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Abstract

A continuous-time Markov decision process (CTMDP) is a generalization of a continuous-time
Markov chain in which both probabilistic and nondeterministic choices co-exist. This paper presents
an efficient algorithm to compute the maximum (or minimum) probability to reach a set of goal
states within a given time bound in a uniform CTMDP, i.e., a CTMDP in which the delay time
distribution per state visit is the same for all states. It furthermore proves that these probabilities
coincide for (time-abstract) history-dependent and Markovian schedulers that resolve nondeterminism
either deterministically or in a randomized way.
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1. Introduction

A continuous-time Markov decision process (CTMDP)[10,20, 31,34] is a general-
ization of a continuous-time Markov chain (CTMC) in which both probabilistic and
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nondeterministic choices co-exist. CTMDPs are a natural modeling formalism applica-
ble in many contexts, ranging from stochastic control theory[20] and scheduling [13,1] to
dynamic power management [32].
Importance of CTMDPs: The class of CTMDPs is particularly interesting, because it

can be viewed as a common semantic model for various performance and dependability
modelling formalisms including generalized stochastic Petri nets [2], Markovian stochas-
tic activity networks [33], and interactive Markov chains (IMC) [23]. So far, the analy-
sis of models developed in these and related formalisms was restricted to the subset that
corresponds to CTMCs, usually referred to as “non-confused”, “well-defined”, or “well-
specified” models [16,17,19,23]. All these notions are semantic notions. They are usually
checked by an exhaustive exploration of the state space associated with a given model. A
model is discarded if the check fails. In other words, no specification-level check is available,
and the offered analysis algorithms are actually partial algorithms.
Model checking: Model checking of CTMCs [6] has received remarkable attention in

recent years. Various model checkers exist [25,27,15], answering questions such as:Is the
probability to hop along�-states, until reaching a�-state within5 to10 time units greater
than0.95? The core algorithmic innovation allowing to answer such questions is a map-
ping from interval-bounded until-formulae—specified in the continuous stochastic logic
CSL [5]—to time-bounded reachability problems [6], which in turn can be approximated
efficiently using a stable numerical technique called uniformization [26]. To enable the
same kind of questions being answered for models specified in any of the above mentioned
formalisms, the key problem is how to compute time-bounded reachability probabilities
in CTMDPs. This is the problem we address in this paper. With the notable exception of
De Alfaro [3,4], who studied long-run properties of semi-Markov decision processes, we
are not aware of any model checking algorithm for CTMDPs. This stands in sharp con-
trast to discrete-time Markov decision processes, for which model checking algorithms are
well-understood [12,9] and, for instance, implemented in tools like PRISM [30] or RAPTURE

[18].
Contribution: Given a CTMDP, our aim is to compute the maximum (or minimum)

probability to reach—under a given class of schedulers—a certain set of states within
t time units, given a starting state. We consider this problem for uniform CTMDPs, a
class of CTMDPs in which the delay time distribution per state visit is the same for all
states, governed by a unique exit rateE. We show that an efficient greedy algorithm can be
obtained using truncated Markovian deterministic (MD)-schedulers, that is, step-dependent
schedulers which schedule up to a limited depth. The algorithm computes the maximum
(or minimum) probabilities for timed reachability. It is then shown that these probabilities
for truncated MD-schedulers coincide with the maximum (or minimum) probabilities for
timed reachability for Markovian and history-dependent schedulers (both deterministic and
randomized). We show that stationary Markovian schedulers—as opposed to the discrete
case [12,9]—yield a smaller maximum, whereas timed history-dependent schedulers may
yield a higher probability.

The main result of this paper is a computationally efficient approximation algorithm
for computing maximum probabilities for timed reachability in uniform CTMDPs underall
time-abstract schedulers. The time complexity is inO(t ·E·N2·M) and the space complexity
in O(N2·M) wheret is the time bound,E is the uniform exit rate of the CTMDP under
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consideration,N is the number of states, andM the number of actions. The results in this
paper are presented only formaximumprobabilities. Unless otherwise stated, the results are
straightforwardly adapted to the dual problem ofminimumprobabilities.
Organization of the paper: Section2 introduces the necessary background. Section 3

presents an algorithm for uniform CTMDP which relies only on step-dependent trun-
cated schedulers. Section 4 places the algorithm in the context of more general classes of
schedulers. Section 5 discusses the problem of uniformizing arbitrary CTMDPs. Section 6
concludes the paper.

This paper is an extended version of the conference paper [7].

2. Preliminaries

This section sets the stage for the results presented in the sequel, by presenting the
definitions and notations used throughout the paper.

2.1. Markov decision processes

Definition 1. A continuous-timeMarkov decision process(CTMDP)M is a tuple(S,Act,
R) with
• S, a finite set ofstates,
• Act, a finite set ofactions, and
• R : (S × Act× S) → R�0, a three-dimensionalrate matrix.

For each states ∈ S we require the existence of at least one pair(�, s′) ∈ Act× S with
R(s, �, s′) > 0. Note that this can easily be established by adding self-loops, i.e., having
R(s, �, s) > 0 for some� ∈ Act.

ForB ⊆ S, letR(s, �, B) denote the total rate to move from states via action� to some
state inB, i.e.,

R(s, �, B) = ∑
s′∈B

R(s, �, s′).

The behavior of a CTMDP is as follows.R(s, �, s′) > 0 means that there is a transition
from s to s′ under action�. If states has outgoing transitions for distinct actions, one of
these actions is selected nondeterministically where we assume that the nondeterminism is
resolved by means of a scheduler (also called policy or adversary). Given that action� has
been chosen, 1− e−R(s,�,s′)·t is the probability that the�-transitions → s′ can be triggered
within t time units. Thus, the delay of�-transitions → s′ is governed by the negative
exponential distribution with rateR(s, �, s′). If R(s, �, s′) > 0 for more than one states′, a
competition between the�-transitions originating ins exists, known as the race condition.

The set of enabled actions in a states is

Act(s) = { � ∈ Act |E(s, �) > 0 }
whereE(s, �) = R(s, �, S), is the exit rate of states via some�-transition. An alternative
formulation of the above requirement that in every state at least one action is enabled, can
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be stated as

Act(s) �= ∅ for any states.

Definition 2. A discrete-time Markov decision process(DTMDP) M is a tuple(S,Act,P)
with
• S, a finite set of states,
• Act, a finite set of actions, and
• P : (S × Act× S) → [0,1], a three-dimensionalprobability matrixsatisfying for each

state and action pair(s, �) that
∑

s′∈S P(s, �, s′) ∈ { 0,1}.

