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Abstract

Reversibility is a key issue in the interface between computation
and physics, and of growing importance as miniaturization progresses
towards its physical limits. Most foundational work on reversible com-
puting to date has focussed on simulations of low-level machine mod-
els. By contrast, we develop a more structural approach. We show how
high-level functional programs can be mapped compositionally (i.e. in
a syntax-directed fashion) into a simple kind of automata which are
immediately seen to be reversible. The size of the automaton is lin-
ear in the size of the functional term. In mathematical terms, we are
building a concrete model of functional computation. This construc-
tion stems directly from ideas arising in Geometry of Interaction and
Linear Logic—but can be understood without any knowledge of these
topics. In fact, it serves as an excellent introduction to them. At the
same time, an interesting logical delineation between reversible and
irreversible forms of computation emerges from our analysis.

1 Introduction

The importance of reversibility in computation, for both foundational and,
in the medium term, for practical reasons, is by now well established. We
quote from the excellent summary in the introduction to the recent paper
by Buhrman, Tromp and Vitányi [19]:

Reversible Computation: R. Landauer [41] has demon-
strated that it is only the “logically irreversible” operations in a
physical computer that necessarily dissipate energy by generat-
ing a corresponding amount of entropy for every bit of informa-
tion that gets irreversibly erased; the logically reversible opera-
tions can in principle be performed dissipation-free. Currently,
computations are commonly irreversible, even though the phys-
ical devices that execute them are fundamentally reversible. At
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the basic level, however, matter is governed by classical mechan-
ics and quantum mechanics, which are reversible. This contrast
is only possible at the cost of efficiency loss by generating ther-
mal entropy into the environment. With computational device
technology rapidly approaching the elementary particle level it
has been argued many times that this effect gains in significance
to the extent that efficient operation (or operation at all) of fu-
ture computers requires them to be reversible . . . The mismatch
of computing organization and reality will express itself in fric-
tion: computers will dissipate a lot of heat unless their mode of
operation becomes reversible, possibly quantum mechanical.

The previous approaches of which we are aware (e.g. [43, 17, 18]) proceed
by showing that some standard, low-level, irreversible computational model
such as Turing machines can be simulated by a reversible version of the
same model. Our approach is more “structural”. We firstly define a simple
model of computation which is directly reversible in a very strong sense—
every automaton A in our model has a “dual” automaton Aop, defined quite
trivially from A, whose computations are exactly the time-reversals of the
computations of A. We then establish a connection to models of functional
computation. We will show that our model gives rise to a combinatory
algebra [33], and derive universality as an easy consequence. This method
of establishing universality has potential significance for the important issue
of how to program reversible computations. To quote from [19] again:

Currently, almost no algorithms and other programs are de-
signed according to reversible principles . . . To write reversible
programs by hand is unnatural and difficult. The natural way is
to compile irreversible programs to reversible ones.

Our approach can be seen as providing a simple, compositional (i.e. “syntax-
directed”) compilation from high-level functional programs into a reversible
model of computation. This offers a novel perspective on reversible comput-
ing.

Our approach also has conceptual interest in that our constructions,
while quite concrete, are based directly on ideas stemming from Linear Logic
and Geometry of Interaction [25, 26, 27, 28, 29, 45, 21, 22, 16], and developed
in previous work by the present author and a number of colleagues [2, 3,
5, 6, 7, 9, 10]. Our work here can be seen as a concrete manifestation of
these more abstract and foundational developments. However, no knowledge
of Linear Logic or Geometry of Interaction is required to read the present
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paper. In fact, it might serve as an introduction to these topics, from a very
concrete point of view. At the same time, an interesting logical delineation
between reversible and irreversible forms of computation emerges from our
analysis.

Related Work

Geometry of Interaction (GoI) was initiated by Girard in a sequence of
papers [26, 27, 28], and extensively developed by Danos, Regnier, Malacaria,
Baillot, Padicini and others, see e.g. [45, 21, 22, 16]. In particular, Danos
and Regnier developed a computational view of GoI. In [22] they gave a
compositional translation of the λ-calculus into a form of reversible abstract
machine. We also note the thesis work of Mackie [44], done under the present
author’s supervision, which develops a GoI-based implementation paradigm
for functional programming languages.

The present paper further develops the connections between GoI as a
mathematical model of computation, and computational schemes with an
emphasis on reversibility. As we see it, the main contributions are as follows:

• Firstly, the approach in the present paper seems particularly simple
and direct. As already mentioned, we believe it will be accessible
even without any prior knowledge of GoI or Linear Logic. The basic
computational formalism is related very directly to standard ideas in
term-rewriting, automata and combinatory logic. By contrast, much
of the literature on GoI can seem forbiddingly technical and esoteric
to outsiders to the field. Thus we hope that this paper may help to
open up some of the ideas in this field to a wider community.

• There are also some interesting new perspectives on the standard ideas,
e.g. the idea of biorthogonal term-rewriting system, and of linear
combinatory logic (which was introduced by the present author in
[10]).

