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Abstract

A continuous-time Markov decision process (CTMDP) is a generalization of a continuous-time
Markov chain in which both probabilistic and nondeterministic choices co-exist. This paper presents
an efficient algorithm to compute the maximum (or minimum) probability to reach a set of goal
states within a given time bound in a uniform CTMDP, i.e., a CTMDP in which the delay time
distribution per state visit is the same for all states. It furthermore proves that these probabilities
coincide for (time-abstract) history-dependent and Markovian schedulers that resolve nondeterminism
either deterministically or in a randomized way.
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1. Introduction

A continuous-time Markov decision process (CTMDRD,20, 31,34] is a general-
ization of a continuous-time Markov chain (CTMC) in which both probabilistic and
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nondeterministic choices co-exist. CTMDPs are a natural modeling formalism applica-
ble in many contexts, ranging from stochastic control th¢@®} and scheduling [13,1] to
dynamic power management [32].

Importance of CTMDPsThe class of CTMDPs is particularly interesting, because it
can be viewed as a common semantic model for various performance and dependability
modelling formalisms including generalized stochastic Petri nets [2], Markovian stochas-
tic activity networks [33], and interactive Markov chains (IMC) [23]. So far, the analy-
sis of models developed in these and related formalisms was restricted to the subset that
corresponds to CTMCs, usually referred to as “non-confused”, “well-defined”, or “well-
specified” models [16,17,19,23]. All these notions are semantic notions. They are usually
checked by an exhaustive exploration of the state space associated with a given model. A
modelis discarded if the check fails. In other words, no specification-level check is available,
and the offered analysis algorithms are actually partial algorithms.

Model checkingModel checking of CTMCs [6] has received remarkable attention in
recent years. Various model checkers exist [25,27,15], answering questions siscthas:
probability to hop alongpb-statesuntil reaching a-state within5 to 10time units greater
than 0.95? The core algorithmic innovation allowing to answer such questions is a map-
ping from interval-bounded until-formulae—specified in the continuous stochastic logic
CSL [5]—to time-bounded reachability problems [6], which in turn can be approximated
efficiently using a stable numerical technique called uniformization [26]. To enable the
same kind of questions being answered for models specified in any of the above mentioned
formalisms, the key problem is how to compute time-bounded reachability probabilities
in CTMDPs. This is the problem we address in this paper. With the notable exception of
De Alfaro [3,4], who studied long-run properties of semi-Markov decision processes, we
are not aware of any model checking algorithm for CTMDPs. This stands in sharp con-
trast to discrete-time Markov decision processes, for which model checking algorithms are
well-understood [12,9] and, for instance, implemented in tools like¥[30] or RAPTURE
[18].

Contributiont Given a CTMDP, our aim is to compute the maximum (or minimum)
probability to reach—under a given class of schedulers—a certain set of states within
t time units, given a starting state. We consider this problem for uniform CTMDPs, a
class of CTMDPs in which the delay time distribution per state visit is the same for all
states, governed by a unique exit ratae show that an efficient greedy algorithm can be
obtained using truncated Markovian deterministic (MD)-schedulers, that is, step-dependent
schedulers which schedule up to a limited depth. The algorithm computes the maximum
(or minimum) probabilities for timed reachability. It is then shown that these probabilities
for truncated MD-schedulers coincide with the maximum (or minimum) probabilities for
timed reachability for Markovian and history-dependent schedulers (both deterministic and
randomized). We show that stationary Markovian schedulers—as opposed to the discrete
case [12,9]—yield a smaller maximum, whereas timed history-dependent schedulers may
yield a higher probability.

The main result of this paper is a computationally efficient approximation algorithm
for computing maximum probabilities for timed reachability in uniform CTMDPs uiadler
time-abstract schedulers. The time complexity ©im- E-N2- M) and the space complexity
in O(N2-M) wheret is the time boundE is the uniform exit rate of the CTMDP under
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consideration)V is the number of states, aid the number of actions. The results in this
paper are presented only fmaximunprobabilities. Unless otherwise stated, the results are
straightforwardly adapted to the dual problermuhimumprobabilities.

Organization of the paperSection2 introduces the necessary background. Section 3
presents an algorithm for uniform CTMDP which relies only on step-dependent trun-
cated schedulers. Section 4 places the algorithm in the context of more general classes of
schedulers. Section 5 discusses the problem of uniformizing arbitrary CTMDPs. Section 6
concludes the paper.

This paper is an extended version of the conference paper [7].

2. Preliminaries

This section sets the stage for the results presented in the sequel, by presenting the
definitions and notations used throughout the paper.

2.1. Markov decision processes

Definition 1. A continuous-time Markov decision procé&TMDP) M is a tuple(S, Act,
R) with

o S, afinite set oftates

o Act, a finite set ofactions and

e R: (S xActx S) > Rxo, athree-dimensionahte matrix

For each state € S we require the existence of at least one pairs’) € Act x S with
R(s, o, s’) > 0. Note that this can easily be established by adding self-loops, i.e., having
R(s, o, s) > 0 for somex € Act.

ForB C S, letR(s, «, B) denote the total rate to move from stateia action« to some
state inB, i.e.,

R(s, o, B) = > R(s,a,s').
s’eB

The behavior of a CTMDP is as followR(s, o, s’) > 0 means that there is a transition
from s to s’ under action. If states has outgoing transitions for distinct actions, one of
these actions is selected nondeterministically where we assume that the nondeterminism is
resolved by means of a scheduler (also called policy or adversary). Given thateabtien
been chosen, 4 e R-%5)1 js the probability that the-transitions — s’ can be triggered
within ¢ time units. Thus, the delay eftransitions — s’ is governed by the negative
exponential distribution with rat@(s, «, s"). If R(s, «, s") > 0 for more than one staié, a
competition between thetransitions originating in exists, known as the race condition.

The set of enabled actions in a statis

Act(s) = {o € Act| E(s, 2) > 0}

whereE (s, o) = R(s, o, S), is the exit rate of statevia somex-transition. An alternative
formulation of the above requirement that in every state at least one action is enabled, can
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be stated as

Act(s) £ ¢ for any state.