For a given CTMDPM = (S,Act,R), the discrete probability of selecting�-transition
s → s′ is determined by the embedded DTMDP, denotedemb(M) = (S,Act,P) with

P(s, �, s′) =

R(s, �, s′)
E(s, �)

if E(s, �) > 0,

0 otherwise.

Note thatP(s, �, s′) is the time-abstract probability for the�-transition froms to s′ when
action� is chosen. ForB ⊆ S let

P(s, �, B) = ∑
s′∈B

P(s, �, s′)

denote the probability to move froms to some state inB via an�-transition.

Definition 3. A CTMDP (S,Act,R) is uniform if for someE > 0 it holdsE(s, �) = E

for any states ∈ S and� ∈ Act(s).

Note thatE(s, �) = 0 (whence� /∈ Act(s) follows) is possible in uniform CTMDPs.
Stated in words, in a uniform CTMDP the exit rates for all states and all enabled actions
are equal.

2.2. Paths

A (timed)path� in a CTMDPM is a finite or infinite sequence

� ∈ (S × Act× R>0)
∗ × S ∪ (S × Act× R>0)

�.

For infinite path� = s0, �0, t0, s1, �1, t1, s2, �2, t2, . . . we require time-divergence, i.e.,∑
ti = ∞. We write

s0
�0,t0−−−→ s1

�1,t1−−−→ s2
�2,t2−−−→ · · ·

rather thans0, �0, t0, s1, �1, t1, s2, �2, t2, . . . . The correspondingtime-abstractpath is:
s0

�0−−→ s1
�1−−→ s2

�2−−→ . . ., and the correspondingaction-abstractpath is:s0
t0−→ s1

t1−→
s2

t2−→ · · · . In the remainder of this paper we use the termpath for timed, time-abstract,
action-abstract, and time- and action-abstract paths whenever the kind of path is clear from
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the context. Letfirst(�) denote the state in which� starts. For finite path�, last(�) denotes
the last state of�, and we write� → s if the finite time- and action-abstract path� is
followed by states.

2.3. Markov chains

If for a CTMDP (S,Act,R) the setAct is a singleton, we can projectR on an(S × S)

matrix, resulting in a continuous-time Markov chain.

Definition 4. A continuous-time Markov chain(CTMC) C is a tuple(S,R) with
• S, a finite or countable set of states,
• R : (S×S) → R�0, a two-dimensional rate matrix such that

∑
s′∈S R(s, s′) is convergent

for all statess ∈ S. 1

A discrete-time Mar-kov chain(DTMC) C is a tuple(S,P) with
• S, a finite or countable set of states, and
• P : (S × S) → [0,1], a two-dimensional probability matrix satisfying for each states

that
∑

s′ P(s, s
′) ∈ { 0,1}.

A CTMC is uniform if for someE > 0 it holdsE(s) = E for any states ∈ S, where
E(s) = R(s, S). Any CTMC can be transformed into a uniform CTMC by adding self-
loops[31]. For CTMCC = (S,R) let (uniformization rate)E be a real number such that
E� maxs∈S E(s). Then,unif (C, E) = (S,R) is a uniform CTMC with

R(s, s′) =
{
R(s, s) + E − E(s) if s = s′,
R(s, s′) otherwise.

Inunif (C, E)all rates of self-loops are “normalized” with respect toE, such that state transi-
tions occur with an “average pace” ofE, uniform for all states of the chain.
The behaviors exhibited byC andunif (C, E) are almost indistinguishable, in particular
timed-reachability properties are preserved. In formal terms,C andunif (C, E) are weakly
bisimilar [8].
Probability measure. In contrast to a CTMDP (or DTMDP), a CTMC (or DTMC) is

a fully determined stochastic process. For a given initial states0 in CTMC C, a unique
probability measure Pr onPath(s0) exists, wherePath(s0) denotes the set of timed paths
that start ins0. Timed paths through a CTMC are defined as for CTMDPs, but by nature
are action-abstract. The inductive construction of the probability measure follows [6], the
fact that we allow countable-state Markov chains does not alter the construction. LetP be
the probability matrix of the embedded DTMC ofC and letC(s0

I0−−→ · · · Ik−1−−−→ sk) denote
the cylinder set consisting of all timed paths� that start in states0 such thatsi (i�k) is
the(i+1)th state on�and the time spent insi lies in the non-empty intervalIi (i < k) in R�0.

1 For our purposes, it suffices to require that for any states the set{s′ ∈ S : R(s, s′) > 0} of successors ofs is
finite.
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The cylinder sets induce the probability measure Pr on the timed paths throughC, defined
by induction onk by Pr(C(s0)) = 1, and, fork > 0:

Pr(C(s0
I0−−→ · · · Ik−1−−−→ sk

I ′−−→ s′))= Pr(C(s0
I0−−→ · · · Ik−1−−−→ sk))

·P(sk, s′) ·
(
e−E(sk)·a − e−E(sk)·b

)
wherea = inf I ′ andb = supI ′.

2.4. Schedulers

CTMDPs incorporate nondeterministic decisions, as opposed to CTMCs. Nondetermin-
ism in a CTMDP is resolved by ascheduler. For deciding which of the next nondeterministic
actions to take, a scheduler may have access to the current state only or to the path from the
initial to the current state (either with or without timing information). Schedulers may select
the next action either (i)deterministically, i.e., depending on the available information, the
next action is chosen in a deterministic way, or (ii) in arandomizedfashion, i.e., depend-
ing on the available information the next action is chosen probabilistically. Accordingly,
the following classes of schedulersD are distinguished[31], whereDistr(Act) denotes the
collection of all distributions onAct:
• stationary Markovian deterministic (SMD, also called simple schedulers),

D : S → Act

such that

D(s) ∈ Act(s);
• stationary Markovian randomized (SMR),

D : S → Distr(Act)

such that

D(s)(�) > 0 implies � ∈ Act(s);
• Markovian deterministic (MD, also called step-dependent schedulers),

D : S × N → Act

such that

D(s, n) ∈ Act(s);
• Markovian randomized (MR),

D : S × N → Distr(Act)
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such that

D(s, n)(�) > 0 implies � ∈ Act(s);
• (time-abstract) history-dependent, deterministic (HD),

D : (S × Act)∗ × S → Act

such that

D(s0
�0−−→ s1

�1−−→ · · · �n−1−−−→︸ ︷︷ ︸
time-abstract history

, sn) ∈ Act(sn);