• From the point of view of GoI itself, there are also some novelties.
In particular, we develop the reversible computational structure in a
syntax-free fashion. We consider a general ‘space’ of reversible au-
tomata, and define a linear combinatory algebra structure on this uni-
verse, rather than pinning all constructions to an induction on a pre-
conceived syntax. This allows the resulting structure to be revealed
more clearly, and the definitions and results to be stated more gener-
ally.
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We also believe that our descriptions of the linear combinators as au-
tomata, and of application and replication as constructions on au-
tomata, give a particularly clear and enlightening perspective on this
approach to reversible functional computation.

• The discussion in section 7 of the boundary between reversible and
irreversible computation, and its relationship to pure vs. applied func-
tional calculi, and the multiplicative-exponential vs. additive levels of
Linear Logic, seems of conceptual interest, and is surely worth further
exploration.

• The results in section 8 on universality, and the consequent (and some-
what surprising) non-closure under linear application of finitely de-
scribable partial involutions, give rise to an interesting, and apparently
challenging, open problem on the characterization of the realizable
partial involutions.

2 The Computational Model

We formulate our computational model as a kind of automaton with some
simple term-rewriting capabilities. We assume familiarity with the very
basic notions of term rewriting, such as may be gleaned from the opening
pages of any of the standard introductory accounts [23, 40, 14]. In particular,
we shall assume familiarity with the notions of signature Σ = (Σn | n ∈ ω),
and of the term algebras TΣ and TΣ(X), of ground terms, and terms in a set
of variables X, respectively. We will work exclusively with finite signatures
Σ. We also assume familiarity with the notion of most general unifier ; given
terms t, u ∈ TΣ(X), we write U(t, u)↓σ if σ : X −→ TΣ(X) is the most
general unifying substitution of t and u, and U(t, u)↑ if t and u cannot be
unified.
We define a pattern-matching automaton to be a structure

A = (Q, qι, qf , R)

where Q is a finite set of states, qι and qf are distinguished initial and final
states, and R ⊆ Q× TΣ(X)× TΣ(X)×Q is a finite set of transition rules,
written

(q1, r1) → (s1, q
′
1)

...
(qN , rN ) → (sN , q′N )
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where qi, q
′
i ∈ Q, ri, si ∈ TΣ(X), and the variables occurring in si are a

subset of those occurring in ri, 1 ≤ i ≤ N . It is also convenient to assume
that no variable appears in more than rule. We also stipulate that there
are no incoming transitions to the initial state, and no outgoing transitions
from the final state: qι 6= q′i and qf 6= qi, 1 ≤ i ≤ N .
A configuration of A is a pair (q, t) ∈ Q× TΣ of a state and a ground term.

A induces a relation
A
−→ on configurations: (q, t)

A
−→ (q′, t′) iff

∃i (qi = q ∧ q′i = q′ ∧ U(t, ri)↓σ ∧ t′ = σ(si)).

Note that the “pattern” ri has to match the whole of the term t. This is akin
to the use of pattern-matching in functional programming languages such as
SML [46] and Haskell [49], and is the reason for our choice of terminology.

Note that the cost of computing the transition relation (q, t)
A
−→ (q′, t′)

is independent of the size of the “input” term t.1 If we are working with a
fixed pattern-matching automaton A, this means that the basic computation
steps can be performed in constant time and space, indicating that our
computational model is at a reasonable level of granularity.

A computation over A starting with an initial ground term t0 ∈ TΣ (the
input) is a sequence

(qι, t0)
A
−→ (q1, t1)

A
−→ · · · .

The computation is successful if it terminates in a configuration (qf , tk), in
which case tk is the output. Thus we can see a pattern-matching automaton
as a device for computing relations on ground terms.
We say that a pattern-matching automaton

A = (Q, qι, qf , R)

with
R = {(qi, ri) → (si, q

′
i) | 1 ≤ i ≤ N}

is orthogonal if the following conditions hold:

Non-ambiguity For each 1 ≤ i < j ≤ N , if qi = qj, then U(ri, rj)↑.

Left-linearity For each i, 1 ≤ i ≤ N , no variable occurs more than once
in ri.

1Under the assumption of left-linearity (see below) which we shall shortly make, and
on the standard assumption made in the algorithmics of unification [14, 23] that the
immediate sub-terms of a given term can be accessed in constant time.
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Note that non-ambiguity is stated in a simpler form than the standard ver-
sion for term-rewriting systems [14, 23, 40], taking advantage of the fact
that we are dealing with the simple case of pattern-matching.

Clearly the effect of non-ambiguity is that computation is deterministic:
given a configuration (q, t), at most one transition rule is applicable, so that

the relation
A
−→ is a partial function.

Given a pattern matching automaton A as above, we define Aop to be

(Q, qf , qι, R
op)

where
Rop = {(q′i, si) → (ri, qi) | 1 ≤ i ≤ N}

We define A to be biorthogonal if both A and Aop are orthogonal pattern-
matching automata. Note that if A is a biorthogonal automaton, so is Aop,
and Aop op = A.

It should be clear that computation in biorthogonal automata is re-
versible in a deterministic, step-by-step fashion. Thus if we have the com-
putation

(qι, t0)
A
−→ · · ·

A
−→ (qf , tn)

in the biorthogonal automaton A, then we have the computation

(qf , tn)
Aop

−→ · · ·
Aop

−→ (qι, t0)

in the biorthogonal automaton Aop. Note also that biorthogonal automata
are linear in the sense that, for each rule (q, r) → (s, q′), the same variables
occur in r and in s, and moreover each variable which occurs does so exactly
once in r and exactly once in s. Thus there is no “duplicating” or “discard-
ing” of sub-terms matched to variables in applying a rule, whether in A or
in Aop.