Definition 2. A discrete-time Markov decision procg&TMDP) M is a tuple(S, Act, P)
with
e S, a finite set of states,
o Act, afinite set of actions, and
e P: (S xActx S) — [0, 1], a three-dimensionglrobability matrix satisfying for each
state and action pais, «) that) ¢ P(s, o, s") € {0, 1}.
For a given CTMDPM = (S, Act, R), the discrete probability of selectingtransition
s — s’ is determined by the embedded DTMDP, denaati M) = (S, Act, P) with

R(s, o, s")

P(s, o, s') = E(s. ) if E(s, ) >0,
0

otherwise.

Note thatP(s, o, s") is the time-abstract probability for thetransition froms to s” when
actiona is chosen. FoB C S let

P(s,o, B) = > P(s,a,s)

s'eB
denote the probability to move fromto some state i via ano-transition.

Definition 3. A CTMDP (S, Act, R) is uniformif for someE > 0 it holdsE(s, o) = E
for any states € S anda € Act(s).

Note thatE (s, ) = 0 (whencex ¢ Act(s) follows) is possible in uniform CTMDPs.
Stated in words, in a uniform CTMDP the exit rates for all states and all enabled actions
are equal.

2.2. Paths

A (timed) pathe in a CTMDP .M is a finite or infinite sequence
g€ (S xActx R.g)* x SU (S x Act x R.)?.

For infinite pathe = so, oo, fo, s1, o1, 11, S2, 02, f2, ... We require time-divergence, i.e.,
>t = oo. We write

%0,70 %1,01 %2,12

S0 S1

52

rather thanso, ao, 0, s1, o1, 11, S2, 02, f2, ... . The correspondingime-abstractpath is:

50205 51 5 5 %25 ., and the correspondinaction-abstractpath is:sg 2 s; 1>

so 2> ... In the remainder of this paper we use the tgrath for timed, time-abstract,
action-abstract, and time- and action-abstract paths whenever the kind of path is clear from
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the context. Lefirst(o) denote the state in whichstarts. For finite path, last(¢) denotes
the last state of, and we writee — s if the finite time- and action-abstract pathis
followed by state.

2.3. Markov chains

If for a CTMDP (S, Act, R) the setAct is a singleton, we can projeB on an(S x S)
matrix, resulting in a continuous-time Markov chain.

Definition 4. A continuous-time Markov chafCTMC) C is a tuple(S, R) with

e S, afinite or countable set of states,

e R: (§x5) — Rxo,atwo-dimensional rate matrix such that, ¢ R(s, s’) is convergent
for all statesy € S.1

A discrete-time Mar-kov chai(DTMC) C is a tuple(S, P) with

e S, afinite or countable set of states, and

e P: (S xS)— [0,1], atwo-dimensional probability matrix satisfying for each state
that) ", P(s,s") € {0, 1}.

A CTMC is uniformif for some E > 0 it holdsE(s) = E for any states € S, where
E(s) = R(s, §). Any CTMC can be transformed into a uniform CTMC by adding self-
loops[31]. For CTMCC = (S, R) let (uniformization ratef be a real number such that
E > maxes E(s). Then,unif (C, E) = (S, R) is a uniform CTMC with

s, n_|RG,$)+E—-E(s) ifs=ys,
Rs, ) = { R(s, s) otherwise.

Inunif (C, E) all rates of self-loops are “normalized” with respecEtosuch that state transi-
tions occur with an “average pace” aof, uniform for all states of the chain.
The behaviors exhibited bg and unif (C, E) are almost indistinguishable, in particular
timed-reachability properties are preserved. In formal techa)dunif (C, E) are weakly
bisimilar[8].

Probability measureln contrast to a CTMDP (or DTMDP), a CTMC (or DTMC) is
a fully determined stochastic process. For a given initial stgi@ CTMC C, a unique
probability measure Pr oRath(sg) exists, wherdPath(sg) denotes the set of timed paths
that start insg. Timed paths through a CTMC are defined as for CTMDPs, but by nature
are action-abstract. The inductive construction of the probability measure follows [6], the
fact that we allow countable-state Markov chains does not alter the constructidhbleet
the probability matrix of the embedded DTMC®fand letC(sg Moy L fkmy sr) denote
the cylinder set consisting of all timed patthighat start in stateg such thats; (i <k) is
the(i+21)th state o and the time spent i liesinthe non-empty intervd) (i < k)inR>o.

1For our purposes, it suffices to require that for any stdte set{s’ € S : R(s, s’) > 0} of successors of is
finite.
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The cylinder sets induce the probability measure Pr on the timed paths thitpdgfined
by induction onk by Pr(C(sg)) = 1, and, fork > 0:

Pr(C(so 2> ... 2=ty 5 L' §')) = Pr(C(so =2 - .- —L=L; 1))
Psi, ") - (e_E(‘Y")'“ — e_E(‘Y")'b)

wherea = inf I’ andb = sup!’.

2.4. Schedulers

CTMDPs incorporate nondeterministic decisions, as opposed to CTMCs. Nondetermin-
ismina CTMDP is resolved byschedulerFor deciding which of the next nondeterministic
actions to take, a scheduler may have access to the current state only or to the path from the
initial to the current state (either with or without timing information). Schedulers may select
the next action either (deterministicallyi.e., depending on the available information, the
next action is chosen in a deterministic way, or (ii) inemadomizedashion, i.e., depend-
ing on the available information the next action is chosen probabilistically. Accordingly,
the following classes of schedulebsare distinguishefB1], whereDistr(Act) denotes the
collection of all distributions or\ct:

e stationary Markovian deterministic (SMD, also called simple schedulers),
D :S— Act
such that
D(s) € Act(s);
e stationary Markovian randomized (SMR),
D : S — Distr(Act)
such that
D(s)(«) > 0 implies o € Act(s);
e Markovian deterministic (MD, also called step-dependent schedulers),
D:S x N — Act
such that
D(s,n) € Act(s);

e Markovian randomized (MR),

D : S x N — Distr(Act)
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such that
D(s,n)(x) > 0 implies a € Act(s);
e (time-abstract) history-dependent, deterministic (HD),
D : (S x Act)* x § — Act
such that

D(so—“°—>s1—“1—> RS I , 5n) € ACt(sy);

time-abstract history

e (time-abstract) history-dependent, randomized (HR),
D : (S x Act)* x S — Distr(Act)
such that
D(so -2 57 5 ... 2l g Y(a) > 0 implies o € Act(s,,).

