
Theoretical Computer Science 343 (2005) 207–236
www.elsevier.com/locate/tcs

Games for complexity of second-order
call-by-name programs

Andrzej S. Murawski
Oxford University Computing Laboratory, Wolfson Building, Parks Road, Oxford OX1 3QD, UK

Abstract

We use game semantics to show that program equivalence and program approximation in a second-
order fragment of IdealizedAlgol are PSPACE-complete. The result relies on a PSPACE construction
of deterministic finite automata representing strategies defined by second-order programs and is an
improvement over the at least exponential space bounds implied by the work of other authors in which
extended regular expressions were used.
The approach makes it possible to study the contribution of various constructs of the language to

the complexity of program equivalence and demonstrates a similarity between call-by-name game
semantics and call-by-name interpreters.
© 2005 Elsevier B.V. All rights reserved.

Keywords:Game semantics; Computational complexity; Program analysis

1. Introduction

Game semantics views computation as an exchange of moves between two players, who
represent respectively the program under evaluation and the environment in which the
program is evaluated. Programs can then be interpreted as strategies for the first player.
This approach has led to the construction of firstfully abstractmodels for a variety of
programming languages, i.e. models in which the interpretations of two programs coincide
if and only if the programs are equivalent [3,13,4,5,12,16,2,7]. The game models provide a
semantic characterization of program equivalence and make it possible to recast questions
about equivalence of programs as semantic problems. However, reasoning about programs

E-mail address:Andrzej.Murawski@comlab.ox.ac.uk.

0304-3975/$ - see front matter © 2005 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2005.05.013

http://www.elsevier.com/locate/tcs
mailto:Andrzej.Murawski@comlab.ox.ac.uk

208 A.S. Murawski / Theoretical Computer Science 343 (2005) 207–236

with game models is not so easy, especially if one has automation in mind. Firstly, to
achieve full abstraction, equivalence classes of strategies need to be considered instead
of strategies, and in general the relation involved (the so-calledintrinsic preorder) is very
intricate. Secondly, positions arising in game semantics are not merely sequences of moves.
In addition, they are endowed with pointers that connect moves subject to a number of
combinatorial constraints.
The case of Idealized Algol in which expressions may have side effects is much more

satisfying. There, the above-mentioned quotient set admits a direct characterization based
oncompleteplays—plays that correspond to terminating computations. Consequently, the
first obstacle is removed: questionsabout programequivalence (respectively approximation)
can be restated as equivalence (respectively containment) queries for the induced sets of
complete positions. Moreover, when one restricts the language to second order, positions
can be treated as strings of moves, because the pointer structure is uniquely reconstructible
and hence redundant. Then it turns out that complete plays generated by second-order
programs form regular languages[10], which immediately implies decidability of second-
order program equivalence and approximation, because the problems of equivalence and
containment of regular languages are decidable.
Two expositions of the regular game semantics exist [1,10], both employing a class of

semi-extended regular expressions with intersections to describe the sets of complete plays
generated by programs. Because the equivalence and containment problems for such ex-
pressions are known to be EXPSPACE-complete, one might suspect that the corresponding
problems concerning programs will inherit this complexity (intersections are crucial for
modelling state). In this paper we show that this is not the case: program approximation as
well as program equivalence in the fragment of Idealized Algol considered in these papers
are in fact both PSPACE-complete.
Our approach consists of a direct construction of deterministic automata which represent

the game semantics of programs. In order to avoid the use of exponential space this process
has two stages: first we construct the automaton corresponding to programs in which state
changes are not observed; then we refine it so that state changes are respected. Because the
construction is conducted in polynomial space, and both equivalence and containment of
deterministic automata are NL-complete, one can obtain a PSPACE algorithm for program
approximation and equivalence by combining the two in a careful way.
To our knowledge this is the first time a complexity result like this has been proved using

a denotational model.

1.1. Idealized Algol

IdealizedAlgol (IA) is the canonical language combining functional and imperative pro-
gramming.Weshall concern ourselveswith its fragment, calledIA2, inwhich free identifiers
are of base type or (first-order) function type and arguments to procedures are of base type.
IA2 types (denoted byT) are generated by the following grammar:

B ::= com | exp | var T ::= B | B → T .
Those generated fromB are called base types.comis the type of commands,expis the type
of expressions. We assume that values of typeexpare taken from a finite initial segment

A.S. Murawski / Theoretical Computer Science 343 (2005) 207–236 209

Fig. 1. Syntax ofIA2.

{0, . . . ,max} of natural numbers (max> 0).var is the type of mutable variables in which
only values of typeexpcan be stored. In what follows we will continue to useB if we want
to stress that a certain type is a base type; otherwise we will useT.

IA2 typing judgments are of the form� � M : T where� = { x1 : T1, . . . , xn : Tn }. All
the typing rules are shown in Fig.1. Given� � M : T whereT = B1→ · · · → Bk → B
we will say that thearity of M is k (which will be written asar(M) = k). |M| will denote
the size ofM. WhereX is a set,|X|means its cardinality; ifs is a sequence of characters (or
moves),|s| is its length. FV(M)will denote the set of free identifiers ofM, i.e.{ x1, . . . , xn }.
We consider theactivevariant of Idealized Algol in which commands may be combined

with other terms of base types to generate side effects (the more restrictive version in which
expressions cannot have side effects cannot be characterized using complete plays [7]). It is
also possible to generate variable objectswithmkvar so that they have non-standardwriting
and reading ‘methods’. We assume that the initial value of a mutable cell is 0,pred(0) and
succ(max) are undefined but other conventions (e.g.pred(0) = 0, succ(max) = 0) can be
accommodated with ease. The operational semantics of the full language is based on call-
by-nameevaluation and canbe found in [4]. For instance, in order to evaluateifzeroMN0N1
one must evaluateM first and if the result isi, Nimod 2 should be evaluated next to yield
the final result forifzeroMN0N1. We writeM ⇓ if M is a closed term of typecomwhich
evaluates toskip.

Definition 1. Two terms� � M1,M2 : T areequivalent(� � M1�M2) if for any context
C[·] such thatC[M1], C[M2] are closed terms of typecom, we haveC[M1] ⇓ if and only
if C[M2] ⇓. Similarly,M1 approximatesM2 (� � M1

�∼M2) iff for all contexts satisfying
the properties above wheneverC[M1] terminates so doesC[M2].

210 A.S. Murawski / Theoretical Computer Science 343 (2005) 207–236

Note that the contexts may come from outsideIA2, which is necessary to test procedures.
It turns out that the presence ofmkvar in the context does not make a difference as far as
equivalence is concerned, but it does affect program approximation[17].

1.2. Game semantics

We give a brief overview of the game model ofIA [4] focussing on the elements relevant
to modellingIA2 (for a more complete tutorial introduction we recommend [6]).
The games used to modelIA types are two-player games between O (Opponent) and

P (Proponent) in which the players make moves alternately. Opponent is the player to be
associated with the environment (he begins), whereas Proponent makesmoves representing
actions of the program.There are two kinds ofmoves:questionsandanswers. Each question
comes with a set of possible answers. Whenever an answer-move is played, it must be an
answer to the latest unanswered question—this is called thewell-bracketingcondition. The
games corresponding toIA types are built from the games interpreting base types using the
product and function space constructions. In the game�com�, interpreting the command
type, O can playrun to which P may only reply withdone. In �exp� after O plays the initial
questionq, P can play anyi ∈ {0, . . . ,max} as an answer. In�var� there are two kinds
of plays:write(i) ok andread j (i, j = 0, . . . ,max) which are used to model assignment
and dereferencing respectively. In general, in order to define positions and various game
constructions one needs to use justification pointers (from each non-initial move of one
player to a previous move of the other), but in the second-order case they are uniquely
reconstructible and can be omitted.
Function types are interpreted using the function space gameA ⇒ B, which involves

moves from bothA andB as a disjoint sum: those fromB are still assigned to the same
players, those fromA change owners (any O-move inA becomes a P-move inA⇒ B and
vice versa). Each play ofA ⇒ B begins inB and consists of a play inB intertwined with
plays ofA, but it is only P who can switch between the plays inA or between a play inA
and a play inB. Product games are used for modelling contexts: inA× B all moves from
A andB are available (again as a disjoint sum). They belong to the same players as in the
original games. Plays inA×B are either plays fromAor plays fromB. It is the initial move
that decides in which subgame the play will proceed. However, in the gameA× B ⇒ C,
many plays fromA× B may already occur: some of them may be fromA and some from
B. The gamesA× B ⇒ C andA⇒ (B ⇒ C) are actually identical.
Strategiesfor a given gameA (written as� : A) are prefix-closed subsets of plays which