Orthogonality is a very standard and important condition in term-rewriting
systems. However, biorthogonality is a much stronger constraint, and very
few of the term-rewriting systems usually considered satisfy this condition.
(In fact, the only familiar examples of biorthogonal rewriting systems seem
to be associative/commutative rewriting and similar, and these are usually
considered as notions for “rewriting modulo” rather than as computational
rewriting systems in their own right).

Our model of computation will be the class of biorthogonal pattern-
matching automata; from now on, these will be the only automata we shall
consider, and we will refer to them simply as “automata”. The reader will
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surely agree that this computational model is quite simple, and seen to be
reversible in a very direct and immediate fashion. We will now turn to the
task of establishing its universality.

Remark It would have been possible to represent our computational model
more or less entirely in terms of standard notions of term rewriting systems.
We briefly sketch how this might be done. Given an automaton

A = (Q, qι, qf , R)

we expand the (one-sorted) signature Σ to a signature over three sorts: V
(for values), S (for states) and C (for configurations). The operation symbols
in Σ have all their arguments and results of sort V ; for each state q ∈ Q,
there is a corresponding constant of sort S; and there is a binary operation

〈·, ·〉 : S × V −→ C.

Now the transition rules R turn into a rewriting system in the standard
sense; and orthogonality has its standard meaning. We would still need to
focus on initial terms of the form 〈qι, t〉 and normal forms of the form 〈qf , t〉,
t ground.

Our main reason for using the automaton formulation is that it does
expose some salient structure, which will be helpful in defining and under-
standing the significance of the constructions to follow.

3 Background on Combinatory Logic

In this section, we briefly review some basic material. For further details,
see [33].

We recall that combinatory logic is the algebraic theory CL given by the
signature with one binary operation (application) written as an infix · ,
and two constants S and K, subject to the equations

K · x · y = x
S · x · y · z = x · z · (y · z)

(application associates to the left, so x · y · z = (x · y) · z). Note that we can
define I ≡ S ·K ·K, and verify that I · x = x.

The key fact about the combinators is that they are functionally com-
plete, i.e. they can simulate the effect of λ-abstraction. Specifically, we can
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define bracket abstraction on terms in TCL(X):

λ∗x.M = K ·M (x 6∈ FV(M))
λ∗x. x = I

λ∗x.M ·N = S · (λ∗x.M) · (λ∗x.N)

Moreover (Theorem 2.15 in [33]):

CL ⊢ (λ∗x.M) ·N = M [N/x].

The B combinator can be defined by bracket abstraction from its defining
equation:

B · x · y · z = x · (y · z).

The combinatory Church numerals are then defined by

n̄ ≡ (S ·B)n · (K · I)

where we define
an · b = a · (a · · · (a · b) · · ·).

A partial function φ : N ⇀ N is numeralwise represented by a combinatory
term M ∈ TCL if for all n ∈ N, if φ(n) is defined and equal to m, then

CL ⊢ M · n̄ = m̄

and if φ(n) is undefined, then M · n̄ has no normal form.
The basic result on computational universality of CL is then the following
(Theorem 4.18 in [33]):

Theorem 3.1 The partial functions numeralwise representable in CL are
exactly the partial recursive functions.

4 Linear Combinatory Logic

We shall now present another system of combinatory logic: Linear Combina-
tory Logic [6, 10, 7]. This can be seen as a finer-grained system into which
standard combinatory logic, as presented in the previous section, can be
interpreted. By exposing some finer structure, Linear Combinatory Logic
offers a more accessible and insightful path towards our goal of mapping
functional computation into our simple model of reversible computation.

Linear Combinatory Logic can be seen as the combinatory analogue of
Linear Logic [25]; the interpretation of standard Combinatory Logic into
Linear Combinatory Logic corresponds to the interpretation of Intuitionistic
Logic into Linear Logic. Note, however, that the combinatory systems we
are considering are type-free and “logic-free” (i.e. purely equational).
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Definition 4.1 A Linear Combinatory Algebra (A, ·, !) consists of the fol-
lowing data:

• An applicative structure (A, ·)

• A unary operator ! : A → A

• Distinguished elements B, C, I, K, D, δ, F, W of A

satisfying the following identities (we associate · to the left and write x · !y
for x · ( !(y)), etc.) for all variables x, y, z ranging over A.

1. B · x · y · z = x · (y · z) Composition/Cut
2. C · x · y · z = (x · z) · y Exchange
3. I · x = x Identity
4. K · x · !y = x Weakening
5. D · !x = x Dereliction
6. δ · !x = ! !x Comultiplication
7. F · !x · !y = !(x · y) Monoidal Functoriality
8. W · x · !y = x · !y · !y Contraction

The notion of LCA corresponds to a Hilbert style axiomatization of the {!,⊸
} fragment of linear logic [6, 13, 51]. The principal types of the combinators
correspond to the axiom schemes which they name. They can be computed
by a Hindley-Milner style algorithm [34] from the above equations:

1. B : (β ⊸ γ) ⊸ (α ⊸ β) ⊸ α ⊸ γ
2. C : (α ⊸ β ⊸ γ) ⊸ (β ⊸ α ⊸ γ)
3. I : α ⊸ α
4. K : α ⊸ !β ⊸ α
5. D : !α ⊸ α
6. δ : !α ⊸ ! !α
7. F : !(α ⊸ β) ⊸ !α ⊸ !β
8. W : ( !α ⊸ !α ⊸ β) ⊸ !α ⊸ β

Here ⊸ is a linear function type (linearity means that the argument is used
exactly once), and !α allows arbitrary copying of an object of type α.