All these schedulers are time-abstract; time-dependent schedulers will be discussed in Sec-
tion 4. We write X to denote the class of ali-schedulers over a fixed CTMD®!. 2

Note that for any HD-scheduler, the actions can be dropped from the history, i.e., HD-
schedulers may be considered as functibnsSt — Act, asforany sequence, s1, .. ., s,
the relevant actions; are given byx; = D(so, s1, ..., s;), and, hence, the scheduled
action sequence can be constructed from prefixes of the path at hand. Thus, any state-action
sequenceg —%> 51 A ... 21, 5 whereo; # D(so, s1, ..., s;) for somei, does not
describe a path fragment that can be obtained ffam

The scheduler-types form a hierarchy, e.g., any SMD-scheduler can be viewed as a MD-
scheduler (by ignoring parametey which, in turn, can be viewed as a HD-scheduler (by
ignoring everything from the history except its length). A similar hierarchy exists between
SMR, MR, and HR schedulers. Moreover, deterministic schedulers can be regarded as
trivial versions of their corresponding randomized schedulers that assign probability 1 to
the actions selected.

2.5. Induced stochastic process

Given a schedulebd (of arbitrary type) and a starting stafe@ jnduces a stochastic process
on a CTMDPM. For deterministic schedulers (HD, MD, and SMD), the induced process
is a CTMC, referred to a8p in the sequel. For MD- and HD-schedulers, though, the state
space of’p will in general be infinitely large (but countable). Formally, an HD-scheduler
D : ST — Acton the CTMDPM = (S, Act, R) induces the CTMCp = (Sp, Rp) with

2 Strictly speaking we should writé(M), but M is omitted as it should be clear from the context.
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Sp = ST as state space, and

. _ | Rast(e), D(a),s) ifo’'=0—s,
Rp(o, o) = { 0 otherwise.

In this particular construction, the embedded DTRIGKC)p) is a tuple(Sp, Pp) where

Rp(o,d) .
Pp(c.0') = —ED(O') if Ep(o) >0,
0

otherwise.

Here,Ep (o) = Rp(o, Sp), i.e., the exit rate of in Cp. States in CTMQp can be seen

as state sequenceg — s1 — --- — s,_1 — s, corresponding to time- and action-
abstract path fragments in the original CTMDR. States, stands for the current state in
the CTMDP whereas stategthroughs, 1 describe the history. Intuitively, the stochastic
process induced by an HD-scheduleron the CTMDPM results from unfoldingM

into an (infinite) tree while resolving the nondeterministic choices according.t&or
SMD-schedulers, the induced CTMC is guaranteed to be finite. More precisely, for SMD-
scheduleD, Cp can be viewed as a CTMC with the original state spiices all sequences
that end ins, say, are lumping equivalefit4].

3. Maximum probability for timed reachability

Given a CTMDPM, our aim is to compute the maximum (or minimum) probability to
reach—under a given class of schedulers—a certaiB séstates withirr time units, when
starting from a given state That is, we are looking for a method to calculate for tirpe0,

B C S,s € S and class o -schedulers:

sup Prp (s, Y B)
DeX

up to some a priori given accuraeyHere Py denotes the induced probability measure in
Cp. Intuitively, if B is considered as the set of “bad” states, then the value to be computed is
the sharpest boungifor which it is guaranteed that the probability to reach a bad state from
s in the nextr time units is at mosp under all “relevant” schedulers, i.e., all schedulers of
type X.

In the sequel, unless otherwise stated Aétbe uniform andE be its unique exit rate.
Note that CTMCCp which is obtained from the uniform CTMDP®1 by an HD-scheduler
D is also uniform.

3.1. Approximation

To set the stage for the transformations that follow, we briefly discuss transient analysis of
uniform CTMCs[26]. In a CTMC, the vector:(s, t) of time-dependent state probabilities
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can be written as:
a(s, 1) = (Pr{o € Path(s) | 6@ = s'})ycs

wheresc@t denotes the state occupied at timon pathe. (s, 1) determines the probability
to be in any of the states at timgif starting in states at time 0, and is characterised by a
system of linear differential equations (cf. €[29])

%z(s, 1) =mn(s,1)-Q givenzn(s,0) =i,

wherei ; denotes the characteristic vector for stgtendQ = R — diag(E), with diag(E)
denoting the diagonal matrix wittiag(E)(s, s) = E(s) and 0 otherwise. If the CTMC

C = (S, R) is uniform with rateE, a solution to these differential equations is given by the
Taylor—-MacLaurin series:

00 _E (E[)”Pn 00

n(s,) =3 e — =) Yy -P"
n=0 n: n=0
whereP is the probability matrix of the embedded DTMC®fand
E-1)"
yn) =e E7. (E-1)
n!

is used for fixedt' andr as an abbreviation denoting thth Poisson probability, i.eys(n)
is the probability of: events occurring withintime units in a Poisson process with rdte
This abbreviation will re-occur in the sequel.
After these preliminaries, we now turn our attention to the problem of calculating timed-
reachability probabilities. For a uniform CTMDP1 = (S, Act, R) and an HD-scheduler

D, the (infinite) vector of the probabilities pfo, $ B) for all statess in the CTMCCp
(i.e., alle € ST) can now be given by:

+ (ED" . ® :
B Przl),B “lp = ZOW(") : P’Z),B Y
n=

o0
= e
geSt ngo

wherei g = (ip(0))ses+ With ip(o) = 1if last(s) € B, and 0 otherwise, and

Pp(a,d) if last(o) ¢ B,
Pp.p(o,d) =11 if last(s) € B ando’ = o,
0 otherwise.

