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Département d’informatique et de recherche opérationnelle
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Abstract

A non-local box is a virtual device that has the following property: given that Alice inputs a bit at

her end of the device and that Bob does likewise, it produces two bits, one at Alice’s end and one at

Bob’s end, such that the XOR of the outputs is equal to the AND of the inputs. This box, inspired

from the CHSH inequality, was first proposed by Popescu and Rohrlich to examine the question: given

that a maximally entangled pair of qubits is non-local, why is it not maximally non-local? We believe

that understanding the power of this box will yield insight into the non-locality of quantum mechanics.

It was shown recently by Cerf, Gisin, Massar and Popescu, that this imaginary device is able to simulate

correlations from any measurement on a singlet state. Here, we show that the non-local box can in fact

do much more: through the simulation of the magic square pseudo-telepathy game and the Mermin-

GHZ pseudo-telepathy game, we show that the non-local box can simulate quantum correlations that

no entangled pair of qubits can, in a bipartite scenario and even in a multi-party scenario. Finally we

show that a single non-local box cannot simulate all quantum correlations and propose a generalization

for a multi-party non-local box. In particular, we show quantum correlations whose simulation requires

an exponential amount of non-local boxes, in the number of maximally entangled qubit pairs.

1 Introduction

In a 1964 influential paper, Bell showed that there exist correlations that can be obtained from bipartite
measurements of a quantum state that no local realistic theory can reproduce [1]. From this, if one believes
that quantum mechanics is a correct description of the world, one is forced to conclude that Nature is
fundamentally non-local. This astounding discovery has lead to a rich and still developing literature. One
of the best known papers in the field is the 1969 experimental proposition of Clauser, Horne, Shimony and
Holt [2]. The authors put forth an inequality which all local hidden variable (LHV) models must satisfy:

|〈A1B1〉+ 〈A1B2〉+ 〈A2B1〉 − 〈A2B2〉| ≤ 2, (1)

where A1 and A2 are local spin measurements of a spin-half particle on Alice’s subsystem and B1 and B2

are measurements on Bob’s subsystem. While any LHV model has to abide by this rule, quantum mechanics
can violate Inequality 1 by an appropriate choice of measurements on a maximally entangled state, such as
|ψ−〉 = (|+−〉 − | −+〉)/

√
2:

|〈A1B1〉+ 〈A1B2〉+ 〈A2B1〉 − 〈A2B2〉| = 2
√
2. (2)
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This result may also be interpreted in a more intuitive fashion [3]: if Alice and Bob want to play a game,
called the CHSH game, where they are each given as input a bit, x(A) and x(B) respectively, and they want
to produce output bits y(A) and y(B) respectively such that

x(A) ∧ x(B) = y(A) ⊕ y(B), (3)

then there is no classical (LHV) strategy that can help them win this game with a probability greater than
3/4, but if they share the quantum state |ψ−〉 = (|01〉 − |10〉)/

√
2, then they can succeed with probability

cos2(π/8) ≈ 0.85 [2].

Many years later, Popescu and Rohrlich [4] asked a natural question: why not more? Given that quantum
mechanics is non-local, why is it not maximally non-local? Many authors have studied this question [5, 6,
7, 8, 9] and we will discuss their results in Section 4. Besides this intriguing question, Popescu and Rohrlich
suggested something else of interest, a gedanken product: the non-local box (NLB). A NLB is a virtual
device that has two ends and the following property: if Alice inputs a bit into her end of the NLB and Bob
does likewise, then they will both receive a bit from the NLB such that the condition of Equation 3 is always
respected, and such that all solutions are equally likely. It is important to note that this device does not
allow faster than light communication [4].

Recently, Cerf, Gisin, Massar and Popescu built on the work of Toner and Bacon [10] and used a NLB to
simulate the correlations obtained from any bipartite measurement of a maximally entangled pair of qubits,
|ψ−〉, without any communication [11]. This result shows that signaling information on the inputs is not
necessary for a perfect simulation of quantum correlations. The long term aim of this work is to characterize
the NLB in order to yield insights into the non-locality of Nature.

In this paper, we want to push this research further. The NLB was inspired from the CHSH inequality,
which is often thought as the generic inequality for non-locality, and it can also simulate the correlations of a
maximally entangled pair of qubits. From this, it is tempting to draw an analogy between the NLB and the
maximally entangled pair of qubits. We will show however that a single NLB can be used to accomplish a
distributed task that cannot be accomplished with only a maximally entangled pair of qubits. In particular,
we will study pseudo-telepathy and show simulations of some pseudo-telepathy games with one NLB where
the quantum strategy requires more than a maximally entangled pair of qubits to succeed. We will also give
limitations on what a single NLB can achieve and propose a generalization of the NLB to the multi-party
setting.

Definition 1. A bipartite game G = (X,Y,R) is a set of inputs X = X(A) × X(B), a set of outputs
Y = Y (A) × Y (B) and a relation R ⊆ X(A) ×X(B) × Y (A) × Y (B).