indicate P’s responses. ForIA only deterministic strategies need to be considered: whenever
sp1, sp2 ∈ �andp1, p2 areP-moves,wehavep1 = p2. In contrast, all possibleO-movesare
taken into account in the specification of a strategy: ifs ∈ �, |s| is even andscan be extended
(to a valid play) with an O-moveo, thenso ∈ �. IA termsx1 : T1, . . . , xn : Tn � M : T are
interpreted by strategies (denoted�x1 : T1, . . . , xn : Tn � M : T �) for the game�T1�×· · ·×
�Tn� ⇒ �T �.We present most of the special strategies used to interpretIA2 in Fig. 2, where
mq,ma stand for any question–answer pair available in the relevant game.
Games and strategies form a category where morphisms between two gamesAandBare

strategies for the gameA⇒ B. The identity strategyidA : A⇒ A simply tells P to copy
moves made by O between the two copies ofA (since the first move can only occur on the

A.S. Murawski / Theoretical Computer Science 343 (2005) 207–236 211

right, P will then copy it to the left instance ofA). An interaction sequenceof two strategies
� : A⇒ B and� : B ⇒ C is a sequence of moves fromA, B andC such that when moves
from A are erased one gets a position from� and when moves fromC are erased one gets
an interleaving of several positions from�. The strategy�; � : A ⇒ C is then defined by
positions that arise from interaction sequences after erasing moves fromB. The product
game indeed defines products: pairing (〈 �, � 〉 : C ⇒ A×B) of two strategies� : C ⇒ A
and� : C ⇒ B amounts to taking�+ �. Similarly, the function space construction makes
the category cartesian closed. BecauseA× B ⇒ C andA⇒ (B ⇒ C) are identical, the
currying and uncurrying operations are essentially identities. With the structure outlined
above,IA2 terms can be interpreted compositionally by using the identity strategies for free
identifiers and interpreting other constructs� � op(M1, . . . ,Mk) by

〈 �� � M1�, . . . , �� � Mk� 〉; �op�

where�op� is a suitable strategy from Fig.2. Forwhile, one uses the strategy�while� :
�exp�× �com�1⇒ �com�2 with positions of the shape

run2

(
q

(
max∑
i=1
i

)
run1 done1

)∗
q 0 done2

where the subscripts refer to the origin of the moves:�com�1 or �com�2.

Example 2. Any IA term�, X : var � M : B defines a strategy forG = ��� × �var� ⇒
�B�. Each play ofG, restricted to the�var� subgame, is a sequence ofwrite(i) ok and
readj segments and there is no connection betweenread’s and precedingwrite’s. Variable
binding (new) is interpreted by constraining��, X : var � M : B� to sequences in which
eachread is followed by the value used in the most recentwrite(i) move (or 0 if nowrite
has taken place yet) and subsequently hiding (erasing) all theread, i,write(j),okmoves.

A non-empty positions is calledcompleteif all questions insare answered (for games
generated byIA types this is equivalent to maximality). Given a strategy� we denote its
subset of complete positions bycomp (�). As we have mentioned at the very beginning,
such positions characterizeIA program approximation and equivalence.

Theorem 3(Abramsky and McCusker[4]). Suppose� � M1,M2 : T . Then we have:

� � M1
�∼M2 iff comp

(
�� � M1�

) ⊆ comp
(
�� � M2�

)
,

� � M1�M2 iff comp
(
�� � M1�

) = comp
(
�� � M2�

)
.

If we can represent positions as words of a language, then program approximation and
equivalence correspond to the well-studied problems of language containment and equiv-
alence. Complete plays induced byIA2 programs turn out to be representable by regular
languages[10].Hence,IA2 programapproximation (respectively equivalence) canbe shown
to be decidable by a reduction to the containment (respectively equivalence) problem for

212 A.S. Murawski / Theoretical Computer Science 343 (2005) 207–236

Fig. 2. Strategies used to interpretIA2 and their maximal positions. Note that P does not reply to the initial question
in ��B�. Similarly, because we assumed thatsucc(max) andpred(0) are undefined, P will not respond toq qmax
andq q 0 when following�succ� and�pred� respectively.

a class of extended regular expressions[1,10]. In order to estimate the complexity of the
algorithms implied by these papers, we review the relevant results about regular languages
([8] contains a compendium of such results and original references).

A.S. Murawski / Theoretical Computer Science 343 (2005) 207–236 213

Theorem 4. The language containment and equivalence problems are:
• NL-complete for deterministic finite automata,
• PSPACE-complete for nondeterministic finite automata,
• PSPACE-complete for regular expressions,
• EXPSPACE-complete for regular expressions with intersection,
• EXPSPACE-complete for regular expressions with squaring(L2 = L · L).

The PSPACE and EXPSPACE bounds for equivalence of regular expressions are proved
by following standard automata constructions. For regular expressions they produce au-
tomata of linear size with respect to the size of the interpreted expression. However, inter-
section requires the use of a product automaton whose size is the product of sizes of the two
component automata. Similarly, automata must be duplicated to interpret squaring.As both
constructions need access to all states of the component automata, the components must
be stored in their entirety for the sake of future constructions (this should be contrasted
with the constructions for concatenation, Kleene star and sum, which can be conducted
using just the initial and final states). Thus, nested occurrences of intersections or squaring
will require exponential space. Indeed, that use of strictly superpolynomial space cannot
be eliminated, as the equivalence problems are EXPSPACE-complete and it is known that
PSPACE�=EXPSPACE[20].

1.3. Earlier work and outline of the new results

Now we are ready to estimate the complexity of algorithms obtained by following the
recursive assignments of extended regular expressions toIA2 termspresented in [1,10]. Both
papers use intersections to enforce the causality between readsandwrites to variables,which
seems rather unavoidable. In addition, a number of auxiliary operations such as substitution,
restriction and various homomorphic images are employed. If we want to account forIA2
terms, squaring must also be handled because

comp
(
�(�x.x; x)M�

) = comp
(
�M�

) · comp
(
�M�

)
(this is done as a special case of intersection in[1]). Thus, assuming that all the auxiliary
operations do not make complexity worse, we can extract an exponential space algorithm
provided the size of the extended regular expressions is linear in the size of the analyzed
term. It turns out however that some care is still needed here, because even the natural
descriptions in [10] yield expressions of exponential size. For instance, any of the two rules
below (used iteratively) can produce this effect:

(| if M thenN0 elseN1|)i = (|M|)tt · (|N0|)+ (|M|)ff · (|N1|)
(|while M do N |) = ((|M|)tt · (|N |))∗ · (|M|)ff

because(|M|)occurs twice on the right. The translation from[1] does give rise to expressions
whose size is linear in the size of the program, but the induced automata are often larger
than one could expect. For example, because products are used tomodel any application, the
size of the automaton representingifzeroMN0N1 or fM1 · · ·Mn is equal to the product
of the sizes of the automata being combined, although intuitively it should be closer to

214 A.S. Murawski / Theoretical Computer Science 343 (2005) 207–236

their sum. In any case, an EXPSPACE algorithm is implicit in[1] and due to EXPSPACE-
completeness of containment and equivalence for extended regular expressions one might
suspect that program equivalence and approximation share this complexity.
This turns outnotto be the case.Wewill prove thatIA2 program approximation as well as

program equivalence are PSPACE-complete, which shows that regular expressions are not
the ideal way to represent game semantics if intuitions about complexity are to be conveyed.
The discrepancy seems to come from the fact that game semantics is deterministic whereas
regular expressions can also account for nondeterminism.
Our results can be seen as a continuation of Jones andMuchnick’s work on finitememory

programs (FMPs) [14]. FMPs were considerably simpler thanIA2 programs. They lacked
type structure, did not allow for function definitions and their relation to finite deterministic
automata was more apparent. Moreover, the notion of equivalence considered in [14] was
rather crude and, like for automata, based on equivalence of accepted inputs.
The approach we take consists of several steps. First, given a termP, we will find another

termP ′ whose game semantics can be thought of as a symbolic representation of state
changes caused byP. Roughly,P ′ will be obtained fromP by ignoring the occurrences of
new(thereby eliminating some problematic product constructions). In general this does not
yield an equivalent program and Section 2 shows how tomend the defects so that a ‘correct’
P ′, without any occurrences ofnew, can be found.
In Section 3 we define a procedure called IA2DFA which produces a deterministic au-

tomaton fornew-freeIA2 terms. The size of the automaton can still be exponential (because
nested applications of a�-abstraction can cause the squaring effect) but we will show how
to carry out the computation on a PSPACE transducer.