Pp. s is the (infinite) transition probability matrix of the CTMG, 5 = (Sp, Rp_ p) thatis
obtained fronmCp, by equipping anyB-state (i.e., any path € ST with last(s) € B) with
a self-loop and removing all its other outgoing transitions; similarly, we have:

Rp(a, d') if last(o) ¢ B,
Rp (o, d)=1{E if last(s) € B andd’ = o,
0 otherwise.



C. Baier et al. / Theoretical Computer Science 345 (2005) 2—-26 11

The justification of this transformation is as[B]: As the aim is to compute the probability
to reach aB-state before a certain time bound, it is not of importance what happens once
such a state has been visited, and therefore its outgoing transitions can be replaced by a
self-loop.

Note that, fors € S:

o]

Prp(s. X B) = < Y(n)-Ph g ‘iB) (s)

n=0

o
=y(0)-ip(s) + (leﬁ(n) Ph.s -£B> (5).
n—=
Later we will exploit that fors ¢ B, ig(s) = 0 and therefore

Prp (s, i B) = (§ Y(n)-Ph g 'L@) (s) provideds ¢ B.

n=1

Rather than computing the precise maximum probabilities we use an approximation in the

following way: For any state, the value Pp (s, b B) will be approximated, up to a given
accuracy, by

N k
Pro(s, > B) = (Zowm P -£B> (s,

wherek = k(¢, E, t) depends om, E andt, but neither on statenor on scheduleb. This
can be seen as follows: Lgt || denote the row-sum norm. Then, for any O:

00 k
Zolp(") : P’Z),B 'iB - Zolp(n) : PIZ),B 'LB

2. Y(m)-Ppp-ip

n=k+1
00 00
n .
< 2 Y- lIPh gl lligh < > y).
n=k+1 ~——— S~~~ p=k+1

<1 <1

Hence, for sufficiently largé = (¢, E, t):

o0 k 00
D Um)-Ppp-ig— 2 Y -Ppp-ipgl< X ym)<e
n=0 n=0 n=k+1

Note that

o_ooe—Et . (En'f)n =Sy =1

n=0

n
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Hence, for any scheduldy and state:
~ k
Prp(s. & B) = s<Pip(s. ! B) = (Z Yn) - Ph g ~LB) (5)<Prp(s. ¥ B).
n=0

Our strategy is to construct some HD-schedubgrsuch that for any statee S:

5rD0(s, MY B)> sup ISrD(s, Y B). ()
DeHD
This yields:

<t ~ <t
sup Prp(s, ~ B) —& < Prpy(s, ~ B)
DeHD —mmmm—~

<Prp(s. ¥ B)

<t
< PrDo(Sv ~M B)
<

<
sup Prp(s, N B).
DeHD

Thus, () implies thatDg approximates sup.p Prp (s, N B) up toe.
SincePY, 5(s, o) = 0 for anys containing more than transitions, i.e., more tham-1
states, the value

5 < k n :
Bivgts. < 8 = (X 0P,y ip)
only depends on thkth truncation ofDy, i.e., the function

Dolr: U S"— Act, Do

O<n <k

(0) = Do(0).

k
Intuitively speaking, only the first decisions ofDg are relevant (and not “later” ones) for

determining the vaIu§rD0(s, Y B). There are only finitely many such truncations when
ranging over all HD-schedulers. A brute-force approach would consider all of them in order
to determine the maximum. This technique is effective, but is highly inefficient because
the total number of such truncatiorjd, . ¢ |Act(s)|¥, grows exponentially in the number of
statess with |Act(s)| > 1. Note that

[T IAct(s)|* = 2Tk if |Act(s)|>2 foralls e T C S,
seS

i.e., the total number of truncations to be considered is exponen#al in
3.2. A greedy algorithm

Due to the inefficiency of the above brute-force method, we are striving for a more
practical solution to the timed reachability problem. To this end, we consider only a limited
fragment of HD-schedulers. We restrict to truncated MD-schedulers of the forn§ x
{1,...,k} — Act Later on, it is shown that considering such schedulers suffices.
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The actionsact(s, i) € Act(s) for 0 < i <k will be determined such that the truncated
MD-schedulerDg with Dg(s, i) = act(s, i) fulfills Eq. (1). LetP; denote the probability
matrix of cardinality|S| x |S| where the rowP; (s, -) = P(s, act(s, i), -) if s ¢ B and
Pi(s,-) =i, if s € B. P; thus denotes the probability matrix induced by the schedbdder
at stepi.

Fors ¢ B, the actionsact(s, i) will be determined in a backward manner, i.e., starting
fromi = k. Fori = k, the selected actioact(s, k) € Act(s) satisfies:

Pi(s, B) = P(s, act(s, k), B) = max P(s, o, B).
aeAct(s)
That is,Px (s, -) is determined such that for any statthe probability to move to &-state
within at most one step is maximized. Generalizing this strategy, ferk, we assume
that we are given actionact(s, j) for i < j<k and choose actioact(s, i) such that
the probability to move to #-state within at most—i+1 steps is maximized under the
truncated MD-schedule® : S x {1, ...,k —i + 1} — Actdefined by:

D(s, j) = act(s,i+j—1) for0< j<k—i+1

That is,P; is constructed such that foe= 1 the vector

Zlﬁ(n) Pi-Piy1-...-Py-ip

n=i

is state-wise maximized under all vectors of the form
k
Z_tp(n)P*~P,-+1-...-Pn~gB

whereP, is an|S| x |S|-matrix with P, (s, -) = P(s, «, -) for some actiorx € Act(s) if
s & BandP.(s,-) =i, if s € B. In the above equations; = (ip(s))ses stands for the
bit-vector that represents the characteristic functio® ¢as a subset of the original state
spaces), i.e.,ig(s) = 1if s € Bandig(s) = 0if s € S\ B.3

Informally, g; (s) is the maximum conditional probability to reaéhtakingi to k steps
within 7 time units, given that states occupied before thi¢h step. We leg = v/(0)- ip+q,
which for the(S \ B)-states agrees with the desired probability vector to rethsEate

within at mostk steps when the time bound to reaBhs 7. Fors € B we have Pp(s, ~ s
B) = 1. Moreover, fors ¢ B it holds

q(s) =Y (0)-ip(s) + q1(s) = qa(s)

asig(s) = 0. In the sequel, we are therefore only interested in the calculation of the
vectory .

