

Instructions for use

Title Inductive inference of approximations for recursive concepts

Author(s) Langea, Steffen; Grieserb, Gunter; Zeugmann, Thomas

Citation Theoretical Computer Science, 348(1), 15-40
https://doi.org/10.1016/j.tcs.2005.09.004

Issue Date 2005-12-02

Doc URL http://hdl.handle.net/2115/17147

Type article (author version)

File Information TCS348-1.pdf

Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP

https://eprints.lib.hokudai.ac.jp/dspace/about.en.jsp

Inductive Inference of Approximations for

Recursive Concepts

Steffen Lange a, Gunter Grieser b, and Thomas Zeugmann c

aDeutsches Forschungszentrum für Künstliche Intelligenz,
Stuhlsatzenhausweg 3, 66123 Saarbrücken, Germany, Email: lange@dfki.de

bFB Informatik, Technische Universität Darmstadt, Alexanderstraße 10,
64283 Darmstadt, Germany, Email: grieser@informatik.tu-darmstadt.de

cUniversität zu Lübeck, Institut für Theoretische Informatik, Wallstraße 40, 23560
Lübeck, Germany, Email: thomas@tcs.mu-luebeck.de

Abstract

This paper provides a systematic study of inductive inference of indexable concept
classes in learning scenarios where the learner is successful if its final hypothesis de-
scribes a finite variant of the target concept, i.e., learning with anomalies. Learning
from positive data only and from both positive and negative data is distinguished.

The following learning models are studied: learning in the limit, finite identifica-
tion, set-driven learning, conservative inference, and behaviorally correct learning.

The attention is focused on the case that the number of allowed anomalies is finite
but not a priori bounded. However, results for the special case of learning with an
a priori bounded number of anomalies are presented, too. Characterizations of the
learning models with anomalies in terms of finite tell-tale sets are provided. The
observed varieties in the degree of recursiveness of the relevant tell-tale sets are
already sufficient to quantify the differences in the corresponding learning models
with anomalies. Finally, a complete picture concerning the relations of all models
of learning with and without anomalies mentioned above is derived.

1 Introduction

Induction constitutes an important feature of learning. The corresponding
theory is called inductive inference. Inductive inference may be characterized
as the study of systems that map evidence on a target concept into hypotheses
about it. Investigating scenarios in which the sequence of hypotheses stabilizes
to an accurate and finite description of the target concept is of particular
interest. Precise definitions of the notions evidence, stabilization, and accuracy
go back to Gold [11] who introduced the model of learning in the limit.

Preprint submitted to Elsevier Science 4 October 2005

The present paper deals with inductive inference of indexable classes of recur-
sive concepts (indexable classes, for short). A concept class is said to be an
indexable class if it possesses an effective enumeration with uniformly decidable
membership. Angluin [2] started the systematic study of learning indexable
concept classes. Her pioneering paper and succeeding publications (cf. Zeug-
mann and Lange [22], for an overview) attracted attention, since most natural
concept classes are indexable. For example, the class of all context-sensitive,
context-free, regular, and pattern languages as well as the set of all Boolean
formulae expressible by a monomial, a k-CNF, a k-DNF, and a k-decision list
constitute indexable classes.

As usual, we distinguish learning from positive data and learning from both
positive and negative data, synonymously called learning from text and infor-
mant, respectively. A text for a concept c is an infinite sequence of elements of c
such that every element from c appears eventually. Alternatively, an informant
is an infinite sequence of elements exhausting the underlying learning domain
that are classified with respect to their containment in the target concept.

An algorithmic learner, henceforth called inductive inference machine (abbr.
IIM), takes as input larger and larger initial segments of a text (an informant)
and outputs, from time to time, a hypothesis about the target concept. The
set of all admissible hypotheses is called hypothesis space. When learning of
indexable classes is studied, it is only natural to require the hypothesis space to
be an indexed family, i.e., an effective enumeration with uniformly decidable
membership of a (possibly) larger concept class. This assumption underlies
almost all studies (cf., e.g., Angluin [2], Zeugmann and Lange [22]). However,
sometimes we also consider hypotheses spaces that are not indexed families.

Gold’s [11] original model requires the sequence of hypotheses to converge to a
hypothesis correctly describing the target concept. However, from a viewpoint
of potential applications, it suffices in most cases that the final hypothesis
approximates the target concept sufficiently well. To capture this aspect, Blum
and Blum [5] introduced a quite natural refinement of Gold’s [11] model. In
their setting of learning recursive functions with anomalies, it is admissible
that the learner’s final hypothesis may differ from the target function at finitely
many data points. Case and Lynes [7] adapted this model to language learning.

Learning with anomalies has been intensively studied in the context of learn-
ing recursive functions and recursively enumerable languages (cf., e.g., Case
and Smith [8], Daley [9], Fulk [10], Kinber and Zeugmann [13], Royer [18],
Jain et al. [12] and the references therein). Preliminary results concerning
the learnability of indexable classes with anomalies can be found in Tabe and
Zeugmann [19]. Note that Baliga et al. [3] studied the learnability of indexable
classes with anomalies, too. However, unlike almost all other work on learning
indexable classes, Baliga et al. [3] allow the use of arbitrary hypothesis spaces

2

including those not having a uniformly decidable membership problem. There-
fore, the results from Baliga et al. [3] do not directly translate into the setting
mainly considered in this paper, i.e., learning indexable classes with respect
to indexed families as hypotheses spaces.

The present paper provides a systematic study of learning indexable concept
classes with anomalies. We investigate the following variants of Gold-style
concept learning: learning in the limit, finite identification, set-driven learn-
ing, conservative inference, and behaviorally correct learning. We relate the
resulting models of learning with anomalies to one another as well as to the
corresponding versions of learning without anomalies. The main focus of at-
tention is put to the case that the number of allowed anomalies is finite but
not a priori bounded. However, we also present results dealing with the case
that the number of allowed anomalies is a priori bounded.

Finally, we mention prototypical results. In case of learning with anomalies
from positive data, the learning power of set-driven learners, conservative
learners, and unconstrained IIMs does coincide. In contrast, when anomaly-
free learning is considered, conservative inference and set-driven learning are
strictly less powerful. A further difference to learning without anomalies is ob-
tained by showing that behaviorally correct learning with anomalies is strictly
more powerful than learning in the limit with anomalies. Furthermore, if the
number of allowed anomalies is finite but not a priori bounded, then there is
no need to use arbitrary hypothesis spaces for designing superior behaviorally
correct learners, thus refining the corresponding results by Baliga et al. [3].
However, if the number of anomalies is a priori bounded, it is advantageous
to use arbitrary hypothesis spaces. For establishing these results, we provided
characterizations of the corresponding models of learning with anomalies in
terms of finite tell-tale sets (cf. Angluin [2]). The observed varieties in the
degree of recursiveness of the relevant tell-tale sets are already sufficient to
quantify the differences in the corresponding learning models with anomalies.

2 Preliminaries

2.1 Basic Notions

Let N = {0, 1, 2, . . .} be the set of all natural numbers and let N+ = N \ {0}.
By 〈·, ·〉: N × N → N we denote Cantor’s pairing function. Let A and B be
sets. As usual, A4B denotes the symmetrical difference of A and B, i.e.,
A4B = (A \B) ∪ (B \A). We write A # B to indicate that A4B 6= ∅. For
all a ∈ N, A =a B iff card(A4B) ≤ a, while A =∗ B iff card(A4B) < ∞.

3

Any recursively enumerable set X is called a learning domain. We fix any
recursive enumeration (wj)j∈N of X . By ℘(X) we denote the power set of X .
Let C ⊆ ℘(X) and let c ∈ C. We refer to C and c as to a concept class and a
concept, respectively. Sometimes we identify a concept c with its characteristic
function, i.e., we write c(x) = 1, if x ∈ c, and c(x) = 0, otherwise.

We study the learnability of indexable concept classes (cf. Angluin [2]). A
class of non-empty concepts C is said to be an indexable concept class iff there
are an effective enumeration (cj)j∈N of all and only the concepts in C and a
recursive function f such that, for all j ∈ N and all x ∈ X , f(j, x) = cj(x)
holds. By IC we denote the collection of all indexable classes.

Let (Tj)j∈N be a family of finite sets. (Tj)j∈N is said to be uniformly recur-
sively enumerable (recursively enumerable, for short) iff there is an effective
procedure that, on every input j ∈ N, enumerates the finite set Tj. Moreover,
(Tj)j∈N is said to be uniformly recursively generable (recursively generable, for
short) iff there is an effective procedure that, on every input j ∈ N, generates
all elements of the finite set Tj and stops.

2.2 Gold-Style Concept Learning

Let X be a learning domain, let c ⊆ X be a concept, and let t = (xn)n∈N be an
infinite sequence of elements from c such that {xn | n ∈ N} = c. Then t is said
to be a text for c. By Text(c) we denote the set of all texts for c. Let t be a text
and let y ∈ N. Then, ty denotes the initial segment of t of length y + 1, and
we set content(ty) = {xn | n ≤ y}. Furthermore, let σ = x0, . . . , xn−1 be any
finite sequence. Then we use |σ| to denote the length n of σ, and let content(σ)
denote the content of σ. Let c be a concept; then we write SegText(c) for the
set of all finite sequences of elements from c. Additionally, let t be a text
and let τ be a finite sequence; then we use σ � t and σ � τ to denote the
sequence obtained by concatenating σ onto the front of t and τ , respectively.
Furthermore, we write σ @ τ and σ @ t in case that σ constitutes a proper
initial segment of τ and t, respectively.

Let (wj)j∈N be the fixed recursive enumeration of the learning domain X , let
c ⊆ X be a concept, and let m be the least number such that wm ∈ c. Then,
the canonical text tc = (xn)n∈N for c is defined as follows: x0 = wm. For all
n ∈ N, if wn+1 ∈ c then xn+1 = wn+1, otherwise xn+1 = xn. Furthermore, for
every indexable class C we set Text(C) =

⋃
c∈C Text(c).

Next, for every finite set c ⊆ X , we define the canonical arrangement of c to
be the result of the following procedure. First, compute the shortest initial
segment of the canonical text tc of c that contains all elements of c. Delete all
repetitions and output the resulting sequence.

4

As in Gold [11], we define an inductive inference machine (abbr. IIM) to be
an algorithmic mapping from initial segments of texts to N ∪ {?}. Thus, an
IIM either outputs a hypothesis, i.e., a number encoding a certain computer
program, or “?,” a special symbol representing the case where the machine
outputs “no conjecture.” Note that an IIM, when learning a target class C, is
required to produce an output on every initial segment of all texts in Text(C).

The numbers output by an IIM are interpreted with respect to a suitably cho-
sen hypothesis space H = (hj)j∈N. Since we exclusively deal with the learnabil-
ity of classes C ∈ IC, unless otherwise stated, we assume H to be an indexed
family, i.e., all hj describe non-empty concepts and membership is uniformly
decidable in H. When an IIM M outputs some number j, we interpret it to
mean that M hypothesizes hj.

Let C ∈ IC, let H = (hj)j∈N be a hypothesis space, and let a ∈ N ∪ {∗}. If
C = {hj | j ∈ N}, then H is said to be a class preserving hypothesis space
for C (cf. Lange and Zeugmann [16]). Furthermore, H is called class admissible
hypothesis space for C with respect to a provided that, for every c ∈ C, there
is an index j such that hj =a c (cf. Tabe and Zeugmann [19]). If a = 0, then
H is a class comprising hypothesis space for C (cf. Lange and Zeugmann [16]).

We define convergence of IIMs as usual. Let t be a text and let M be an IIM.
The sequence (M(ty))y∈N of M ’s hypotheses converges to a number j iff all
but finitely many terms of it are equal to j.

Now, we are ready to define learning in the limit.

Definition 1 (Gold [11], Case and Lynes [7]). Let C ∈ IC, let c be a
concept, let H = (hj)j∈N be a hypothesis space, and let a ∈ N ∪ {∗}. An IIM
M LimaTxtH–learns c iff, for every t ∈ Text(c), there is a j ∈ N with
hj =a c such that the sequence (M(ty))y∈N converges to j.

Furthermore, M LimaTxtH–learns C iff M LimaTxtH–learns each c′ ∈ C.

Finally, LimaTxt denotes the collection of all classes C ′ ∈ IC for which there
are a hypothesis space H′ = (h′j)j∈N and an IIM M ′ that LimaTxtH′–learns C ′.