• (time-abstract) history-dependent, randomized (HR),

D : (S × Act)∗ × S → Distr(Act)

such that

D(s0
�0−−→ s1

�1−−→ · · · �n−1−−−→ , sn)(�) > 0 implies � ∈ Act(sn).
All these schedulers are time-abstract; time-dependent schedulers will be discussed in Sec-
tion 4. We writeX to denote the class of allX-schedulers over a fixed CTMDPM. 2

Note that for any HD-scheduler, the actions can be dropped from the history, i.e., HD-
schedulers may be considered as functionsD : S+ → Act, as for any sequences0, s1, . . . , sn
the relevant actions�i are given by�i = D(s0, s1, . . . , si), and, hence, the scheduled
action sequence can be constructed from prefixes of the path at hand. Thus, any state-action
sequences0

�0−−→ s1
�1−−→ · · · �n−1−−−→ sn where�i �= D(s0, s1, . . . , si) for somei, does not

describe a path fragment that can be obtained fromD.
The scheduler-types form a hierarchy, e.g., any SMD-scheduler can be viewed as a MD-

scheduler (by ignoring parametern) which, in turn, can be viewed as a HD-scheduler (by
ignoring everything from the history except its length). A similar hierarchy exists between
SMR, MR, and HR schedulers. Moreover, deterministic schedulers can be regarded as
trivial versions of their corresponding randomized schedulers that assign probability 1 to
the actions selected.

2.5. Induced stochastic process

Given a schedulerD (of arbitrary type) and a starting state,D induces a stochastic process
on a CTMDPM. For deterministic schedulers (HD, MD, and SMD), the induced process
is a CTMC, referred to asCD in the sequel. For MD- and HD-schedulers, though, the state
space ofCD will in general be infinitely large (but countable). Formally, an HD-scheduler
D : S+ → Acton the CTMDPM = (S,Act,R) induces the CTMCCD = (SD,RD) with

2 Strictly speaking we should writeX(M), butM is omitted as it should be clear from the context.
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SD = S+ as state space, and

RD(�, �
′) =

{
R(last(�),D(�), s) if �′ = � → s,

0 otherwise.

In this particular construction, the embedded DTMCemb(CD) is a tuple(SD,PD) where

PD(�, �′) =

RD(�, �′)
ED(�)

if ED(�) > 0,

0 otherwise.

Here,ED(�) = RD(�, SD), i.e., the exit rate of� in CD. States in CTMCCD can be seen
as state sequencess0 → s1 → · · · → sn−1 → sn corresponding to time- and action-
abstract path fragments in the original CTMDPM. Statesn stands for the current state in
the CTMDP whereas statess0 throughsn−1 describe the history. Intuitively, the stochastic
process induced by an HD-schedulerD on the CTMDPM results from unfoldingM
into an (infinite) tree while resolving the nondeterministic choices according toD. For
SMD-schedulers, the induced CTMC is guaranteed to be finite. More precisely, for SMD-
schedulerD, CD can be viewed as a CTMC with the original state spaceS, as all sequences
that end ins, say, are lumping equivalent[14].

3. Maximum probability for timed reachability

Given a CTMDPM, our aim is to compute the maximum (or minimum) probability to
reach—under a given class of schedulers—a certain setB of states withint time units, when
starting from a given states. That is, we are looking for a method to calculate for timet�0,
B ⊆ S, s ∈ S and class ofX-schedulers:

sup
D∈X

PrD(s,
� t� B)

up to some a priori given accuracy�. Here PrD denotes the induced probability measure in
CD. Intuitively, if B is considered as the set of “bad” states, then the value to be computed is
the sharpest boundp for which it is guaranteed that the probability to reach a bad state from
s in the nextt time units is at mostp under all “relevant” schedulers, i.e., all schedulers of
typeX.

In the sequel, unless otherwise stated, letM be uniform andE be its unique exit rate.
Note that CTMCCD which is obtained from the uniform CTMDPM by an HD-scheduler
D is also uniform.

3.1. Approximation

To set the stage for the transformations that follow, we briefly discuss transient analysis of
uniform CTMCs[26]. In a CTMC, the vector�(s, t) of time-dependent state probabilities
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can be written as:

�(s, t) = (Pr{� ∈ Path(s) | �@t = s′})s′∈S
where�@t denotes the state occupied at timet on path�. �(s, t) determines the probability
to be in any of the states at timet , if starting in states at time 0, and is characterised by a
system of linear differential equations (cf. e.g.[29])

d

dt
�(s, t) = �(s, t)·Q given�(s,0) = is ,

whereis denotes the characteristic vector for states, andQ = R− diag(E), with diag(E)
denoting the diagonal matrix withdiag(E)(s, s) = E(s) and 0 otherwise. If the CTMC
C = (S,R) is uniform with rateE, a solution to these differential equations is given by the
Taylor–MacLaurin series:

�(s, t) =
∞∑
n=0

e−E·t · (E·t)n
n! · Pn =

∞∑
n=0

�(n) · Pn

whereP is the probability matrix of the embedded DTMC ofC, and

�(n) = e−E·t · (E·t)n
n!

is used for fixedE andt as an abbreviation denoting thenth Poisson probability, i.e.,�(n)
is the probability ofn events occurring withint time units in a Poisson process with rateE.
This abbreviation will re-occur in the sequel.

After these preliminaries, we now turn our attention to the problem of calculating timed-
reachability probabilities. For a uniform CTMDPM = (S,Act,R) and an HD-scheduler

D, the (infinite) vector of the probabilities PrD(�,
� t� B) for all states� in the CTMCCD

(i.e., all� ∈ S+) can now be given by:(
PrD(�,

� t� B)
)

�∈S+ =
∞∑
n=0

e−E·t · (E·t)n
n! · PnD,B · iB =

∞∑
n=0

�(n) · PnD,B · iB,

whereiB = (iB(�))�∈S+ with iB(�) = 1 if last(�) ∈ B, and 0 otherwise, and

PD,B(�, �
′) =


PD(�, �′) if last(�) /∈ B,

1 if last(�) ∈ B and�′ = �,
0 otherwise.

PD,B is the (infinite) transition probability matrix of the CTMCCD,B = (SD,RD,B) that is
obtained fromCD by equipping anyB-state (i.e., any path� ∈ S+ with last(�) ∈ B) with
a self-loop and removing all its other outgoing transitions; similarly, we have:

RD,B(�, �
′) =


RD(�, �′) if last(�) /∈ B,

E if last(�) ∈ B and�′ = �,
0 otherwise.
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The justification of this transformation is as in[6]: As the aim is to compute the probability
to reach aB-state before a certain time bound, it is not of importance what happens once
such a state has been visited, and therefore its outgoing transitions can be replaced by a
self-loop.