3 At several other places, we shall use the same notafjdor the bit-vector(i 3 (¢)), s+ that represents the
characteristic function oB viewed as subset of the state space of the CTMC induced by an HD-scheduler. Here,
we identify B with the set of finite paths wherelast(c) € B. Whenever the notatioty occurs in our formulae
the dimension of 5 should be clear from the context.
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The main steps of our procedure are summarized in AlgorithA stable and efficient
algorithm to compute the Poisson probabilitieg) has been proposed in [22] and can be

adopted here. Note that for the computation of the valueg syp Prp (s, A B) there is
no need to compute (and store) the matriegednstead, it suffices to compute the vectors

k
g, =3 Y@ -Pi-Piyr-...-Pyip

n=i

k
=y@)-Pi-ig+ > Ym)-Pi-Piyr-...-Py-ip
n=i+1

k
=y@)-Pi-ig+Pi- > Y@ -Pipa-...-Py-ip
n=i+1

=y@)-Pi-ig+Pi-q,

This equality holds for ¥i < k, but can be extended ie<k by settinggk+l =0,i.e.,to
the O-vector. Fos ¢ B, we have(P; - i z)(s) = P(s, a, B) if o = acl(s, i).

Algorithm 1 Greedy approximation algorithm for computing g$ppp Pro (s, h B)
k:=k(e, E, 1), (* determine number of required steps *)
for all s € S do gg+1(s) := 0; od (* initialize g1 as null-vector *)
forall i =k, k-1,...,1do

forall s € S\ B do

m:= —1;
for all « € Act(s) do (* search the optimal row; (s, -) *)
m = max(m, (i) -P(s,o, By + Y P(s, o, 5") - qH_l(s’));
s'eS

od

qi(s) :=m; (* choose maximum *)
od
forall s € Bdog;(s) := (i) + gi+1(s); od (* Pi(s,) =i foralls € B¥

od
forall s € S do
if s € Bthengq(s) := g1(s); elseqg(s) := 1; fi
od
return the vector.

3.3. Complexity of the algorithm

Algorithm 1 can be implemented with a space complexitgifiS|2-|Act| + |S|), where
the term|S|2-|Act| stands for the representation of the uniform CTMBPwhile the term
| S| stands for the VectOli_ﬁl__H andc_Il_. Note that there is no need to sto_;rie+l onceq, has
been computed. The valuggs, «) are only needed temporarily, and as mentioned before,
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there is no need to compute and store the matfigesnspection of the pseudo-code of
Algorithm 1 reveals that the worst-case time complexity is asymptotically bounded by:

k- > > {s" € S|R(,a,s) > 0}
seS\B aeAct(s)

which is inO (E-t-|S|2-|ACt|). Note thatk = k(, E, r) grows proportionally withE-z.

This bound on the running time can be improved by performing a reachability analysis (as
a preprocessing phase of Algorittinto determine the s@t of states from which ®-state

can be reached. The main iteration then only needs to be performed for all statesbin

rather thanS \ B. For the other states we have, for any schedDIglPrp (s, Y B) =0 for
s € S\ T,andPp(s, M B) =1fors € B.

3.4. Correctness of the algorithm
Although our greedy algorithm is based on a truncated MD-scheduler—only the first
steps are memorized—it approximates the maximum probability to reach the set of states

B within ¢ time units undewrll HD-schedulers. This is shown by the following theorem
whereg (s) is thes-component of the vectar as returned by Algorithm 1.

Theorem 5. Sup,.p Pro(s, ¥ B) — £<q(s) < SUPpepp Pio(s. > B).
Proof. The rightmost inequality follows immediately. Fore B the inequality reduces to

1-e< 1< 1 which is obviously fulfilled. Fos ¢ B, it suffices for the leftmost inequality to
show that for any HD-schedulé? ands € S™:

k .
gi(last(0)) =>q” (@), i=12 ...k, Wherec_jl,DzZ'lp(n)-Prl’)Tg+1,iB. (2)

n=it

Note thatziiD is an infinite vector with a component for each finite path S*. Let

k
7% (0) = Zow(n) P} g ip(0) = ¥(0) -ig(a) + g1 (0)

denote the probability in the CTMC,, induced byD to reach aB-state (i.e., a path’ with
last(¢”) € B) from s—viewed as state il p—within k steps in at mosttime units. Note
that iflast(s) ¢ B then the first summand equals 0, i.e., for that G#3&r) = ¢ (o).

The reason why it is sufficient to consid@) (s as follows. Ifs ¢ B then

Prp(s, > B) = X Y0 P g in(s)

-
< LU Ph g i)+
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k
< sup <Z W(n) - Pp g 'iB> (o) +¢
cesSt n=1 ’
last(g)=s

= sup qP(o) +e.
sest
last(g)=s
Hence, from ) we derive:
sup Prp(s, ¥ B) —e< sup  sup ¢P(0)<q(s).

DeHD DeHD  gest
last(g)=s

We now prove 2), distinguishing two cases. f € ST ands = last(c) € B then
gP(s) = Yk_, ¥(n) = qi(s). Forlast(o) € S\B we prove thay; (last(0)) >¢P (s) by a
“downward” induction on. Lets € S, s = last(c) € S\ B, ande = D(o) (recall thatD
is an HD-scheduler and thus may be considered as a fungtion Act).
Base of induction = k:
q{ (0) = (k) - Pp g -ip)(0)
=yk)- Y. Pppla.d) - ip(d)
gest ———"

P(s,o,s'),if o/=c—s Lif last(c’)eB
and O otherwise 0, if last(c’)¢B

= y(k) - P(s, o, B)

< max y(k) - P(s, B, B)
PeAct(s)

= qr(s).