Definition 2. A winning strategy for a bipartite game G = (X,Y,R) is a strategy according to which for
every x(A) ∈ X(A) and x(B) ∈ X(B), Alice and Bob output y(A) ∈ Y (A) and y(B) ∈ Y (B) respectively such
that (x(A), x(B), y(A), y(B)) ∈ R.

Definition 3. We say that a bipartite game G exhibits pseudo-telepathy if bipartite measurements of an
entangled quantum state can yield a winning strategy, whereas no classical strategy that does not involve
communication is a winning strategy.

The generalization to multi-party pseudo-telepathy to be taken is the natural one. For a complete survey
on pseudo-telepathy, please see [12].

Definition 4. A non-local protocol is a purely classical protocol where the participants are not allowed
communication but are allowed the use of NLBs.

Definition 5. A protocol simulates the correlations of a pseudo-telepathy game if, in addition to yielding
a winning strategy, the probabilities Pr(Y (A), Y (B)|X(A), X(B)) are identical to those of a quantum winning
strategy.
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2 Magic square game

We saw in Section 1 that one use of an NLB can give the correlations of any bipartite measurement on
|ψ−〉 without any communication. A natural question would be to ask whether it can give us more. In
particular, are there correlations that can only be obtained by bipartite measurements of an entangled state
of more than a pair of qubits, but that can be simulated with one use of an NLB? In this Section, we answer
affirmatively by showing a pseudo-telepathy game, the magic square game [13], that requires more than an
entangled state of two qubits in the quantum winning strategy, yet only one use of an NLB suffices to yield
a non-local winning strategy. We also give a non-local strategy that makes use of a single NLB and that
simulates the magic square correlations.

Definition 6. In the magic square game, Alice and Bob are given x(A) ∈ {1, 2, 3} and x(B) ∈ {1, 2, 3},
respectively. They produce 3 bits each, (y

(A)
1 , y

(A)
2 , y

(A)
3 ) and (y

(B)
1 , y

(B)
2 , y

(B)
3 ), such that:

y
(A)
3 = y

(A)
1 ⊕ y

(A)
2

y
(B)
3 = y

(B)
1 ⊕ y

(B)
2 ⊕ 1

y
(A)

x(B) = y
(B)

x(A) .

(4)

Here, and in all future definitions of bipartite games, it is understood that (x(A), x(B), y(A), y(B)) ∈ R if
and only if the given equations are satisfied.

It is known that the magic square game is a pseudo-telepathy game: the best classical players can do
is succeed on 8/9 of the possible inputs, whereas players with the shared entangled state |ψ〉 = 1

2 |0011〉 −
1
2 |0110〉 − 1

2 |1001〉+ 1
2 |1100〉 (two maximally entangled pairs of qubits), where Alice has the first two qubits

and Bob the last two qubits, have a quantum winning strategy [12].

It is useful here to mention that a magic square is a 3× 3 matrix with binary entries such that the sum
of each row is even and the sum of each column is odd. It is obvious that such a magic square does not
exist, yet Alice and Bob’s output bits (as defined in Equation 4) fit perfectly into a magic square: we place
Alice’s three output bits in the x(A)th row and Bob’s three output bits in the x(B)th column. Using this
same construction, we can represent a player’s strategy as a 3× 3 binary matrix.

Lemma 1. No quantum strategy can win the magic square game with probability one if the participants
share only an entangled pair of qubits, |ψ〉 = α|00〉+ β|11〉.

Proof. The proof is straightforward from Brassard, Méthot and Tapp [14], where the authors show that there
cannot exist a protocol that exhibits pseudo-telepathy where the quantum strategy makes use of a pair of
entangled qubits.

Theorem 1. The magic square game can be won classically with probability one if the participants are
allowed one bit of communication.

Proof. Alice and Bob agree ahead of time on a two strategies, say 0 and 1. Strategy 0 yields a correct answer
for all inputs except when x(A) = x(B) = 3, and strategy 1 yields a correct answer when x(A) = x(B) = 3.
Furthermore, strategies 0 and 1 can be chosen such that Alice’s outcomes are identical for both strategies.
We give an example of such strategies in Figure 1. Alice and Bob’s final strategy is for Alice to send a single
bit to Bob, indicating whether or not x(A) = 3. If x(A) 6= 3, Bob acts according to strategy 0, otherwise he
uses strategy 1. It is easy to check that with this strategy, Alice and Bob always win.
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0 1 1
1 1 0
0 1 1

(a) Alice

0 1 1
1 1 0
0 1 0

(b) Bob

0 1 1
1 1 0
0 1 1

(c) Alice

0 1 1
1 1 1
0 1 1

(d) Bob

Figure 1: Two strategies: strategy 0 ((a) and (b)) and strategy 1 ((c) and (d)).

Theorem 2. Classical players that are allowed one bit of communication can simulate the magic square
correlations.