Note that, fors ∈ S:

PrD(s,
� t� B)=

( ∞∑
n=0

�(n) · PnD,B · iB
)
(s)

= �(0)·iB(s) +
( ∞∑
n=1

�(n) · PnD,B · iB
)
(s).

Later we will exploit that fors /∈ B, iB(s) = 0 and therefore

PrD(s,
� t� B) =

( ∞∑
n=1

�(n) · PnD,B · iB
)
(s) provideds /∈ B.

Rather than computing the precise maximum probabilities we use an approximation in the

following way: For any states, the value PrD(s,
� t� B) will be approximated, up to a given

accuracy�, by

P̃rD(s,
� t� B) =

(
k∑

n=0
�(n) · PnD,B · iB

)
(s),

wherek = k(�, E, t) depends on�,E andt , but neither on states nor on schedulerD. This
can be seen as follows: Let‖ · ‖ denote the row-sum norm. Then, for anyk�0:∥∥∥∥ ∞∑

n=0
�(n) · PnD,B · iB −

k∑
n=0

�(n) · PnD,B · iB
∥∥∥∥

=
∥∥∥∥∥ ∞∑
n=k+1

�(n) · PnD,B · iB
∥∥∥∥∥

�
∞∑

n=k+1
�(n) · ‖PnD,B‖︸ ︷︷ ︸

�1

· ‖iB‖︸︷︷︸
�1

�
∞∑

n=k+1
�(n).

Hence, for sufficiently largek = k(�, E, t):∥∥∥∥ ∞∑
n=0

�(n) · PnD,B · iB −
k∑

n=0
�(n) · PnD,B · iB

∥∥∥∥ � ∞∑
n=k+1

�(n)��.

Note that

∞∑
n=0

e−E·t · (E·t)n
n! =

∞∑
n=0

�(n) = 1.
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Hence, for any schedulerD and states:

PrD(s,
� t� B) − ��P̃rD(s,

� t� B) =
(

k∑
n=0

�(n) · PnD,B · iB
)
(s)�PrD(s,

� t� B).

Our strategy is to construct some HD-schedulerD0 such that for any states ∈ S:

P̃rD0(s,
� t� B)� sup

D∈HD
P̃rD(s,

� t� B). (1)

This yields:

sup
D∈HD

PrD(s,
� t� B) − �︸ ︷︷ ︸

� P̃rD(s,
� t�B)

� P̃rD0(s,
� t� B)

� PrD0(s,
� t� B)

� sup
D∈HD

PrD(s,
� t� B).

Thus, (1) implies thatD0 approximates supD∈HD PrD(s,
� t� B) up to�.

SincePnD,B(s, �) = 0 for any� containing more thann transitions, i.e., more thann+1
states, the value

P̃rD0(s,
� t� B) =

(
k∑

n=0
�(n) · PnD0,B

· iB
)
(s)

only depends on thekth truncation ofD0, i.e., the function

D0

∣∣∣∣∣k : ⋃
0<n�k

Sn → Act, D0

∣∣∣∣∣
k

(�) = D0(�).

Intuitively speaking, only the firstk decisions ofD0 are relevant (and not “later” ones) for

determining the valuẽPrD0(s,
� t� B). There are only finitely many such truncations when

ranging over all HD-schedulers. A brute-force approach would consider all of them in order
to determine the maximum. This technique is effective, but is highly inefficient because
the total number of such truncations,

∏
s∈S |Act(s)|k, grows exponentially in the number of

statess with |Act(s)| > 1. Note that∏
s∈S

|Act(s)|k�2|T |k if |Act(s)|�2 for all s ∈ T ⊆ S,

i.e., the total number of truncations to be considered is exponential ink.

3.2. A greedy algorithm

Due to the inefficiency of the above brute-force method, we are striving for a more
practical solution to the timed reachability problem. To this end, we consider only a limited
fragment of HD-schedulers. We restrict to truncated MD-schedulers of the formD : S ×
{ 1, . . . , k } → Act. Later on, it is shown that considering such schedulers suffices.
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The actionsact(s, i) ∈ Act(s) for 0 < i�k will be determined such that the truncated
MD-schedulerD0 with D0(s, i) = act(s, i) fulfills Eq. (1). LetPi denote the probability
matrix of cardinality|S| × |S| where the rowPi (s, ·) = P(s,act(s, i), ·) if s /∈ B and
Pi (s, ·) = is if s ∈ B. Pi thus denotes the probability matrix induced by the schedulerD0
at stepi.

For s /∈ B, the actionsact(s, i) will be determined in a backward manner, i.e., starting
from i = k. For i = k, the selected actionact(s, k) ∈ Act(s) satisfies:

Pk(s, B) = P(s,act(s, k), B) = max
�∈Act(s) P(s, �, B).

That is,Pk(s, ·) is determined such that for any states the probability to move to aB-state
within at most one step is maximized. Generalizing this strategy, fori < k, we assume
that we are given actionsact(s, j) for i < j�k and choose actionact(s, i) such that
the probability to move to aB-state within at mostk−i+1 steps is maximized under the
truncated MD-schedulerD : S × {1, . . . , k − i + 1} → Act defined by:

D(s, j) = act(s, i+j−1) for 0 < j�k−i+1.

That is,Pi is constructed such that fori�1 the vector

q
i
=

k∑
n=i

�(n) · Pi · Pi+1 · . . . · Pn · iB

is state-wise maximized under all vectors of the form

k∑
n=i

�(n) · P∗ · Pi+1 · . . . · Pn · iB

whereP∗ is an |S| × |S|-matrix with P∗(s, ·) = P(s, �, ·) for some action� ∈ Act(s) if
s �∈ B andP∗(s, ·) = is if s ∈ B. In the above equations,iB = (iB(s))s∈S stands for the
bit-vector that represents the characteristic function ofB (as a subset of the original state
spaceS), i.e.,iB(s) = 1 if s ∈ B andiB(s) = 0 if s ∈ S \ B. 3

Informally, qi(s) is the maximum conditional probability to reachB taking i to k steps
within t time units, given that states is occupied before theith step.We letq = �(0)·iB+q

1
,

which for the(S \ B)-states agrees with the desired probability vector to reach aB-state

within at mostk steps when the time bound to reachB is t . For s ∈ B we have PrD(s,
� t�

B) = 1. Moreover, fors �∈ B it holds

q(s) = �(0)·iB(s) + q1(s) = q1(s)

as iB(s) = 0. In the sequel, we are therefore only interested in the calculation of the
vectorq

1
.