A Standard Combinatory Algebra consists of a pair (A, ·s) where A is a
nonempty set and ·s is a binary operation on A, together with distinguished
elements Bs,Cs, Is,Ks, and Ws of A, satisfying the following identities for
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all x, y, z ranging over A:

1. Bs ·s x ·s y ·s z = x ·s (y ·s z)
2. Cs ·s x ·s y ·s z = (x ·s z) ·s y
3. Is ·s x = x
4. Ks ·s x ·s y = x
5. Ws ·s x ·s y = x ·s y ·s y

Note that this is equivalent to the more familiar definition of SK-combinatory
algebra as given in the previous section. In particular, Ss can be defined from
Bs, Cs, Is and Ws [15, 34]. Let (A, ·, !) be a linear combinatory algebra.
We define a binary operation ·s on A as follows: for a, b ∈ A, a ·s b ≡ a · !b.
We define D′ ≡ C · (B ·B · I) · (B ·D · I). Note that

D′ · x · !y = x · y.

Now consider the following elements of A.

1. Bs ≡ C · (B · (B ·B ·B) · (D′ · I)) · (C · ((B ·B) · F) · δ)
2. Cs ≡ D′ ·C
3. Is ≡ D′ · I
4. Ks ≡ D′ ·K
5. Ws ≡ D′ ·W

Theorem 4.1 Let (A, ·, !) be a linear combinatory algebra. Then (A, ·s)
with ·s and the elements Bs,Cs, Is,Ks,Ws as defined above is a standard
combinatory algebra.

Finally, we mention a special case which will arise in our reversible model.
An Affine Combinatory Algebra is a Linear Combinatory Algebra such that
the K combinator satisfies the stronger equation

K · x · y = x.

Note that in this case we can define the identity combinator: I ≡ C ·K ·K.

5 The Affine Combinatory Algebras I and P

We fix the following signature Σ for the remainder of this paper.

Σ0 = {ε}
Σ1 = {l, r}
Σ2 = {p}
Σn = ∅, n > 2.
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We shall discuss minimal requirements on the signature in Section 6.4.
We write I for the set of all partial injective functions on TΣ.

5.1 Operations on I

5.1.1 Replication

!f = {(p(t, u), p(t, v)) | t ∈ TΣ ∧ (u, v) ∈ f}

5.1.2 Linear Application

LApp(f, g) = frr ∪ frl; g; (fll; g)
∗; flr

where
fij = {(u, v) | (i(u), j(v)) ∈ f} (i, j ∈ {l, r})

and we use the operations of relational algebra (union, composition, and
reflexive, transitive closure).

The idea is that terms of the form r(t) correspond to interactions be-
tween the functional process represented by f and its environment, while
terms of the form l(t) correspond to interactions with its argument, namely
the functional process represented by g. This is linear application because
the function interacts with one copy of its argument, whose state changes as
the function interacts with it; “fresh” copies of the argument are not neces-
sarily available as the computation proceeds. The purpose of the replication
operation described previously is precisely to make the argument copyable,
using the first argument of the constructor p to “tag” different copies.

The “flow of control” in linear application is indicated by the following
diagram:

in ✲ •
frr ✲ • ✲ out

•

frl

❄ g ✲✛
fll

•

flr

✻

Thus the function f will either respond immediately to a request from the
environment without consulting its argument (frr), or it will send a “mes-
sage” to its argument (frl), which initiates a dialogue between f and g (fll
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and g), which ends with f despatching a response to the environment (flr).
This protocol is mediated by the top-level constructors l and r, which are
used (and consumed) by the operation of Linear Application.

5.2 Partial Involutions

Note that f ∈ I ⇒ fop ∈ I, where fop is the relational converse of f . We
say that f ∈ I is a partial involution if fop = f . We write P for the set of
partial involutions.

Proposition 5.1 Partial involutions are closed under replication and linear
application.

Proof It is immediate that partial involutions are closed under replication.
Suppose that f and g are partial involutions, and that LApp(f, g)(u) = v.
We must show that LApp(f, g)(v) = u. There are two cases.
Case 1: f(r(u)) = r(v), in which case f(r(v)) = r(u), and LApp(f, g)(v) = u
as required.
Case 2: for some w1, . . . , wk, k ≥ 0,

f(r(u)) = l(w1), g(w1) = w2, f(l(w2)) = l(w3), g(w3) = w4, . . . , f(l(wk)) = l(wk+1),
g(wk+1) = wk+2, f(l(wk+2) = r(v).