Proof. Since, in the quantum strategy, Alice’s and Bob’s density matrices are totally mixed, the local outputs
of their von Neumann measurements are uniformly distributed among all possible outputs respecting the
conditions of Definition 6.

Now in the classical protocol, Alice and Bob agree on strategies 0 and 1 as in the proof of Theorem 1,
but they use shared randomness to choose the strategies uniformly at random among all strategies that fit
the construction. With this strategy, Alice and Bob’s outcomes are distributed uniformly at random among
all possible winning outcomes.

Theorem 3. There exists a non-local winning strategy for the magic square game that makes use of a single
NLB.

Proof. Alice and Bob each have two strategies, say A0 and A1 for Alice and B0 and B1 for Bob. Both

of Alice’s strategies respect the condition y
(A)
3 = y

(A)
1 ⊕ y

(A)
2 and Bob’s y

(B)
3 = y

(B)
1 ⊕ y

(B)
2 ⊕ 1. Both

pairs of strategies (A0, B0) and (A1, B1) yield a correct answer, y
(A)

x(B) = y
(B)

x(A) , for all inputs except when

x(A) = x(B) = 3. Additionally, strategies A0 and B1, as well as A1 and B0, are coordinated such that if
Alice answers according to strategy Ai (i ∈ 0, 1) and Bob according to strategy Bj (j = i ⊕ 1), then on

inputs x(A) = x(B) = 3, we have that y
(A)
3 = y

(B)
3 . Such strategies (A0, A1, B0 and B1) are easy to find.

Alice and Bob use an NLB to determine which strategy each player uses: they both input in the NLB
whether x(A) = 3 or whether x(B) = 3. They then independently use the output of the NLB, z(A) and z(B)

to determine the strategy to use (Az(A) for Alice, Bz(B) for Bob).

Note that by virtue of the NLB, Alice and Bob will have z(A) = z(B) as long as xA 6= 3 or xB 6= 3.
Strategies (A0, B0) and (A1, B1) will yield correct answers in this case. If, however, both x(A) = 3 and
x(B) = 3, then Alice and Bob will answer according to strategies (A0, B1) or (A1, B0). But these strategies

are coordinated so that y
(A)
3 = y

(B)
3 , so their answer is correct.

Theorem 4. There exists a non-local protocol that simulates the magic square correlations with a single use
of an NLB.

Proof. The proof is similar to the proof of Theorem 2: all that Alice and Bob must do in order to simulate
the magic square correlations is apply the strategy given in the proof of Theorem 3, but with strategies A0,
A1, B0 and B1 chosen among all possible such strategies according to the uniform distribution. Then Alice
and Bob’s outcomes are distributed uniformly at random and Definition 6 is satisfied.

From Lemma 1 and Theorem 4, we get the following Corollary:
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Corollary 1. An NLB can simulate bipartite correlations that no entangled pair of qubits, |ψ〉 = α|00〉+
β|11〉, can.

3 Mermin–GHZ game

In this Section, we add to the demonstration of the power of a NLB by showing that it can also simulate
correlations found in a tripartite state.

Definition 7. In the Mermin–GHZ game [15], Alice, Bob and Charlie are each given a bit such that
x(A) + x(B) + x(C) ≡ 0 (mod 2) and they must produce a bit of output each, y(A), y(B) and y(C), such that:

y(A) ⊕ y(B) ⊕ y(C) =
x(A) + x(B) + x(C)

2
.

It is well known that this is a pseudo-telepathy game. In the quantum winning strategy, Alice, Bob and
Charlie share a GHZ-state: 1√

2
|000〉+ 1√

2
|111〉.

Lemma 2. No quantum strategy can win the Mermin–GHZ game with probability one if any two participants
share only an entangled pair of qubits, |ψ〉 = α|00〉+ β|11〉.

Proof. As in the proof of Lemma 1, the result follows from [14].

Theorem 5. The Mermin–GHZ game can be won classically with probability one if the participants are
allowed one bit of communication.

Proof. The classical strategy that uses a bit of communication is the following: Bob and Charlie output
y(B) = b, y(C) = c respectively where b and c are arbitrary bits known to all participants. Bob sends x(B)

to Alice, who computes y = x(A) ∨ x(B) and outputs y(A) = b ⊕ c⊕ y. It is easy to check that this strategy
works.

Theorem 6. The Mermin–GHZ correlations can be simulated by classical participants using a single bit of
communication.

Proof. First, note that the quantum winning strategy (as given in [12], for instance) is such that the outcomes
of the players are uniformly distributed among all outcomes satisfying Definition 7. Now, Alice and Bob
can used shared randomness to select uniformly at random among all strategies that succeed in the proof of
Theorem 5. This gives a simulation of the Mermin–GHZ correlations.

Theorem 7. The Mermin–GHZ game can be won with probability one if the participants are allowed one
use of an NLB.

