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A solution to the tennis ball problem

Anna de Mier Marc Noy

Universitat Politècnica de Catalunya∗

Abstract

We present a complete solution to the so-called tennis ball problem, which is equiv-
alent to counting lattice paths in the plane that use North and East steps and lie
between certain boundaries. The solution takes the form of explicit expressions for the
corresponding generating functions.

Our method is based on the properties of Tutte polynomials of matroids associated
to lattice paths. We also show how the same method provides a solution to a wide
generalization of the problem.

1 Introduction

The statement of the tennis ball problem is the following. There are 2n balls numbered
1, 2, 3, . . . , 2n. In the first turn balls 1 and 2 are put into a basket and one of them is
removed. In the second turn balls 3 and 4 are put into the basket and one of the three
remaining balls is removed. Next balls 5 and 6 go in and one of the four remaining balls is
removed. The game is played n turns and at the end there are exactly n balls outside the
basket. The question is how many different sets of balls may we have at the end outside
the basket.

It is easy to reformulate the problem in terms of lattice paths in the plane that use steps
E = (1, 0) and N = (0, 1). It amounts to counting the number of lattice paths from (0, 0) to
(n, n) that never go above the path NE · · ·NE = (NE)n. Indeed, if π = π1π2 . . . π2n−1π2n
is such a path, a moment’s thought shows that we can identify the indices i such that
π2n−i+1 is a N step with the labels of balls that end up outside the basket. The number of
such paths is well-known to be a Catalan number, and this is the answer obtained in [2].

The problem can be generalized as follows [4]. We are given positive integers t < s and
sn labelled balls. In the first turn balls 1, . . . , s go into the basket and t of them are removed.
In the second turn balls s + 1, . . . , 2s go into the basket and t among the remaining ones
are removed. After n turns, tn balls lie outside the basket, and again the question is how
many different sets of balls may we have at the end. Letting k = t, l = s − t, the problem
is seen as before to be equivalent to counting the number of lattice paths from (0, 0) to
(ln, kn) that use N and E steps and never go above the path NkEl · · ·NkEl = (NkEl)n.
This is the version of the problem we solve in this paper.
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From now on we concentrate on lattice paths that useN and E steps. To our knowledge,
the only cases solved so far are k = 1 and k = l = 2. The case k = 1 is straightforward, the
answer being a generalized Catalan number 1

(l−1)n+1

(ln
n

)
. The case k = l = 2 (corresponding

to the original problem when s = 4, t = 2) is solved in [4] using recurrence equations; here
we include a direct solution. This case is illustrated in Fig. 1, to which we refer next.
A path π not above (N2E2)n is “almost” a Catalan path, in the sense that it can raise
above the dashed diagonal line only through the dotted points. But clearly between two
consecutive dotted points hit by π we must have an E step, followed by a Catalan path of
odd semilength, followed by a N step. Thus, π is essentially a sequence of Catalan paths
of odd semilength. If G(z) =

∑
n

1
n+1

(2n
n

)
zn is the generating function for the Catalan

numbers, take the odd part Go(z) = (G(z) − G(−z))/2. Then expand 1/(1 − zGo(z)) to
obtain the sequence 1, 6, 53, 554, 6363, . . . , which agrees with the results in [4].

P
π

Figure 1: The path π = EENNNEEEENNNNNEE not above P = (N2E2)4. It has
i(π) = 3 and e(π) = 2, corresponding to the steps underlined.

Let P be a lattice path from (0, 0) to (m, r), and let b(P ) be the number of paths from
(0, 0) to (m, r) that never go above P . If PN denotes the path obtained from P by adding
a N step at the end of P , then clearly b(P ) = b(PN). However, it is not possible to express
b(PE) simply in terms of b(P ), where PE has the obvious meaning. As is often the case
in counting problems, one has to enrich the objects under enumeration with additional
parameters that allow suitable recursive decompositions. This is precisely what is done
here: equations (2) and (3) in the next section contain variables x and y, corresponding to
two parameters that we define on lattice paths not above a given path P . These equations
are the key to our solution.