Definition 5. A transduceris aTuringmachine equippedwith a read-only input tape,write-
only output tape, and readable and writable work tape. A PSPACE transducer never uses
more thanp(|s|) workspace on any inputs, for some polynomialp.

PSPACE transducers terminating on all inputs may still produce output of exponential
size but that is the limit since each computation must end after an exponential number of
steps.
Section5 describes how the automaton produced in the previous round can be refined by

taking state changes into account. The outcomewill be a deterministic automaton accepting
precisely the complete plays induced by the analyzed term. Since we want the resultant
algorithm to be implementable by a PSPACE transducer as well, the integration of IA2DFA
must be carried out with caution so as to avoid the storage of the full output tape.
Finally, for approximation or equivalence testing we need to submit the two PSPACE

computable descriptions of automata to the containment or equivalence checking algo-
rithms. As we recalled in Theorem 4 this check can be implemented in nondeterminis-
tic logarithmic space, but since the input is actually of exponential size with respect to
the size of the initial program ‘logarithmic’ means ‘polynomial’. As before, the problem
of storing the intermediate result (which may be of exponential size) must be addressed
but once this is done we get a nondeterministic PSPACE verification procedure. Since
NPSPACE=PSPACE (see e.g. [20]) the approximation and equivalence problems forIA2
terms are in PSPACE.

A.S. Murawski / Theoretical Computer Science 343 (2005) 207–236 215

In Section6 we show that they are also PSPACE-hard and hence PSPACE-complete.
Finally, we discuss the complexity of equivalence for a number of fragments ofIA2 and
conclude with some optimizing suggestions.

2. Moving variable bindings

This section begins the description of a PSPACE algorithm which, given anIA2 typing
judgmentx1 : T1, . . . , xn : Tn � P : T , produces an automaton acceptingcomp(�x1 : T1,
. . . , xn : Tn � P : T �). From now on we will always useP to refer to the original program.
In order to simplify the computation of the automatonwewill firstmove allnew-bindings

to the topmost level (consequently losing all information about local scope). This must be
done in such a way that program equivalence is preserved. In particular the following two
problems must be addressed.
Firstly, moving bindings outwards is not always a well-defined operation on the syntax

(which only allows terms of the shapenewX in M if M is of base type). Therefore, we
need to define whatnewX in M means whenM is of function type: givenM : T ′ → T ′′,
newX in M will be shorthand for�xT

′
.newX in Mx. It worth noting that, regardless ofT,

�� � newX in M : T � is actually calculated in the same way as for base types, by cutting
down ��, X : var � M : T � to sequences with the ‘good variable’ behavior in which the
write(i), ok, read, i moves are hidden.
In many cases the expansion of scope produces equivalent terms as shown in Fig. 3.

In fact, the terms displayed on the left-hand side in the figure are interpreted by the same
strategies as those on the left. Unfortunately some desirable equivalences fail:

while (newX in M) do N � newX in while M do N
while M do (newX in N) � newX in while M do N

M(newX in N) � newX in MN,

because the expression in scope of the variableX on the left might be evaluated sev-
eral times. Then the terms on the right behave differently, because the second evaluation
would inherit the state from the first one (in the third case this is due to call-by-name
evaluation).

Example 6. Here is a concrete example illustrating the difference:

(�x.ifzero xxx)(newX in (X := ifzero !X10); !X) � 1,
newX in (�x.ifzero xxx)((X := ifzero !X10); !X) � 0.

Wewill address the failures by explicit initialization and replace each subterm ofPof the
form newX in M with newX in (X :=0;M). Obviously the addition of the (redundant)
explicit initializations yields an equivalent program. This syntactic operation should be
carried out as a preprocessing pass and combined with renaming identifiers in order to
avoid name clashes when the bindings are removed. The former might double the size of
the program in the worst case, the latter may add a logarithmic factor, but in any case
the new term can be stored in polynomial space (with respect to the original size ofP).

216 A.S. Murawski / Theoretical Computer Science 343 (2005) 207–236

Fig. 3. Some equivalences.

After explicit initialization the removal ofnew to the outermost level turns out to preserve
equivalence.

Definition 7. A term-in-context�, X : var � M : T is explicitly initializedwith respect to
X iff in each position of��, X : var � M : T � the first move made in the designated�var�
subgame iswrite(0).

Lemma 8. Suppose�, X : var � M : T is explicitly initialized with respect to X and�,
[·] : T � C[·] : T ′ is an IA2 context(in particular this means that X does not occur in
C[·]). Then:
(i) C[M] is explicitly initialized with respect to X,
(ii) �C[newX in M]� = �newX in C[M]�.
Proof. (i) holds because of theway strategies are composed. (ii) can be proved by induction
on the structure ofC using (i). For the cases shown in Fig.3 and

��x.(newX in C[M])� = �newX in �x.C[M]�
�(newX in C[M])N� = �newX in (C[M]N)�

�mkvar(M,newX in C[N])� = �newX in mkvar (M,C[N])�
�mkvar(newX in C[M], N)� = �newX in mkvar (C[M], N)�

the assumption thatM (and consequentlyC[M]) is explicitly initialized is irrelevant. How-
ever, it is essential to turning the inequivalences identified on the previous page into equiv-
alences. �
Example 9.We revisit Example6 after adding explicit initialization:

(�x.ifzero xxx)(newX in (X :=0;X := ifzero !X10; !X)) � 1,
newX in (�x.ifzero xxx)(X :=0;X := ifzero !X10; !X) � 1.

By the above lemma, since�, X : var � (X :=0;M) : B is explicitly initialized we have
�C[newX in (X :=0;M)]� = �newX in C[X :=0;M]�. If we apply this fact for each
occurrence ofnew in Pwe arrive at

A.S. Murawski / Theoretical Computer Science 343 (2005) 207–236 217

Corollary 10. For any IA2 term� � P : T there exists anew-free IA2 term�, X1 : var,
. . . , Xm : var � P ′ : T such that

�� � P � = �� � newX1, . . . , Xm in P ′�,
m� |P | and|P ′| = O(|P | log |P |).

The corollary amounts to a simple proof of the factorization theorem forIA2 without
the need to encode positions as in the general proof[4]. We are going to use it to sim-
plify the generation of an automaton acceptingcomp

(
�� � P : T �

)
: we will construct an

automaton forP ′ and convert it to one forP. In the language of regular expressions, this
corresponds tomoving the intersections corresponding tonewto the outermost level, which
greatly simplifies their translation. The automaton forP ′ may still have exponential size
though.

Remark 11. Theglobalization of variables conducted forIA2 programs cannot be extended
to full IA. LetM1,M2 be the terms�f com→com.f (f skip) and respectively

X :=0; x ;X := succ(!X); ifzero (pred(!X)) (skip)�com.

ThenM1(�xcom.newX in M2)�skipbutnewX in M1(�xcom.M2)��com.

3. Algorithm for new-free programs

From now on, for brevity, we shall write�� � M : T � meaningcomp
(
�� � M : T �

)
.

AssumingT = B1 → · · · → Bk → B, �� � M : T � can be decomposed in one of the
following ways depending onB and the initial and final moves:

B = com: � . . . � = run · (| . . . |) · done,
B = exp: � . . . � = q ·

max∑
i=0
((| . . . |)i · i),

B = var : � . . . � = read ·
max∑
i=0
((| . . . |)ri · i)+

max∑
i=0
(write(i) · (| . . . |)wi) · ok.