Proof. Once again, we will use the NLB in our construction to replace the communication in the protocol
of Theorem 5. First, we note the relationship between the logical OR and the logical AND:

x(A) ∨ x(B) = x̄(A) ∧ x̄(B).

The strategy is then simple. Alice and Bob flip their inputs and feed them into a shared NLB which returns
y(A) and y(B) such that

y(A) ⊕ y(B) = x(A) ∨ x(B).
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Since x(A) + x(B) + x(C) ≡ 0 (mod 2),

x(A) ∨ x(B) =

(

x(A) + x(B) + x(C)

2

)

⊕ 1.

If Charlie outputs y(C) = 1, the protocol satisfies Definition 7.

Theorem 8. There is a non-local protocol that simulates the Mermin–GHZ correlations with a single use of
an NLB.

Proof. As in the proof of Theorem 6, we can randomize the proof of Theorem 7 so that the outcomes of
Alice, Bob and Charlie are uniformly distributed among all outcomes that satisfy Definition 7. All we need
to add is a random bit shared between the participants telling whether or not Bob and Charlie should both
flip their outputs or not.

From Lemma 2 and Theorem 8, we get the following Corollary:

Corollary 2. An NLB can simulate tripartite correlations that no entangled pair of qubits, |ψ〉 = α|00〉+
β|11〉, can.

4 Non-local box pseudo-telepathy

We have seen in Sections 2 and 3 that a single use of an NLB can simulate quantum correlations that are
stronger than those obtained by bipartite measurements of a maximally entangled pair of qubits. Can an
NLB do more? In this Section, we discuss the known result that an NLB can indeed yield correlations that
cannot be reproduced by quantum mechanics by showing an NLB pseudo-telepathy game that can be won
with probability one with a single use of an NLB while no quantum protocol can.

Definition 8. We say that a bipartite game exhibits non-local box pseudo-telepathy if there exists a non-local
winning strategy, while no winning strategy based on the laws of quantum mechanics exists.

Lemma 3. A single NLB is sufficient to yield a protocol for an NLB pseudo-telepathy game.

The game in which we are interested is what the NLB is defined to do. It is clear from the definition
of the NLB that, using a such a device, Alice and Bob can produce outputs such that the XOR of their
outputs is equal to the AND of their inputs. When Popescu and Rohrlich proposed the NLB, it was already
known, although not expressed in these terms, that it could yield NLB pseudo-telepathy.

In fact, in 1980, Tsirelson [5] showed that quantum mechanics could not yield a value greater than 2
√
2

in Equation 2 while, by definition, the NLB has the algebraic maximum value of 4. Cleve, Høyer, Toner
and Watrous [6] generalized Tsirelson’s result to show that there cannot be a bipartite game with binary
outputs that cannot be won classically with probability one while a quantum protocol could. Since the
CHSH game cannot be won classically with probability greater than 3/4, then no quantum strategy can win
with probability 1. More recently, van Dam [7, 8] and others [9], also showed that no quantum strategy
can win the CHSH game with probability equal to unity by taking an altogether different approach. They
showed how we can use NLBs [7, 8], or even faulty NLBs [9], to reduce all of communication complexity for
decision problems to a single bit. Since we know that quantum communication complexity is not trivial [16],
no quantum simulation of the NLB can exist.
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5 Limits on the power of the non-local box

In previous Sections, we have shown the amazing power of a single NLB. We have demonstrated quantum
correlations that cannot be generated by an entangled pair of qubits but still can be simulated with only one
NLB. Do all quantum correlations collapse to a single use of an NLB? The answer is no. In [17], it is shown
that one use of an NLB is not sufficient to simulate non-maximally entangled states of two qubits. Here,
we will also prove that there exist pseudo-telepathic correlations (whose simulation cannot require more
resources than the simulation of general measurements on the quantum state used in the quantum winning
strategy) that cannot be simulated with a single NLB. We will first show that in a multi-party setting, there
exist pseudo-telepathic correlation that require more than one use of a NLB to simulate. We then use the
distributed Deutsch-Jozsa game to show that some bipartite pseudo-telepathic correlations also require more
than one use of an NLB to simulate. As a consequence, we will prove that maximally entangled bipartite
states and NLBs are truly different resources.

Definition 9. The multi-party Mermin–GHZ game [18, 19] is defined as follows. Each player i ∈ {1, . . . , n}
(n ≥ 3) is given a bit x(i) such that

∑

i x
(i) ≡ 0 (mod 2). Each player must produce a bit y(i) of output such

that:
∑

i

y(i) ≡
(∑

i x
(i)

2

)

(mod 2).

Theorem 9.
(

n
2

)

∈ O(n2) NLBs are sufficient for the simulation of the multi-party Mermin–GHZ correla-
tions.

Proof. Each player shares an NLB with every other player (there are therefore
(

n
2

)

NLBs). Upon receiving

his input x(i), player i feeds x(i) into each of his shared NLBs. Let y(i,j) be the output of the NLB shared
with player j. Player i then computes the parity of all such y(i,j): let y(i) =

∑

j 6=i y
(i,j) (mod 2). This is

player i’s output.