Subsequently, we write LimTxt instead of Lim0Txt . We adopt this convention
to all learning types defined below.

In general, it is not decidable whether or not an IIM has already converged
on a text t for the target concept c. Adding this requirement to the above
definition results in finite learning (cf. Gold [11]). The corresponding learning
type is denoted by FinaTxt , where again a ∈ N ∪ {∗}.

Definition 2 (Gold [11]). Let C be an indexable class, let c be a concept, let

5

H = (hj)j∈N be a hypothesis space, and let a ∈ N∪{∗}. An IIM M FinaTxtH–
learns c iff, for every t ∈ Text(c), there exist j, m ∈ N such that c =a hj,
M(tr) = ? for all r < m, and M(ty) = j for all y ≥ m.

Furthermore, M FinaTxtH–learns C iff M FinaTxtH–learns each c′ ∈ C.

For every a ∈ N ∪ {∗}, the resulting learning type FinaTxt is defined analo-
gously to Definition 1.

Next, we define conservative IIMs. Conservative IIMs maintain their actual
hypothesis at least as long as they have not seen data contradicting it.

Definition 3 (Angluin [2]). Let C ∈ IC, let c be a concept, let H = (hj)j∈N
be a hypothesis space, and let a ∈ N∪{∗}. An IIM M ConsvaTxtH–learns c
iff M LimaTxtH–learns c and, for all t ∈ Text(c) and for any two consecu-
tive hypotheses k = M(ty) and j = M(ty+1), if k ∈ N and k 6= j, then
content(ty+1) 6⊆ hk.

Finally, M ConsvaTxtH–learns C iff M ConsvaTxtH–learns each c′ ∈ C.

For every a ∈ N ∪ {∗}, the resulting learning type ConsvaTxt is defined anal-
ogously to Definition 1.

Next, we define set-driven IIMs. Intuitively speaking, the output of a set-
driven IIM depends exclusively on the content of its input, thereby ignoring
the order as well as the frequency in which the examples occur.

Definition 4 (Wexler and Culicover [20]). Let C ∈ IC, let c be a con-
cept, let H = (hj)j∈N be a hypothesis space, and let a ∈ N ∪ {∗}. An IIM M
SdraTxtH–learns c iff M LimaTxtH–learns c and, for all t, t′ ∈ Text(C) and
for all n,m ∈ N, if content(tn) = content(t′m), then M(tn) = M(t′m).

Furthermore, M SdraTxtH–learns C iff M SdraTxtH–learns each c′ ∈ C.

For every a ∈ N ∪ {∗}, the resulting learning type SdraTxt is defined analo-
gously to Definition 1.

Next, we relax Definition 1 by allowing the learner to converge semantically.
That is, now it suffices that all but finitely many hypotheses do correctly
approximate the target concept. The resulting learning type is referred to as
behaviorally correct learning.

Definition 5 (Bārzdiņš [4], Case and Lynes [7]). Let C ∈ IC, let c be a
concept, let H = (hj)j∈N be a hypothesis space, and let a ∈ N ∪ {∗}. An IIM
M BcaTxtH–learns c iff, for every t ∈ Text(c) and for all but finitely many
y ∈ N, hM(ty) =a c.

6

Furthermore, M BcaTxtH–learns C iff M BcaTxtH–learns each c′ ∈ C.

For every a ∈ N∪{∗}, the resulting learning type BcaTxt is defined analogously
to Definition 1.

Finally, we define consistent IIMs (cf. Gold [11]). Let C ∈ IC, let H be a
hypothesis space, and let M be an IIM. Then, M is said to be consistent
for C with respect to H provided that, for all t ∈ Text(C) and all y ∈ N, if
M(ty) = k for some k ∈ N, then content(ty) ⊆ hk. Intuitively speaking, the
hypotheses of a consistent IIM correctly reflect the data on which they were
built upon. For all a ∈ N ∪ {∗} and all learning types LtaTxt defined above,
we let c-LtaTxt denote the collection of all classes C ∈ IC for which there are
a hypothesis space H and a consistent IIM that LtaTxtH–learns C.

3 Learning from Positive Data

In this section, we study the power and the limitations of the various models
of learning with anomalies. We relate these models to one another as well as to
the different models of anomaly-free learning. We are mainly interested in the
case that the number of allowed anomalies is finite but not a priori bounded.
For giving an impression of how the overall picture changes when the number
of allowed anomalies is a priori bounded, we also present results for this case.

Proposition 1 summarizes the known relations between the considered models
of anomaly-free learning from text.

Proposition 1 (Gold [11], Lange and Zeugmann [17]).
FinTxt ⊂ SdrTxt = ConsvTxt ⊂ LimTxt = BcTxt ⊂ IC.

In the setting of learning recursive functions, the first observation made when
comparing learning in the limit with anomalies to behaviorally correct infer-
ence was the error correcting power of Bc-learners, i.e., Ex ∗ ⊆ Bc (cf., e.g.,
Case and Smith [8]). Interestingly enough, this result did not translate into
the setting of learning recursively enumerable languages from positive data.
But still, a certain error correcting power is preserved in this setting, since
LimTxta ⊆ BcTxt b provided a ≤ 2b (cf. Case and Lynes [7]).

When comparing learning with and without anomalies in our setting of learn-
ing indexable classes, it turns out that even finite inference may become more
powerful than Bc-learning.

Theorem 1. Fin1Txt \BcTxt 6= ∅.

7

Proof. Let c = {b}∗ and, for all k ∈ N, let ck = c\{bk}. Let C be the collection
of c and of all infinite concepts ck. It is folklore that C /∈ LimTxt , and thus
C /∈ BcTxt (cf. Proposition 1). Finally, since, for all k ∈ N+, c =1 ck, an IIM
that always guesses c witnesses C ∈ Fin1Txt . 2

However, the opposite is also true. For instance, PAT , the well-known class of
all pattern languages 1 (cf. Angluin [1]), witnesses the even stronger result:

Theorem 2. ConsvTxt \ Fin∗Txt 6= ∅.

Proof. Recall that PAT ∈ ConsvTxt (cf. Angluin [2]). Furthermore, PAT
contains a singleton language L as well as an infinite language L′ with L ⊂ L′.
Since every initial segment of a text for L constitutes an initial segment of a
text for L′ and since L 6=∗ L′, no IIM can Fin∗Txt–learn L and L′. 2

3.1 The Case of a Finite Number of Anomalies

As we shall see, the relations between the standard learning models change
considerably, if it is no longer required that the learner almost always outputs
hypotheses correctly describing the target concept. The following picture dis-
plays the established coincidences and differences by relating the models of
learning with anomalies to one another and by ranking them in the hierarchy
of the models of anomaly-free learning.

Fin∗Txt ⊂ Sdr ∗Txt = Consv ∗Txt = Lim∗Txt ⊂ Bc∗Txt ⊂ IC

∪ ∪ ∪ ∪ ∪

FinTxt ⊂ SdrTxt = ConsvTxt ⊂ LimTxt = BcTxt ⊂ IC

To achieve the overall picture, we establish characterizations of all models of
learning with a finite but not a priori bounded number of anomalies. On the
one hand, we present characterizations in terms of finite tell-tale sets. On the
other hand, we prove that some of the learning models coincide.

The characterizations of Lim∗Txt and Fin∗Txt are similar to the known charac-
terizations of LimTxt and FinTxt (cf. Angluin [2], Lange and Zeugmann [15]).

1 Let Σ 6= ∅ be a finite alphabet and let X be a countably infinite set of variables
such that Σ ∩X = ∅. Then, every string π ∈ (Σ ∪X)+ constitutes a pattern. The
language L(π) defined by pattern π is the set of all strings that can be obtained
by replacing the variables in π by strings from Σ+. Thereby, each occurrence of the
same variable has to be replaced by the same string. Now, PAT is the set of all
languages L(π), where π is a pattern.

8

Proposition 2 (Tabe and Zeugmann [19]). For all C ∈ IC: C ∈ Lim∗Txt
iff there are an indexing (cj)j∈N of C and a recursively enumerable family
(Tj)j∈N of finite sets such that

(1) for all j ∈ N, Tj ⊆ cj,
(2) for all j, k ∈ N, if Tj ⊆ ck ⊆ cj, then ck =∗ cj.

Theorem 3. For all C ∈ IC: C ∈ Fin∗Txt iff there are an indexing (cj)j∈N
of C and a recursively generable family (Tj)j∈N of finite sets such that

(1) for all j ∈ N, Tj ⊆ cj,
(2) for all j, k ∈ N, if Tj ⊆ ck, then ck =∗ cj.

Proof. Necessity. Assume that a hypothesis space H = (hj)j∈N and an IIM M
that Fin∗TxtH–learns C are given. Moreover, let (cj)j∈N be any indexing of C.
The family (Tj)j∈N is defined as follows.

Let j ∈ N and let tcj be the canonical text of cj. Since M finitely infers cj,
there exists a least y ∈ N such that M(t

cj
y) = m for some m ∈ N. We set

Tj = content(t
cj
y).

We have to show that (Tj)j∈N satisfies the Properties (1) and (2). By con-
struction, (1) is obviously fulfilled. For proving (2), let j, k ∈ N such that
Tj ⊆ ck. Due to our construction, there is an initial segment of cj’s canonical
text tcj , say t

cj
y , such that content(t

cj
y) = Tj and M(t

cj
y) = m. Since M finitely

learns cj, we know hm =∗ cj. Because of Tj ⊆ ck, t
cj
y is also an initial segment

of some text t for ck. Taking into account that M finitely infers ck from t and
that M(ty) = m, we get hm =∗ ck, too.

Sufficiency. Let H = (hj)j∈N be the hypothesis space such that hj = cj for all
j ∈ N. It suffices to show that there is an IIM M that Fin∗TxtH–learns C. So,
let c ∈ C, let t ∈ Text(c), and let y ∈ N.

IIM M : “On input ty do the following:
If y = 0 or M(ty−1) = ?, goto (A). Otherwise, output j = M(ty−1).
(A) For j = 0, . . . , y, generate Tj and test whether or not Tj ⊆ content(ty).

If there is a j passing the test, output the minimal one. Else, output “?.”

One directly sees that M learns as required. 2

In contrast to Proposition 1, when a finite but not a priori bounded number
of errors in the final hypothesis is allowed, conservative IIMs become exactly
as powerful as unconstrained IIMs.

Theorem 4. Lim∗Txt = Consv ∗Txt.

9

Proof. By definition, Consv ∗Txt ⊆ Lim∗Txt is obvious. For the opposite direc-
tion, let C ∈ Lim∗Txt , let H = (hj)j∈N be a hypothesis space and let M be an
IIM that Lim∗TxtH–learns C. We have to construct an IIM M ′ that witnesses
C ∈ Consv ∗Txt . The conservative IIM M ′ uses the following hypothesis space
H′. For all j ∈ N and x ∈ X , we set h′j,x = hj \ {x}. Let H′ be the canonical
enumeration of all those concepts h′j,x.

Let c ∈ C, let t = (xj)j∈N be a text for c, and let y ∈ N.

IIM M ′: “On input ty do the following:
If M(ty) = ?, output ?. Otherwise, determine j = M(ty) and output the
canonical index of h′j,x0

in H′.”

By construction, M ′ is conservative. Since M converges on t to a hypothesis
describing a finite variant of the target concept c, M ′ will do as well. 2

The conservative IIM M ′ used above always outputs a hypothesis that def-
initely contradicts the data seen so far, and thus M ′ is inconsistent. Never-
theless, this slightly unconventional behavior guarantees that M ′ exclusively
performs justified mind changes. Naturally, the question arose whether or not
one can simulate the given IIM M by a learner that is both conservative and
consistent. The affirmative answer is provided by Theorem 7. Before proving
it, we need the following results which may be interesting in their own right.

We start with a technical lemma needed below and later.

Lemma 1. Let C ∈ IC, let a ∈ N ∪ {∗}, let H be a hypothesis space, and let
M be an IIM witnessing C ∈ SdraTxtH. Then one can effectively construct a
hypothesis space Ĥ = (ĥj)j∈N and an IIM M̂ such that

(1) M̂ is total,
(2) Let X be the underlying learning domain. Then M̂ outputs a consistent

hypothesis on every finite sequence σ ∈ SegText(X),
(3) M̂ SdraTxt Ĥ–learns C,
(4) for all c ∈ C and for all t ∈ Text(c), if (M̂(tx))x∈N converges to z then

c ⊆ ĥz.