We make a few auxiliary definitions: forB = expwe define(| . . . |) = ∑max
i=0(| . . . |)i , for

B = var we let (| . . . |)r = ∑max
i=0(| . . . |)ri . The generated automata will represent(| . . . |),

(| . . . |)r , (| . . . |)wi respectively in a way to be specified soon. The alphabetA will consist of
moves defined by the types occurring in the typing judgment. We use identifier names to
‘implement’thedisjoint sums inherent in theconstructionof(

∏n
i=1 �Ti�)⇒ �T �: thenames

will be attached to moves of the component base type games and in addition, for function
types, we will add numerical indices to moves originating from the types of arguments.
SupposeTi = Bi,1→ · · · → Bi,ki → B ′i (i = 1, . . . , n) andT = B1→ · · · → Bk → B.
Then we set

A=
n⋃
i=1

(
ki⋃
j=1
{ cxi ,j | c ∈ A(Bi,j) } ∪ { cxi | c ∈ A(B ′i) }

)

∪
k⋃
i=1
{ ci | c ∈ A(Bi) } ∪ A(B)

218 A.S. Murawski / Theoretical Computer Science 343 (2005) 207–236

where

A(exp) = {q,0, . . . ,max},
A(com) = { run,done},
A(var) = { read,0, . . . ,max,write(0), . . . ,write(max),ok}.

For anyIA2 term our algorithm will generate asemantic automaton, which is essentially a
partial deterministic automaton with�-transitions.

Definition 12. A = 〈Q, s, �, L 〉 is asemantic automatonproviding
• Q ⊆ N, s ∈ Q, L is a list of states fromQ (called thefinal list), and
• Q, � can be decomposed asQ = QA + Q� and� = �A + �� respectively such that

�A : QA ×A⇀Q and�� : Q� × { � }⇀Q.

Note that whenever there is an�-transition, it is unique and no other transitions involving
characters from the alphabet are possible.

Definition 13. Let A = 〈Q, s, �, L 〉 be a semantic automaton and supposeT = B1 →
. . .→ Bk → B.
• If B = comwe say thatA accepts(|� � M : T |) if L = [s′] and〈Q, s, �, { s′ } 〉 accepts
(|� � M : T |) in the standard sense.

• If B = expwe say thatA accepts(|� � M : T |) if L = [s0, . . . , smax] and for any
0� i�maxthe automaton〈Q, s, �, { si } 〉 accepts(|� � M : T |)i .

• If B = var we define the acceptance of(|� � M : T |)r like for expand that of each
(|� � M : T |)wi (0� i�max) like for com.

Given semantic automata for(| . . . |) it is very easy to construct those accepting� . . . � by
following the decomposition patterns.
Semantic automata will be generated by scanning the input program, in the opposite

order to that normally used for evaluation. This leads to quite a concise procedure, shown
in Fig. 5, which does not generate any unnecessary�-transitions for stitching the automata
resulting from recursive calls. The automata will be generated back-to-front: we specify the
list of final states first, then pass it as an argument to the generating procedure IA2DFA and
wait for the initial state to be returned (recall that states are natural numbers). The alternative
approach to output the final states given the initial state is more problematic: in order to
interpretifzeroMN0N1 we would have to ‘unify’ the final states resulting fromN0 andN1
either by adding�-transitions and effectively merging the states, or by maintaining sets of
final states (which might grow exponentially large).
IA2DFA takes two arguments, anIA2 term and a list of states (meant to be the final list),

and returns the initial state of the semantic automaton corresponding to the analyzed term.
For� � P ′ : T such thatT = B1→ · · · → Bk → B, the initial call will depend onB:
• for B = comwe call IA2DFA(P ′, [0]),
• for B = expwe call IA2DFA(P ′, [0, . . . ,max]),
• for B = var we can call either IA2DFA(P ′, [0, . . . ,max])r (to get(| . . . |)r) or IA2DFA
(P ′, [0])wi (to get(| . . . |)wi) for any 0� i�max.

A.S. Murawski / Theoretical Computer Science 343 (2005) 207–236 219

Fig. 4. Computingarg.

Transitions of the automaton will be output at runtime by PRINT instructions ass1
c−→ s2,

wheres1, s2 ∈ Nandc ∈ A∪{ � }. To simplify proofsweassume thatP ′ is of base type.This
is an insignificant restriction: insteadofP ′wecanalways consider�, y1 : B1, . . . , yk : Bk �

P ′y1 · · · yk : B instead. The game semantics ofP ′y1 · · · yk andP ′ are almost identical (the
�-law is valid) except that themoves labelled withyi for P ′y1 · · · yh should be labelled with
i for P ′. This distinction can be easily integrated into our procedure later and does not affect
complexity since the typing judgments submitted for analysis contain type information
about free and bound variables anyway.
IA2DFA relies on certain information about function arguments inP ′, which should be

extracted before IA2DFA is called. InIA2, functions can be defined either as�-abstractions
or as first-order identifiers. Therefore, each argument to a function can be associated either
with an occurrence of� or with an occurrence of a first-order variablef and an index
1� i�ar(f). We will differentiate between occurrences of the same first-order variable
f by annotating them with subscripts (f1, f2, f3, . . .). Similarly, we assume that no two
bound variables have the same name. Thus, for a given term, each function argument can be
specifiedeither by the nameof a base-type identifier or by a pair(fz, j), where 1�j�ar(f)
andfz is an occurrence off in P ′. The functionargwill assign the actual argument to each
such specification if possible (some functions may not be applied inside the term, e.g.M in
mkvar(M,N)). We can definearg by running the procedure ARGS shown in Fig.4 ([] is
the empty list,: denotes concatenation). In all other cases not mentioned in the figure the
call to ARGS should be propagated so that all subterms are examined. Values ofarg are
defined only inside the rule for application.

Example 14. Supposef : com→ com→ com� M : comwhereM is of the shape�x.�y.
f1((�z.f2M1M2)M3) for someM1,M2,M3. Then we have ARGS(M) = [x, y, (f1,2)]
and

arg(f1,1) = (�z.f2M1M2)M3 arg(z) = M3
arg(f2,1) = M1 arg(f2,2) = M2.

220 A.S. Murawski / Theoretical Computer Science 343 (2005) 207–236

Fig. 5. IA2DFA.

A.S. Murawski / Theoretical Computer Science 343 (2005) 207–236 221

Fig. 6. Interpretation of base-type identifiers.

Remark 15. It is worth observing that the value ofarg(x) is a subterm which occurs to the
right of any occurrence ofx in P ′. This ensures that recursive definitions usingarg(x) will
not be circular.

Given a term of aritykARGS returns a list of lengthk (corresponding to thekarguments).
The lemma below makes this precise. Consequently, ARGS(N) in the rule for application
always returns the empty list and ARGS(M), for mkvar(M,N), returns a singleton list
[h]. We callh the associatedwrite parameterof the occurrence ofmkvar . The set of write
parameters occurring inP ′ will be referred to as WPAR(P ′).

222 A.S. Murawski / Theoretical Computer Science 343 (2005) 207–236

Fig. 7. Interpretation of first-order identifiersf : B1→ · · · → Bar(f) → B.

A.S. Murawski / Theoretical Computer Science 343 (2005) 207–236 223

Lemma 16. Let � � M : T such that ar(M) = m. Then ARGS(M) = [y1, . . . , ym] and
for some0� l�m we have
• yi is a base-type identifier for all1� i� l,
• there existsz ∈ N such thatyi = (fz,ar(f)+ i −m) for all l < i�m.

Because we assumed thatP ′ is of base type, ARGS(P ′) = [].

Lemma 17. Let M be a subterm ofP ′.
• If y ∈ ARGS(M) then either arg(y) is defined after ARGS(P ′) is complete ory ∈
WPAR(P ′) (the first∈ means list membership).

• If x ∈ FV(M) then either arg(x) is defined after ARGS(P ′) is complete, or x ∈
WPAR(P ′), or x ∈ FV(P ′).

The statically gathered information suffices to generate automata for all elements of the
syntax exceptmkvar . Each occurrence ofmkvar comeswith an associatedwrite parameter,
which cannot be defined statically. Instead, itsarg value will be determined at runtime as
necessary.
Note that ARGS runs in polynomial time and the generatedarg function can be stored in

polynomial space for future reference.arg contains information about function arguments
and will be used in IA2DFA to transfer control to them once they have to be processed.
In this respect IA2DFA operates very much like a call-by-name evaluator. Thanks to the
ability to make ‘jumps’ to arguments, IA2DFA will not have to use exponential space, even
though the generated automaton might be of exponential size.
The definition of IA2DFA for constants and composite terms is presented in Fig.5.