To show that this strategy works, note that
∑

i

y(i) ≡
∑

i

∑

j 6=i

y(i,j) (mod 2),

and furthermore, ∀i, j where i 6= j

y(i,j) + y(j,i) (mod 2) ≡
{

0, x(i) ∧ x(j) = 0

1, x(i) ∧ x(j) = 1
.

Therefore, if
∑

i x
(i) = 4k for some non-negative integer k, (and so

(
∑

i
x(i)

2

)

≡ 0 (mod 2)), then
∑

i y
(i) ≡

(

4k
2

)

≡ 0 (mod 2). And if
∑

i x
(i) = 4k + 2 for some non-negative integer k, (and therefore,

(
∑

i
x(i)

2

)

≡ 1 (mod 2)), then
∑

i y
(i) ≡

(

4k+2
2

)

≡ 1 (mod 2).

Theorem 10. Any simulation of the multi-party Mermin–GHZ correlations for n ≥ 4 players requires more
than a single use of an NLB.

Proof. Consider the case where n = 4. Without loss of generality, suppose that players 1 and 2 share
an NLB. Let us assume furthermore that players 1 and 2 are allowed unlimited communication with each
other. We will show that even under this stronger assumption, there is no winning strategy for the multi-
party Mermin–GHZ game. It follows that the four players cannot simulate the multi-party Mermin–GHZ
correlations with a single NLB.
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Let us consider a subset of the possible inputs: I = {(0, 0, 0, 0), (0, 0, 1, 1), (0, 1, 0, 1), (0, 1, 1, 0)}.
If we consider players 1 and 2 as a single entity, we get, after relabelling, a new set of inputs:
{(0, 0, 0), (0, 1, 1), (1, 0, 1), (1, 1, 0)}. This is the Mermin–GHZ game (Definition 7). Since a winning strategy
for the set I of inputs leads to a classical winning strategy for the Mermin–GHZ game, which is impossible,
this contradiction proves our claim.

The result extends easily to the case of n > 4: even if we allow communication between the first n − 2
players, we can find a subset of inputs (as above) where the players need to be able to win the Mermin–GHZ
game in order to win this game.

Theorem 11. Ω(n) NLBs are necessary in a non-local winning strategy for the multi-party Mermin–GHZ
game.

Proof. As we saw in the proof of Theorem 10, there cannot be two players, or more, that are not linked with
at least one other player through an NLB. So in order for at least n − 1 players to be linked with another
player, we need ⌊n/2− 1⌋+ 1 ∈ Ω(n) NLBs.

We now turn to a bipartite scenario and show that there exist bipartite quantum correlations that require
more than one use of a NLB to simulate.

Definition 10. In the distributed Deutsch-Jozsa game [20], Alice and Bob are given 2n-bit strings x(A) and
x(B) respectively such that

∆(x(A), x(B)) ∈ {0, 2n−1} (5)

where ∆(x(A), x(B)) is the Hamming distance between two strings (Equation 5 states that either the two
strings are the same or they differ in exactly half the bit positions). Then the players must output n-bit
strings y(A) and y(B), respectively such that:

[y(A) = y(B)] ⇔ [x(A) = x(B)]. (6)

We know that for all n ≥ 4, the above game is a pseudo-telepathy game [21], and the quantum state

used for the quantum winning strategy is 1√
2n

∑2n−1
j=0 |j〉|j〉 [20]. Furthermore, we have the following lemma

from [20]:

Lemma 4. A classical winning strategy for the distributed Deutsch-Jozsa game requires Ω(2n) bits of
communication.

Theorem 12. No classical winning strategy for the distributed Deutsch-Jozsa game with less than Ω(2n)
uses of an NLB exists.

Proof. Suppose we had a winning strategy for the distributed Deutsch-Jozsa game with less than Ω(2n)
NLBs. Since we can simulate an NLB with one bit of communication [22], we could use communication
to transform the winning strategy that uses NLBs into a winning strategy with less than Ω(2n) bits of
communication (and no NLBs). Such a strategy would contradict Lemma 4.

When considered as a resource, entanglement is usually quantified by the number of maximally entangled
bipartite states of two qubits, (|00〉+ |11〉)/

√
2. In [17], Brunner, Gisin and Scarani showed that there exist

bipartite entangled states of two qubits that cannot be simulated with a single use of an NLB. Since a single
use of an NLB can simulate a maximally entangled bipartite state of two qubits [11], the authors conclude that
“entanglement and non-locality are different resources”. We concur that according to their measure there
is an anomaly which also occurs in many other measures of non-locality [17]. However, when concerned
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with how many resources we need to perform a certain computational task, we quantify resources in an
asymptotic fashion. The result of [17] is not asymptotic: it does not rule out a world in which cn NLBs, for
some constant c, are sufficient to simulate n bipartite entangled states. In such a world, NLBs would still be
considered strictly stronger than entanglement, for when speaking of computational resources, multiplicative
constants do not matter. Our results have the advantage of proving an asymptotic gap between the two
resources: we have shown that there exist correlations whose simulation requires an exponential amount of
NLB uses (in the number of maximally entangled two qubit bipartite states). Furthermore, the existence of
NLB pseudo-telepathy games confirms that non-locality and entanglement are different and incomparable
resources.