Proof. The hypothesis space H may not have a superset of some concept in C
and may not contain a consistent hypothesis for some σ ∈ SegText(X). This
problem is solved by mixing H with H̃ and all finite sets over the learning
domain X . So, let us fix any enumeration of all finite sets over X such that
membership in fj is uniformly decidable for all j ∈ N and such that the

cardinality of fj is computable from j for all j ∈ N. Then, we define H̃ to
be any fixed indexing (h̃〈j,z〉)j,z∈N such that h̃〈j,z〉 = hj ∪ fz and such that

membership in h̃〈j,z〉 is uniformly decidable for all j, z ∈ N.

10

The desired hypothesis space Ĥ is defined as follows. For all j ∈ N, we set

ĥj =



h j
3
, if j ≡ 0 mod 3

h̃ j−1
3

, if j ≡ 1 mod 3

f j−2
3

, if j ≡ 2 mod 3 .

Furthermore, we fix any enumeration (cj)j∈N of C such that membership in cj

is uniformly decidable for all j ∈ N. Now we are ready to define the desired
IIM M̂ . Let c ⊆ X be any concept, let t ∈ Text(c), and let x ∈ N.

IIM M̂ : “On input tx, execute Stage x.
Stage x: Determine nx = card(content(tx)); goto (1).

(1) For i = 0, . . . , nx check whether or not content(tx) ⊆ ci. If such an i
has been found, goto (2).
Otherwise, search the least j such that content(tx) = fj and output
3j + 2.

(2) If M(tx) = ?, then goto (3). Otherwise, let jx = M(tx). If content(tx) ⊆
hjx then output 3jx. In case content(tx) 6⊆ hjx determine the least m
such that content(tx) = fm and output the canonical index of h̃〈jx,m〉

in Ĥ.
(3) Find the least j such that content(tx) = fj and output 3j + 2.”

It remains to show that M̂ satisfies Properties (1) through (4). First, let c ⊆ X
be any concept, let t ∈ Text(c), and let x ∈ N. By construction, membership is
uniformly decidable in (cj)j∈N and (fj)j∈N. Thus, Instruction (1) is effectively

executable. If M̂ outputs a hypothesis in Instruction (1), it is clearly consistent.
If M̂ enters Instruction (2), then tx is also an initial segment of some text for
some concept c ∈ C. Thus, M(tx) is defined. By construction, every hypothesis
output in Instructions (2) or (3) is consistent, too. Since membership in (hj)j∈N
is uniformly decidable, the tests in Instruction (2) are effectively executable.
Hence, M is total and consistent. This proves Assertions (1) and (2). By
assumption, M SdraTxt–learns every c ∈ C with respect to H. Since M̂ uses
exclusively M and content(tx) for computing its hypothesis, it is set-driven,
too.

Second, let c ∈ C, let t ∈ Text(c), and let x ∈ N. It remains to show Assertions
(3) and (4). Since we already know that M̂ is set-driven, it suffices to show
that M̂ LimaTxt–learns C.

If the target concept c is finite and for all i ≤ card(c) we have c 6⊆ ci, then
for all sufficiently large x the IIM M̂ determines its hypothesis on input tx in
Instruction (1), and we are already done.

11

If the target concept c is infinite or finite such that there is an i ≤ card(c) with
c ⊆ ci, then for all sufficiently large x the IIM M̂ determines its hypothesis
on input tx in Instruction (2).

By assumption, there exist x̂ and z such that M(tx) = jx = z for all x ≥ x̂
and hz =a c. If additionally c ⊆ hz, we are done again. Otherwise, we know
that card(c \ hz) ≤ a. Thus, M̂ performs at most a additional mind changes
by combining hz with content(tx). Finally M̂ converges to the canonical in-
dex ẑ of h̃〈z,m〉 in Ĥ, where m is the index of the finite set fm such that
fm = content(tx′), where x′ is the least x ≥ x̂ with c \ hz ⊆ content(tx′).
Consequently, c =a ĥẑ and c ⊆ ĥẑ. This proves Assertions (3) and (4). 2

Theorem 5. SdraTxt ⊆ c-ConsvaTxt for all a ∈ N ∪ {∗}.

Proof. Let a ∈ N ∪ {∗} and let C ∈ SdraTxt . Let (cj)j∈N be an indexing of
C such that, for all c ∈ C, there are infinitely many j with cj = c. Moreover,
let H = (hj)j∈N be a hypothesis space, and let M be a set-driven IIM that
LimaTxtH–infers C. Let X be the underlying learning domain.

By Lemma 1 we may assume that M andH = (hj)j∈N are chosen in a way such
that M always outputs a consistent hypothesis when fed any finite sequence
σ ∈ SegText(X) and that M when fed any text t for any c ∈ C, converges to
an index z such that hz =a c and c ⊆ hz.

Before defining the wanted conservative IIM M ′, we specify a suitable hypoth-
esis space Ĥ = (ĥ〈i,j,k〉)i,j,k∈N.

For the sake of readability, in the following, we consider the given set-driven
IIM M to be a learning device which receives finite sets of strings as input
instead of finite sequences. Let (Fj)j∈N denote any effective repetition-free
enumeration of all finite subsets of X . We assume that, given any finite F ⊆ X ,
we may effectively determine F ’s index #(F) in the enumeration (Fj)j∈N, i.e.,
#(F) = n with Fn = F . Let (wj)j∈N be the fixed enumeration of all elements
in X . Moreover, for all c ⊆ X and all m ∈ N, we denote by c�m the concept
{wz | z ≤ m, wz ∈ c}.

Let i, j, k ∈ N. If Fj 6⊆ hi ∩ ck or M(Fj) 6= i, we set ĥ〈i,j,k〉 = {w0}. Otherwise,

for all z ∈ N, we let wz ∈ ĥ〈i,j,k〉 iff (i) or (ii) is fulfilled, where

(i) wz ∈ Fj.
(ii) wz /∈ Fj, wz ∈ hi ∩ ck and, for all V ⊆ hz

i ∩ ck�
z, M(Fj ∪ V) = i.

Note that, by construction, ĥ〈i,j,k〉 is finite or it equals hi ∩ ck. Moreover, if

ĥ〈i,j,k〉 6= {w0}, then Fj ⊆ ĥ〈i,j,k〉 ⊆ hi ∩ ck.

12

Since M is total and (cj)j∈N is an indexing of C and membership is uniformly

decidable in H, we know that ĥ〈i,j,k〉 is recursive. Hence, membership is uni-

formly decidable in Ĥ, too.

Next, we show that Ĥ is a class comprising hypothesis space for C. Let c ∈ C
and let k ∈ N with ck = c. Since M is set-driven IIM and M LimaTxt–learns
c, there has to be a finite set F ⊆ c such that, for all finite sets V ⊆ c,
M(F) = M(F ∪ V) = i, and hi =a c. Since M is consistent, c ⊆ hi, and
therefore ĥ〈i,#(F),k〉 = hi ∩ ck = c.

Furthermore, Ĥ’s definition immediately implies:

Fact 1. Let i, j, k ∈ N and let V be some finite subset of X . Then, we have:
If M(Fj) = i, Fj ∪ V ⊆ ck ∩ hi, and M(Fj ∪ V) 6= i, then V 6⊆ ĥ〈i,j,k〉.

Fact 2. Let i, j, k ∈ N and let V be some finite subset of X . Then, we have:
If M(Fj) = i, Fj ∪ V ⊆ ck ∩ hi, and M(Fj ∪ V) 6= i, then ĥ〈i,j,k〉 is finite.

Now, we are ready to define an IIM M ′ that c-ConsvTxt Ĥ–learns C. Let c ∈ C,
t ∈ Text(c), and y ∈ N.

IIM M ′: “On input ty do the following:
If y = 0, then compute i = M(content(ty)), j = #(content(ty)), and the
least k with content(ty) ⊆ ck. Output 〈i, j, k〉. Otherwise, goto (A).

(A) Let M ′(ty−1) = 〈i, j, k〉. Test whether or not content(ty) ⊆ ĥ〈i,j,k〉. If
it is, output 〈i, j, k〉. Otherwise, compute i′ = M(content(ty)), j′ =
#(content(ty)) and the least k′ > k with content(ty) ⊆ ck′ . Output
〈i′, j′, k′〉.”

By definition, M ′ is consistent and it outputs a hypothesis in every step.
Moreover, M ′ exclusively performs justified mind changes. Thus, M ′ is also
conservative. Next, we show that M ′ learns c from text t. We distinguish two
cases.

Case 1. c is finite.

Let y′ be the least index such that content(ty′) = c and let y ≤ y′ be
the least index with M ′(ty) = M ′(ty′). Let M ′(ty) = 〈i, j, k〉. By defini-
tion, i = M(content(ty)), j = #(content(ty)), and content(ty) ⊆ ck. Since

content(ty) ⊆ content(ty′) ⊆ ĥ〈i,j,k〉 ⊆ hi ∩ ck, we obtain M(content(ty)) =
M(content(ty′)) = i (cf. Fact 1). Since M is a set-driven and consistent IIM
that learns c, we know that hi =a c and c ⊆ hi. Finally, since content(ty′) ⊆
ĥ〈i,j,k〉 and since, by construction, ĥ〈i,j,k〉 ⊆ hi, we may conclude ĥ〈i,j,k〉 =a c,
and thus we are done.

Case 2. c is infinite.

13

This part of the proof relies on the following claim.

Claim 1. For all y, z ∈ N, if M ′(ty) = z and c ⊆ ĥz, then c =a ĥz.

Without loss of generality, let y be the least index with M ′(ty) = z. By
definition, z = 〈i, j, k〉, where i = M(content(ty)), j = #(content(ty)), and

content(ty) ⊆ ck. Suppose that c ⊆ ĥz and c 6=a ĥz. Note that, by construction,

c ⊆ ĥ〈i,j,k〉 ⊆ hi ∩ ck, and therefore, hi 6=a c. Now, since M learns c, there are
r, i′ ∈ N such that M(content(ty+r)) = i′ and hi′ =a c. Clearly, i′ 6= i. Finally,

because of content(ty+r) ⊆ c ⊆ ck ∩hi, ĥ〈i,j,k〉 must be finite (cf. Fact 2). Since

c is infinite, ĥ〈i,j,k〉 cannot constitute a proper superset of c, a contradiction,
and the claim follows.

It remains to show that there are indices y, z such that M ′(ty) = z, ĥz =a c,

and c ⊆ ĥz. Since M ′ is conservative, this will suffice.

Again, since M is set-driven and LimaTxt–learns c, there has to be a finite
set F ⊆ c such that, for all finite sets V ⊆ c, M(F) = M(F ∪ V) = i, and
hi =a c. Since M is consistent, c ⊆ hi holds.

Next, let y be the least index such that F ⊆ content(ty) and let 〈iy, jy, ky〉 =

M ′(ty). Obviously, if c ⊆ ĥ〈iy ,jy ,ky〉, then, by Claim 1, we are immediately done.

Otherwise, by Claim 1, we may assume that c \ ĥ〈iy ,jy ,ky〉 6= ∅. Hence, there is

a least y′ > y such that content(ty′) 6⊆ ĥ〈iy ,jy ,ky〉 and thus M ′ performs a mind
change, i.e., it computes 〈iy′ , jy′ , ky′〉 = M ′(ty′).

Now, by the choice of y, we know that iy′ = i. Moreover, jy′ = #(content(ty′))
and, even more important, ky′ is the least index such that ky′ > ky and
content(ty′) ⊆ cky′

. Now, recall that, by the choice of the indexing (cj)j∈N,

there is a least index k̂ > ky such that ck̂ = c. Hence, we may conclude

that ky < ky′ ≤ k̂. As above, there are two cases to distinguish. First, if

c ⊆ ĥ〈iy′ ,jy′ ,ky′ 〉, then, again by Claim 1, we are directly done. Second, if

c 6⊆ ĥ〈iy′ ,jy′ ,ky′ 〉, there is a least y′′ ∈ N such that content(ty′′) 6⊆ ĥ〈iy′ ,jy′ ,ky′ 〉.
Again, by definition, M ′ changes its mind to 〈i, #(content(ty′′)), ky′′〉, where

ky′′ is the least index with ky′ < ky′′ ≤ k̂ and content(ty′′) ⊆ cky′′
.

Finally, by simply iterating this argumentation and by taking into consider-
ation that, for all finite sets V with content(ty) ⊆ V ⊆ c, ĥ〈i,#(V),k̂〉 = c,

one directly sees that M ′ eventually outputs a hypothesis z with c ⊆ ĥz and
ĥz =a c, and thus, we are done. 2

Theorem 6. Lim∗Txt ⊆ Sdr ∗Txt .

