give an almost ultimate solution for the analysis of syntax, we could
try to find some other semantical presentations of this polarized logic, that is some other equivalent
categories.

Acknowledgments. I would like to thank V. Danos for his suggestions on the polarized game
model that have led to this work and the referee for his useful comments.

25

A Expansion of axioms (η-rules)

ax
⊢ 1,⊥

1
⊢ 1

⊥
⊢ 1,⊥

ax
⊢ 0,⊤ ⊤

⊢ 0,⊤

ax
⊢ N⊥ ⊗ M⊥, N ` M

ax
⊢ N⊥, N

ax
⊢ M⊥,M

⊗
⊢ N⊥ ⊗ M⊥, N,M

`
⊢ N⊥ ⊗ M⊥, N ` M

ax
⊢ N⊥ ⊕ M⊥, N & M

ax
⊢ N⊥, N

⊕1
⊢ N⊥ ⊕ M⊥, N

ax
⊢ M⊥,M

⊕2
⊢ N⊥ ⊕ M⊥,M

&
⊢ N⊥ ⊕ M⊥, N & M

ax
⊢ !N, ?N⊥

ax
⊢ N,N⊥

?d
⊢ N, ?N⊥

!
⊢ !N, ?N⊥

B A sliced proof-net

Flat proof-structures. The five graphs of figure 1 are flat proof-structures.

Slices and sliced proof-structures. Starting from these five flat proof-structures, we define
the following slices si and sliced proof-structures Si:

• S1 = {s1} with s1 = F1 which has no !-node.

It has conclusions X, ♭X⊥.

• S2 = {s2} where s2 is obtained by associating S1 with the unique !-node of F2.

It has conclusions ♭(1 ⊗ (!(⊥ & (⊤` N)) ⊕ !X)), ?X⊥.

• S3 = {s3} where s3 is obtained by associating S2 with the unique !-node of F3.

It has conclusions ⊥ & (⊤ ` N), ♭(1 ⊗ (!(⊥ & (⊤` N)) ⊕ !X)), ♭!?X⊥.

• S4 = {s4} where s4 is obtained by associating S3 with the unique !-node of F4.

It has conclusions ?(1 ⊗ 1) ` ?(1 ⊗ (!(⊥ & (⊤` N)) ⊕ !X)), (⊥`⊥) & ?!?X⊥.

• S5 = {s5} where s5 = F5 which has no !-node.

It has conclusions ?(1 ⊗ 1) ` ?(1 ⊗ (!(⊥ & (⊤` N)) ⊕ !X)), (⊥`⊥) & ?!?X⊥.

• S = {s4, s5}.

It has conclusions ?(1 ⊗ 1) ` ?(1 ⊗ (!(⊥ & (⊤` N)) ⊕ !X)), (⊥`⊥) & ?!?X⊥.

26

F1 = ♭

X⊥

X

♭X⊥

ax

F2 =

?1 ⊕2

⊗

♭

!X ♭X⊥

♭P

?X⊥

!

F3 = &1

⊥

♭

♭!?X⊥

♭P

⊥ & (⊤`N)

!?X⊥

!

F4 =

⊕1

⊗

1

&2

`

?

♭

?

?

!
♭!?X⊥

?!?X⊥

♭P

?P?(1 ⊗ 1)

?(1 ⊗ 1)` ?P

(⊥`⊥) & ?!?X⊥

!(⊥ & (⊤`N))

F5 =

1

⊗ `

⊥ ⊥1

&1

`

♭

? ?

1 ⊗ 1

?(1 ⊗ 1)` ?P

⊥`⊥

(⊥`⊥) & ?!?X⊥

Figure 1: Some flat proof-structures (with P = 1 ⊗ (!(⊥ & (⊤ ` N)) ⊕ !X) and with some omitted
types)

27

Figure 2: A correction graph

Acceptable proof-structures. S4, S5 and S are acceptable. For example, the correction graph
of F4 is given in figure 2. It is acyclic and it contains exactly one ♭-node.

Correct proof-structures. There is two occurrences of &i-nodes at depth 0 in S and they are
equivalent with respect to ≡. We associate the boolean variable p with this equivalence class. There
is also a &1-node at depth 0 in S3 with which we associate the variable q. We have:

w(s3) = q

w(s4) = p

w(s5) = p

w(S3) = w(s3) = q

w(S) = w(s4) + w(s5) = 1

w⊤(S3) = w⊤(⊥ & (⊤` N)) + w⊤(?(1 ⊗ (!(⊥ & (⊤` N)) ⊕ !X))) + w⊤(?!?X⊥)

= w⊤(⊥ & (⊤` N)) = qw⊤(⊥) + qw⊤(⊤` N) = qw⊤(⊤) + qw⊤(N)

= q

w⊤(S) = w⊤(?(1 ⊗ 1) ` ?(1 ⊗ (!(⊥ & (⊤` N)) ⊕ !X))) + w⊤((⊥ `⊥) & ?!?X⊥)

= w⊤(?(1 ⊗ 1)) + w⊤(?(1 ⊗ (!(⊥ & (⊤` N)) ⊕ !X))) + pw⊤(⊥`⊥) + pw⊤(?!?X⊥)

= pw⊤(⊥) + pw⊤(⊥)

= 0

Thus w(S3) + w⊤(S3) = q + q = 1, w(S) + w⊤(S) = 1 and w(s4)w(s5) = pp = 0 (the other sliced
proof-structures S1 and S2 are immediately full and compatible). So that S is a proof-net.