Our result shows that the simulation of n pairs of maximally entangled qubits requires Ω(2n) NLB uses.
At first sight, this may seem to contradict the fact that a single NLB use is sufficient for the simulation
of a single pair of maximally entangled qubits. This apparent contradiction is explained by the fact that,
thanks to entanglement, the simulation of n bipartite maximally entangled qubit pairs cannot, in general,
be expressed as n independent simulations of separate systems of two qubits.

We finish this section by showing that the lower bound of Theorem 12 is tight.

Theorem 13. There is a non-local winning strategy for the distributed Deutsch-Jozsa game with O(2n)
NLB uses.

Before turning to the proof, first note that if the task were for the players to outputs any string y(A) and
y(B) respectively, such that [y(A) = y(B)] ⇔ [x(A) = x(B)], then Alice and Bob could simply use x(A) and x(B)

as outputs and the condition is satisfied. The difficulty for Alice and Bob in the distributed Deutsch-Jozsa
game is to output strings that are exponentially shorter than their inputs. In the following non-local winning
strategy, Alice and Bob will use NLBs to achieve this shorter input.

Second, note that if Alice and Bob have two bits, a1, a2 and b1, b2 respectively, then, making use of two
NLBs, they can compute bits a for Alice and b for Bob such that a⊕b = f(a1, a2, b1, b2) = (a1⊕b1)∧(a2⊕b2).
This observation follows from the fact that f(a1, a2, b1, b2) = a1a2 ⊕ b1b2 ⊕ a1b2 ⊕ a2b1, where the first two
terms can be computed locally, while the last two require one use of an NLB each; Alice computes A1 = a1a2
and Bob B1 = b1b2, Alice inputs a1 into a first NLB while Bob inputs b2, they get A2 and B2 respectively and
Alice inputs a2 into a second NLB while Bob inputs b1 from which they get A3 and B3. With a = A1⊕A2⊕A3

and b = B1 ⊕B2 ⊕B3, we clearly have a⊕ b = (a1 ⊕ b1) ∧ (a2 ⊕ b2). We call such operation the distributed
computation of the function f , which is analogous to computing the AND of two distributed bits, a1 ⊕ b1
and a2 ⊕ b2.

1

Proof. First, Alice flips all her input bits. We’ll call the resulting string x̄(A). Using this new input,
Alice and Bob execute a series of rounds. Each round i has the following property: at the beginning of
the round, Alice has the string a(i) ∈ {0, 1}2n−i

and Bob b(i) ∈ {0, 1}2n−i

such that either the diametric
(∆(a(i), b(i)) = 2n−i) or the disparity (∆(a(i), b(i)) < 2n−i) condition holds. At the end of the round, Alice

has the string a(i+1) ∈ {0, 1}2n−i−1

and Bob b(i+1) ∈ {0, 1}2n−i−1

and the condition, diametric or disparity,
is unchanged.

To execute round i, the players perform a sequence of 2n−i−1 distributed computations of the function f :

for each integer j ∈ {0, . . . 2n−i−1}, let a(i+1)
j and b

(i+1)
j be the result of the distributed computation of

f(a
(i)
2j , a

(i)
2j+1, b

(i)
2j , b

(i)
2j+1). The final strings for Alice and Bob at the end of round i are a(i+1) and b(i+1),

respectively.

1The idea of using NLBs to replace communication in distributed computations is due Cleve [23] and van Dam [7, 8],
who independently demonstrated that their use allows any distributed Boolean function to be evaluated using a single bit of
communication.
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It is easy to see that by virtue of the function f , if the diametric condition holds at the beginning of the
round, then it still holds at the end of the round; the same is true for the disparity condition.

Alice and Bob start round 0 each with a 2n-bit string, a(0) = x̄(A) and b(0) = x(B). They repeat many
rounds until they each have an n-bit string (they can pad their outputs with diametric bit strings after

the last round if necessary), therefore performing n− ⌊lgn⌋ rounds, for a total of 2(
∑n−⌊lg n⌋−1

i=0 2n−i−1) =
2n+1 − 2⌊lgn⌋+1 ∈ O(2n) NLBs. At the end of the sequence of rounds, Alice flips the bits that she has
calculated. The resulting strings are y(A) for Alice and y(B) for Bob and from the diametric or disparity
condition, it is easy to see that [y(A) = y(B)] ⇔ [x(A) = x(B)].