14

Proof. Let C ∈ Lim∗Txt . By Proposition 2, there is an indexing (cj)j∈N of C
and a recursively enumerable family (Tj)j∈N of finite sets such that, for all
j, k ∈ N, (1) and (2) are fulfilled, where

(1) Tj ⊆ cj.
(2) If Tj ⊆ ck ⊆ cj, then ck =∗ cj.

For all j, y ∈ N, we let T
(y)
j denote the finite subset of Tj that is enumerated

within y steps. Note that, for all j, y, y′ ∈ N, it is decidable whether or not

T
(y)
j = T

(y′)
j . For technical reasons, it is convenient to assume that, for all

j ∈ N, Tj 6= ∅ and T
(0)
j = ∅. Clearly, this assumption is justified, since C

exclusively contains non-empty concepts.

Before we define a set-driven IIM M ′ that learns C, we define a consistent IIM
M that Lim∗TxtH–learns C, where H = (cj)j∈N. The required set-driven IIM
M ′ will use M as a subroutine.

Let c ∈ C, let t ∈ Text(c), and let y ∈ N.

IIM M : “On input ty proceed as follows: For all j ≤ y, test whether or not

T
(y)
j ⊆ content(ty) ⊆ cj. If there is a j passing this test, then output the

minimal one. Otherwise, determine the minimal j with content(ty) ⊆ cj and
output j.”

The verification that M behaves as required is straightforward.

We continue in defining a hypothesis space H′ = (h′〈j,k〉)j,k∈N and a set-driven
IIM M ′ that Lim∗TxtH′–learns C. Let (wj)j∈N be an effective enumeration of
all elements in X . Let j, k ∈ N. For all z ∈ N, we let wz ∈ h〈j,k〉 iff one of the
Conditions (i) and (ii) is fulfilled, where

(i) z ≤ k and wz ∈ cj.

(ii) z > k, wz ∈ cj, and T
(z)
j = T

(k)
j .

Now, one easily verifies that membership is uniformly decidable in H′. Since
(cj)j∈N is an indexing of C and since all the sets Tj are finite, we may imme-
diately conclude:

Fact 1. For all j ∈ N and all k ∈ N, if T
(k)
j = Tj, then h′〈j,k〉 = cj.

Fact 2. For all j, k ∈ N, if T
(k)
j 6= Tj, then h′〈j,k〉 is finite.

Now, we are ready to define M ′. So, let c ∈ C, let t ∈ Text(c), and let y ∈ N.

IIM M ′: “On input ty do the following:
Compute the canonical arrangement σ = x0, . . . , xr of content(ty). Deter-

15

mine j = M(σ). Test whether or not T
(r)
j ⊆ content(σ). In case it is,

goto (A). Else, goto (B).

(A) Determine m = min{n | T (n)
j = T

(r)
j } and output 〈j, m〉.

(B) Output 〈j, 0〉.”

By definition, M ′ is set-driven. We have to show that M ′ learns as required.
For that purpose, we distinguish two cases.

Case 1. c is infinite.

Recall that M , when fed the canonical text for c, where all repetitions are
deleted, converges to a hypothesis j with cj =∗ c. Due to M ’s definition we

have Tj ⊆ c. Thus, M ′ converges to 〈j, m〉, where m = min{n | T
(n)
j = Tj}.

Hence, by Fact 1, h′〈j,m〉 = cj, and we are done.

Case 2. c is finite.

Let σ be the canonical arrangement of the elements of c. By definition, M ′

converges on t to 〈j, m〉 = M ′(σ). We claim that h′〈j,m〉 =∗ c. First, assume that
the hypothesis 〈j, m〉 was build in accordance with (B). Hence, m = 0. Since,

by assumption, T
(0)
j 6= Tj, we obtain, via Fact 2, that h′〈j,m〉 is finite. Hence,

h′〈j,m〉 =∗ c. Second, suppose the hypothesis 〈j, m〉 was build due to (A). Now,

if T
(m)
j 6= Tj, the same arguments yield h′〈j,m〉 =∗ c. Finally, consider the case

that T
(m)
j = Tj. Since M(σ) = j, we get Tj ⊆ content(σ) = c. Since M is

consistent, we know that c = content(σ) ⊆ cj. Hence, by Property (2) of the
recursively enumerable family (Tj)j∈N, we may conclude that cj =∗ c. 2

Theorem 7. c-Consv ∗Txt = Consv ∗Txt.

Proof. The theorem is a direct consequence of Theorem 5 and 6 above. 2

As a closer look at the demonstration of Theorem 6 shows, every unconstrained
IIM M can be replaced by an IIM M ′ that is simultaneously set-driven and
consistent and that is at least as powerful as M . Moreover, Theorems 5 and 6
and the definitions of the relevant learning types allow the following corollary.

Corollary 8. Sdr ∗Txt = Lim∗Txt.

Note that Corollary 8 contrasts the fact that set-drivenness is a severe restric-
tion in case that anomalies are inadmissible (cf. Lange and Zeugmann [17]).

However, there are differences between conservative inference and set-driven
learning, on the one hand, and learning in the limit, on the other hand, which
we point out next. While learning in the limit is invariant to the choice of the

16

hypothesis space (cf. Tabe and Zeugmann [19]), conservative inference and
set-driven learning are not. In order to design most powerful learners that are
conservative and set-driven, respectively, it is sometimes inevitable to select a
hypothesis space that contains concepts which are not subject to learning.

Theorem 9.

(1) There is an indexable class C ∈ Consv ∗Txt such that, for all class pre-
serving hypothesis spaces H for C, C is not Consv ∗TxtH–learnable.

(2) There is an indexable class C ∈ Sdr ∗Txt such that, for all class preserving
hypothesis spaces H for C, C is not Sdr ∗TxtH–learnable.

Proof. We present a class C ∈ IC that simultaneously witnesses (1) and (2). For
this purpose, let (Mj)j∈N be an effective enumeration of all IIMs. Without loss
of generality we may assume that each Mj is total, i.e., Mj, when fed any finite
sequence of elements from X , outputs a number. Moreover, let X = {b, d}∗.

The underlying idea is as follows: Given any j ∈ N, we define a particular
indexable class Cj such that Mj either does not witness Cj ∈ Lim∗Txt or Mj

is not conservative (set-driven) provided it uses any class preserving hypoth-
esis space for C =

⋃
j∈N Cj. For showing that Mj violates the constraints a

conservative (set-driven) IIM has to fulfill some a priori knowledge about the
semantics of Mj’s hypotheses is required. In order to provide this knowledge
we choose the following approach.

Let (ϕj)j∈N be any acceptable programming system of all partial recursive
predicates and let (Φj)j∈N be any fixed associated complexity measure (cf.
Blum [6]). Let (wj)j∈N be the fixed recursive enumeration of the elements of
X . For every j ∈ N, let c(ϕj) = {wm | m ∈ N, ϕj(m) ↓, ϕj(m) = 1}.
Then, we use H = (c(ϕj))j∈N as a universal hypothesis space, i.e., if any of the
enumerated IIMs outputs a hypothesis, say k, then we interpret it to mean
that the IIM is guessing the concept c(ϕk). Note that H is not an indexed
family. The following lemma guarantees that this approach is successful.

Lemma 2. Let C ′ be any indexable class over the learning domain X , let H′ =
(h′j)j∈N be a hypothesis space, and let M ′ be any total IIM that Lim∗TxtH′–
learns C ′. Then, there exists an IIM M which Lim∗TxtH–learns C ′.

Proof of the lemma. For all j, m ∈ N we define pj(m) = 1 iff wm ∈ h′j. Since
membership is uniformly decidable in H′, (pj)j∈N is an effective enumeration
of recursive predicates. By the choice of (ϕj)j∈N, there is a recursive compiler f
such that, for all j ∈ N, pj = ϕf(j). Given this compiler f , one can easily define
an IIM M which Lim∗TxtH–learns C ′. Let c ∈ C ′, t ∈ text(c), and y ∈ N.

IIM M : “On input ty proceed as follows:

17

Determine j = M ′(ty) and output f(j).”

Obviously, M learns C ′ as required. Note that our transformation guarantees
any additional constraint met by M ′ is satisfied by M , too. In particular,
if M ′ is conservative (set-driven), then M is also conservative (set-driven).
Moreover, if H′ is a class preserving hypothesis space for C, then M outputs
exclusively indices for concepts belonging to C. Thus, Lemma 2 is proved. 2

So, let j ∈ N. As a rule, Cj exclusively contains at most two different concepts
c and c′, where c is an infinite concept and c′ is a finite one. In order to answer
the question how to define c and c′, the following procedure is used.

Subsequently, we use the following notation. For all m, j ∈ N, let c(ϕj)
+�m =

{wn | n ≤ m, Φj(n) ≤ m, ϕj(n) = 1}. Note that, by the properties of a
complexity measure, the set c(ϕj)

+�m is recursive in m and j.

Fix j ∈ N.

Stage 0.
Set c = {bjdz | z ∈ N}, σ = σ′ = bjd0, and w = bjd. Goto Stage 1.

Stage k + 1.
Set σ′ = σ′ � bjdk+1. If Mj(σ) 6= Mj(σ

′), goto (A). Otherwise, goto (B).
(A) Set w = bjdk+2, σ = σ′, and goto Stage k + 2.
(B) Let z = M(σ). Test whether or not w ∈ c(ϕz)

+�k+1. If it is, set c′ =
content(σ) and finish the definition of Cj. Otherwise, goto Stage k + 2.

We set C =
⋃

j∈N Cj and claim that C witnesses Assertions (1) and (2) above.
Clearly, C is indexable, since the Cj’s are indexable uniformly in j.

By Theorem 4 and Corollary 8, it suffices to show that C ∈ Lim∗Txt . However,
we even show that C is LimTxt–identifiable. The desired IIM M works as
follows. On input ty, M determines the unique j ∈ N such that ty ∈ Text(Cj).
Now, M uses y steps of computation to simulate the procedure defined above
in order to decide whether or not Cj contains a finite concept c′. If y steps
of computation do not suffice for making this decision, M guesses the infinite
concept c ∈ Cj. If M has verified that there is a finite concept c′ ∈ Cj, it
tests whether or not content(ty) = c′. In case it is, M guesses c′; otherwise,
M guesses c. Obviously, M learns as required, and thus we are done.

Next we complete the proof of (1). Suppose that there are a class preserving
hypothesis space H′ for C and a conservative IIM M ′ that Lim∗TxtH′–learns C.
Without loss of generality, we assume that M ′ is total. By Lemma 2, there is
a conservative IIM M that Lim∗TxtH–learns C and that outputs exclusively
indices for concepts belonging to C. Now, let j ∈ N be fixed such that Mj = M .
We claim that M cannot learn the concepts in Cj as required.

18

Let c = {bjdz | z ∈ N} and let tc be the canonical text for c. We distinguish
two cases.

Case 1. The construction of Cj does not terminate.

Clearly, in case that M , when fed tc, changes its mind infinitely often, it cannot
learn c. Hence, there is a least y such that, for all y′ ≥ y, M(tcy) = M(tcy′).
Let z = M(tcy). Since the construction of Cj does not terminate, we know that
bjdy+1 /∈ c(ϕz). Since, in addition, c(ϕz) ∈ C, we may conclude that c(ϕz) 6=∗ c,
and therefore M fails to learn c from its canonical text.

Case 2. The construction of Cj terminates.

Hence, Cj contains a finite concept c′. Let c′ = {bjd0, . . . , bjdy}. By construc-
tion, we know that, for z = M(tcy), it has been verified that bjdy+1 ∈ c(ϕz).
Moreover, since c(ϕz) ∈ C, we obtain c(ϕz) = c. By definition, c′ ⊆ c. Since
M is conservative, it converges to z when fed the text t′ = tcy � bjd0, bjd0, . . .
for c′. But c 6=∗ c′, and thus M cannot learn c′, a contradiction.

Finally, the same argumentation applies mutatis mutandis to complete the ver-
ification of (2). Only the following minor modification is necessary. In Case 2,
one has to stress the argument that c′ = content(tcy) to show that M con-
verges to z when fed the text t′ = tcy � bjb0, bjd0, . . . for c′ provided that M is
set-driven. We omit further details. 2

For anomaly-free learning, the analogue of Theorem 9 holds as well (cf. Lange
and Zeugmann [16]).