3At several other places, we shall use the same notationiB for the bit-vector(iB(�))�∈S+ that represents the
characteristic function ofB viewed as subset of the state space of the CTMC induced by an HD-scheduler. Here,
we identifyB with the set of finite paths� wherelast(�) ∈ B. Whenever the notationiB occurs in our formulae
the dimension ofiB should be clear from the context.
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The main steps of our procedure are summarized in Algorithm1. A stable and efficient
algorithm to compute the Poisson probabilities�(i) has been proposed in [22] and can be

adopted here. Note that for the computation of the values supD∈HD P̃rD(s,
� t� B) there is

no need to compute (and store) the matricesPi . Instead, it suffices to compute the vectors

q
i
=

k∑
n=i

�(n) · Pi · Pi+1 · . . . · Pn · iB

= �(i) · Pi · iB +
k∑

n=i+1
�(n) · Pi · Pi+1 · . . . · Pn · iB

= �(i) · Pi · iB + Pi ·
k∑

n=i+1
�(n) · Pi+1 · . . . · Pn · iB

= �(i) · Pi · iB + Pi · q
i+1

This equality holds for 1� i < k, but can be extended toi�k by settingq
k+1

= 0, i.e., to
the 0-vector. Fors /∈ B, we have(Pi · iB)(s) = P(s, �, B) if � = act(s, i).

Algorithm 1 Greedy approximation algorithm for computing supD∈HD PrD(s,
� t� B)

k := k(�, E, t); (* determine number of required steps *)

for all s ∈ S do qk+1(s) := 0; od (* initialize qk+1 as null-vector *)

for all i = k, k−1, . . . ,1 do
for all s ∈ S \ B do
m := −1;

(* search the optimal rowPi (s, ·) *)for all � ∈ Act(s) do
m := max

(
m,�(i) · P(s, �, B) + ∑

s′∈S
P(s, �, s′) · qi+1(s

′)
)

;

od
qi(s) := m; (* choose maximum *)

od
for all s ∈ B do qi(s) := �(i) + qi+1(s); od (* Pi (s, ·) := is for all s ∈ B *)

od
for all s ∈ S do
if s �∈ B then q(s) := q1(s); elseq(s) := 1; fi

od
return the vectorq.

3.3. Complexity of the algorithm

Algorithm 1 can be implemented with a space complexity inO(|S|2·|Act| + |S|), where
the term|S|2·|Act| stands for the representation of the uniform CTMDPM while the term
|S| stands for the vectorsq

i+1
andq

i
. Note that there is no need to storeq

i+1
onceq

i
has

been computed. The valuesqi(s, �) are only needed temporarily, and as mentioned before,
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there is no need to compute and store the matricesPi . Inspection of the pseudo-code of
Algorithm 1 reveals that the worst-case time complexity is asymptotically bounded by:

k · ∑
s∈S\B

∑
�∈Act(s)

|{ s′ ∈ S |R(s, �, s′) > 0 }|

which is in O (
E·t ·|S|2·|Act|). Note thatk = k(�, E, t) grows proportionally withE·t .

This bound on the running time can be improved by performing a reachability analysis (as
a preprocessing phase of Algorithm1) to determine the setT of states from which aB-state
can be reached. The main iteration then only needs to be performed for all states inT \ B
rather thanS \ B. For the other states we have, for any schedulerD, PrD(s,

� t� B) = 0 for

s ∈ S \ T , and PrD(s,
� t� B) = 1 for s ∈ B.

3.4. Correctness of the algorithm

Although our greedy algorithm is based on a truncated MD-scheduler—only the firstk

steps are memorized—it approximates the maximum probability to reach the set of states
B within t time units underall HD-schedulers. This is shown by the following theorem
whereq(s) is thes-component of the vectorq as returned by Algorithm 1.

Theorem 5. supD∈HD PrD(s,
� t� B) − ��q(s)� supD∈HD PrD(s,

� t� B).

Proof. The rightmost inequality follows immediately. Fors ∈ B the inequality reduces to
1−��1�1 which is obviously fulfilled. Fors �∈ B, it suffices for the leftmost inequality to
show that for any HD-schedulerD and� ∈ S+:

qi(last(�))�qDi (�), i = 1,2, . . . , k, whereqD
i

=
k∑

n=i

�(n) · Pn−i+1
D,B · iB . (2)

Note thatqD
i

is an infinite vector with a component for each finite path� ∈ S+. Let

q̂D(�) =
k∑

n=0
�(n) · PnD,B · iB(�) = �(0) · iB(�) + qD1 (�)

denote the probability in the CTMCCD induced byD to reach aB-state (i.e., a path�′ with
last(�′) ∈ B) from �—viewed as state inCD—within k steps in at mostt time units. Note
that if last(�) /∈ B then the first summand equals 0, i.e., for that caseq̂D(�) = qD1 (�).

The reason why it is sufficient to consider (2) is as follows. Ifs /∈ B then

PrD(s,
� t� B) =

∞∑
n=1

�(n) · PnD,B · iB(s)

�
k∑

n=1
�(n) · PnD,B · iB(s) + �
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� sup
�∈S+

last(�)=s

(
k∑

n=1
�(n) · PnD,B · iB

)
(�) + �

= sup
�∈S+

last(�)=s

qD1 (�) + �.

Hence, from (2) we derive:

sup
D∈HD

PrD(s,
� t� B) − �� sup

D∈HD
sup
�∈S+

last(�)=s

qD1 (�)�q(s).

We now prove (2), distinguishing two cases. If� ∈ S+ and s = last(�) ∈ B then
qDi (s) = ∑k

n=i �(n) = qi(s). For last(�) ∈ S\B we prove thatqi(last(�))�qDi (�) by a

“downward” induction oni. Let � ∈ S+, s = last(�) ∈ S\B, and� = D(�) (recall thatD
is an HD-scheduler and thus may be considered as a functionS+ → Act).
Base of inductioni = k:

qDk (�) = (�(k) · PD,B · iB)(�)
= �(k) · ∑

�′∈S+
PD,B(�, �

′)︸ ︷︷ ︸
P(s,�,s′),if �′=�→s′

and 0 otherwise.

· iB(�
′)︸ ︷︷ ︸

1,if last(�′)∈B
0, if last(�′)/∈B

= �(k) · P(s, �, B)
� max

	∈Act(s)
�(k) · P(s, 	, B)

= qk(s).

Induction stepi + 1 �⇒ i (wherek > i�1): First, observe that

qi(s)= max
	∈Act(s)

(
�(i) · P(s, 	, B) + ∑

s′∈S
P(s, 	, s′) · qi+1(s

′)
)
.