6 A new game

We now attempt to answer the question: what is the generalization of the NLB to a multi-party scenario?
In [11], it is shown that a natural extension of the NLB allows for instantaneous signaling. Here, we give
a different extension: we give a new NLB pseudo-telepathy game and propose a generalization of the NLB
based on this new game.

Definition 11. In this game, participant i ∈ {1, . . . n} (n ≥ 2) is given a bit of input, x(i). The participants
must each output a bit y(i) such that:

n
∑

i=1

y(i) (mod 2) = BMAJ(x(1), x(2), . . . , x(n)) =

{

1 if ∆(x(1) x(2) . . . x(n)) > ⌊n/2⌋
0 otherwise

where BMAJ is simply the majority biased towards 0, and ∆(x(1) x(2) . . . x(n)) is the Hamming weight of
a bit string.

Theorem 14. There is no classical winning strategy for the game of Definition 11.

Proof. For the case where n = 2, this is exactly the task that an NLB accomplishes. We know that no
classical strategy can succeed with probability 1. Now, for n ≥ 3, we pick a subset S of possible inputs
for which, even allowing communication between all but two players yields a situation where no classical
strategy can succeed with probability 1: S is the set of questions where the first ⌊n−2

2 ⌋ players have input 0,
the next ⌈n−2

2 ⌉ players have input 1 and the remaining two players have inputs 0 or 1. Note that even by
allowing all players except the last two to communicate, we still get that no classical strategy can succeed
at this game, for a strategy to win this game entails the existence of a strategy to win the CHSH game
described in Section 4.

Theorem 15. There is no quantum winning strategy for the game of Definition 11.

Proof. For the case where n = 2, this is exactly the task that an NLB accomplishes. We know that no
quantum strategy can succeed with probability 1. Now, for n ≥ 3, as in the proof of Theorem 14, we pick
subset S of possible inputs for which, even allowing communication between all but two players yields a
situation where no quantum strategy can succeed with probability 1.

Theorem 16. Ω(n) NLBs are necessary in a non-local winning strategy for the game of Definition 11.

Proof. As we saw in the proof of Theorem 15, there cannot be two players, or more, that are not linked with
at least one other player through an NLB. So in order for at least n − 1 players to be linked with another
player, we need ⌊n/2− 1⌋+ 1 ∈ Ω(n) NLBs.
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Theorem 17. There is a non-local winning strategy for the game given in Definition 11 with O(n32n)
NLB uses.

The following scenario is relevant to the proof of Theorem 17; it is a generalization of the distributed
computation of the function f that we presented in the proof of Theorem 13. Consider n participants. A bit

xk is a called a distributed bit if each participant i has a bit x
(i)
k such that xk =

⊕n
i=1 x

(i)
k . We will see how

we can compute a distributed Boolean function on distributed bits with the help of NLBs. First of all, if any

player i has a bit x(i), then a distributed bit xk can be initialized to the value x(i) by letting x
(i)
k = x(i) and

x
(j)
k = 0 for all j 6= i. Next, it easy to see that the negation of a distributed bit, say x̄k can be computed by

requiring that a single player flip his bit. Finally, the distributed AND of two distributed bits, xk and xℓ,
can be computed using NLBs thanks to the following observation:

xk ∧ xℓ =(x
(1)
k ⊕ x

(2)
k ⊕ · · · ⊕ x

(n)
k ) ∧ (x

(1)
ℓ ⊕ x

(2)
ℓ ⊕ · · · ⊕ x

(n)
ℓ )

=x
(1)
k ∧ x(1)ℓ ⊕ x

(2)
k ∧ x(2)ℓ ⊕ · · · ⊕ x

(n)
k ∧ x(n)ℓ ⊕

x
(1)
k ∧ x(2)ℓ ⊕ x

(1)
k ∧ x(3)ℓ ⊕ . . .⊕ x

(1)
k ∧ x(n)ℓ ⊕ . . .⊕ x

(n)
k ∧ x(n−1)

ℓ

(7)

To calculate the distributed xm = xk ∧ xℓ, each participant performs a certain number of calculations, each

yielding a single bit. Each participant’s final bit, x
(i)
m is the parity of the sum of all his calculated bits. Now,

the n conjunctions on the second-to-last row of Equation 7 can be computed locally by each participant and
each of the n(n − 1) conjunctions in the last row can be computed with a single NLB. This shows how to
calculate the distributed xk ∧ xℓ. We are now ready to turn to the proof of Theorem 17.

Proof. To compute the distributed BMAJ , the players simply need to output bits where the total parity of
their output satisfies:

∑

i

y(i) (mod 2) =(x(1) ∧ x(2) ∧ · · · ∧ x(⌊n/2⌋+1)) ∨ (x(1) ∧ x(3) ∧ · · · ∧ x(⌊n/2⌋+2)) ∨ . . .