The basis of our approach is the connection between lattice paths and matroids es-
tablished in [1], where the link with the tennis ball problem was already remarked. For
completeness, we recall the basic facts needed from [1] in the next section. In Section 3 we
present our solution to the tennis ball problem, in the form of explicit expressions for the
corresponding generating functions; see Theorem 1. In Section 4 we show how the same
method can be applied to a more general problem. We conclude with some remarks.
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2 Preliminaries

The contents of this section are taken mainly from [1], where the reader can find additional
background and references on matroids, Tutte polynomials and lattice path enumeration.

A matroid is a pair (E,B) consisting of a finite set E and a nonempty collection B of
subsets of E, called bases of the matroid, that satisfy the following conditions: (1) No set
in B properly contains another set in B, and (2) for each pair of distinct sets B,B′ in B
and for each element x ∈ B − B′, there is an element y ∈ B′ − B such that (B − x) ∪ y is
in B.

Let P be a lattice path from (0, 0) to (m, r). Associated to P there is a matroid M [P ]
on the set {1, 2, . . . ,m + r} whose bases are in one-to-one correspondence with the paths
from (0, 0) to (m, r) that never go above P . Given such a path π = π1π2 . . . πm+r, the basis
corresponding to π consists of the indices i such that πi is a N step. Hence, counting bases
of M [P ] is the same as counting lattice paths that never go above P .

For any matroid M there is a two-variable polynomial with non-negative integer coeffi-
cients, the Tutte polynomial t(M ;x, y). It was introduced by Tutte [6] and presently plays
an important role in combinatorics and related areas (see [8]). The key property in this
context is that t(M ; 1, 1) equals the number of bases of M .

Given a path P as above, there is a direct combinatorial interpretation of the coefficients
of t(M [P ];x, y). For a path π not above P , let i(π) be the number of N steps that π has in
common with P , and let e(π) be the number of E steps of π before the first N step, which
is 0 if π starts with a N step. See Fig. 1 for an illustration.

Then we have (see [1, Th. 5.4])

t(M [P ];x, y) =
∑

π

xi(π)ye(π), (1)

where the sum is over all paths π not above P . A direct consequence is that t(M [P ]; 1, 1)
is the number of such paths.

Furthermore, for the matroids M [P ] there is a rule for computing the Tutte polynomial
that we use repeatedly (see [1, Section 6]). If PN and PE denote the paths obtained from
P by adding a N step and an E step at the end of P , respectively, then

t(M [PN ];x, y) = x t(M [P ], x, y), (2)

t(M [PE];x, y) =
x

x− 1
t(M [P ], x, y) +

(
y −

x

x− 1

)
t(M [P ]; 1, y). (3)

The right-hand side of (3) is actually a polynomial, since x − 1 divides t(M [P ];x, y) −
t(M [P ]; 1, y). The key observation here is that we cannot simply set x = y = 1 in (3) to
obtain an equation linking t(M [PE]; 1, 1) and t(M [P ]; 1, 1).

For those familiar with matroid theory, we remark thatM [PN ] andM [PE] are obtained
from M [P ], respectively, by adding an isthmus and taking a free extension; it is known that
formulas (2) and (3) correspond precisely to the effect these two operations have on the
Tutte polynomial of an arbitrary matroid.

From (1) and the definition of i(π) and e(π), equation (2) is clear, since any path
associated to M [PN ] has to use the last N step. For completeness, we include a direct
proof of equation (3).
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We first rewrite the right-hand side of (3) as

x

x− 1
(t(M [P ];x, y) − t(M [P ]; 1, y)) + yt(M [P ]; 1, y) =

∑

π

x

x− 1
ye(π)(xi(π) − 1) + ye(π)+1 =

∑

π

ye(π)(y + x+ x2 + · · ·+ xi(π)),

where the sums are taken over all paths π that do not go above P .
To prove the formula, for each path π not above P we find i(π)+1 paths not above PE

such that their contribution to t(M [PE];x, y) is ye(π)(y + x + x2 + · · · + xi(π)). Consider
first the path π0 = Eπ; it clearly does not go above PE and its contribution to the Tutte
polynomial is ye(π)+1. Now for each j with 1 ≤ j ≤ i(π), define the path πj as the path
obtained from π by inserting an E step after the jth N step that π has in common with
P (see Fig. 2). The path πj has exactly j N steps in common with PE, and begins with
e(π) E steps.