Consider an arbitrary HD-schedulerD. As before,� = D(�) ands = last(�). Then:

qDi (�) =
(

k∑
n=i

�(n) · Pn−i+1
D,B · iB

)
(�)

= (�(i) · PD,B · iB)(�) +
(

k∑
n=i+1

�(n) · PD,B · Pn−i
D,B · iB

)
(�)

= �(i) · P(s, �, B)
+

k∑
n=i+1

�(n) · ∑
s′∈S

PD,B(�, � → s′)︸ ︷︷ ︸
=P(s,�,s′)

· (Pn−i
D,B · iB)(� → s′)︸ ︷︷ ︸

(�→s′)-component ofPn−i
D,B ·iB

= �(i) · P(s, �, B)
+∑
s′∈S

P(s, �, s′) ·
(

k∑
n=i+1

�(n) · Pn−i
D,B · iB

)
(� → s′)︸ ︷︷ ︸

qDi+1(�→s′)
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� �(i) · P(s, �, B)
+∑
s′∈S

P(s, �, s′) · qi+1(s
′) (* by induction hypothesis *)

� qi(s). �

As a result, the vector computed by Algorithm1 is state-wise optimal under all HD-
schedulers, up to the accuracy�.

4. Other scheduling disciplines

By Theorem 5 it follows that our greedy algorithm computes the maximum probability for
timed reachability under all HD-schedulers. In this section, we show that this also applies to
any MR-, MD-, and, more importantly, to any HR-scheduler. In addition, we will show that
this does neither hold for SMD-schedulers nor for schedulers that can base their decision on
the timing of actions. Finally, it is shown that adding a simple notion of fairness is invariant
under these maximum probabilities for HD-schedulers.

Throughout this section, we assume a fixed uniform CTMDPM.

4.1. Markovian deterministic schedulers

In the sequel, lets ∈ S be a state,t�0 a time point andB ⊆ S a set of states.
Theorem 5 states that the vector computed by Algorithm 1 is state-wise optimal under
all HD-schedulers, up to a given accuracy�. As Algorithm 1 calculates, in fact, a truncation
of an MD-scheduler, it directly follows that the suprema under MD- and HD-schedulers
agree:

Theorem 6. supD∈MD PrD(s,
� t� B) = supD∈HD PrD(s,

� t� B).

4.2. History-dependent randomized schedulers

The next result yields that the supremum under HD- and HR-schedulers coincides:

Theorem 7. supD∈HD PrD(s,
� t� B) = supD∈HR PrD(s,

� t� B).

Proof. The proof is based on the cylinder set construction for a CTMC given in Section2.3.
We have that under each HD-schedulerD,

PrD(s,
� t� B) = lim

n→∞ PrD(s,
� t��n B),

where the subscript�n denotes thatB has to be reached within at mostn steps.
Hence, it suffices to show that for fixedn ∈ N there is a finite family(Di)i∈Jn (with Jn

an index set) of HD-schedulers such that the measure PrD′ induced by an HR-scheduler
D′ for the cylinder sets induced by path fragments consisting ofn transitions is a convex
combination of the measures PrDi

, i ∈ Jn. We prove this claim by induction onn.
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Base of inductionn = 0: The basic cylinder induced by a path fragment with 0 transitions
(i.e., a path fragment consisting just of a states) is the set of all paths that start in states.
The measure of this set (for starting states) is 1 under all schedulers.
Induction stepn �⇒ n+1: Assume by induction hypothesis that there is a finite family

(Di)i∈Jn of HD-schedulers and valuespi ∈ [0,1], i ∈ Jn with
∑

i∈Jn pi = 1 and for all

basic cylindersC = C(s0
�0,I0−−−→ · · · �n−1,In−1−−−−−−→ sn), we have:

PrD′(C) = ∑
i∈Jn

pi · PrDi
(C)

(with the obvious lifting of the cylinders introduced in section refmcprelim from action-
abstract to action-labelled paths).

Let F denote the set of functions

f : (S × Act)n+1 × S → Act

such thatf (� → s) ∈ Act(s). That is,F is a finite set of schedulers, containing those HD-
schedulers that decide aftern+1 steps. Forf ∈ F , let
f : (S×Act)n+1×S → Distr(Act)
be the trivial probability distribution induced byf , defined by:


f (�)(�) =
{

1 if f (�) = �,
0 otherwise.

We now consider how to construct any HR-scheduler
 which decides aftern+1 steps. Each
function
 : (S × Act)n+1 × S → Distr(Act) (such that
(�)(�) > 0 implies� ∈ Act(s)
for all � of lengthn+1) can be written as a finite convex combination of the (distributions
induced by the) functionsf ∈ F :


 = ∑
f∈F

qf · 
f where
∑
f∈F

qf = 1 and 0�qf �1.

for appropriately chosenqf , f ∈ F . This fact can be seen as follows.
(1) Choose somef1 ∈ F such that for all� and�: f1(�) = � implies
(�)(�) > 0. Let

qf1 = min{
(�)(f1(�)) | � ∈ (S × Act)n+1 × S}
be the minimal probability with which some action may be selected after having per-
formedn+1 steps, and


1(�, �) =
{


(�)(�) − qf1 if f1(�) = �,

(�)(�) otherwise

be the remaining probability mass. Then, for all� we have:∑
�∈Act


1(�, �) = 1 − qf1

(2) As a next step, we choose somef2 ∈ F such that for all� and�: f2(�) = � implies

1(�, �) > 0. (Note the slight, but essential, difference withf1.) Let

qf2 = min{
1(�, f2(�)) | � ∈ (S × Act)n+1 × S}



C. Baier et al. / Theoretical Computer Science 345 (2005) 2–26 19

be the minimal probability with which some action may be selected after having per-
formedn+1 steps,and after having “spent” the probability mass to select an action
according tof1, and


2(�, �) =
{


1(�, �) − qf2 if f2(�) = �,

1(�, �), otherwise

be the remaining probability mass after having spent probabilityqf2. Then, for all�:∑
�∈Act


2(�, �) = 1 − qf1 − qf2.

(3) This recipe is repeated until
j (�, �) = 0 for all� and�, i.e., until there is no probability
mass left to be distributed among possible actions.