Next we study behaviorally correct identification. As we shall see, finite tell-
tale sets form a conceptual basis that is also well-suited to characterize the
collection of all Bc∗Txt–identifiable indexable classes. Now the existence of the
corresponding tell-tale sets is already sufficient.

Theorem 10. For all C ∈ IC: C ∈ Bc∗Txt iff there is an indexing (cj)j∈N of
C and a family (Tj)j∈N of finite sets such that

(1) for all j ∈ N, Tj ⊆ cj,
(2) for all j, k ∈ N, if Tj ⊆ ck ⊆ cj, then ck =∗ cj.

Proof. Necessity. Let H be a hypothesis space and let M be an IIM that
Bc∗TxtH–learns C. Moreover, let (cj)j∈N be an indexing of C. Let j ∈ N. Since
M Bc∗TxtH–learns cj, there is some finite sequence σ ∈ SegText(cj) such that,
for all finite sequences τ ∈ SegText(cj) and all k ∈ N, if k = M(σ � τ), then
hk =∗ cj (cf. Jain et al. [12]). We claim that Tj = content(σ) will do. Suppose
that there is a k ∈ N such that Tj ⊆ ck, ck ⊂ cj, and ck 6=∗ cj. Due to the
choice of σ and since ck ⊂ cj, one directly sees that M fails to learn ck on each

19

of its texts having the initial segment σ, a contradiction.

Sufficiency. We define an appropriate hypothesis space H = (h〈j,k〉)j,k∈N. Let
(Fj)j∈N be an effective enumeration of all finite subsets of X and let (wj)j∈N be
the fixed recursive enumeration of all elements in X . For the sake of readability,
we use the following notions and notations.

First, for all c ⊆ X and all z ∈ N, we let c�z = {wr | r ≤ z, wr ∈ c}. Second,
for all j, k, z ∈ N, we let S(j,k,z) be the set of all indices r ≤ k that meet
(i) Fj ⊆ cr and (ii), for all r′ < r with cr′ ⊇ Fj, cr�

z ⊆ cr′�
z.

Now we are ready to define the required hypothesis space H. Let j, k ∈ N.
We define the characteristic function of h〈j,k〉 as follows. If S(j,k,z) = ∅, we set
h〈j,k〉(wz) = −. Otherwise, i.e., S(j,k,z) 6= ∅, we let n = max{r | r ∈ S(j,k,z)}
and set h〈j,k〉(wz) = cn(wz).

Since membership is uniformly decidable in (cj)j∈N, we know that H is an
admissible hypothesis space.

The desired IIM M is defined as follows. Let c ∈ C, t ∈ Text(c), and y ∈ N.

IIM M ′: “On input ty proceed as follows:
Determine j ∈ N with Fj = content(ty) and output 〈j, y〉.”

We claim that M Bc∗TxtH–learns c.

Let m = min{r | cr = c}. Since t ∈ Text(c), there is a least y′ ≥ m such
that, for all k′ < m, content(ty′) ⊆ ck′ implies ck′ ⊇ cm. By assumption, there
is some finite tell-tale set Tm for c = cm. Again, since t ∈ Text(c), there is
a least y′′ ≥ y′ such that Tm ⊆ content(ty′′). Fix any y ≥ y′′ and consider
〈j, y〉 = M(ty). We claim that h〈j,y〉 =∗ c. This can be seen as follows.

Let z′ ∈ N. By the choice of y′, m ∈ S(j,y,z′). Moreover, S(j,y,z′) is finite and
S(j,y,z′) ⊇ S(j,y,z′+1). Hence, there is some n ≥ m such that, for almost all z,
n = max{r | r ∈ S(j,y,z)}. By definition of H, we know that h〈j,y〉 =∗ cn. Since,
for all z ∈ N, m, n ∈ S(j,y,z) and since n ≥ m, we conclude cm ⊇ cn. By H’s
definition, we have content(ty) ⊆ cn, and thus, by the choice of y′′, Tm ⊆ cn.
Hence, Condition (2) guarantees that cn =∗ c, and therefore h〈j,y〉 =∗ c. 2

Note that Baliga et al. [3] have been shown recently that the same charac-
terizing conditions as in Theorem 10 completely describe the collection of all
indexable classes that are Bc∗Txt–learnable with respect to arbitrary hypoth-
esis spaces 2 . Hence, our result refines theirs by showing that, in order to

2 That means, hypothesis spaces that do not necessarily admit a decidable mem-
bership problem.

20

Bc∗Txt–identify an indexable class, it is always possible to select a hypothesis
space with uniformly decidable membership. However, as we see next, it is
inevitable to select the actual hypothesis space appropriately.

Theorem 11. There is an indexable class C ∈ Bc∗Txt such that, for all class
preserving hypothesis spaces H for C, C is not Bc∗TxtH–learnable.

Proof. The required class C ∈ IC is defined as follows. Let (Mj)j∈N be an
effective enumeration of all IIMs. Without loss of generality we assume that
each Mj is total, i.e., Mj, when fed any finite sequence σ ∈ SegText(X),
outputs a number. Moreover, let X = {b, d}∗.

The proof idea is as follows. For any j ∈ N, we define a class Cj ∈ IC such
that Mj fails to Bc∗Txt–identify Cj for every class preserving hypothesis space
for C =

⋃
j∈N Cj. Some a priory knowledge about Mj’s hypotheses is necessary.

For getting it, we use the same approach as in the proof of Theorem 9.

Fix an acceptable programming system (ϕj)j∈N and an associated complexity
measure (Φj)j∈N. Let (wj)j∈N be the fixed recursive enumeration of all elements
in X , and let c(ϕj) = {wm | m ∈ N, ϕj(m) ↓, ϕj(m) = 1} for all j ∈ N. Then,
we use H = (c(ϕj))j∈N as a universal hypothesis space, i.e., if any of the
enumerated IIMs outputs a hypothesis, say k, then we interpret it to mean
that the IIM is guessing the concept c(ϕk).

For all j ∈ N, the definition of Cj is performed in stages. Furthermore, for
all m, j ∈ N, we set c(ϕj)

+�m = {wn | n ≤ m, Φj(n) ≤ m, ϕj(n) = 1} and
c(ϕj)

−�m = {wn | n ≤ m, Φj(n) ≤ m, ϕj(n) = 0}. Again, by the properties
of a complexity measure, the sets c(ϕj)

+�m and c(ϕj)
−�m are recursive in m

and j.

Fix j ∈ N.

Stage 0.
Define c0 by setting c0 = {bjdz | z ∈ N}. Furthermore, set σ = bjd0, set
max = 0 and goto Stage 1.

Stage k + 1.
Set m = 0 and execute Instruction (A).
(A) For all y ≤ m, execute the test (α).

(α) Set σy = σ � bjdmax+0, . . . , bjdmax+y and determine ry = Mj(σy). Test
whether or not bjdmax+1 ∈ c(ϕry)

+�m.
In case there is some y passing this test, fix the least one, say y∗, set
max = max +y∗, and execute Instruction (B).
Otherwise, set m = m + 1 and execute Instruction (A) again.

(B) Start the definition of ck+1 and set ck+1 = {bjdz | z ≤ max}. Set n = 0
and execute Instruction (C).

21

(C) For all ` ≤ n, execute the following test (β).
(β) Set σ′

` = σy∗ �bjd0, . . . , bjd0︸ ︷︷ ︸
`−times

and determine r′` = Mj(σ
′
`). Test whether

there is a z ≤ max +n such that bjdz ∈ c(ϕr′
`
)−�max+n.

If no ` passes this test, set n = n + 1, and execute Instruction (C) again.
Otherwise, fix the least ` that passes this test. Complete the definition of
ck+1 by setting ck+1 = ck+1 ∪ {b〈k,n〉}. Set σ = σ′

`, and goto Stage k + 2.

We let C =
⋃

j∈N Cj and claim that C possesses the above property. Clearly, C
is an indexable class.

By applying Theorem 10, one easily verifies that C ∈ Bc∗Txt . To see this, let
j ∈ N. For all finite concepts ci ∈ Cj, we let Tci

= ci. We distinguish the
following cases. First assume that Cj contains only finitely many concepts,
say c0, . . . , ck. For the infinite concept c0, we let Tc0 = {bjdm}, where m =
max{z | bjdz ∈ ck} + 1. Second, consider the case that Cj contains infinitely
many concepts. Then Tc0 = {bjd0} obviously suffices.

Next we show that, for all class preserving hypothesis spaces H′, C is not
Bc∗TxtH′-learnable. Suppose that there are a class preserving hypothesis space
H′ = (h′j)j∈N and an IIM M ′ that Bc∗TxtH′–learns C. Without loss of generality
we may assume that M ′ is total. Applying similar arguments as in the proof
of Lemma 2, it can be shown that there is an IIM M that Bc∗TxtH–learns C
and that outputs exclusively indices for concepts belonging C. Now, let j ∈ N
be fixed such that Mj = M . We claim that M cannot learn all concepts in Cj.

Case 1. Cj contains infinitely many concepts.

Note that, in the definition of Cj, σ tends to become a text for c0 ∈ Cj. More-
over, in every Stage k with k ≥ 1, it has been verified that there exists some
yk such that, for rk = M(σyk

), c(ϕrk
) 6= c0 (cf. Instruction (C)). Moreover,

we know that c(ϕrk
) ∈ C. The latter yields c(ϕrk

) 6=∗ c0. By construction, M ,
when fed σ, guesses infinitely often a concept that is not a finite variant of c0,
and thus it fails to learn c0 on σ, a contradiction.

Case 2. Cj contains finitely many concepts.

First, consider the case that Cj contains only the infinite concept c0. Hence,
while executing Instruction (A) in Stage 1, a text t for c0 is formed on which
M almost always guesses a concept that is not a finite variant of c0. To see
this, note that, for all but finitely many r which M outputs when fed t, it
must be the case that bjd1 /∈ c(ϕr). Since c(ϕr) ∈ C, we may conclude that
c(ϕr) 6=∗ c0, and thus M cannot learn c0 on t.

Second, let c1, . . . , ck be the finite concepts belonging to Cj. Now assume that
Stage k does not terminate. Then, while executing Instruction (C) in Stage k,

22

a text t for ck is formed on which M almost always guesses a concept that is not
a finite variant of ck. To see this, note that, for all but finitely many r′ which
M outputs when fed t, c0 ⊆ c(ϕr′) must be the case. Moreover, c(ϕr′) ∈ C,
and therefore c(ϕr′) 6=∗ ck. Hence, M fails to learn ck on t, a contradiction.

Finally, consider the case that Stage k + 1 does not terminate. Hence, while
executing Instruction (A) in Stage k +1, a text t for c0 is formed on which M
almost always guesses a concept that is not a finite variant of c0. To see this,
note that, for all but finitely many r which M outputs when fed t, it must
hold that bjdm+1 /∈ c(ϕr), where m = max{z | bjdz ∈ ck}. Since H′ is a class
preserving hypothesis space, we have c(ϕr) ∈ C. This again yields c(ϕr) 6=∗ c0,
contradicting the assumption that M learns c0 from every text for it. 2

In contrast, since BcTxt = LimTxt , it can easily be shown that BcTxt is
invariant to the choice of the hypothesis space (cf. Lange and Zeugmann [16],
for the relevant details). To be complete, note that there are indexable classes
which are not Bc∗Txt-identifiable (cf. Jain et al. [12], Exercise 6-9(c)).

Proposition 3. Bc∗Txt ⊂ IC.

3.2 The Case of an a priori Bounded Number of Anomalies

Next we turn our attention to the case that the number of allowed anomalies is
a priori bounded. For learning in the limit, the situation remains unchanged.

Proposition 4 (Tabe and Zeugmann [19]). For all C ∈ IC and all a ∈ N:
C ∈ LimaTxt iff there are an indexing (cj)j∈N of C and a recursively enumer-
able family (Tj)j∈N of finite sets such that

(1) for all j ∈ N, Tj ⊆ cj,
(2) for all j, k ∈ N, if Tj ⊆ ck ⊆ cj, then ck =a cj.

Surprisingly, the situation changes already, if finite inference is considered. In
order to design powerful finite learners it is inevitable to use hypothesis spaces
that contain concepts that are not subject to learning.

Theorem 12. For all a ∈ N+ there is an indexable class C ′ ∈ FinaTxt such
that, for all class preserving hypothesis spaces H for C ′, C ′ is not FinaTxtH–
learnable.