Since f and g are involutions, this implies

f(r(v)) = l(wk+2), g(wk+2) = wk+1, f(l(wk+1)) = l(wk), . . . , g(w4) = w3, f(l(w3)) = l(w2),
g(w2) = w1, f(l(w1) = r(u),

and hence LApp(f, g)(v) = u as required. ✷

5.3 Realizing the linear combinators by partial involutions

A partial injective map f ∈ I is finitely describable if there is a family

{(ti, ui) | 1 ≤ i ≤ k}

where ti, ui ∈ TΣ(X), such that the graph of f is the symmetric closure of

{(σ(ti), σ(ui)) | σ : X −→ TΣ, 1 ≤ i ≤ k}.

Here σ : X −→ TΣ ranges over ground substitutions.
We write t ↔ u when (t, u) is in the finite description of a partial invo-

lution, and refer to such expressions as rules.
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5.3.1 The identity combinator I

As a first, very simple case, consider the identity combinator I, with the
defining equation

I · a = a.

We can picture the I combinator, which should evidently be applied to one
argument to achieve its intended effect, thus:

I

in

l

out

r

Here the tree represents the way the applicative structure is encoded into
the constructors l, r, as reflected in the definition of LApp. Thus when I

is applied to an argument a, the l-branch will be connected to a, while the
r-branch will be connected to the output. The equation I ·a = a means that
we should have the same information at the leaves a and out of the tree.
This can be achieved by the rule

I : l(x) ↔ r(x)

and this yields the definition of the automaton for I.
Now we can show that for any automaton A representing an argument

a we indeed have
fLApp(AI,A) = fA = a.

Indeed, for any input t

r(t)
I

7−→ l(t) t
f

7−→ u r(u)
I

7−→ l(u)

t
LApp(AI,A)

7−→ u

5.3.2 The constant combinator K

Now we consider the combinatorK, with the defining equation, with defining
equation

K · a · b = a.

We have the tree diagram

13



K

in1

l

b

r

in2

l

out

r

The defining equation means that we need to make the information at out

equalt to that at ∈1. This can be accomplished by the rule

K : l(x) ↔ r(r(x)).

Note that the second argument (∈2) does not get accessed by this rule.

5.3.3 The bracketing combinator B

We now turn to a more complex example, the ‘bracketing’ combinator B,
with the defining equation

B · a · b · c = a · (b · c).

B

a

l

ina

l

outa

r

b

r

b

l

inb

l

outb

r

b

r

c

l

out

r

Here, the arguments a and b themselves have some applicative structure
used in the defining equation: a is applied to the rsult of applying b to c.
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This means that the automaton realizing B must access the argument and
result positions of a and b, as shown in the tree diagram.

This requires the output out of B to be connected to the output outa of
a. This translates into the following rule:

r(r(r(x))) ↔ l(r(x)).

Similarly, the output outb of b must be connected to ina, leading to the rule:

l(l(x)) ↔ r(l(r(x))).

Finally, c must be connected to inb, leading to the rule:

r(l(l(x)) ↔ r(r(l(x))).

5.3.4 The commutation combinator C

The C combinator can be analyzed in a similar fashion. The defining equa-
tion is

C · a · b · c = a · c · b.

We have the tree diagram

C

a

l

ina1

l

b

r

ina2

l

outa

r

b

r

b

l

b

r

c

l

out

r

We need to connect b to ina2, c to ina1, (this inversion of the left-to-right
ordering corresponds to the commutative character of this combinator), and
out to outa. We obtain the following set of rules:

RC :
l(l(x)) ↔ r(r(l(x)))
l(r(l(x))) ↔ r(l(x)))
l(r(r(x))) ↔ r(r(r(x)))
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Note at this point that linear combinatory completeness already yields
something rather striking in these terms; that all patterns of accessing ar-
guments and results, with arbitrarily nested applicative stucture, can be
generated by just the above combinators under linear application.

Note that at the multiplicative level, we only need unary operators in
the term algebra. To deal with the exponential !, a binary constructor is
needed.

5.3.5 The dereliction combinator D

We start with the dereliction combinator D, with defining equation

D· !a = a.

Notice that the combinator expects an argument of a certain form, namely
!a (and the equational rule will only “fire” if it has that form).

We have the tree

D

!a

l

out

r

We need to connect the output to one copy of the input. We use the constant
ǫ to pick out this copy, and obtain the rule:

l(p(ǫ, x)) ↔ r(x).

5.3.6 The comultiplication combinator δ

For the comultiplication operator, we have the equation

δ· !a = ! !a

and the tree

δ

!a

l

! !out

r
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Note that a typical pattern at the output will have the form

r(p(x, p(y, z)))

while a typical pattern at the input has the form

l(p(x′, y′)).

The combinator cannot control the shape of the sub-term at y′, so we can-
not simply unify the two patterns. However, because of the nature of the
replication operator, we can impose whatever structure we like on the ‘copy
tag’ x′, in the knowledge that this will not be changed by the argument
!a which the combinator will be applied to Hence we can match these two
patterns up, using the fact that the term algebra TΣ allows arbitrary nesting
of constructors, so that we can write a pattern for the input as

l(p(p(x, y), z)).

Thus we obtain the rule

l(p(p(x, y), z)) ↔ r(p(x, p(y, z))).

Note that this rule embodies an “associativity isomorphism for pairing”,
although of course in the free term algebra TΣ the constructor p is certainly
not associative.

5.3.7 The functional distribution combinator F

The combinator F with equation

F· !a· !b = !(a · b).