Induction step + 1 — i (wherek > i >1): First, observe that
gi(s) = max (wm -P(s, B, B) + Y>_P(s, B,5") - qi+1(s/)) .
BeAct(s) ses
Consider an arbitrary HD-schedulBr. As beforepx = D(o) ands = last(e¢). Then:

k .
qP (o) = (Z W(n) - Pt -LB) (0)

k .
= (@) -Ppp-ip)o)+ ( > 1‘//(71) “Pp.g-Ppp -£3> (o)
n=i-+
=y () - P(s, o, B)

k .
+ X Y- Y Pprla,ag—s") (Ppg-ig)o—s)
n=i+1 s'e§ T —

=P(s,a,s") n—i -
(o—s")-component ofP}, i p

=y (@) - P(s, o, B)

k .
+> P(s,o,5") - < > W) -Ppp '£B> (¢ > s)

s'eS n=i+1

gBa(0=5)
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< lp(l) : P(Sv o, B)
+ 3 P(s,a,5") - giva(s) (* by induction hypothesis *)
s'eS

< qi(s). O

As a result, the vector computed by Algorithinis state-wise optimal under all HD-
schedulers, up to the accuracy

4. Other scheduling disciplines

By Theorem 5 it follows that our greedy algorithm computes the maximum probability for
timed reachability under all HD-schedulers. In this section, we show that this also applies to
any MR-, MD-, and, more importantly, to any HR-scheduler. In addition, we will show that
this does neither hold for SMD-schedulers nor for schedulers that can base their decision on
the timing of actions. Finally, it is shown that adding a simple notion of fairness is invariant
under these maximum probabilities for HD-schedulers.

Throughout this section, we assume a fixed uniform CTMRIP

4.1. Markovian deterministic schedulers

In the sequel, lek € S be a statef >0 a time point andB C S a set of states.
Theorem 5 states that the vector computed by Algorithm 1 is state-wise optimal under
all HD-schedulers, up to a given accuracys Algorithm 1 calculates, in fact, a truncation
of an MD-scheduler, it directly follows that the suprema under MD- and HD-schedulers
agree:

Theorem 6. supycyp Pro(s, N B) = suppeyp Pro(s, N B).
4.2. History-dependent randomized schedulers

The next result yields that the supremum under HD- and HR-schedulers coincides:

Theorem 7. sUPpenp Pro(s, = B) = sUppepr Pro(s. < B).

Proof. The proofis based on the cylinder set construction fora CTMC given in Se8on
We have that under each HD-scheduler

<t . <t
Prp(s, ~ B) = lim Prp(s, ~ <, B),
n—o0

where the subscript.n denotes thaB has to be reached within at massteps.

Hence, it suffices to show that for fixede N there is a finite family(D;);c s, (with J,
an index set) of HD-schedulers such that the measuge iRduced by an HR-scheduler
D’ for the cylinder sets induced by path fragments consisting toénsitions is a convex
combination of the measuresPri € J,. We prove this claim by induction on
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Base of induction = 0: The basic cylinder induced by a path fragment with O transitions
(i.e., a path fragment consisting just of a statés the set of all paths that start in state
The measure of this set (for starting stetés 1 under all schedulers.

Induction stepr = n+1: Assume by induction hypothesis that there is a finite family
(Dj)iey, of HD-schedulers and valugs < [0, 1],i € J, with Zieln pi = 1 and for all

20,10

basic cylinder€ = C(so m-tdn-1, oy we have:

Prp(C) = Y pi - Prp,(C)

ieJ,

(with the obvious lifting of the cylinders introduced in section refmcprelim from action-
abstract to action-labelled paths).
Let F denote the set of functions

(S xAct"t x § — Act

such thatf (¢ — s) € Act(s). That is,F is a finite set of schedulers, containing those HD-
schedulers that decide afiet1 steps. Foif € F, letu, : (S x Act)’t1 x § — Distr(Act)
be the trivial probability distribution induced by, defined by:

_[1 i f@=2
uf(ff)(“)—{o otherwise.

We now consider how to construct any HR-schedubehich decides after+1 steps. Each
functiony : (S x Acty"*1 x § — Distr(Act) (such thatu(c)(x) > 0 impliesa € Act(s)

for all ¢ of lengthrn+1) can be written as a finite convex combination of the (distributions
induced by the) functiong € F:

n= Z qr - Ky whereZ qf:]_ and qu]fél.
feF feF

for appropriately choseqy, f € F. This fact can be seen as follows.
(1) Choose somg¢i € F such that for alb anda: f1(0) = « impliesu(a)(a) > 0. Let

a5, = Minfu(e)(f1(0)) | o € (S x Act"* x §)

be the minimal probability with which some action may be selected after having per-
formedn+1 steps, and

wo)(w) —qp if filo) = a,

Halo, @) = { 11() (1) otherwise

be the remaining probability mass. Then, foraillve have:

> wme,)=1-gqp

aeAct

(2) As a next step, we choose sorfiee F such that for alle anda: f2(o) = o implies
u1(o, o) > 0. (Note the slight, but essential, difference wjth) Let

a7, = min{uy (o, f2(0)) |0 € (S x Ach" ! x S}
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be the minimal probability with which some action may be selected after having per-

formedn+1 stepsand after having “spent” the probability mass to select an action
according tofy, and

_ o, ) —qp, i fa(o) =«
Ha(0, ) = { 11(0, ), otherwise

be the remaining probability mass after having spent probalilityThen, for allg:

> o) =1—q5p —qp.
aeAct
(3) Thisrecipe is repeated uni} (s, ) = O for alle andx, i.e., until there is no probability
mass left to be distributed among possible actions.
We now consider the functiomwherepu(o)(«) = D'(0)(x). Letg ;s be as above, i.e.,

D'(o)= Y qf-us(o,-) foralloe (S xActyxs. (3)
feF
Leto = so—20 59 25 ..., Bl g s 0 € (S x Ach"! x § andC be a basic

cylinder which relies on the time-abstract pattbut which has arbitrary time-intervals:

o0, I Op—1,1n—1 O\ 1,
C = Clso =80 -+ =520 5 =2 501).

Furthermore, let

C' = C(so o0, 1o 51 o a0 _On-1.dn-1

Sp).