Note that hardly any transitions get printed out since moves correspond to free identifiers.
IA2DFA for identifiers is defined in the next two figures (Figs. 6 and 7) respectively for base
and first-order types.The clause formkvar(M,N)will ensure that argy for y ∈WPAR(P ′)
will always be defined before it is needed. States of semantic automata are natural numbers.
We usefresh(s) to generate a yet unused natural number. This can be implemented via
a global natural number which is incremented during each call tofresh. fresh(s1, . . . , sn)
will be shorthand forfresh(s1), . . . , fresh(sn).Weuse∞ to denote a special state fromwhich
no transitions will be possible. The definitions of IA2DFA(. . . , l)r , IA2DFA(. . . , l)wi for
ifzeroMN0N1,M;N ,MN ,�x.M (although not shownexplicitly in the figure) are identical
to those presented there for IA2DFA(. . . , l).

4. Analysis of the algorithm

IA2DFA never diverges because each recursive branch it generates could be viewed as a
left-to-right scan ofP ′: at each call a subterm of the currently analyzed term is visited or
a jump is made followingarg. By Remark15 the jump is always to the right and visiting
subterms also correspond to proceeding right inP ′. Thus the depth of the recursive stack is
bounded by|P ′| and we can reason by induction on the depth. Asarg is not always defined
for write parameters it is important to show that allarg values are defined when they are

224 A.S. Murawski / Theoretical Computer Science 343 (2005) 207–236

needed. After settling this, we will prove that IA2DFA generates a semantic automaton
and, finally, that the automaton represents the game semantics ofP ′. In what follows we
shall often make statements about IA2DFA(M, l)meaning all the various types of call like
IA2DFA(M, l)r and IA2DFA(M, l)wi .

Definition 18. LetM be a subterm ofP ′ and FV(M) \ FV(P ′) = { v1, . . . , vk }. Suppose
that for any write parameterh if arg(h) is defined thenarg(h) ∈ {0, . . . ,max}. Then we
defineM to beM[arg(v1)/v1, . . . ,arg(vk)/vk].
Note that the definition depends on values ofarg for write parameters andM might

change whenarg is modified. By Remark15 and the fact thatarg(h) ∈ {0, . . . ,max} for
write parameters, the definition is not circular. We considerM to be undefined if some
arg(vi) is not defined.

Lemma 19. Let M be a subterm ofP ′. Then FV(M) ⊆ FV(P ′).

Definition 20. LetM be a subterm ofP ′. Recall that|ARGS(M)| = ar(M). DefineM̂ as
M arg(ARGS(M)[1]) · · · arg(ARGS(M)[ar(M)]).
Note thatM̂ is also dependent on values ofarg for write parameters.

Lemma 21. After the initial call IA2DFA(P ′, l), whenever IA2DFA(M, l) is called, M̂
is defined. Moreover, when IA2DFA(M, l) returns, arg is the same as at the moment
IA2DFA(M, l) was called.

Proof. Westart from the secondstatement.Note that only a call to IA2DFA(mkvar (M,N),
[s])wi can modifyarg. Because of our initial remark in this section about the algorithm
working like a left-to-right scan, only one call for the same occurrence ofmkvar can
be active at the same time. Hence, when the value ofarg(h) is undefined at the end of
IA2DFA(mkvar(M,N), [s])wi , the uniquely determined previous definition is reversed.
This ensures that executing IA2DFA(mkvar(M,N), l) leavesarg unchanged.
For the first part we use induction on the order determined by the tree of recursive calls

to IA2DFA following IA2DFA(P ′, l), where the root corresponds to the base case. For the
initial call we haveP̂ ′ = P ′. For the inductive step, we assume that when IA2DFA(M, l) is
calledM̂ is defined and we shall prove (by case analysis ofM) that the immediate recursive
calls made from IA2DFA(M, l) also have this property.
For (occurrences of) base-type identifiersx : B, x̂ is defined by induction hypothesis.

Thus, eitherx ∈ FV(P ′) andx̂ = x, or x �∈ FV(P ′) andarg(x) is defined. In the first case
there is nothing to prove because no recursive calls are made, in the second case there is a
call for arg(x), but then we havêarg(x) = x̂.
For first-order identifiersf : B1→ · · · → Bar(f)→ Bweknowby inductionhypothesis

thatf̂ = f arg(f,1) · · ·arg(f,ar(f)) is defined. Therefore, so iŝarg(f, i) = arg(f, i) for
1� i�ar(f) (note that the calls forarg(f, i) do not affectarg so we can still appeal to the
induction hypothesis).
For ifzero, ̂ifzeroMN0N1 is defined (at call time). Because ̂ifzeroMN0N1 = ifzero M̂
N̂0N̂1, each ofM̂,N̂0,N̂1 is also defined then. Since the inner calls to IA2DFA do not

A.S. Murawski / Theoretical Computer Science 343 (2005) 207–236 225

changearg all these values are also defined when IA2DFA is called on each of them. The
argument forsucc,pred, ifzero,while,M;N ,M :=N , !M and IA2DFA(mkvar(M,N), l)r
is analogous.
For application it suffices to observe that̂MN = M̂ and appeal to the inductive hy-

pothesis. For�-abstraction note thatar(�x.M) = ar(M) + 1 and ARGS(�x.M)[1] =
x. By inductive hypothesiŝ�x.M is defined, soMi is defined for any 1� i�ar(�x.M),
whereMi denotesarg(ARGS(�x.M)[i]). Besides, we have ARGS(M)[j] = Mj+1 for
1�j�ar(M), so

�̂x.M = (�x.M)M1M2 · · ·Mar(�x.M),

M̂ = MM2 · · ·Mar(�x.M) (if defined).

Therefore, to show that̂M is defined, we need to demonstrate thatM is defined. Let
{w1, . . . , wl } = FV(M) \ { x }. Then

�x.M = �x.M[arg(w1)/w1, . . . ,arg(wl)/wl],
M = M[arg(w1)/w1, . . . ,arg(wl)/wl][arg(x)/x] (if defined).

Nownote that�x.M is defined (soarg(wj) is defined for 1�j� l) and so isarg(x) (because
arg(x) = M1 andM1 is defined). Hence,M andM̂ are defined when IA2DFA(M, l) is
called from IA2DFA(�x.M, l).
Finally, for IA2DFA(mkvar(M,N), [s])wi , we know from the induction hypothesis that
M is defined, because ̂mkvar(M,N) is definedand ̂mkvar(M,N) = mkvar(M,N). Since
ARGS(M)[1] = h andarg(h) = i, when IA2DFA(M, [s]) is called, we havêM = Mi.

�

The theorem shows in particular that IA2DFA never blocks because of undefinability of
some value ofarg. Therefore, having printed out a set of transitions, it always terminates
and returns a state as a result.

Lemma 22. IA2DFA(P ′, l) produces a semantic automaton(we take the returned state as
the initial one and l as the final list).

Proof. First we show that during the execution of IA2DFA(M, l) no transitions from the
final states inl are generated. Let us first look at the interpretation offree identifiers.

Forx : comwe gets′ runx−→ s′′ donex−→ s.

Forx : expthe result iss′ qx−→ s′′ ix−→ si , where 0� i�max.
Forx : var, IA2DFA(x, [s0, . . . , smax])r and IA2DFA(x, [s])wi produce

s′ readx−→ s′′ jx−→ sj and s′ write(i)x−→ s′′ okx−→ s

respectively.

226 A.S. Murawski / Theoretical Computer Science 343 (2005) 207–236

Forfz : B1→ · · · → Bar(f)→ B oneof the following groups of transitions is generated
first as for base-type identifiers (depending onB):

s′
runf−→ s′′ donef−→ s s′

qf−→ s′′ if−→ si
s′

readf−→ s′′
if−→ si s′

write(i)f−→ s′′
okf−→ s.

After that, loops of one of the shapes below are created for each 1�j�ar(f).