∨ (x(⌊n/2⌋) ∧ x(⌊n/2⌋+1) ∧ · · · ∧ x(n)).
(8)

The above Boolean formula comes from the simple observation that BMAJ = 1 if and only if there is a
⌊n/2⌋ + 1-subset of {x(1), x(2), . . . , x(n)}, with each element in the subset having value 1. In Equation 8,
we consider all such

(

n
⌊n/2⌋+1

)

possible subsets. Furthermore, Equation 8 can be translated into a series of

negations and AND gates (using de Morgan’s Law). We wish to calculate the total number of AND gates:
we have ⌊n/2⌋ AND gates for each of the

(

n
⌊n/2⌋+1

)

conjunctions as well as
(

n
⌊n/2⌋+1

)

− 1 AND gates for the

disjunctions (since an OR gate can be computed with a single AND gate and negations). The total number
of AND gates is therefore (⌊n/2⌋)

(

n
⌊n/2⌋+1

)

+
(

n
⌊n/2⌋+1

)

− 1 ∈ O(n2n).

To evaluate Equation 8 in a distributed way, the participants simply initialize a sequence of distributed
bits and perform a sequence of distributed AND calculations (as described above the present proof and
according to Equation 8) . Since our protocol computes O(n2n) distributed ANDs, using O(n2) NLBs each,
the protocol uses a total of O(n32n) NLBs.

We think that this new game should be taken to be the generalization of the NLB to a multi-party NLB.
The reasons are multiple.

1. This generalization yields exactly the NLB in a bipartite scenario.

2. In the tripartite scenario, this new NLB simulates directly the Mermin–GHZ game
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3. It does not allow faster than light communication.

4. The box is simple and elegant.

5. We have shown in Theorem 15 that this multi-party NLB exhibits NLB pseudo-telepathy for every
n ≥ 2.

6. We think that this multi-party NLB exhibits correlations that require a large amount of bipartite NLB
uses to simulate.

7 Conclusions

In the present text, we have made progress towards characterizing the remarkable power of the NLB. A single
NLB can simulate correlations that no entangled pair of qubits can: in the bipartite scenario (Theorem 4), and
in the multi-party scenario (Theorem 8). In Section 4, we also showed that the NLB can exhibit correlations
that cannot be reproduced by quantum mechanics and defined NLB pseudo-telepathy (Definition 8). Finally
we showed in Theorems 10 and 12 that a single NLB cannot reproduce all correlations of quantum mechanics
and we proposed in Definition 11 a generalization of the NLB to the multi-party scenario which has a lot of
desirable properties. By showing that the simulation of some quantum correlations requires an exponential
amount of NLBs in the number of shared entangled qubit pairs (see Theorem 12), and from the fact that
NLB pseudo-telepathy exists, we have demonstrated that NLBs and entanglement are different, incomparable
resources. The fact that there are correlations that can be generated from NLBs and that cannot come from
any entangled state (see Sections 4 and 6) further supports this conclusion. A single NLB can generate
correlations that are stronger than those that can be provided by quantum mechanics and yet we still
require an exponential amount of NLBs for the simulation of certain quantum correlations; in our opinion,
this is due to the fact that NLBs are inherently classical and, as such, cannot be entangled with one another.

The very attentive reader might have noticed a connection between Theorem 1 and Theorem 4, between
Theorem 5 and Theorem 8, and between Lemma 4 and Theorem 12: we have transformed classical strategies
with n bits of communication into protocols with n uses of an NLB. Can we always make this substitution?
It is of course not the case, for example in communication complexity, but if we just want to simulate
quantum correlations, signaling might not be necessary. After all, entanglement alone cannot be used to
signal. A partial answer can be found in [17], in which the authors proved that there exist correlations that
can be generated from a single bit of communication, constrained to not signal information on the input,
which cannot be simulated with an NLB. Even though we cannot have a one-to-one equivalence, can the
NLB paradigm, without consideration to the number of NLBs, replace communication that does not signal?
The answer might not be easy to find. Degorre, Laplante and Roland have recently built on the work of
Méthot [24] and Cerf, Gisin, Massar and Popescu [11] to create a simulation of a maximally entangled pair
of qubits for any POVM using on average 2 NLBs and 4 bits of communication [25]. In this construction, it
might not be easy to get rid of the communication since every simulation of quantum entanglement known
to the authors that takes POVMs into account is founded on a test principle [24, 26, 27]: Bob receives some
information from Alice and tells her if it is satisfactory with what he has, if not they start over. In order
for Alice to know when to start over, Bob must signal so to Alice. It is not clear if or how we can get out of
this test paradigm.

Of course, simulations of other pseudo-telepathy games need to be done before we can claim to understand
fully the NLB. In particular, an open question of interest, and in relation to the discussion in the previous
paragraph, is whether any pseudo-telepathy game can be simulated with NLBs. We would also like to see a
non-trivial lower bound for the number of NLBs required to simulate the generalization to the multi-party
setting put forward here and for the multi-party Mermin–GHZ game.
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