F

!a

l

ina

l

outa

r

b

r

!b

l

out

r
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F expresses ‘closed functoriality’ of ! with respect to the linear hom ⊸.
Concretely, we must move the application of a to b inside the !, which is
achieved by commuting the constructors l, r and p. Thus we connect outa

to out:
l(p(x, r(y))) ↔ r(r(p(x, y)))

and ina to !b:
l(p(x, l(y))) ↔ r(l(p(x, y))).

5.3.8 The duplication combinator W

Finally, we consider the duplication combinator W:

W · a· !b = a· !b· !b.

W

a

l

!ina1

l

b

r

!ina2

l

outa

r

b

r

!b

l

out

r

We must connect out and outa:

r(r(x)) ↔ l(r(r(x))).

We also need to connect !b both to ina1 and to ina2. We do this by using the
copy-tag field of !b to split its address space into two, using the constructors
l and r. This tag tells us whether a given copy of !b should be connected to
the first (l) or second (r) input of a. Thus we obtain the rules:

l(l(p(x, y))) ↔ r(l(p(l(x), y)))
l(r(l(p(x, y)))) ↔ r(l(p(r(x), y)))

Once again, combinatory completeness tells us that from this limited stock
of combinators, all definable patterns of application can be expressed; more-
over, we have a universal model of computation.
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5.4 The affine combinatory algebras I and P

Theorem 5.1 (I, ·, !, fB, fC, fK, fD, fδ, fF, fW) is an affine combinatory
algebra, with subalgebra P.

This theorem is a variation on the results established in [5, 6, 9, 7, 10];
see in particular [10, Propositions 4.2, 5.2], and the combinatory algebra of
partial involutions studied in [7]. The ideas on which this construction is
based stem from Linear Logic [25, 29] and Geometry of Interaction [26, 27],
in the form developed by the present author and a number of colleagues
[2, 3, 5, 6, 9, 7, 10].

Once again, combinatory completeness tells us that from this limited
stock of combinators, all definable patterns of application can be expressed;
moreover, we have a universal model of computation.

6 Automatic Combinators

As we have already seen, a pattern-matching automaton A can be seen as
a device for computing a relation on ground terms. The relation RA ⊆
TΣ × TΣ is the set of all pairs (t, t′) such that there is a computation

(qι, t)
A
−→

∗
(qf , t

′).

In the case of a biorthogonal automaton A, the relation RA is in fact a
partial injective function, which we write fA. Note that fAop = fop

A , the
converse of fA, which is also a partial injective function. In the previous
section, we defined a linear combinatory algebra P based on the set of partial
involutions on TΣ. We now want to define a subalgebra of P consisting
of those partial involutions “realized” or “implemented” by a biorthogonal
automaton. We refer to such combinators as “Automatic”, by analogy with
Automatic groups [24], structures [38] and sequences [11].

6.1 Operations on Automata

6.1.1 Replication

Given an automaton A = (Q, qι, qf , R), let x be a variable not appearing in
any rule in R. We define

!A = (Q, qι, qf , !R)
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A = (Q, qι, qf , R) B = (P, pι, pf , S)

LApp(A,B) = (Q ⊎ P, qι, qf , T )

T =
⋃

j,k∈{l,r,i}

Rjk ∪ S

Qint = Q \ {qι, qf}
Rrr = {(qι, u) → (v, qf ) | (qι, r(u)) → (r(v), qf ) ∈ R}
Rrl = {(qι, u) → (v, pι) | (qι, r(u)) → (l(v), qf ) ∈ R}
Rll = {(pf , u) → (v, pι) | (qι, l(u)) → (l(v), qf ) ∈ R}
Rlr = {(pf , u) → (v, qf ) | (qι, l(u)) → (r(v), qf ) ∈ R}
Rii = {(q, u) → (v, q′) ∈ R | q, q′ ∈ Qint}
Rri = {(qι, u) → (v, q) | (qι, r(u)) → (v, q) ∈ R, q ∈ Qint}
Rli = {(pf , u) → (v, q) | (qι, l(u)) → (v, q) ∈ R, q ∈ Qint}
Ril = {(q, u) → (v, pι) | (q, u) → (l(v), qf ) ∈ R, q ∈ Qint}
Rir = {(q, u) → (v, qf ) | (q, u) → (r(v), qf ) ∈ R, q ∈ Qint}

Figure 1: Linear Application

where !R is defined as

{(q, p(x, r)) → (p(x, s), q′) | (q, r) → (s, q′) ∈ R}.

Note that the condition on x is necessary to ensure the linearity of !R. The
biorthogonality of !A is easily verified.

6.1.2 Linear Application

See Figure 1. Here Q⊎P is the disjoint union of Q and P (we simply assume
that Q and P have been relabelled if necessary to be disjoint).
The key result we need is the following.

Proposition 6.1 (i) !fA = f !A.
(ii) LApp(fA, fB) = fLApp(A,B).