In each of the above cases only transitions ending in the final state are produced and for
the other cases a simple recursive argument suffices. Hence, IA2DFA(M, l) can produce
transitions involving the states froml or ‘fresh’ states but no outgoing transitions from the
states inl will be printed out at this stage. In particular, there will be no outgoing transition
from∞.
Now we can prove by induction on the order defined by the recursive tree of calls to

IA2DFA (where leaves correspond to the base cases) that the generated automata are deter-
ministic in the sense of Definition12. It is clear that the automata generated for constants
(no transitions) and base-type free identifiers are deterministic. The cases relying on a single
recursive call are easy too, because a single appeal to the induction hypothesis will suffice.
For first-order identifiers the recursive calls produce disjoint automata because the final

lists passed as arguments are disjoint. Because of the way the automata are combined (see
diagrams above) nondeterminism will never arise.
For ifzero, the first two calls have access to the same final list but, since the recursive

calls do not define transitions leading from final states, the two automata put together still
define a deterministic automaton. For the same reason the third call usings cannot break
determinacy. Virtually the same argument applies toM;N andM :=N .
Forwhile, the two calls might sharesandsN (if sN = s1) but like before no transitions

from s or sN are then defined. Consequently, the automaton produced in the two calls

A.S. Murawski / Theoretical Computer Science 343 (2005) 207–236 227

is deterministic. Finally, the�-transition is deterministic (in the sense of the definition of
semantic automata) because no transitions fromsN could have been defined in previous
stages. �

In order to formulate an invariant applicable to intermediate IA2DFA calls we will need
to suppress some optimizations in the code from Fig.5. This is necessary to specify the
meaning of the results for terms of typeexp. To be able to describe it precisely we have
to make sure that when IA2DFA is called, the final list containsmax+ 1 different states.
It should be clear that with the new definitions given in Fig. 8 the initial call to IA2DFA
(for P ′) will produce an automaton which is equivalent to that generated by the original
IA2DFA. Recall that the shape of the initial call to IA2DFA depends onB.

Proposition 23. Following the initial call to IA2DFA:
• IA2DFA(M, l) outputs an automaton accepting(|� � M̂|),
• IA2DFA(M, l)r outputs an automaton accepting(|� � M̂|)r ,
• IA2DFA(M, l)wi outputs an automaton accepting(|� � M̂|)wi ,
as explained in Definition13.M̂ is to be calculated at the moment when IA2DFA(M, l) is
called(but we already know that̂M will remain the same until IA2DFA(M, l) is completed).

Proof. Weuse induction on the order determined by the tree of recursive calls. IfM is a con-
stant the result is obvious. IfM is a freebase-type identifier thegeneratedautomaton is shown
in the proof of Lemma22 (and can be seen to be correct by comparisonwith [1,10]). IfM is a
base-type identifier but is not free, then by Lemma 21arg(x) is defined when IA2DFA(x, l)
is called. Then we havêx = ârg(x) so the theorem holds by induction hypothesis. Forsucc,
pred, ifzero, while, M;N , M :=N , !M and first-order variables the result follows from
the induction hypothesis and the fact that the composite automata are combined in the right
way (see [1,10] for comparison; for first-order identifiers use the figures in the proof of
Lemma 22). For application a direct appeal to the induction hypothesis does the job since
M̂N = M̂. For�-abstraction the proof of Lemma 21 shows that̂�x.M is	-equivalent toM̂.
Because the game semantics of	-equivalent terms is identical, it suffices to appeal to the
induction hypothesis again. Finally, since(|� � mkvar(M,N)|)r = (|� � N |), the defining
clause for IA2DFA(mkvar(M,N), l)r is correct. Similarly, as(|� � mkvar(M,N)|)wi =
(|� � Mi|) holds, it suffices to verify that IA2DFA(M, [s]) produces an automaton for
(|� � Mi|). By induction hypothesis this is indeed the case, becausearg(h) = i will hold
throughout its runtime and sôM will be equal toMi when IA2DFA(M, [s]) is called. �

Theorem 24(Correctness). Suppose� � P ′ : B.
• For B = com, IA2DFA(P ′, [0]) outputs a semantic automaton accepting(|� � P ′|).
• For B = exp, IA2DFA(P ′, [0, . . . ,max]) outputs a semantic automaton accepting
(|� � P ′|).

• For B = var, IA2DFA(P ′, [0, . . . ,max])r and IA2DFA(P ′, [0])wi (0� i�max) produce
semantic automata accepting(|� � P ′|)r and(|� � P ′|)wi (0� i�max) respectively.

Proof. SinceP̂ ′ = P ′, it suffices to appeal to the preceding proposition.�

228 A.S. Murawski / Theoretical Computer Science 343 (2005) 207–236

Fig. 8. Less efficient IA2DFA.

4.1. Complexity

Both ARGS and IA2DFA use subterms ofP ′ as arguments. We can represent each such
subterm by the index of its leftmost character inP ′, which will require O(log |P ′|) space.
ARGS is based on a simple traversal of the syntactic tree ofP ′, so the depth of the

recursion cannot exceed|P ′|. To implement it, we need to store the argument (a subterm of
P ′) and the intermediate result for each recursive call. The former can be done inO(log |P ′|)
space, for the latter O(|P ′| log |P ′|) will suffice, because we need to store a list with up
to |P ′| entries each of which is an occurrence ofx or (fz, j), wherefz is an occurrence
of a first-order identifier (and the occurrences can be represented in O(log |P ′|) space).

A.S. Murawski / Theoretical Computer Science 343 (2005) 207–236 229

Because O(|P ′| log |P ′|) space is needed for each call and the depth of the recursion does
not exceed|P ′|, ARGS can be implemented to run in O(|P ′|2 log |P ′|) space.Additionally,
we must preserve the results of the DEFINE clauses for future use by IA2DFA. Butarg is a
function fromxor (fz, j) to subterms ofP ′, so wewill be able to do that in O(|P ′| log |P ′|)
space.
Wehave already remarked that the recursion stack used in IA2DFAnever gets deeper than

|P ′|. Observe that each call to IA2DFA canmakeO(|P ′|) direct recursive calls and generate
O(|P ′|) fresh states: the worst case is the code labelled REST in Fig.7 wherear(f)� |P ′|
iterations are made; in all other cases the number of calls and new states are both uniformly
bounded by a multiple ofmax, so they contribute only O(1) calls and fresh states. Letc
be the larger constant implied by the two O(|P ′|) estimates. Then the tree produced by
recursive calls of IA2DFA has at most(c|P ′|)|P ′| nodes. Since at mostc|P ′| fresh states
can be created at each node, in total IA2DFA can produce up to(c|P ′|)|P ′|(c|P ′|) states.
They are natural numbers so O(|P ′| log |P ′|) space will be needed to store each of them
and to support fresh-name generation. Consequently, one needs O(|P ′|2 log |P ′|) space to
implement IA2DFA, because the stack will have at most|P ′| frames and for each call we
have to remember the arguments (a subterm ofP ′ requiring O(log |P ′|) space plus a list
of up tomaxstates requiring O(|P ′| log |P ′|) space) and sometimes a bounded number of
states generated inside the call for future use (again O(|P ′| log |P ′|) space). Note that the
automaton produced by IA2DFA can be of exponential size but since it is printed out on
the output tape we have

Theorem 25. Recall the notation used in Corollary10.Let�′ = �, X1 : var, . . . , Xm :
var. The semantic automaton accepting(|�′ � P ′|), (|�′ � P ′|)r , (|�′ � P ′|)wi (where appli-
cable) can be computed by a PSPACE transducer.

The automata for(| . . . |) can easily bemodified to accept�� � P ′�. It suffices to introduce
two new statesstart,end∈ N, which we designate as the initial and final states of the new
automaton, and to add transitions of the following shapes (as appropriate):

start
run−→ start

q−→ start
read−→ start

write(i)−→
0

done−→ end i
i−→ end i

i−→ end 0
ok−→ end.

The targets of the transitions fromstart are the states returned by IA2DFA. ForP ′ :
var, before the automata produced by IA2DFA(P ′, [0, . . . ,max])r and IA2DFA(P ′, [0])wi
(0� i�max) are combined, one has to make sure that they are disjoint (e.g. by attaching
different tags to states). The resulting (semantic) automaton will be referred to asAP ′ =
〈Q ∪ { start,end}, start, �, [end] 〉.