28

1
⊢ 1

1
⊢ 1

ax
⊢ !X, ?X⊥

⊕2
⊢ !(⊥ & (⊤` N)) ⊕ !X, ?X⊥

⊗
⊢ 1 ⊗ (!(⊥ & (⊤` N)) ⊕ !X), ?X⊥

?d
⊢ ?(1 ⊗ (!(⊥ & (⊤` N)) ⊕ !X)), ?X⊥

!
⊢ ?(1 ⊗ (!(⊥ & (⊤` N)) ⊕ !X)), !?X⊥

⊥
⊢ ⊥, ?(1 ⊗ (!(⊥ & (⊤` N)) ⊕ !X)), !?X⊥

?d
⊢ ⊥, ?(1 ⊗ (!(⊥ & (⊤` N)) ⊕ !X)), ?!?X⊥

⊤
⊢ ⊤, N, ?(1 ⊗ (!(⊥ & (⊤ ` N)) ⊕ !X)), ?!?X⊥

`
⊢ ⊤` N, ?(1 ⊗ (!(⊥ & (⊤` N)) ⊕ !X)), ?!?X⊥

&
⊢ ⊥ & (⊤` N), ?(1 ⊗ (!(⊥ & (⊤ ` N)) ⊕ !X)), ?!?X⊥

?w
⊢ ?(1 ⊗ 1),⊥ & (⊤` N), ?(1 ⊗ (!(⊥ & (⊤ ` N)) ⊕ !X)), ?!?X⊥

!
⊢ ?(1 ⊗ 1), !(⊥ & (⊤ ` N)), ?(1 ⊗ (!(⊥ & (⊤ ` N)) ⊕ !X)), ?!?X⊥

⊕1
⊢ ?(1 ⊗ 1), !(⊥ & (⊤` N)) ⊕ !X, ?(1 ⊗ (!(⊥ & (⊤` N)) ⊕ !X)), ?!?X⊥

⊗
⊢ ?(1 ⊗ 1), 1 ⊗ (!(⊥ & (⊤` N)) ⊕ !X), ?(1 ⊗ (!(⊥ & (⊤` N)) ⊕ !X)), ?!?X⊥

?d
⊢ ?(1 ⊗ 1), ?(1 ⊗ (!(⊥ & (⊤ ` N)) ⊕ !X)), ?(1 ⊗ (!(⊥ & (⊤` N)) ⊕ !X)), ?!?X⊥

?c
⊢ ?(1 ⊗ 1), ?(1 ⊗ (!(⊥ & (⊤` N)) ⊕ !X)), ?!?X⊥

...

ax
⊢ 1 ⊗ 1,⊥ `⊥

?w
⊢ ?(1 ⊗ 1), 1 ⊗ 1,⊥ `⊥

?d
⊢ ?(1 ⊗ 1), ?(1 ⊗ 1),⊥`⊥

?c
⊢ ?(1 ⊗ 1),⊥`⊥

?w
⊢ ?(1 ⊗ 1), ?(1 ⊗ (!(⊥ & (⊤` N)) ⊕ !X)),⊥ `⊥

...

⊢ ?(1 ⊗ 1), ?(1 ⊗ (!(⊥ & (⊤ ` N)) ⊕ !X)), ?!?X⊥

&
⊢ ?(1 ⊗ 1), ?(1 ⊗ (!(⊥ & (⊤ ` N)) ⊕ !X)), (⊥`⊥) & ?!?X⊥

`
⊢ ?(1 ⊗ 1) ` ?(1 ⊗ (!(⊥ & (⊤` N)) ⊕ !X)), (⊥ `⊥) & ?!?X⊥

Figure 3: A proof in LLpol

Translation of sequent calculus proofs. If we consider the proof of LLpol in figure 3, the
associated sliced proof-structure is S.

Associated arenas. The arena associated with the conclusion:

⊢ ?(1 ⊗ 1) ` ?(1 ⊗ (!(⊥ & (⊤ ` N)) ⊕ !X)), (⊥`⊥) & ?!?X⊥

of the proof (and of the proof-net S) is:

X X

X

29

with polarity O.

References

[1] Samson Abramsky and Radha Jagadeesan. Games and full completeness for multiplicative
linear logic. Journal of Symbolic Logic, 59(2):543–574, June 1994.

[2] Samson Abramsky, Radha Jagadeesan, and Pasquale Malacaria. Full abstraction for PCF.
Information and Computation, 163(2):409–470, December 2000.

[3] Samson Abramsky and Guy McCusker. Full abstraction for idealized algol with passive ex-
pressions. Theoretical Computer Science, 227:3–42, September 1999.