Proof (i) !fA(p(t, u)) = p(t, v) iff fA(u) = v iff u
A
−→

∗
v iff p(t, u)

!A
−→

∗

p(t, v).
(ii) Let C = LApp(A,B). Suppose LApp(fA, fB)(t) = u. Then either frr(t) =
u, or frl(t) = v, g(v) = w1, fll(w1) = w2, g(w2) = w3, . . . , fll(wk) = wk+1,

g(wk+1) = wk+2, flr(wk+2) = u. In the first case, (qι, r(t))
A
−→

∗
(qf , r(u)),
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and hence (qι, t)
C

−→
∗
(qf , u). In the latter case, (qι, r(t))

A
−→

∗
(qf , l(v)),

(pι, v)
B

−→
∗
(pf , w1), (qι, l(w1))

A
−→

∗
(qf , l(w2)), (pι, w2)

B
−→

∗
(pf , w3), . . . ,

(qι, l(wk))
A
−→

∗
(qf , l(wk+1)), (pι, wk+1)

B
−→

∗
(pf , wk+2), (qι, l(wk+2))

A
−→

∗

(qf , r(u)), and hence again (qι, t)
C

−→
∗
(qf , u). Thus LApp(fA, fB) ⊆ fLApp(A,B).

The converse inclusion is proved similarly. ✷

6.2 Finitely describable partial involutions are Automatic

Now suppose we are given a finite description S of a partial involution f .
We define a corresponding automaton A:

A = ({qι, qf}, qι, qf , R)

where
R =

⋃

(t,u)∈S

{(qι, t) → (u, qf ), (qι, u) → (t, qf )}.

It is immediate that fA = f .
Note that A has no internal states, and all its rules are of the above

special form. These features are typical of the automata corresponding to
normal forms in our interpretation of functional computation.

6.3 The Automatic Universe

The results of the previous two sections yield the following Theorem as an
immediate consequence.

Theorem 6.1 R is an affine combinatory sub-algebra of I, where the car-
rier of R is the set of all fA for biorthogonal automata A. Moreover,
S = P ∩R is an affine combinatory sub-algebra of R.

Thus we obtain a subalgebra S of R, of partial involutions realized by
biorthgonal automata; and even these very simple behaviours are computa-
tionally universal. Partial involutions can be seen as “copy-cat strategies”
[3].

6.4 Minimal requirements on Σ

We now pause briefly to consider our choice of the particular signature Σ.
We could in fact eliminate the unary operators l and r in favour of two
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constants, say a and b, and use the representation

l(t) ≡ p(a, t)
r(t) ≡ p(b, t)
p(t, u) ≡ p(ε, p(t, u)).

We can in turn eliminate a and b, e.g. by the definitions

a ≡ p(ε, ε) b ≡ p(p(ε, ε), ε).

So one binary operation and one constant—i.e. the pure theory of binary
trees—would suffice.

On the other hand, if our signature only contains unary operators and
constants, then pattern-matching automata can be simulated by ordinary
automata with one stack, and hence are not computationally universal [47].

This restricted situation is still of interest. It suffices to interpret BCK-
algebras, and hence the affine λ-calculus [34]. Recall that the B and C

combinators have the defining equations

B · x · y · z = x · (y · z)
C · x · y · z = x · z · y

and that BCK-algebras admit bracket abstraction for the affine λ-calculus,
which is subject to the constraint that applications M ·N can only be formed
if no variable occurs free in both M and N . The affine λ-calculus is strongly
normalizing in a number of steps linear in the size of the initial term, since
β-reduction strictly decreases the size of the term.

We build a BCK-algebra over automata by using Linear instead of stan-
dard application, and defining automata for the combinators B, C and K

without using the binary operation symbol p. For reference, we give the set
of transition rules for each of these automata:
RK (linear version):

r(r(x)) ↔ l(x)

RB:
l(r(x)) ↔ r(r(r(x)))
l(l(x)) ↔ r(l(r(x)))
r(l(l(x))) ↔ r(r(l(x)))

RC:
l(l(x)) ↔ r(r(l(x)))
l(r(l(x))) ↔ r(l(x)))
l(r(r(x))) ↔ r(r(r(x)))

Note that, since only unary operators appear in the signature, these au-
tomata can be seen as performing prefix string rewriting [39].
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7 Compiling functional programs into reversible

computations

Recall that the pure λ-calculus is rich enough to represent data-types such
as integers, booleans, pairs, lists, trees, and general inductive types [30];
and control structures including recursion, higher-order functions, and con-
tinuations [50]. A representation of database query languages in the pure
λ-calculus is developed in [32]. The λ-calculus can be compiled into combi-
nators, and in fact this has been extensively studied as an implementation
technique [48]. Although combinatory weak reduction does not capture all
of β-reduction, it suffices to capture computation over “concrete” data types
such as integers, lists etc., as shown e.g. by Theorem 3.1. Also, combinator
algebras form the basic ingredient for realizability constructions, which are a
powerful tool for building models of very expressive type theories (for text-
book presentations see e.g. [12, 20]). By our results in the previous section,
a combinator program M can be compiled in a syntax-directed fashion into
a biorthogonal automaton A. Moreover, note that the size of A is linear in
that of M .

It remains to specify how we can use A to “read out” the result of the
computation of M . What should be borne in mind is that the automaton
A is giving a description of the behaviour of the functional process cor-
responding to the program it has been compiled from. It is not the case
that the terms in TΣ input to and output from the computations of A cor-
respond directly to the inputs and outputs of the functional computation.
Rather, the input also has to be compiled as part of the functional term to
be evaluated—this is standard in functional programming generally.2 The
automaton resulting from compiling the program together with its input can
then be used to deduce the value of the output, provided that the output is
a concrete value.