We now consider the function
 where
(�)(�) = D′(�)(�). Let qf be as above, i.e.,

D′(�) = ∑
f∈F

qf · 
f (�, ·) for all � ∈ (S × Act)n+1 × S. (3)

Let � = s0
�0−−→ s1

�1−−→ · · · , �n−1−−−→ sn
�n−−→ sn+1 ∈ (S × Act)n+1 × S andC be a basic

cylinder which relies on the time-abstract path�, but which has arbitrary time-intervals:

C = C(s0
�0,I0−−−→ · · · �n−1,In−1−−−−−−→ sn

�n,In−−−−→ sn+1).

Furthermore, let

C′ = C(s0
�0,I0−−−→ s1

�1,I1−−−→ · · · �n−1,In−1−−−−−−→ sn).

Now, settingP(s, �, I, s′) = P(s, �, s′)(e−E(s,�)t − e−E(s,�)t ′) with t = inf I, t ′ = supI ,
we have

PrD′(C) = PrD′(C′) · D′(�)(�n) · P(sn, �n, In, sn+1)

ind.hypo.= ∑
i∈Jn

pi · PrDi
(C′) · D′(�)(�n) · P(sn, �n, In, sn+1)

(3)= ∑
i∈Jn

pi · PrDi
(C′) · ∑

f∈F
qf · 
f (�)(�n) · P(sn, �n, In, sn+1)

= ∑
(i,f )∈Jn×F

pi · qf︸ ︷︷ ︸
pi,f :=

· PrDi
(C′) · 
f (�)(�n) · P(sn, �n, In, sn+1)︸ ︷︷ ︸

PrDi,f (C):=
= ∑

(i,f )∈Jn×F
pi,f · PrDi,f

(C),

whereDi,f is an HD-scheduler which agrees withDi on
⋃

0�m�n(S × Act)m × S and
with f on (S × Act)n+1 × S. We may now defineJn+1 = Jn × F . �

Let us illustrate the crucial part of the proof, the recipe to calculate the weightsqfi , by
means of a small example. Suppose that there are two paths,� and�′ say, withlast(�) �=
last(�′), both of lengthn+1. Let Act(last(�)) = { �, 	 } andAct(last(�′)) = { �, � }.
Assume
 is defined such that
(�)(�) = 5

6, 
(�)(	) = 1
6, 
(�′)(�) = 1

3 and
(�′)(�) = 2
3.
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• We choosef1(�) = f1(�′) = �. Thenqf1 = min(5
6,

1
3) = 1

3, whence
1(�)(�) = 1
2,


1(�
′)(�) = 0, and all other values of
1(·)(·) agree with
(·)(·).

• We now choosef2(�) = � andf2(�′)=�. Thenqf2= min(1
2, 2

3) = 1
2, whence
2(�)(�) =

0,
2(�
′)(�) = 1

6, and all other values of
2(·)(·) agree with
1(·)(·). The only remaining
non-zero value is
(�)(	) = 1

6.
• We now choosef3(�) = 	 andf2(�′) = �. Thenqf3 = min(1

6,
1
6) = 1

6, whence
3(·)(·)
is constant 0. Thus the process terminates after 3 steps with a
3 which assigns probability
0 to all paths and all actions.
A few remarks are in order. Theorems6 and 7 show that the suprema for the probabilities

to reach a set of goal states within a given time bound under the classes of scheduler MD,
HD, MR and HR coincide. (For MR-schedulers this stems from the fact thatMD ⊆ MR⊆
HR.) For probabilities of some other types of events, however, such correspondence can
not always be established. That is, in general, randomized schedulers can be better than
deterministic schedulers. This observation was made by Beutler and Ross [11] who showed
that the maximum of time-average rewards under randomized schedulers might be larger
than under deterministic schedulers. In fact, the crux of the proof of Theorem 7 is the

observation that the values PrD(s,
� t��n B) converge to PrD(s,

� t� B), where the subscript
�n denotes thatB has to be reached within at mostn steps. This property is not guaranteed
for other types of events.

4.3. Stationary Markovian deterministic schedulers

Different from the discrete time setting, where SMD-schedulers suffice for maximum
probabilities to reach a set of goal states within a given number of steps [12,9], this does not
hold for the corresponding question—interpreting the number of steps in the discrete case
as elapse of time—on CTMDPs. A counterexample is given in Fig. 1(a). Here, states are
represented as circles and there is an edge between statess ands′ labelled with action� if
and only ifR(s, �, s′) > 0.Action labels and rates are indicated at each edge. LetB = { s2 },
and consider the only two relevant SMD-schedulers,D�, selecting action� in states0, and
D	, selecting action	. Comparing them withD	�, i.e., the scheduler that after selecting	
once switches to selecting� in states0, we find that for a certain range of time boundst ,
D	� outperforms bothD	 andD�. Intuitively, the probability of stuttering in states0 (by
choosing	 initially) may influence the remaining time to reachB to an extent that it becomes

profitable to continue choosing�. For t = 0.5, for instance, PrD	�(s0,
�0.5� B) = 0.4152,

whereas forD� andD	 these probabilities are 0.3935 and 0.3996, respectively. Thus, SMD-
schedulers are not expressive enough for maximum probabilities to reach a set of goal states
within a given time bound under all HD/HR-schedulers. For SMR-schedulers this is an open
issue.

4.4. Timed schedulers

This paper only considers schedulers that do not take the timing information into account.
It is, however, worth noticing that timed history-dependent (THD) schedulers are more
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Fig. 1. Uniform CTMDPs where (a) SMD-schedulers are less powerful, and (b) where THD schedulers are more
powerful than HD-schedulers.
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Fig. 2. Functions 1− e−t and 1− e−2t ·(1 + 2t) for t�0.

powerful than time-abstract history-dependent schedulers (class HD and HR), in the sense
that it is possible that:

sup
D∈THD

PrD(s,
� t� B) > sup

D∈HD

PrD(s,
� t� B).

Here,THD refers to the class of schedulers given by functionsD : (S×Act×R>0)
∗ ×S →

Act (only choosing fromAct(s) for any path ending in states), i.e., THD-schedulers are able
to observe the time points of state changes. To see that they may yield a higher probability,
consider for example the uniform CTMDP in Fig.1(b), withB = {s3}. In this example, it
depends on the time instance of enterings1 whether it is more profitable to continue choosing
� or 	. To be more precise, consider the only relevant HD-schedulers,D� (choosing� in
s1) andD	 (choosing	). Fig. 2 plots the probability to reachB starting from states1 if
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choosingD�, respectivelyD	, given by

PrD�(s1,
� t� B) = 1 − e−t and PrD	(s1,

� t� B) = 1 − e−2t ·(1 + 2t).