PE

1

P

π

π2π0

PE PE

π

Figure 2: Illustrating the combinatorial proof of formula (3).

It remains only to show that each contribution to the Tutte polynomial of M [PE] arises
as described above. Let π′ be a path that never goes above PE and consider the last N
step that π′ has in common with PE; clearly the next step must be E. Let π̃ be the path
obtained after removing this E step. Since π′ had no N steps in common with PE after
the E step removed, the path π̃ does not go above P . Thus the path π′ can be obtained
from π̃ by adding an E step after the i(π′)-th N step that π̃ has in common with P , and
hence π′ arises from π̃ as in the previous paragraph. It is easy to show that π′ cannot be
obtained in any other way by applying the procedure described above, and this finishes the
proof.
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3 Main result

Let k, l be fixed positive integers, and let Pn = (NkEl)n. Our goal is to count the number
of lattice paths from (0, 0) to (ln, kn) that never go above Pn. From the considerations in
the previous section, this is the same as computing t(M [Pn]; 1, 1). Let

An = An(x, y) = t(M [Pn];x, y).

By convention, P0 is the empty path and A0 = 1.
In order to simplify the notation we introduce the following operator Φ on two-variable

polynomials:

ΦA(x, y) =
x

x− 1
A(x, y) +

(
y −

x

x− 1

)
A(1, y).

Then, by equations (2) and (3) we have

An+1 = Φl(xkAn),

where Φi denotes the operator Φ applied i times.
For each n ≥ 0 and i = 1, . . . , l, we define polynomials Bi,n(x, y) and Ci,n(y) as

Bi,n = Φi
(
xkAn(x, y)

)
,

Ci,n = Bi,n(1, y).

We also set C0,n(y) = An(1, y). Notice that Bl,n = An+1, and C0,n(1) = An(1, 1) is the
quantity we wish to compute.

Then, by the definition of Φ, we have:

B1,n = x
x−1x

kAn +
(
y − x

x−1

)
C0,n;

B2,n = x
x−1B1,n +

(
y − x

x−1

)
C1,n;

· · ·

Bl,n = x
x−1Bl−1,n +

(
y − x

x−1

)
Cl−1,n;

An+1 = Bl,n.

In order to solve these equations, we introduce the following generating functions in the
variable z (but recall the coefficients are polynomials in x and y):

A =
∑

n≥0

Anz
n, Ci =

∑

n≥0

Ci,nz
n, i = 0, . . . , l.

We start from the last equation An+1 = Bl,n and substitute repeatedly the value of Bi,n

from the previous equation. Taking into account that
∑

nAn+1z
n = (A − 1)/z, a simple

computation yields

A− 1

z
=

xk+l

(x− 1)l
A+ (yx− y − x)

l∑

i=1

xi−1

(x− 1)i
Cl−i.
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We now set y = 1 and obtain

A
(
(x− 1)l − zxk+l

)
= (x− 1)l − z

l∑

i=1

xi−1(x− 1)l−i Cl−i, (4)

where it is understood that from now on we have set y = 1 in the series A and Ci.
By Puiseux’s theorem (see [5, Chap. 6]), the algebraic equation in w

(w − 1)l − zwk+l = 0 (5)

has k + l solutions in the field C
fra((z)) = {

∑
n≥n0

anz
n/N} of fractional Laurent series.

Proposition 6.1.8 in [5] tells us that exactly l of them are fractional power series (without
negative powers of z); let them be w1(z), . . . , wl(z).

We substitute x = wj in (4) for j = 1, . . . , l, so that the left-hand side vanishes, and
obtain a system of l linear equations in C0, C1, . . . , Cl−1, whose coefficients are expressions
in the wj, namely

l∑

i=1

wi−1
j (wj − 1)l−izCl−i = (wj − 1)l, j = 1, . . . , l. (6)

Notice that, since the Ci are (ordinary) power series, the solutions w of (5) that we substi-
tute in (4) cannot have negative powers of z, hence they must be w1, . . . , wl. We remark
the similarity of this technique with the one devised by Tutte for counting rooted planar
maps (see, for instance, [7]).