5. Producing the stateful automaton

Using Corollary10, we will now show how to construct a deterministic automaton ac-
cepting�� � P �, also in PSPACE. Recall that|P ′| = O(|P | log |P |). SinceAP ′ may
already be of exponential size, it cannot be stored. Instead, each time we need to look up

230 A.S. Murawski / Theoretical Computer Science 343 (2005) 207–236

a transition fromAP ′ , we will call IA2DFA from scratch and wait until the relevant infor-
mation is printed out. All the other transitions that are output will be ignored (rather than
stored).
The states ofAP ′ can be partitioned into those from which O is to move (O-states)

and those from which only P-moves can follow (P-states), e.g.start is an O-state. Tran-
sitions ofAP ′ always involve states belonging to different players with the exception of
�-transitions, which are between two P-states. Since the strategies we consider are deter-
ministic, at most one transition is available from a P-state. The distinction between O-states
and P-states will help to create the automaton corresponding tonewX1, . . . , Xm in P ′
(m� |P |), in which state changes are respected and hidden. Recall that the transitions gen-
erated by IA2DFA are of the forms1

c−→ s2, wheres1, s2 ∈ Q ⊆ N. In this section we
will add state information to them, so each new transition will have one of the following
shapes:

start
c−→ s(

m︷ ︸︸ ︷
0, . . . ,0)
2 or s �x1

c−→ s �y2 or s �x1
c−→ end,

where�x = (x1, . . . , xm) and �y = (y1, . . . , ym) are elements of{0, . . . ,max}m andc is
not astate move(by state moves we mean� and any ofwrite(i)Xj , okXj , readXj , iXj for
1�j�m, 0� i�max). �x and�y will reflect the state changes caused by playingc. Hence, the
states of the new automaton will bestart, endandq �x for anyq ∈ Q, �x ∈ {0, . . . ,max}m.
start andendwill remain the initial and final states respectively. In order to define the new
transitions we proceed as follows.
(i) For anyAP ′ -transitions1

c−→ s2, if s1 is an O-state andc is not a state move, then for
all �x ∈ {0, . . . ,max}m, PRINT(s �x1

c−→ s �x2) if s1 �= start, otherwise PRINT(start
c−→

s
(0,...,0)
2).

(ii) For all P-statessand�x ∈ {0, . . . ,max}m call find(s, �x, �x, s), where
find(S1, (x1, . . . , xm), (y1, . . . , ym), S2)

is defined in Fig.9. The argumentsS1, S2 will always be P-states.

5.1. Complexity

findworks by following paths inAP ′ . Its definition is tail-recursive and it can be executed
as a loop.Wewill show that, like before, the new transitions can be printed out by a PSPACE
transducer. At each state some information aboutAP ′ will be needed so we will need to
run IA2DFA. Because we cannot store the wholeAP ′ in polynomial space, we will only
allocate space for one transition so each PRINT instruction will overwrite the previous
one. In this way we can still observe the output of IA2DFA without violating the PSPACE
bound.
Let us discuss part (i) first. To implement (i), we need to generate the requisite transitions

without repetition, which can be done by calling IA2DFA repeatedly and memorizing the
last transition processed. After IA2DFA prints out a transition starting from an O-state we
simply adorn it with all possible tuples, which can be done in PSPACE usingm� |P | nested
loops.

A.S. Murawski / Theoretical Computer Science 343 (2005) 207–236 231

Fig. 9. Thefind procedure.

Part (ii) is more complicated. To implement thefind loop for a givensand�x, we need to
storeS1, �X (which are always equal tos, �x) andS2, �y (which do change). O(|P ′| log |P ′|)
space is sufficient for the states (see the previous complexity section), and�x can be stored
in O(|P |) space. At each iteration one transition fromAP ′ will be needed, which we can
get by calling IA2DFA and waiting until it is printed out (if it exists). Therefore, for a given
s, �x thefind loop can be implemented to run in polynomial space. Unfortunately, the loop
might not terminate in general. However, since the number of all possible configurations
is (max+ 1)m|Q|, divergence can be detected with the help of a counter of polynomial
size (then we simply stop without generating any transition). Thusfind is implementable
in PSPACE, but we have to iterate the process for all�x and all P-states. The former can be
done via nested loops (as in (i)), the latter requires us to memorize the previously processed
P-state in order to avoid repetitions (a P-state is a source of a unique transition).

Theorem 26. For any IA2 term P, �� � P : T � is accepted by a deterministic automaton
(without�-transitions) which is computable by a PSPACE transducer.

To test equivalence or approximation we need to port the above transducer with the
Turing machines (from Theorem4) that decide respectively equivalence and containment
of deterministic finite automata. Moreover, this should be done in polynomial space, so
the obvious sequencing of the machines will not do. Instead, we will compose the two
machines in the same way as that in which two logarithmic-space reductions are combined
to produce a logarithmic space reduction [19].We sketch the solution briefly. Obviously we
cannot afford to store the whole output tape of the PSPACE transducer but, since it runs in
PSPACE, it will produce output of size O(2|P |k) for somek ∈ N. But the logarithmic space
acceptor must be able to scan the whole tape and, to accommodate that, we can represent

232 A.S. Murawski / Theoretical Computer Science 343 (2005) 207–236

its input head by a counterc of size O(|P |k). Then, each time the head symbol is needed,
we will rerun the transducer until it outputs thecth symbol. By composing an NL acceptor
with a PSPACE transducer in this fashion we obtain an NPSPACE acceptor, which can be
converted to a PSPACE acceptor using Savitch’s theorem[19].

Theorem 27. Program equivalence and approximation ofIA2 terms can be decided in
polynomial space.

6. Hardness

We show that some classic problems about boolean formulas can be reduced to questions
about programequivalence or approximation in various fragments ofIA2. Let us writeIAmin2
for the sublanguage ofIA2 consisting of all constants,succ, pred, ifzero, new, assignment
and dereferencing.IAmin2 could be viewed as a minimal language for programming with
state.
Boolean formulas are generated by the grammarF ::= Xi | F ∨F | F ∧F | ¬F , where
i ∈ N. We writeF(X1, . . . , Xk) if the variables occurring inF are among{X1, . . . , Xk }.
It is well-known that the decision problemTAUTOLOGY (to decide whether a given boolean
formula is a tautology) is coNP-complete (see e.g.[20]).
Given a boolean formulaF(X1, . . . , Xk) let us define a correspondingIAmin2 termX1 :

var, . . . , Xk : var � MF : expby
MX = ifzero !X0 1,

MF1∨F2 = ifzeroMF1MF21,
MF1∧F2 = ifzeroMF10MF2,
M¬F = ifzeroMF10.

Theorem 28. F is a tautology if and only if

x : exp� newX1, . . . , Xk in (X1 := x; · · · ;Xk := x;MF) : exp
is equivalent to(or approximates)

x : exp� newX1, . . . , Xk in (X1 := x; · · · ;Xk := x;1) : exp.

Proof. The encoding relies on the fact that the value ofxmay vary in thek assignments,
which can be viewed as repeated evaluations ofx. The first term corresponds to evaluating
F for an assignment of truth values to its free variables, soF is a tautology if and only ifMF
always yields 1. The second term usesx in the same way as the first one but it will always
return 1 like any tautology would. The argument can easily be formalized using Theorem3.

�

Consequently, program equivalence and approximation inIAmin2 are coNP-hard. Con-
versely, a close look at IA2DFA reveals that without first-order identifiers, application and
while the generated automaton has linear size and no loops. Thus a trace certifying inequiv-
alence of twoIAmin2 terms can be guessed and verified in polynomial time.

A.S. Murawski / Theoretical Computer Science 343 (2005) 207–236 233

Theorem 29. IAmin2 program equivalence and approximation arecoNP-complete.

The inclusion of procedures, first-order identifiers or loopsmakes the problemsPSPACE-
hard.

Definition 30. Let�X denote either∀X or ∃X. Any formula of the shape
�X1. · · ·�Xk.F (X1, . . . , Xk)

whereF is a boolean formula, is called atotally quantified boolean formula.

A totally quantified boolean formula is either valid or invalid and the problemTQBF of
deciding validity is PSPACE-complete (see e.g.[20]). Below we present three reductions of
TQBF to IA2 program equivalence. In the first two cases for each totally quantified boolean
formulaGwe define a closed termMG : exp. Testing validity is then equivalent to checking
whetherMG is equivalent to 1: exp(equivalently, whetherMG approximates 1).
Usingwhile we can extend the previous inductive assignment ofIA2 terms to formulas

with

M∀X.G = newX,Z in (Z :=1;X :=2;
while (!X) do (X :=pred(!X); ifzeroMG(Z :=0)skip);

!Z),

M∃X.G = newX,Z in (Z :=0;X :=2;
while (!X) do (X :=pred(!X); ifzeroMG skip(Z :=1));

!Z).
This works because each loop makes two iterations and stores respectivelyG(0) ∧ G(1)
andG(0) ∨G(1) in Z.