Let t0 be the time instance satisfying et0 = 1+2 t0, i.e., the time point where both plots
cross. The THD-schedulerD defined byD(s0

�,u−−→ s1) = � if t−u < t0 and	 otherwise,
maximizes the probability to reachB = { s3 } from states0 within t time units, and obviously
outperforms bothD� andD	.

4.5. Fairness

We conclude this section by considering a simple notion of fairness for schedulers. Let
� = s0

�0,t0−−−→ s1
�1,t1−−−→ · · · be an infinite path. Infinite path� is calledfair if and only

if for each states that occurs infinitely often in� and each action� ∈ Act(s), there are
infinitely many indicesn such that(sn, �n) = (s, �). Stated in words, for any state that is
visited infinitely often, each of its outgoing actions cannot have been selected only a finite
number of times. (Note that this notion of fairness is rather weak; for instance, a scheduler
that finitely many times selects the same action in a state that is visited only finitely often—
without ever considering one of the other possibilities—is considered to be fair.) Scheduler
D (of some class) is called fair if and only if

PrD{� ∈ Path(s) | � is fair } = 1

for all statess ∈ S. Let FHD denote the set of all fair HD-schedulers. The following result
states that maximum probabilities under HD-schedulers and their fair counterparts coincide:

Theorem 8. supD∈HD PrD(s,
� t� B) = supD∈FHD PrD(s,

� t� B).

Proof. As FHD ⊆ HD we have:

sup
D∈HD

PrD(s,
� t� B)� sup

D∈FHD
PrD(s,

� t� B).

The converse (i.e.,� instead of�) holds because for any HD-schedulerD and any� > 0
there is a fair HD-schedulerD′ with

PrD′(s,
� t� B)�PrD(s,

� t� B) − �.

To constructD′, selectk ∈ N such that:(
k∑

n=0
�(n) · PnD,B · iB

)
(s)�PrD(s,

� t� B) − �.
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Fig. 3. An example illustrating why uniformization on CTMDPs is not obvious.

Then, we defineD′ as a fair HD-scheduler which agrees withD for all paths consisting of
at mostk transitions. (Note that such a fair extension is always possible.) Then,

PnD,B(s, �) = PnD′,B(s, �) for all s ∈ S, � ∈ S+ andn�k.

Hence,

PrD′(s,
� t� B) �

(
k∑

n=0
�(n)·PnD′,B ·iB

)
(s)

=
(

k∑
n=0

�(n)·PnD,B ·iB
)
(s)�PrD(s,

� t� B)−�. �

5. The uniformization problem

Algorithm 1 assumes that the CTMDP under consideration is uniform. We now discuss
the case in which the CTMDP is not uniform, i.e., the exit ratesE(s, �) are not guaranteed
to be identical for any states and any� ∈ Act(s).

In the setting of CTMCs, uniformization [26] can be employed to transform a CTMC into
a uniform one while keeping transient probabilities invariant. For CTMDPs, a similar recipe
might be followed. However, a simple adaptation of the uniformization approach for CTMCs
(as proposed, for instance, in [10,31]) to CTMDPs is not adequate for our purpose. The
problem with such an approach is that the correspondence between schedulers on a uniform
CTMDP M′ and its original CTMDPM is lost. (A similar observation has been made
by Beutler and Ross [11] when comparing MD- and MR-schedulers for computing time-
average rewards.) This can be illustrated as follows. Applying “standard” uniformization
to a CTMDPM = (S,Act,R) with E� maxs∈S,�∈Act E(s, �) would yield the CTMDP
unif (M, E) = (S,Act,R′) with

R′(s, �, s′) =

R(s, �, s′) if s �= s′,
R(s, �, s) + E − E(s, �) if s = s′and� ∈ Act(s),
0 otherwise.
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That is, each states is equipped with a self-loop for each action� ∈ Act(s) if E exceeds the
total exit rate to take an�-transition froms.Applying this recipe to the CTMDPM depicted
in Fig.3(a) forE = 4 results in the CTMDPunif (M, E) in Fig. 3(b).The latter has appeared
in Fig. 1(a) already. It is not difficult to see that for anyX-scheduler onM there exists a
correspondingX-scheduler onunif (M, E), as any choice inM can be matched by the same
choice inunif (M, E). The reverse, however, does not hold. For instance, the MD-scheduler
D	� onunif (M, E) discussed in Section 4 does not correspond to any MD-schedulerD on
M, since the self-loop in states0 in unif (M, E) cannot be mimicked byM. Recall from

Section 4 that PrD	�(s0,
�0.5� { s2 }) is higher than the respective probabilities forD� and

D	 in unif (M, E). The latter in turn corresponds to the only relevant HD-scheduler onM.
As a consequence, the maximum probability (obtained for some MD-scheduler generated
byAlgorithm 1) to reach the set{ s2 } from states0 in 0.5 time units onunif (M, E) is higher
than the probability for any HD-scheduler inM.

6. Concluding remarks

This paper considered the problem of computing the maximum probability to reach a set
of goal states within a given time bound in a uniform CTMDP. It is shown that truncated
Markovian deterministic schedulers suffice for approximating a solution to this problem in
an efficient manner for (time-abstract) history-dependent and Markovian schedulers, both
deterministic and randomized ones. This does neither apply to timed history-dependent
schedulers nor to Markovian stationary (i.e., simple) schedulers. The question whether
SMR-schedulers may yield the same optimum (or a smaller optimum) is open.

Although all results in this paper have been presented for maximum probabilities, the
same results can be obtained for minimum probabilities, i.e.,

inf
D∈X PrD(s,

� t� B)

up to some accuracy�. 4 Instead of a greedy policy that maximizes the probability to reach
the set of goal states in each step of the computation, the algorithm in this case minimizes
this quantity in each step.

The presented numerical algorithm is remarkably efficient. Its worst-case time complexity
is in O(E·t ·N2·M) whereE is the unique exit rate of the uniform CTMDP,t is the time
bound,N is the number of states, andM is the number of actions.Thus, compared to CTMCs,
the increase in computational effort is linear in the number of actions in the CTMDP, i.e.,
the amount of nondeterminism, but no more than that. This is the best we can hope for,
since the time complexity of computing the corresponding probability in a CTMC is in
O(E·t ·N2) [6].

It is not obvious how to extend the presented results beyond uniform CTMDPs, because
the basic concept of uniformization blurs the distinction between timed and time-abstract

4 Only Theorem8 does not hold when the supremum over all fair schedulers is replaced by the infimum over
all fair schedulers. See[9] for a counterexample for DTMDPs.
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schedulers. As yet, it is open whether a variation of uniformization can be used to reduce
the timed reachability problem for general CTMDPs to that of uniform CTMDPs.
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