Proof. We consider the case of a = 1, only. The adaptation to the general case
is obvious. For all k ∈ N, we set ck = {b}∗ \ {bk}. Let C be the collection of all
concepts ck. One the one hand, one immediately sees that C ∈ Fin1Txt . On

23

the other hand, since, for all distinctive concepts c, c′ ∈ C, c 6=1 c′, it is not
hard to verify that there is no IIM that Fin1Txt-learns C and that outputs
exclusively indices for concepts in C. We omit the details. 2

As a kind of side-effect, one obtains the following characterization for finite
inference with an a priori bounded number of anomalies.

Theorem 13. For all C ∈ IC and all a ∈ N: C ∈ FinaTxt iff there are
a hypothesis space H = (hj)j∈N and a recursively generable family (Tj)j∈N of
finite sets such that:

(1) for all j ∈ N, Tj ⊆ hj,
(2) for all c ∈ C, there is a j ∈ N such that Tj ⊆ c,
(3) for all j ∈ N and all c ∈ C, if Tj ⊆ c, then c =a hj.

Proof. Necessity. Assume that a hypothesis space H′ = (h′j)j∈N and an IIM M
that FinaInf H′–learns C are given. Moreover, let (cj)j∈N be any indexing of C.

We define the hypothesis space H = (hj)j∈N and the family (Tj)j∈N as follows:
Let j ∈ N and let tcj be the canonical text of cj. Since M finitely infers cj,
there exists a least y ∈ N such that M(t

cj
y) = m for some m ∈ N. We set

hj = h′m ∪ content(t
cj
y) and Tj = content(t

cj
y).

We have to show thatH = (hj)j∈N and (Tj)j∈N fulfill the announced properties.
By construction, (1) and (2) are trivially fulfilled. Next we show (3). Suppose
j ∈ N and c ∈ C such that Tj ⊆ c. By construction, there is an initial segment
of cj’s canonical text tcj , say t

cj
y , such that Tj = content(t

cj
y) and M(t

cj
y) = m.

Since M finitely learns cj, we have h′m =a cj. We conclude that t
cj
y is also an

initial segment of some text t′ for c, since Tj ⊆ c. Taking into account that
M finitely infers c when fed t′ and that M(t′y) = m, we obtain h′m =a c. Since
hj = h′m ∪ content(t

cj
y) and content(t

cj
y) ⊆ c, this gives us hj =a c.

Sufficiency. Let a ∈ N. It suffices to prove that there is an IIM M that
FinaTxtH–learns C. Let c ∈ C, let t ∈ Text(c), and let y ∈ N.

IIM M : “On input ty do the following:
If y = 0 or M(ty−1) = ?, goto (A). Otherwise, output j = M(ty−1).
(A) For j = 0, . . . , y, generate Tj and test whether or not Tj ⊆ content(ty).

If there is a j fulfilling the test, output the minimal one. Else, output ?.”

One directly sees that M learns as required. 2

As we shall see next, when behaviorally correct learning, conservative infer-
ence, and set-driven learning are considered, the overall picture changes, if
there is an a priori fixed bound on the number of allowed anomalies.

24

On the one hand, Case and Lynes’ [7] result that, for all a ∈ N, Lim2aTxt ⊆
BcaTxt easily translates into our setting of learning indexable classes. Sur-
prisingly, the opposite is also true, i.e., every IIM that BcaTxt–learns a target
indexable class can be simulated by a learner that Lim2aTxt–learns the same
class, as expressed by the following theorem.

Theorem 14. For all a ∈ N: BcaTxt = Lim2aTxt.

Proof. Let a ∈ N. As mentioned above, Lim2aTxt ⊆ BcaTxt can be shown by
using the ideas from Case and Lynes [7] (see also Jain et al. [12]).

Next we verify that BcaTxt ⊆ Lim2aTxt . Let C ∈ BcaTxt , letH be a hypothesis
space, and let M be an IIM that BcaTxtH–learns C. Since membership is
uniformly decidable inH, the set {(j, k) | hj 6=2a hk} is recursively enumerable.
If {(j, k) | hj 6=2a hk} = ∅ then the wanted IIM M ′ witnessing C ∈ Lim2aTxtH
simply always outputs 0 and the theorem follows.

Now assume {(j, k) | hj 6=2a hk} 6= ∅. Then there is a total recursive function
f : N → N2 such that {f(n) | n ∈ N} = {(j, k) | hj 6=2a hk}.

The required IIM M ′ also uses the hypothesis space H. Let c ∈ C, t ∈ Text(c),
and y ∈ N.

IIM M ′: “On input ty proceed as follows:
If y = 0, set z = 0, determine j0 = M(t0), and output j0. Otherwise,
goto (A).
(A) Determine j = M ′(ty−1). For all s = z, . . . , y, determine js = M(ts),

and test whether or not (j, js) ∈ {f(n) | n ≤ y}. In case there is no js

passing this test, then output j. Otherwise, set z = y and output jy.”

Since M BcaTxtH–learns c, there is has to be a least y such that, for all
y′, y′′ ≥ y, hM(ty′)

=a c and hM(ty′)
=2a hM(ty′′)

. Consequently, M ′, when fed t,

converges to a hypothesis j that meets hj =2a c. 2

Applying Proposition 4, we may conclude:

Corollary 15. For all C ∈ IC and all a ∈ N: C ∈ BcaTxt iff there are an
indexing (cj)j∈N of C and a recursively enumerable family (Tj)j∈N of finite sets
such that

(1) for all j ∈ N, Tj ⊆ cj,
(2) for all j, k ∈ N, if Tj ⊆ ck ⊆ cj, then ck =2a cj.

The latter corollary nicely contrasts the results in Baliga et al. [3]. When
arbitrary hypothesis spaces are admissible (see above), there is no need to
add any recursive component, i.e., the existence of the corresponding tell-tale

25

sets is again sufficient.

Moreover, Theorem 14 can be used to show that Lim∗Txt is an upper bound for
behaviorally correct inference with an a priori bounded number of anomalies.

Theorem 16.
⋃

a∈N LimaTxt =
⋃

a∈N BcaTxt ⊂ Lim∗Txt .

Proof.
⋃

a∈N LimaTxt =
⋃

a∈N BcaTxt follows directly via Theorem 14. More-
over, by definition,

⋃
a∈N LimaTxt ⊆ Lim∗Txt . Hence, it remains to provide an

indexable class C ∈ Lim∗Txt such that, for all a ∈ N, C /∈ LimaTxt .

We let Ccof be the collection of all co-finite concepts c with c ⊆ {b}∗. On
the one hand, one easily sees that Ccof is even Fin∗Txt–identifiable. On the
other hand, suppose that there is some a ∈ N such that Ccof ∈ LimaTxt . By
Theorem 4, for c = {b}∗, there must be a finite set Tc ⊆ c such that, for all
c′ ∈ Ccof , Tc ⊆ c′ ⊆ c implies c′ =a c. Clearly, such a finite set cannot exist. 2

Next we deal with conservative inference and set-driven learning.

Theorem 17. For all a ∈ N: LimaTxt ⊂ Consva+1Txt ⊂ Lima+1Txt.

Proof. Let a ∈ N. The same idea as in the demonstration of Theorem 4 applies
to show that LimaTxt ⊆ Consva+1Txt . Next, Consva+1Txt \ LimaTxt 6= ∅
can be shown by appropriately adapting the idea used to show Theorem 1.
Furthermore, Consva+1Txt ⊆ Lima+1Txt follows directly from the definitions.

It remains to show Lima+1Txt \Consva+1Txt 6= ∅. For this purpose, let (Mj)j∈N
be an effective enumeration of all IIMs. Using the same idea as in the proof of
Lemma 1 we may assume that each Mj is total, i.e., Mj, when fed any finite
sequence of elements from X , outputs a hypothesis. Moreover, let X = {b, d}∗.

The underlying proof idea is as follows: Given any j ∈ N, we define an index-
able class Cj such that Mj either does not witness C ∈ Lima+1Txt or Mj is not
conservative. For showing that Mj violates the constraints a conservative IIM
has to fulfill some a priori knowledge about the semantics of Mj’s hypotheses
is required. We provide this knowledge by using the same universal hypothesis
space H = (c(ϕj))j∈N as in the demonstration of Theorems 9 and 11.

Let (σk)k∈N be any effective enumeration of all finite sequences of elements
from {bjdz | z ∈ N}. Moreover, for all m, j ∈ N, the concepts c(ϕj)

+�m and
c(ϕj)

−�m are defined analogously as in the proof of Theorem 11. Again, by
the properties of a complexity measure, both sets are recursive in m and j.

So, let j ∈ N. As a rule, the required indexable class Cj contains all infinite
concepts c ⊆ {bjdz | z ∈ N} that meet card({bjdz | z ∈ N} \ c) ≤ a + 1. In
addition, Cj may contain a finite concept c′ ⊆ {bjdz | z ∈ N}. In order to

26

answer the question of whether or not there is at most one finite concept c′

belonging to Cj and of how to define c′, the following procedure is used.

Initially, we set k = 0 and P−1 = ∅.

Stage k.
Determine z = Mj(σk) and goto (A).
(A) Determine the least m ∈ N such that (i) or (ii) is fulfilled, where

(i) content(σk) ⊆ c(ϕz)
+�m.

(ii) content(σk) ∩ c(ϕz)
−�m 6= ∅.

If (i) happens, set Pk = Pk−1∪{k}. If (ii) happens, set Pk = Pk−1. Execute
Instruction (B).

(B) For all r ∈ Pk, execute (β).
(β) Determine zr = M(σr) and Sr = {bjdn | bjdn ∈ c(ϕzr)

+�k}. Test
whether or not card(S \ content(σr)) ≥ a + 2.

In case an r has been found, fix the least one, say r′, set c′ = content(σr′),
and finish the definition of c′. Otherwise, goto Stage k + 1.

After a bit of reflection, one sees that Cj constitutes an indexable class. We
let C =

⋃
j∈N Cj and claim that C ∈ Lima+1Txt \ Consva+1Txt .

Claim 1. C /∈ Consva+1Txt .

Suppose there are a hypothesis space H′ = (h′j)j∈N and a total IIM M ′ that

Consva+1TxtH′–learns C. By an argumentation similar to the one proving
Lemma 2, there is a total IIM M that Consva+1TxtH–learns C. Let j ∈ N
with Mj = M . We show that M fails to Consva+1TxtH–identify Cj.

First, we show that Cj contains a finite concept. Suppose the converse. Since
M exclusively outputs indices of recursive concepts, we know that every stage
terminates. Let c = {bjdz | z ∈ N}. Since M learns Cj there has to be a
finite sequence σk ∈ SegText(c) such that, for z = M(σk), c(ϕz) =a c as
well as, for all finite sequences τ ∈ SegText(c), j = M(σk � τ). Obviously,
c(ϕz) =a+1 c implies card(c(ϕz) \ content(σk)) ≥ a + 2. Moreover, it can be
shown that content(σk) ⊆ c(ϕz), and therefore k ∈ Pk. To see this, suppose
content(σk) \ c(ϕz) 6= ∅. Let x ∈ content(σk) \ c(ϕz). Moreover, let S ⊆ c such
that card(S) = a+1, S ⊆ c(ϕz), and S ∩ content(σk) = ∅. Since c(ϕz) =a+1 c,
such set S must exist. Now, let c′ = c \ S and consider M when fed any
text t for c′ that begins with σk. Since c′ ⊆ c and by the properties of σk, M
converges on t to z. Because of S ⊆ c(ϕz) \ c′ and x ∈ c′ \ c(ϕz), we obtain
c(ϕz) 6=a+1 c′, and therefore M fails to learn c′ ∈ C, a contradiction. Consider
S = {bjdn | bjdn ∈ c(ϕz)

+
k′} for k′ ≥ k. By construction, there must be a k′ ≥ k

such that card(S \ content(σk)) ≥ a + 2. Consequently, the finite concept c′ is
defined at the latest in Stage k′.

Second, we show that M fails to learn c′. Let c′ be defined in Stage k′′. Let r

27

be the least index in Pk′′ such that, for zr = M(σr), it has been verified that
card(c(ϕzr) \ content(σr)) ≥ a + 2. By construction, c′ = content(σr). Since
M is a conservative IIM and since content(σr) ⊆ c(ϕzr), M must converge to
zr when fed any text t for c′ that has the initial segment σr. Hence, M cannot
learn c′, a contradiction. Claim 1 follows.

Claim 2. C ∈ Lima+1Txt .