�-abstraction and application can be used to replacewhile:

M∀X.G = newX,Z in (Z :=1;
(�xexp.ifzero (X :=0; x)(Z :=0)(ifzero (X :=1; x)(Z :=0)skip)) MG;

!Z),

M∃X.G = newX,Z in (Z :=0;
(�xexp.ifzero (X :=0; x)(ifzero (X :=1; x) skip(Z :=1))(Z :=1)) MG;

!Z).
If first-order variables are available yet another reduction is possible, but now it produces

a termf : com→ com� MG : exp:
M∀X.G = newX,Z in (Z :=1;X :=2;

f (X :=pred(!X); ifzeroMG(Z :=0)skip);
ifzero (!X) skip�com;
!Z),

234 A.S. Murawski / Theoretical Computer Science 343 (2005) 207–236

M∃X.G = newX,Z in (Z :=0;X :=2;
f (X :=pred(!X); ifzeroMGskip(Z :=1));

ifzero (!X) skip�com;
!Z).

As before we force the ‘function’f to investigate its argument precisely twice. In this case a
totally quantified formulaG is valid iff f : com→ com� MG�M ′

G orMG
�∼M ′

G, where
M ′
G is the same asMG except that for the outermost quantifier!Z is replaced with 1.
All three reductions are of polynomial time (logarithmic space) complexity, because none

of the encodings duplicatesMG for modelling quantification. By Theorem27 we have

Theorem 31. Program equivalence and approximation inIA2 are PSPACE-complete.

7. Optimizations

The PSPACE algorithm leading to Theorem27 relies on constructions which make it
naive to expect polynomial runtime even for simple programs. This is because at many
stages the generating procedure must be run again and again to save space, which in turn
increases runtime in a significant way (this idea underlies the passage from the automaton
for P ′ to that forP, the composition with the nondeterministic verifier as well as Savitch’s
Theorem). Therefore, it seems that for practical purposes a possibly exponential space
algorithm should be used. We can suggest several improvements to IA2DFA andfind so
that our algorithm leads to better time complexity.
For instance, in the first stage all information about variable scope is forgotten, whereas

it could be recorded and taken advantage of in thefindprocedure. Then one would not have
to generatem-tuples but only tuples corresponding to the variables whose scope actually
extends over the given subterm. In IA2DFA the clause forwhile could also be optimized
to detect simple divergences: before the PRINT instructionif sM = sN then RETURN∞
could be added. This would detect some terms equivalent towhile 1 do skipwithout the
need to create a loop in the automaton. Infindone could also employ a better mechanism to
detect divergence and try to generate only transitionswhich are actually reachable.A natural
way to do that seems to be a depth-first search of the automaton produced by IA2DFA.
The automata corresponding to strategies are very sparse. Therefore one can count on

a considerable reduction of space consumption if an economical representation scheme is
used [15].

8. Conclusion

We have investigated the complexity of a simple imperative programming languageIA2
using its gamemodel. Our results (Theorems 29 and 31) are summarized in the table below,
where the right column refers to the complexity of program equivalence in the respective
fragment (in each case it turned out that program approximation had the same complexity
as program equivalence).

A.S. Murawski / Theoretical Computer Science 343 (2005) 207–236 235

Fragment Complexity

IAmin2 coNP
IAmin2 +while PSPACE

IAmin2 + �xB+ application PSPACE
IAmin2 + first-order identifiers PSPACE

IA2 PSPACE

Onemight also ask how the presence of state affects the complexity. For purely functional
programs (without!, := or new) our approach still implies a PSPACE algorithm, since the
automata involved can have exponential size because of procedures.Without them however,
a PTIME algorithm can be extracted. On the other hand, it is known thatIA2 enriched with
a let construct for procedures (i.e.IA2 with �-abstraction and application extended to allIA2
types) can also be captured by regular languages[11]. After inlining thelet’s eachIA2+let
term becomes a (potentially exponentially larger)IA2 term, so our approach would yield an
EXPSPACE algorithm in this case. We were unable to prove completeness in these cases
though.
As future work we plan to investigate the complexity of call-by-value programs. The

categorical framework for modelling call-by-value [3] is more complicated than that of
call-by-name models and the game model is not understood as well as for call-by-name.
However, call-by-value fragments with regular semantics have already been found in [9]
(for block-allocated variables) and in [18] (for a fragment of ML).

Acknowledgements

Theauthor gratefully acknowledgessupport fromEPSRC(GR/R88861/01) andSt. John’s
College, Oxford.

References

[1] S. Abramsky, Algorithmic games semantics: a tutorial introduction, in: H. Schwichtenberg, R. Steinbruggen
(Eds.), Proof and System Reliability, Kluwer Academic Publishers, Dordrecht, 2001, pp. 21–47.

[2] S. Abramsky, K. Honda, G. McCusker, Fully abstract game semantics for general references, in: Proc. IEEE
Symp. on Logic in Computer Science, 1998, pp. 334–344.

[3] S. Abramsky, R. Jagadeesan, P. Malacaria, Full abstraction for PCF, Inform. Comput. 163 (2000) 409–470.
[4] S. Abramsky, G. McCusker, Linearity, sharing and state: a fully abstract game semantics for Idealized Algol
with active expressions, in: P.W. O’Hearn, R.D. Tennent (Eds.), Algol-like Languages, Birkhaüser, Basel,
1997, pp. 297–329.

[5] S. Abramsky, G. McCusker, Call-by-value games, in: Proc. CSL, Lecture Notes in Computer Science, Vol.
1414, Springer, Berlin, 1997, pp. 1–17.

[6] S. Abramsky, G. McCusker, Game semantics, in: H. Schwichtenberg, U. Berger (Eds.), Logic and
Computation, Springer, Berlin, 1998, pp. 1–56.

[7] S. Abramsky, G. McCusker, Full abstraction for Idealized Algol with passive expressions, Theoret. Comput.
Sci. 227 (1999) 3–42.

[8] M.R. Garey, D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness,
Freeman, NewYork, 1979.

[9] D.R. Ghica, Regular-language semantics for a call-by-value programming language, Proc. MFPS, Electronic
Notes in Computer Science, Vol. 45, Springer, Berlin, 2001.

236 A.S. Murawski / Theoretical Computer Science 343 (2005) 207–236

[10] D.R. Ghica, G. McCusker, Reasoning about Idealized Algol using regular expressions, in: Proc. ICALP,
Lecture Notes in Computer Science, Vol. 1853, 2000, pp. 103–115.

[11] D.R.Ghica,G.McCusker, The regular language semantics of second-order IdealizedAlgol, Theoret. Comput.
Sci. 309 (2003) 469–502.

[12] K. Honda, N. Yoshida, Game-theoretic analysis of call-by-value computation (extended abstract), in: Proc.
ICALP, Lecture Notes in Computer Science, Vol. 1256, 1997, pp. 225–236.

[13] J.M.E. Hyland, C.-H.L. Ong, On full abstraction for PCF: I. Models, observables and the full abstraction
problem, II. Dialogue games and innocent strategies, III. A fully abstract and universal game model, Inform.
Comput. 163 (2) (2000) 285–408.

[14] N.D. Jones, S.S. Muchnick, Even simple programs are hard to analyze, JACM 24 (2) (1977) 338–350.
[15] G.A. Kiraz, Compressed storage of sparse finite-state transducers, in: Proc.WIA, Lecture Notes in Computer

Science, Vol. 2214, 1999, pp. 109–121.
[16] J. Laird, A semantic analysis of control, Ph.D. thesis, University of Edinburgh, 1998.
[17] G. McCusker, On the semantics of Idealized Algol without the bad-variable constructor, in: Proc. MFPS

Electronic Notes in Theoretical Computer Science, 2003.
[18] A.S. Murawski, Functions with local state: regularity and undecidability, Theoret. Comput. Sci. 338 (2005)

315–349.
[19] C.H. Papadimitriou, Computational Complexity, Addison-Wesley, NewYork, 1994.
[20] M. Sipser, Introduction to the Theory of Computation, PWS Publishing Company, 1997.