It remains only to solve (6) to obtain the desired series C0 =
∑

nAn(1, 1)z
n. The

system (6) can we written as

l−1∑

i=0

(
wj

wj − 1

)i

zCl−i−1 = wj − 1, j = 1, . . . , l.

The left-hand sides of the previous equations can be viewed as the result of evaluating the
polynomial

∑l−1
i=0(zCl−i−1)X

i of degree l−1 at X = wj/(wj−1), for j with 1 ≤ j ≤ l. Using
Lagrange’s interpolation formulas, we get that the coefficient of X l−1 in this polynomial is

zC0 =
l∑

j=1

wj − 1
∏

i 6=j

(
wj

wj−1 −
wi

wi−1

) .

By straightforward manipulation this last expression is equal to

−
l∏

j=1

(1− wj)
l∑

j=1

(wj − 1)l−1

∏
i 6=j(wj − wi)

= −
l∏

j=1

(1− wj),

where the last equality follows from an identity on symmetric functions (set r = 0 in
Exercise 7.4 in [5]).

Thus we have proved the following result.
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Theorem 1. Let k, l be positive integers. Let qn be the number of lattice paths from (0, 0)
to (ln, kn) that never go above the path (NkEl)n, and let w1, . . . , wl be the unique solutions

of the equation

(w − 1)l − zwk+l = 0

that are fractional power series. Then the generating function Q(z) =
∑

n≥0 qnz
n is given

by

Q(z) =
−1

z
(1− w1) · · · (1− wl).

Remark that, by symmetry, the number of paths not above (N lEk)n must be the same
as in Theorem 1, although the algebraic functions involved in the solution are roots of a
different equation.

In the particular case k = l the solution can be expressed directly in terms of the
generating function G(z) =

∑
n

1
n+1

(2n
n

)
zn for the Catalan numbers, which satisfies the

quadratic equation G(z) = 1 + zG(z)2. Indeed, (5) can be rewritten as

w = 1 + z1/kw2,

whose (fractional) power series solutions are G(ζjz1/k), j = 0, . . . , k − 1, where ζ is a
primitive k-th root of unity. For instance, for k = l = 3 (corresponding to s = 6, t = 3 in
the original problem), ζ = exp(2πi/3) and we obtain the solution

−1

z
(1−G(z1/3))(1 −G(ζz1/3))(1−G(ζ2z1/3)) =

1 + 20z + 662z2 + 26780z3 + 1205961z4 + 58050204z5 + · · · .

In the same way, if l divides k and we set p = (k+ l)/l, the solution can be expressed in
terms of the generating function

∑
n

1
(p−1)n+1

(pn
n

)
zn for generalized Catalan numbers; the

details are left to the reader. As an example, for k = 4, l = 2, we obtain the series

−1

z
(1−H(z1/2))(1−H(−z1/2)) =

1 + 15z + 360z2 + 10463z3 + 337269z4 + 11599668z5 + · · · ,

where H(z) =
∑

n
1

2n+1

(3n
n

)
satisfies H(z) = 1 + zH(z)3.

4 A further generalization

In this section we solve a further generalization of the tennis ball problem. Given fixed
positive integers s1, t1, . . . , sr, tr with ti < si for all i, let s =

∑
si, t =

∑
ti. There are

sn labelled balls. In the first turn we do the following: balls 1, . . . , s1 go into the basket
and t1 of them are removed; then balls s1 + 1, . . . , s1 + s2 go into the basket and among
the remaining ones t2 are removed; this goes on until we introduce balls s − sr + 1, . . . , s,
and remove tr balls. After n turns there are tn balls outside the basket and the question
is again how many different sets of tn balls may we have at the end.

The equivalent path counting problem is: given k1, l1, . . . , kr, lr positive integers with
k =

∑
ki, l =

∑
li, count the number of lattice paths from (0, 0) to (ln, kn) that never
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go above the path Pn = (Nk1El1 · · ·NkrElr )n. The solution parallels the one presented in
Section 3. We keep the notations and let An = t(M [Pn];x, y), so that

An+1 = Φlr(xkr · · ·Φl1(xk1An) · · · ).