The desired IIM M , on input ty, computes the unique j ∈ N such that
content(ty) ⊆ {bjdz | z ∈ N}. Now M uses y steps of computation to simulate
the procedure defined above for deciding whether Cj contains a finite concept.
If y steps of computation do not suffice to make this decision, M guesses
{bjdz | z ∈ N}. If it has been verified that there is a finite concept c′ ∈ Cj, M
tests whether or not content(ty) = c′. If it is, M guesses c′; else, M guesses
{bjdz | z ∈ N}. Obviously, M learns as required, and thus we are done. 2

In contrast to Theorem 7, it is no longer possible to replace a conservative
learner by an equally powerful IIM that is both conservative and consis-
tent. To our knowledge, this is the first result that proves that consistency
severely restricts the general learning power when learning of indexable classes
is considered. On the other hand, if one is considering exclusively polynomial-
time computable learners then consistency has been known to be a severe
restriction. That is, the indexable class PAT is not consistently learnable in
polynomial-time from informant 3 , provided P 6= NP (cf. [21]). But PAT is
non-consistently in polynomial-time, even from text (cf. [14]).

Theorem 18. LimTxt \ ⋃
a∈N c-ConsvaTxt 6= ∅.

Proof. The required class Cconsv is defined as follows. Fix an acceptable pro-
gramming system (ϕj)j∈N and an associated complexity measure (Φj)j∈N. For
all k ∈ N, let ck = {bkdz | z ∈ N}. Moreover, for all k ∈ N with ϕk(k) ↓ and
all j ≤ Φk(k), let ck,j = {bkdz | z ≤ j}. Finally, let Cconsv be the collection of
all those concepts ck and ck,j.

It is well-known that Cconsv ∈ LimTxt (cf. Lange and Zeugmann [16]). Let
a ∈ N. Since the halting problem is undecidable, Cconsv /∈ c-ConsvaTxt follows
by contraposition of the following claim.

Claim. If there is a consistent IIM that witnesses Cconsv ∈ ConsvaTxt, then
one can effectively construct an algorithm deciding, for all k ∈ N, whether or
not ϕk(k) ↓.

Suppose that there are a hypothesis space H = (hj)j∈N and a consistent IIM
M that ConsvaTxtH–learns Cconsv . We define an algorithm A that solves the

3 cf. Section 4 for a formal definition of informant

28

halting problem.

Algorithm A: On input k execute (A) and (B):
(A) For z = 0, 1, . . ., execute (α1) until (α2) happens.

(α1) Set tz = bkd0, bkd1, . . . , bkdz and Sz = {bkdr | z + 1 ≤ r ≤ 2z}.
Determine jz = M(tz).

(α2) card(Sz ∩ hjz) ≥ a + 1 is verified.
(B) Test whether or not Φk(k) ≤ z. In case it is, output “ϕk(k) ↓.” Other-

wise, output “ϕk(k) ↑.”

We verify A’s correctness as follows. Let k ∈ N. Since M learns ck, there has
to be some y ∈ N such that, for jy = M(ty), we must have hjy =a ck. Hence,
(α2) must happen, and thus algorithm A terminates on input k.

Suppose that ϕk(k) ↓, but A outputs “ϕk(k) ↑.” Let z be fixed such that, for
jz = M(tz), card(Sz ∩ hjz) ≥ a + 1. By construction, Φk(k) > z, and thus
ck,z = {bkdr | r ≤ z} ∈ C. The consistent IIM M , when successively fed the
text t = bkd0, bkd1, . . . , bkdz � bkd0, bkd0, . . . for ck,z, has output a number jz

such that ck,z ⊆ hjz and hjz 6=a ck,z. Since M is conservative, it converges to
jz on t, and thus fails to ConsvaTxtH–learn ck,z. 2

We directly conclude:

Corollary 19. For all a ∈ N+: c-ConsvaTxt ⊂ ConsvaTxt.

Note that c-ConsvTxt = ConsvTxt (cf., e.g., Lange and Zeugmann [22]).

In contrast, one immediately sees that set-driven learning fits in the usual
pattern that consistency does not limit the learning capabilities when learning
of indexable classes is concerned.

Proposition 5. For all a ∈ N: c-SdraTxt = SdraTxt.

Comparing Corollary 19 and Proposition 5, one may readily expect that the
learning power of conservative learners and set-driven IIMs does not coincide,
if the final hypothesis is allowed to have an a priori bounded number of
anomalies. This is indeed the case as our next theorem shows.

Theorem 20. Consv 1Txt \ ⋃
a∈N SdraTxt 6= ∅.

Proof. We claim that the indexable class Cconsv (cf. the proof of Theorem 18)
witnesses the stated separation. First, by Theorem 17, Cconsv ∈ LimTxt implies
Cconsv ∈ Consv 1Txt . Second, let a ∈ N. Now Cconsv /∈ SdraTxt can easily be
shown by reducing the halting problem to the learning problem on hand.
It is not hard to see that the algorithm A defined in the demonstration of

29

Theorem 18 can be used to establish the announced reduction, too. 2

Combining these insights with the fact that SdraTxt ⊆ ConsvaTxt for all
a ∈ N+ (cf. Theorem 5), one arrives at the following result.

Corollary 21. For all a ∈ N+: SdraTxt ⊂ ConsvaTxt.

As we shall see, set-driven learners are exactly as powerful as learning machines
that are both conservative and consistent. To prove this equivalence, we use
the following characterization of c-ConsvaTxt .

Theorem 22. For all C ∈ IC and all a ∈ N: C ∈ c-ConsvaTxt iff there are
a hypothesis space H = (hj)j∈N and a recursively generable family (Tj)j∈N of
finite sets such that

(1) for all j ∈ N, Tj ⊆ hj,
(2) for all c ∈ C, there is a j ∈ N such that Tj ⊆ c ⊆ hj,
(3) for all j ∈ N and all c ∈ C, if Tj ⊆ c ⊆ hj, then c =a hj.

Proof. Necessity. Let C ∈ c-ConsvaTxt . Hence, there are a hypothesis space
Ĥ = (ĥj)j∈N and a consistent IIM M that ConsvaTxt Ĥ–learns C. Using the
ideas from the proof of Lemma 1, we can assume M to be total. We define a
hypothesis space H = (hj)j∈N and a family of finite sets (Tj)j∈N as follows.

Let (cj)j∈N be any indexing of C. For all c ∈ C, let tc be the canonical text of c.

Now, let r, x ∈ N. Let k = M(tcr
x). We set h〈r,x〉 = ĥk and T〈r,x〉 = content(tcr

x).

Obviously, (h〈r,x〉)r,x∈N is an indexable family of recursive concepts. Further-
more, (T〈r,x〉)r,x∈N is recursively generable and all sets T〈r,x〉 are finite. It re-
mains to show that H = (h〈r,x〉)r,x∈N and (T〈r,x〉)r,x∈N fulfill the announced
properties. By construction, (1) is satisfied, since M is consistent.

For proving (2), let c ∈ C. We have to show that there is at least one index
j such that Tj ⊆ c ⊆ hj. Let r ∈ N be fixed such that cr = c. Since M has

to infer c from tc, there have to be k, x ∈ N such that ĥk =a c and, for all
y ≥ x, M(tcy) = k. Since M is consistent, we know that c ⊆ ĥk. By definition,

h〈r,x〉 = ĥk. Hence, T〈r,x〉 = content(tcx) ⊆ c ⊆ h〈r,x〉, and we are done.

Finally, we prove (3). Suppose that there are r, x ∈ N and some c ∈ C such
that T〈r,x〉 ⊆ c ⊆ h〈r,x〉 and h〈r,x〉 6=a c. Let k = M(tcr

x). Since c ⊂ h〈r,x〉 = ĥk

and since M is conservative, M converges to k when fed any text t for c
having the initial segment tcr

x . However, because of h〈r,x〉 6=a c, M cannot
ConsvaTxt Ĥ–identify c from t, a contradiction.

Sufficiency. We define a consistent IIM M that ConsvaTxtH–learns C. So, let

30

c ∈ C, let t ∈ Text(c), and let y ∈ N.

IIM M : “On input ty proceed as follows:
If y = 0 or M(ty−1) = ?, then goto (B). Otherwise, goto (A).
(A) Let j = M(ty−1). Test whether or not content(ty) ⊆ hj. In case it is,

output j. Otherwise, goto (B).
(B) For j = 0, . . . , y, generate Tj and test whether or not Tj ⊆ content(ty)

and content(ty) ⊆ hj. In case there exists a j fulfilling the test, output
the minimal one. Otherwise, output ?.”

Since all sets Tj are uniformly recursively generable and finite, we see that
M is an IIM. By definition, M is consistent. Moreover, M changes its mind
only in case it detects an inconsistency in (A). Hence, M learns conservatively
provided it converges on t to a correct hypothesis.

Claim 1. M converges on t.

Let k = min{z | Tz ⊆ c, c ⊆ hz, hz =a c}. Consider T0, . . . , Tk. Since t ∈
Text(c), there must be a y ≥ k such that Tk ⊆ content(ty) ⊆ hk. That means,
at least after having fed ty to M , the IIM M outputs a number. Furthermore,
since, for all y′ ≥ y, Tk ⊆ content(t′y) ⊆ hk, the IIM M never changes its mind
to some j > k when processing any initial segment ty′ . Finally, M changes
its mind iff it receives some string that is misclassified by its current guess.
Since M is consistent, any hypothesis once rejected is never repeated in some
subsequent step. Since at least k can never be rejected, M has to converge.

Claim 2. If M converges, say to j, then hj =a c.

Suppose that M converges on t to j and hj 6=a c.

Case 1. c \ hj 6= ∅.

There is at least one element x ∈ c \ hj that has to appear eventually, i.e.,
x ∈ content(ty) for some y. Thus, content(ty) 6⊆ hj, a contradiction.

Case 2. hj \ c 6= ∅.

We may restrict ourselves to the case c ⊂ hj, since otherwise we are again
in Case 1. Since, for all sufficiently large y, Tj ⊆ content(ty) ⊆ c, we obtain
Tj ⊆ c. By Property (3), we may conclude c =a hj, a contradiction. 2

Theorem 23. For all a ∈ N: c-ConsvaTxt = SdraTxt.

Proof. Let a ∈ N. SdraTxt ⊆ c-ConsvaTxt has already been verified in the
demonstration of Theorem 5. It remains to show that c-ConsvaTxt ⊆ SdraTxt .

31

Let C ∈ c-ConsvaTxt . By Theorem 22, there are a recursively generable family
(Tj)j∈N of finite sets and a hypothesis space H = (hj)j∈N such that

(1) for all j ∈ N, Tj ⊆ hj,
(2) for all c ∈ C, there is a j ∈ N such that Tj ⊆ c ⊆ hj,
(3) for all j ∈ N and all c ∈ C, if Tj ⊆ c ⊆ hj, then c =a hj.

Having a closer look at the demonstration of Theorem 22 one immediately
sees that there is an indexing (cj)j∈N of C and a total recursive function f
such that, for all j ∈ N, Tf(j) ⊆ cj, cf(j) ⊆ hj and cf(j) =a hj. We first
define a new recursively generable family (T ′

j)j∈N of finite sets. Afterwards we
use the family (T ′

j)j∈N to create a rearrangement-independent 4 IIM M that
ConsvaTxtH–learns C. In a concluding step, we construct a set-driven learner
M ′ which witnesses C ∈ LimaTxt .

We define the new family of finite tell-tale sets as follows. For all j ∈ N, we set
T ′

j =
⋃

n≤j Tn ∩ cf(j). Obviously, (T ′
j)j∈N is also a recursively generable family

of finite sets that fulfills Conditions (1) and (3). Moreover, by the properties
of f , Condition (2) is satisfied as well.

The desired IIM M is defined as follows. Let c ∈ C, let t ∈ Text(c), and let
y ∈ N.

IIM M : “On input ty do the following:
For all k ≤ y, generate T ′

k and test whether or not T ′
k ⊆ content(ty) ⊆ hk.

In case there is a k fulfilling the test, output the minimal one. Otherwise,
output ?.”

M is rearrangement-independent by definition. Moreover, M is consistent.

Claim 1. M is conservative.

Let k, y ∈ N such that M(ty) = k and M(ty+1) 6= M(ty). Now, if M(ty+1) = ?,
we directly obtain content(ty+1) 6⊆ hk. Next, let M(ty+1) = j for some j ∈ N.
It remains to show that content(ty+1) 6⊆ hk.