[4] Samson Abramsky and Paul-André Melliès. Concurrent games and full completeness. In
Proceedings of the fourteenth annual symposium on Logic In Computer Science [16], pages
431–442.

[5] Richard Blute and Philip Scott. Linear Lauchli semantics. Annals of Pure and Applied Logic,
77:101–142, 1996.

[6] Harish Devarajan, Dominic Hughes, Gordon Plotkin, and Vaughan Pratt. Full completeness of
the multiplicative linear logic of Chu spaces. In Proceedings of the fourteenth annual symposium
on Logic In Computer Science [16], pages 234–243.

[7] Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50:1–102, 1987.

[8] Jean-Yves Girard. A new constructive logic: classical logic. Mathematical Structures in Com-
puter Science, 1(3):255–296, 1991.

[9] Jean-Yves Girard. Proof-nets: the parallel syntax for proof-theory. In Aldo Ursini and Paolo
Agliano, editors, Logic and Algebra, volume 180 of Lecture Notes In Pure and Applied Mathe-
matics, pages 97–124, New York, 1996. Marcel Dekker.

[10] Jean-Yves Girard. On the meaning of logical rules I: syntax vs. semantics. In Ulrich Berger and
Helmut Schwichtenberg, editors, Computational Logic, pages 215–272. Springer, 1999. NATO
series F 165.

[11] Jean-Yves Girard. Locus solum: From the rules of logic to the logic of rules. Mathematical
Structures in Computer Science, 11(3):301–506, June 2001.

[12] Russel Harmer. Games and Full Abstraction for Nondeterministic Languages. Ph.D. thesis,
Imperial College and University of London, 1999.

[13] Dominic Hughes and Rob van Glabbeek. Proof nets for unit-free multiplicative-additive linear
logic. In Proceedings of the eighteenth annual symposium on Logic In Computer Science, pages
1–10, Ottawa, June 2003. IEEE, IEEE Computer Society Press.

[14] Martin Hyland and Luke Ong. Fair games and full completeness for multiplicative linear logic
without the mix-rule. Preprint, 1993.

30

[15] Martin Hyland and Luke Ong. On full abstraction for PCF. Information and Computation,
163(2):285–408, December 2000.

[16] IEEE. Proceedings of the fourteenth annual symposium on Logic In Computer Science, Trento,
July 1999. IEEE Computer Society Press.

[17] Jean-Louis Krivine. Dependent choice, ‘quote’ and the clock. Theoretical Computer Science,
308:259–276, 2003.

[18] James Laird. Full abstraction for functional languages with control. In Proceedings of the
twelfth annual symposium on Logic In Computer Science, pages 58–67, Warsaw, June 1997.
IEEE, IEEE Computer Society Press.

[19] François Lamarche. Games semantics for full propositional linear logic. In Proceedings of the
tenth annual symposium on Logic In Computer Science, pages 464–473. IEEE, IEEE Computer
Society Press, 1995.

[20] Olivier Laurent. Étude de la polarisation en logique. Thèse de doctorat, Université Aix-
Marseille II, March 2002.

[21] Olivier Laurent. Polarized games. Annals of Pure and Applied Logic, 130(1–3):79–123, De-
cember 2004.

[22] Olivier Laurent. Classical isomorphisms of types. Mathematical Structures in Computer Sci-
ence, 2005. To appear.

[23] Olivier Laurent, Myriam Quatrini, and Lorenzo Tortora de Falco. Polarized and focalized
linear and classical proofs. Annals of Pure and Applied Logic, 134(2–3):217–264, July 2005.

[24] Olivier Laurent and Lorenzo Tortora de Falco. Slicing polarized additive normalization. In
Thomas Ehrhard, Jean-Yves Girard, Paul Ruet, and Philip Scott, editors, Linear Logic in
Computer Science, volume 316 of London Mathematical Society Lecture Note Series, pages
247–282. Cambridge University Press, November 2004.

[25] Ralph Loader. Linear logic, totality and full completeness. In Proceedings of the ninth annual
symposium on Logic In Computer Science, pages 292–298. IEEE, IEEE Computer Society
Press, 1994.

[26] Andrzej Murawski. On Semantic and Type-Theoretic Aspects of Polynomial-Time Computabil-
ity. Ph.D. thesis, University of Oxford, 2001.

[27] Hanno Nickau. Hereditarily sequential functionals. In Anil Nerode and Yuri Matiyasevich,
editors, Logical Foundations of Computer Science, volume 813 of Lecture Notes in Computer
Science, pages 253–264. Springer, 1994.

[28] Laurent Regnier. Lambda-Calcul et Réseaux. Thèse de doctorat, Université Paris VII, 1992.

[29] Peter Selinger. Control categories and duality: on the categorical semantics of the lambda-mu
calculus. Mathematical Structures in Computer Science, 11(2):207–260, April 2001.

[30] Lorenzo Tortora de Falco. Obsessional experiments for linear logic proof-nets. Mathematical
Structures in Computer Science, 13(6):799–855, December 2003.

31