As before, we introduce l polynomials Bi,n(x, y) and Ci,n(y) = Bi,n(1, y), but the definition
here is a bit more involved:

Bi,n = Φi(xk1An), i = 1, . . . , l1;

Bl1+i,n = Φi(xk2Bl1,n), i = 1, . . . , l2;

Bl1+l2+i,n = Φi(xk3Bl1+l2,n), i = 1, . . . , l3;

· · ·

Bl−lr+i,n = Φi(xkrBl−lr,n), i = 1, . . . , lr.

(7)

We also set C0,n(y) = An(1, y). Again, from the definition of Φ, we obtain a set of equations
involving An, An+1 = Bl,n, the Bi,n and Ci,n. We define generating functions A and Ci

(i = 0, . . . , l) as in Section 3.
Starting with An+1 = Bl,n, we substitute repeatedly the values of the Bi,n from previous

equations and set y = 1. After a simple computation we arrive at

A
(
(x− 1)l − zxk+l

)
= (x− 1)l + z U(x,C0, . . . , Cl−1), (8)

where U is a polynomial in the variables x,C0, . . . , Cl−1. Observe that the difference
between (8) and equation (4) is that now U is not a concrete expression but a certain
polynomial that depends on the particular values of the ki and li.

Let w1, . . . , wl be again the power series solutions of (5). Substituting x = wj in (8)
for j = 1, . . . , l, we obtain a system of linear equations in the Ci. Since the coefficients
are rational functions in the wj , the solution consists also of rational functions; they are
necessarily symmetric since the wj , being conjugate roots of the same algebraic equation,
are indistinguishable.

Thus we have proved the following result.

Theorem 2. Let k1, l1, . . . , kr, lr be positive integers, and let k =
∑

ki, l =
∑

li. Let

qn be the number of lattice paths from (0, 0) to (ln, kn) that never go above the path

(Nk1El1 · · ·NkrElr)n, and let w1, . . . , wl be the unique solutions of the equation

(w − 1)l − zwk+l = 0

that are fractional power series. Then the generating function Q(z) =
∑

n≥0 qnz
n is given

by

Q(z) =
1

z
R(w1, . . . , wl),

where R is a computable symmetric rational function of w1, . . . , wl.

As an example, let r = 2 and (k1, l1, k2, l2) = (2, 2, 1, 1), so that k = l = 3. Solving the
corresponding linear system we obtain

R =
(1− w1)(1 − w2)(1− w3)

2w1w2w3 − (w1w2 + w1w3 + w2w3)
,

8



and

Q(z) =
1

z
R = 1 + 16z + 503z2 + 19904z3 + 885500z4 + 42298944z5 + · · · .

It should be clear that for any values of the ki and li the rational function R can be
computed effectively. In fact, a simple computer program could be written that on input
k1, l1, . . . , kr, lr, outputs R.

5 Concluding Remarks

It is possible to obtain an expression for the generating function of the full Tutte polynomi-
als An(x, y) defined in Section 3. We have to find the values of C0, C1, . . . , Cl−1 satisfying
the system (6) and substitute back into (4). After some algebraic manipulation, the final
expression becomes

∑

n≥0

An(x, y)z
n =

−(x− w1) · · · (x− wl)

(zxk+l − (x− 1)l)(y − w1(y − 1)) · · · (y − wl(y − 1))
.

Taking x = y = 1 we recover the formula stated in Theorem 1.
On the other hand, references [3] and [4] also study a different question on the tennis

ball problem, namely to compute the sum of the labels of the balls outside the basket for
all possible configurations. For a given lattice path Pn, this amounts to computing the sum
of all elements in all bases of the matroid M [Pn]. We remark that this quantity does not
appear to be computable from the corresponding Tutte polynomials alone.

Finally, as already mentioned, the technique of forcing an expression to vanish by
substituting algebraic functions was introduced by Tutte in his landmark papers on the
enumeration of planar maps. Thus the present paper draws in more than one way on the
work of the late William Tutte.
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