Now, settingP(s, o, 1, s") = P(s, o, s') (e~ EG-01 — e=EG.1"y with 1 = inf I,¢/ = sup1,
we have

PrD/ (C) = PrD/ (C/) . D/(G)(fxn) . P(Sna p s ]n’ 5n+l)
NP S P, (C) - D' (0)(0n) - Pl . Ly Sus1)

iely,
€)
= > pi-Prp,(C) - Y qr - pp(0) (@) - Plsu, %, Ins Snt1)
icl, feF

= Z Pi-qf- PrDi (C/) : .uf(g)(an) -P(su, o, Iny Spt1)
(i, f)eyxF ~——
pi.fi= Prp, ;(C):=

= > iy Prp (0,
G, f)edyxF '

whereD; y is an HD-scheduler which agrees with on Jy<,, <, (S x Ach™ x S and
with £ on (S x Act)"*1 x S. We may now defind, 11 = J, x F. O

Let us illustrate the crucial part of the proof, the recipe to calculate the wejghtby
means of a small example. Suppose that there are two pa#imgls’ say, withlast(s) #
last(¢’), both of lengthn+1. Let Act(last(c)) = {a«, f} and Act(last(¢’)) = {a, 7}

Assumey is defined such that(c) () = 2, u(0)() = &, u(e")(@) = 3 andu(a)(y) = 3.



20 C. Baier et al. / Theoretical Computer Science 345 (2005) 2—-26

e We choosefi(0) = fi(¢') = a. Thengy, = min(2, ) = 1, whenceu (0)(@) = 3,

w1 (6" (o) = 0, and all other values qf;(-)(-) agree withu(-)(-).
e We now choose (o) = xand f2(¢')=y. Theng ,=min(3, $) = 3, whenceu,(0)(2) =

0, us(a")(y) = %, and all other values qf,(-)(-) agree withu, (-)(-). The only remaining

non-zero value ig(0)(B) = .
e We now chooses(e) = fand fo(a’) = y. Theng, = min(, ) = &, whenceus(-)(-)

is constant 0. Thus the process terminates after 3 steps wjtiwhich assigns probability

0 to all paths and all actions.

A few remarks are in order. Theore®and 7 show that the suprema for the probabilities
to reach a set of goal states within a given time bound under the classes of scheduler MD,
HD, MR and HR coincide. (For MR-schedulers this stems from the facMitat: MR C
HR.) For probabilities of some other types of events, however, such correspondence can
not always be established. That is, in general, randomized schedulers can be better than
deterministic schedulers. This observation was made by Beutler and Ross [11] who showed
that the maximum of time-average rewards under randomized schedulers might be larger
than under deterministic schedulers. In fact, the crux of the proof of Theorem 7 is the

observation that the values R, 5»'@ B) converge to P (s, St B), where the subscript
<n denotes thaB has to be reached within at massteps. This property is not guaranteed
for other types of events.

4.3. Stationary Markovian deterministic schedulers

Different from the discrete time setting, where SMD-schedulers suffice for maximum
probabilities to reach a set of goal states within a given number of steps [12,9], this does not
hold for the corresponding question—interpreting the number of steps in the discrete case
as elapse of time—on CTMDPs. A counterexample is given in Fig. 1(a). Here, states are
represented as circles and there is an edge betweenstatds’ labelled with action if
and only ifR (s, a, s’) > 0.Action labels and rates are indicated at each edgeR Let{ s> },
and consider the only two relevant SMD-schedulérg, selecting action in statesg, and
Dy, selecting actiorf. Comparing them wittDg,, i.e., the scheduler that after selectjfig
once switches to selectingin statesp, we find that for a certain range of time bournds
Dg,, outperforms bothDy and Dy Intuitively, the probability of stuttering in statg (by
choosings initially) may influence the remaining time to reaBho an extent that it becomes

profitable to continue choosing For: = 0.5, for instance, Fﬁm (so, 20 B) = 0.4152,
whereas foD, andDg these probabilities are8935 and (8996, respectively. Thus, SMD-
schedulers are not expressive enough for maximum probabilities to reach a set of goal states
within a given time bound under all HD/HR-schedulers. For SMR-schedulers this is an open
issue.

4.4. Timed schedulers

This paper only considers schedulers that do not take the timing information into account.
It is, however, worth noticing that timed history-dependent (THD) schedulers are more
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(b)

Fig. 1. Uniform CTMDPs where (a) SMD-schedulers are less powerful, and (b) where THD schedulers are more
powerful than HD-schedulers.

0.8

0.6

0.4}

0.2 1-exp(-x) — 1
(1-exp(-2*X))*(1+2*X) ===

0 0.5 1 1.5 2 2.5 3 3.5 4

Fig. 2. Functions + e’ and 1— e~ (1 + 2r) for  >0.

powerful than time-abstract history-dependent schedulers (class HD and HR), in the sense
that it is possible that:

<t <t
sup Prp(s,~ B) > sup Prp(s, ~ B).
DeTHD DeHD

Here, THD refers to the class of schedulers given by functibns(S x Actx R.g)* x § —

Act (only choosing fromAct(s) for any path ending in statg, i.e., THD-schedulers are able

to observe the time points of state changes. To see that they may yield a higher probability,
consider for example the uniform CTMDP in Fiixb), with B = {s3}. In this example, it
depends on the time instance of entesinghether itis more profitable to continue choosing

o or 5. To be more precise, consider the only relevant HD-schedulgrg¢choosinge: in

s1) and Dy (choosingf). Fig. 2 plots the probability to reach starting from state; if
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choosingD,, respectivelyDg, given by

Prp, 1. S By=1—e" and Pp,(s1. > B) = 1— e 2-(1+20).

Let 7o be the time instance satisfying e= 1+21y, i.e., the time point where both plots
cross. The THD-scheduld? defined byD (so % s1) = a if 7—u < 1o andf§ otherwise,
maximizes the probability to readh= { s3 } from statesg within ¢ time units, and obviously
outperforms bottD,, and Dy.