We will focus on boolean-valued computations, in which the result of the
computation is either true or false, which we represent by the combinatory
expressions K and K · I respectively. By virtue of the standard results on
combinatory computability such as Theorem 3.1, for any (total) recursive
predicate P , there is a closed combinator expression M such that, for all n,
P (n) holds if and only if

CL ⊢ M · n̄ = K,

2However, note that, by compositionality, the program can be compiled once and for
all into an automaton, and then each input value can be compiled and “linked in” as
required.
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and otherwise CL ⊢ M · n̄ = K · I. Let the automaton obtained from the
term M · n̄ be A. Then by Theorem 6.1, fA = fK or fA = fK·I. Thus to
test whether P (n) holds, we run A on the input term r(r(ε)). If we obtain
a result of the form l(u), then P (n) holds, while if we obtain a result of the
form r(v), it does not. Moreover, this generalizes immediately to predicates
on tuples, lists, trees etc., as already explained.

More generally, for computations in which e.g. an integer is returned,
we can run a sequence of computations on the automaton A, to determine
which value it represents. Concretely, for Church numerals, the sequence
would look like this. Firstly, we run the automaton on the input r(r(ε)).
If the output has the form r(l(u)) (so that the term is ‘λf. λx. x’) then the
result is 0. Otherwise, it must have the form l(p(u, r(v))) (so it is of the form
λf. λx. f . . ., i.e. it is the successor of . . . ), and then we run the automaton
again on the input term l(p(u, l(p(ε, v))). If we now get a response of the
form r(l(u)), then the result is the successor of 0, i.e. 1 (!!). Otherwise . . .

In effect, we are performing a meta-computation (which prima facie is
irreversible), each “step” of which is a reversible computation, to read out
the output. It could be argued that something analogous to this always
happens in an implementation of a functional programming language, where
at the last step the result of the computation has to be converted into human-
readable output, and the side-effect of placing it on an output device has to
be achieved.

This aspect of recovering the output deserves further attention, and we
hope to study it in more detail in the future.

Pure vs. Applied λ-calculus

Our discussion has been based on using the pure λ-calculus or CL, with no
constants and δ-rules [33, 15]. Thus integers, booleans etc. are all to be
represented as λ-terms. The fact that λ-calculus and Combinatory Logic
can be used to represent data as well as control is an important facet of
their universality; but in the usual practice of functional programming, this
facility is not used, and applied λ-calculi are used instead. It is important to
note that this option is not open to us if we wish to retain reversibility. Thus
if we extend the λ-calculus with e.g. constants for the boolean values and
conditional, and the usual δ-rules, then although we could continue to in-
terpret terms by orthogonal pattern-matching automata, biorthogonality—
i.e. reversibility—would be lost. This can be stated more fundamentally
in terms of Linear Logic: while the multiplicative-exponential fragment of
Linear Logic (within which the λ-calculus lives) can be interpreted in a
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perfectly reversible fashion (possibly with the loss of soundness of some
conversion rules [26, 10]), this fails for the additives. This is reflected for-
mally in the fact that in the passage from modelling the pure λ-calculus,
or Multiplicative-Exponential Linear Logic, to modelling PCF, the prop-
erty of partial injectivity of the functions fA (the “history-free strategies”
in [3, 8]) is lost, and non-injective partial functions must be used [3, 8, 44].
It appears that this gives a rather fundamental delineation of the boundary
between reversible and irreversible computation in logical terms. This is
also reflected in the denotational semantics of the λ-calculus: for the pure
calculus, complete lattices arise naturally as the canonical models (formally,
the property of being a lattice is preserved by constructions such as func-
tion space, lifting, and inverse limit), while when constants are added, to be
modelled by sums, inconsistency arises and the natural models are cpo’s [1].
This suggests that the pure λ-calculus itself provides the ultimate reversible
simulation of the irreversible phenomena of computation.

8 Universality

A minor variation of the ideas of the previous section suffices to establish
universality of our computational model. Let W be a recursively enumerable
set. There is a closed combinatory term M such that, for all n ∈ N,

n ∈ W ⇐⇒ CL ⊢ M · n̄ = 0̄

and if n 6∈ W then M · n̄ does not have a normal form. Let A be the
automaton compiled from M · n̄. Then we have a reduction of membership
in W to the question of whether A produces an output in response to the
input r(r(ε)). As an immediate consequence, we have the following result.

Theorem 8.1 Termination in biorthogonal automata is undecidable; in fact,
it is Σ0

1-complete.

As a simple corollary, we derive the following result.

Proposition 8.1 Finitely describable partial involutions are not closed un-
der linear application.

Proof The linear combinators are all interpreted by finitely describable
partial involutions, and it is clear that replication preserves finite describabil-
ity. Hence if linear application also preserved finite describability, all com-
binator terms would denote finitely describable partial involutions. How-
ever, this would contradict the previous Theorem, since termination for a
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finitely describable partial involution reduces to a finite number of instances
of pattern-matching, and hence is decidable. ✷

This leads to the following:

Open Question: Characterize those partial involutions in
S, or alternatively, those which arise as denotations of combina-
tor terms.
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