4.5. Fairness

We conclude this section by considering a simple notion of fairness for schedulers. Let
o = so 2000, o) 2, ... pe an infinite path. Infinite path is calledfair if and only
if for each states that occurs infinitely often i and each action € Act(s), there are
infinitely many indices: such that(s,, «,) = (s, «). Stated in words, for any state that is
visited infinitely often, each of its outgoing actions cannot have been selected only a finite
number of times. (Note that this notion of fairness is rather weak; for instance, a scheduler
that finitely many times selects the same action in a state that is visited only finitely often—
without ever considering one of the other possibilities—is considered to be fair.) Scheduler
D (of some class) is called fair if and only if

Prp{o € Path(s) |gisfair} = 1
for all statess € S. Let FHD denote the set of all fair HD-schedulers. The following result
states that maximum probabilities under HD-schedulers and their fair counterparts coincide:
<t <t
Theorem 8. suppcqp Pro(s, ~ B) = SUPperpp Pro(s, ~ B).

Proof. As FHD < HD we have:

<1t <1t
sup Prp(s,~ B)> sup Prp(s, ~ B).
DeHD DeFHD

The converse (i.ex< instead of>) holds because for any HD-schedul@and any: > 0
there is a fair HD-scheduldd’ with

Pry (s, <X B)>Prp(s, > B) — .

To constructD’, selectk € N such that:

k
(Z Y P -LB) (5)>Prp(s. 34 B) — e,
n=0
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(b)

Fig. 3. An example illustrating why uniformization on CTMDPs is not obvious.

Then, we defined)’ as a fair HD-scheduler which agrees withfor all paths consisting of
at mostk transitions. (Note that such a fair extension is always possible.) Then,

P'I")’B(s, 0) = P’Z)“B(s, o) foralls € S,oe ST andn<k.

Hence,

k
Pry(s, = B) > <ZO¢(”)'PH’,B'£B> (5)

k
= (Z W)P’L’),Bzg) $)2Prp(s, ¥ By—e. O
n=0

5. The uniformization problem

Algorithm 1 assumes that the CTMDP under consideration is uniform. We now discuss
the case in which the CTMDP is not uniform, i.e., the exit rdigs, o) are not guaranteed
to be identical for any stateand anyx € Act(s).

Inthe setting of CTMCs, uniformization [26] can be employed to transform a CTMC into
a uniform one while keeping transient probabilities invariant. For CTMDPs, a similar recipe
might be followed. However, a simple adaptation of the uniformization approach for CTMCs
(as proposed, for instance, in [10,31]) to CTMDPs is not adequate for our purpose. The
problem with such an approach is that the correspondence between schedulers on a uniform
CTMDP M’ and its original CTMDPM s lost. (A similar observation has been made
by Beutler and Ross [11] when comparing MD- and MR-schedulers for computing time-
average rewards.) This can be illustrated as follows. Applying “standard” uniformization
to a CTMDPM = (S, Act, R) with E > maXes.qcacr E (s, ) would yield the CTMDP
unif (M, E) = (S, Act, R") with

R(s, o, s") if s £,
R'(s,o,s) =1 R(s,a,s5)+E—E(s,a) ifs=s"anda € Act(s),
0 otherwise.
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That is, each stateis equipped with a self-loop for each actior Act(s) if E exceeds the
total exit rate to take amtransition froms. Applying this recipe to the CTMDRA depicted
inFig.3(a) forE = 4resultsinthe CTMDRniIf (M, E)in Fig. 3(b). The latter has appeared

in Fig. 1(a) already. It is not difficult to see that for aKyscheduler on\ there exists a
corresponding -scheduler onnif (M, E), as any choice iM can be matched by the same
choice inunif (M, E). The reverse, however, does not hold. For instance, the MD-scheduler
Dg, onunif (M, E) discussed in Section 4 does not correspond to any MD-schethdar

M, since the self-loop in statg in unif (M, E) cannot be mimicked by\. Recall from

Section 4 that Flf,;x (so, pha {s2}) is higher than the respective probabilities oy and

Dy in unif (M, E). The latter in turn corresponds to the only relevant HD-schedulg¢ton

As a consequence, the maximum probability (obtained for some MD-scheduler generated
by Algorithm 1) to reach the sét> } from statesg in 0.5 time units orunif (M, E) is higher

than the probability for any HD-scheduler.ivt.

6. Concluding remarks

This paper considered the problem of computing the maximum probability to reach a set
of goal states within a given time bound in a uniform CTMDP. It is shown that truncated
Markovian deterministic schedulers suffice for approximating a solution to this problem in
an efficient manner for (time-abstract) history-dependent and Markovian schedulers, both
deterministic and randomized ones. This does neither apply to timed history-dependent
schedulers nor to Markovian stationary (i.e., simple) schedulers. The question whether
SMR-schedulers may yield the same optimum (or a smaller optimum) is open.

Although all results in this paper have been presented for maximum probabilities, the
same results can be obtained for minimum probabilities, i.e.,

inf Prp(s, > B)
DeX

up to some accuracey* Instead of a greedy policy that maximizes the probability to reach
the set of goal states in each step of the computation, the algorithm in this case minimizes
this quantity in each step.

The presented numerical algorithm is remarkably efficient. Its worst-case time complexity
is in O(E-t-N2-M) whereE is the unique exit rate of the uniform CTMDPjs the time
bound N is the number of states, amlis the number of actions. Thus, compared to CTMCs,
the increase in computational effort is linear in the number of actions in the CTMDP, i.e.,
the amount of nondeterminism, but no more than that. This is the best we can hope for,
since the time complexity of computing the corresponding probability in a CTMC is in
O(E-t-N?) [6].

It is not obvious how to extend the presented results beyond uniform CTMDPs, because
the basic concept of uniformization blurs the distinction between timed and time-abstract

4 Only TheorenB does not hold when the supremum over all fair schedulers is replaced by the infimum over
all fair schedulers. Sg@] for a counterexample for DTMDPs.
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schedulers. As yet, it is open whether a variation of uniformization can be used to reduce
the timed reachability problem for general CTMDPs to that of uniform CTMDPs.
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