Let k < j. By M ’s definition, content(ty+1) 6⊆ hk. Now let j < k and
suppose that content(ty+1) ⊆ hk. By definition, M has verified that T ′

j ⊆
content(ty+1) ⊆ hj. Since j < k, since T ′

j ⊆ content(ty+1), and since, by
assumption, content(ty+1) ⊆ hk, we obtain T ′

j ⊆ T ′
k. By definition of M ,

M(ty) = k implies T ′
k ⊆ content(ty), and thus T ′

j ⊆ content(ty). Because of
j < k, we may conclude that M(ty) = j, contradicting M(ty) = k. Therefore
Claim 1 is proved.

4 An IIM M is said to be rearrangement independent for C provided that, for all
t, t′ ∈ Text(C) and all y ∈ N, if content(ty) = content(t′y), then M(ty) = M(t′y).

32

Claim 2. M learns c from t.

Let m = min{z | T ′
z ⊆ c, c ⊆ hz, hz =a c}. By Condition (3), we obtain that

c\hj 6= ∅ for all j < m provided T ′
j ⊆ c. Consequently, every possible candidate

hypothesis j < m must be abandoned at some time. Thus, M converges to m.
This proves Claim 2.

To sum up, M is a rearrangement-independent machine that ConsvTxta
H–

learns C. We continue by defining a hypothesis space H′ and the required
set-driven IIM M ′ such that M ′ LimTxta

H′–learns C.

Let H′ = (h′j)j∈N be the canonical enumeration of all concepts in C and of all
finite concepts over the learning domain X . Before defining M ′, we need the
notion of the repetition free version of a given text t, denoted by rfv(t).

Let t = (xj)j∈N be any text. Initially, we set rfv(t0) = x0 and proceed induc-
tively. For all y ∈ N, we set rfv(ty+1) = rfv(ty), if xy+1 ∈ content(rfv(ty)).
Otherwise, we set rfv(ty+1) = rfv(ty) � xy+1. Obviously, given any initial seg-
ment ty of a text t, one can effectively compute rfv(ty).

Now, we are ready to define M ′. So, let c ∈ C, t ∈ Text(c), and y ∈ N.

IIM M ′: “On input ty do the following:
Compute rfv(ty). If M(rfv(ty)) = ?, then output the canonical index of
content(ty) in H′. Otherwise, fix j = M(rfv(ty)) and output the canonical
index of hj in H′.”

We show that M ′ learns as required.

Claim 3. M ′ is set-driven.

Let t, t′ ∈ Text(C) and let x, y ∈ N such that content(tx) = content(t′y). By
definition, |rfv(tx)| = |rfv(t′y)|. Therefore, M(rfv(tx)) = M(rfv(t′y)), since M
is rearrangement-independent, and thus M(tx) = M(t′y).

Claim 4. M ′ learns c from t.

We distinguish two cases.

Case 1. c is finite.

Then there exists an x ∈ N such that content(ty) = c. On the one hand, if
M(rfv(ty)) = ?, then, by definition, M ′ converges to the canonical index of
the finite concept content(ty) in H′. On the other hand, if M(rfv(ty)) = j,
then c ⊆ hj, since M is consistent. Since M is conservative, it converges to j
when fed any text for c that has the initial segment ty. Hence, hj =a c, and
thus M ′ behaves as required.

33

Case 2. c is infinite.

Since c is infinite, rfv(t) constitutes a text for c. Recall that M learns c from
rfv(t). Consequently, there have to be y, k ∈ N such that, for all r ∈ N,
M(rfv(t)y+r) = k and hk =a c. Hence, past point y, M ′ always outputs the
canonical index of hk in H′, and thus M ′ infers c. This proves Claim 4.. 2

When learning with an a priori bounded number of allowed anomalies is con-
sidered, it can be shown that there is an infinite hierarchy of more and more
powerful set-driven, conservative, limit, and behaviorally correct learners, re-
spectively, parameterized in the number of allowed anomalies. The following
theorem provides the missing piece to establish the existence of these infinite
hierarchies.

Theorem 24. For all a ∈ N: Fin2a+1Txt \ BcaTxt 6= ∅.

Proof. Let a ∈ N. We let Ca be the collection of all infinite concepts c ⊆
{b}∗ that meet card({b}∗ \ c) ≤ 2a + 1. One the one hand, one easily sees
C ∈ Fin2a+1Txt . On the other hand, suppose that Ca ∈ BcaTxt . Now, by
Corollary 15, for c = {b}∗, there has to be a finite set Tc ⊆ c such that, for all
c′ ∈ Ca , Tc ⊆ c′ ⊆ c implies c′ =2a c. Obviously, such a finite set cannot exist,
and thus we are done. 2

We conclude this section by providing, for all a ∈ N, a characterization of the
collection of all ConsvaTxt–identifiable classes.

Theorem 25. For all C ∈ IC and all a ∈ N: C ∈ ConsvaTxt iff there are a hy-
pothesis space H = (hj)j∈N, a computable relation ≺ over N, and a recursively
generable family (Tj)j∈N of finite sets such that

(1) for all c ∈ C, there is a j such that Tj ⊆ c, and hj =a c,
(2) for all c ∈ C, all k ∈ N, and all finite sets A ⊆ c, if Tk ⊆ c and hk 6=a c,

then there is a j such that k ≺ j, A ⊆ Tj, and hj =a c,
(3) for all c ∈ C, there is no infinite sequence (kr)r∈N such that, for all r ∈ N,

kr ≺ kr+1 and
⋃

r∈N Tkr = c,
(4) for all c ∈ C and all k, j ∈ N, if k ≺ j and Tj ⊆ c, then Tj \ hk 6= ∅.

Proof. Necessity. Let C ∈ ConsvaTxt . Therefore, there are a hypothesis space
Ĥ = (ĥj)j∈N and an IIM M that ConsvaTxt Ĥ–learns C. Without of loss of
generality, we may assume that M is total. First, we construct a hypothesis
space H̃ = (h̃j)j∈N and a recursively generable family (T̃j)j∈N of finite sets.
Then we describe a procedure enumerating a certain subset of H̃ that forms
the required hypothesis space H. Finally, we define the required computable
relation ≺.

34

Let (σj)j∈N be an effective enumeration of all finite, non-null sequences of
elements from the underlying learning domain X such that, for all m,n ∈ N,
σm @ σn implies m < n. Furthermore, for all n, y ∈ N, we set h̃〈n,y〉 = ĥn. The

family (T̃〈n,y〉)n,y∈N is defined as follows. For all n, y ∈ N, we set

T̃〈n,y〉 =

 content(σy), if M(σy) = n,

∅, otherwise.

Clearly, (T̃〈n,y〉)n,y∈N is a uniformly recursively generable family of finite sets.

Claim. For all c ∈ C, there are n, y ∈ N such that h̃〈n,y〉 =a c and T̃〈n,y〉 6= ∅.

Let tc be the canonical text of c. Since M learns c, there are n, z ∈ N such that
M(tcz) = n and ĥn =a c. Let y ∈ N with σy = tcz. By construction, T̃〈n,y〉 6= ∅
as well as h̃〈n,y〉 =a c, and thus the claim follows.

We proceed with the definition of the desired hypothesis space H = (hj)j∈N
and the relation≺. For this purpose, we define a recursive function f as follows.
Set f(0) = k, where k is the least index with T̃k 6= ∅. Note that, by the the
claim above, such an index k must exist. For all j ≥ 1, set

f(j) =

 j, if T̃j 6= ∅,

f(j − 1), otherwise.

For all j ∈ N, we define hj = h̃f(j) and Tj = T̃f(j). Let k, j ∈ N and let
m, n, y, z ∈ N be the uniquely determined numbers such that f(k) = 〈m, y〉
and f(j) = 〈n, z〉. Then, we let k ≺ j iff m 6= n and σy @ σz.

Clearly, (Tj)j∈N is a uniformly recursively generable family of finite sets and
the relation ≺ is computable. It remains to show that (1) to (4) are fulfilled.
Obviously, (1) is a direct consequence of the claim above.

We next verify (2). Let c ∈ C, let A ⊆ c be any finite set, and let k ∈ N be any
index such that Tk ⊆ c and hk 6=a c. We have to show that there is an index
j such that k ≺ j, A ⊆ Tj, and hj =a c. Due to our construction, we have
Tk = T̃f(k) and hk = h̃f(k). Let m, y ∈ N be the uniquely determined numbers

with f(k) = 〈m, y〉. We know that M(σy) = m and c 6=a ĥm. Moreover,
Tk = content(σy) ⊆ c. Hence, σy is an initial segment of a text for c. Let
tc be the canonical text of c. Since A ⊆ c, there exists a b ∈ N such that
A ⊆ content(tcb). Thus, there has to be an r ∈ N such that, for n = M(σy�tcb+r),

the condition ĥn =a c is satisfied, since M has to learn c from every text for it.
Furthermore, since σy � tcb+r is a finite sequence, there exists an index z with

35

σz = σy � tcb+r. By construction, we get T̃〈n,z〉 = content(σz) 6= ∅, A ⊆ T̃〈n,z〉,

and h̃〈n,z〉 =a c. Thus, there is a number j such that f(j) = 〈n, z〉. Since
σy @ σz and m 6= n, we obtain k ≺ j, and therefore (2) is proved.

We proceed with the demonstration of (3). Looking at the definition of the
relation ≺, one sees that k ≺ j implies Tk ⊆ Tj. Suppose there is an infinite
sequence (kr)r∈N such that kr ≺ kr+1 and

⋃
r∈NTkr = c. Since Tkr ⊆ Tkr+1 , in

the limit we get a text t for c ∈ C on which M changes its mind infinitely
often, a contradiction. Hence, (3) is proved.

Finally we show (4). Let c ∈ C, and let k, j ∈ N such that k ≺ j and Tj ⊆ c.
Furthermore, let m, n, y, z ∈ N be the uniquely determined numbers such
that f(k) = 〈m, y〉 and f(j) = 〈n, z〉. By definition of the relation ≺, we get
σy @ σz as well as m 6= n. Moreover, by the definition of the tell-tale family,
M(σy) = m and M(σz) = n. Since Tj = content(σz) and Tj ⊆ c, we see that
σz is an initial segment of some text t for c ∈ C on which M successively
outputs m and n. Since M is conservative, we obtain Tj \ ĥm 6= ∅. Finally,

by construction, we have hk = h̃〈m,y〉 = ĥm, and thus Tj \ hk 6= ∅. Hence, (4)
follows.

Sufficiency. It suffices to define an IIM M that ConsvaTxtH–learns C. Let
c ∈ C, let t ∈ Text(c), and let y ∈ N.

IIM M : “On input ty do the following:
If y = 0 or y > 0 and M(ty−1) = ?, then goto (A). Otherwise, goto (B).
(A) Search for the least k ≤ y such that Tk ⊆ content(ty). In case it is

found, set yk = y and output k. Otherwise, output ?.
(B) Let k = M(ty−1). Search for the least j ≤ y such that k ≺ j and

content(tyk
) ⊆ Tj ⊆ content(ty). In case such j is found, set yj = y and

output j. Otherwise, output k.”

Since all sets Tj are uniformly recursively generable and finite, and since the
relation ≺ is computable, we directly obtain that M is an IIM. Moreover, Con-
dition (1) guarantees that M outputs at least once a hypothesis. We proceed
in showing that M ConsvaTxtH–learns c from t.

Claim 1. If M converges, say to k, then hk =a c.

Note that Tk ⊆ c, since otherwise k cannot be any of M ’s guesses. Suppose
hk 6=a c. By (2), there is an index j such that k ≺ j, content(tyk

) ⊆ Tj, and
hj =a c. Hence, there is a y ∈ N with content(tyk

) ⊆ Tj ⊆ content(ty). Thus,
M(ty) 6= k, contradicting the assumption that M converges to k.

Claim 2. M is conservative.

This is an immediate consequence of (4) and the definition of M .

36

Claim 3. M converges on t.

Observe that M outputs at least once a hypothesis, say k. As long as M
does not find a j such that k ≺ j and content(tyk

) ⊆ Tj ⊆ content(tx), this
hypothesis is repeated. Hence, as long as M finds only finitely many j’s in (B),
it converges. Consequently, if M does not converge, it finds an infinite sequence
(kr)r∈N such that kr ≺ kr+1 for all r ∈ N. But every mind change implies
an update of the value of the variable ykr . Thus, for all z ∈ N, there exist
ykr , y ∈ N with content(tz) ⊆ content(tykr

) ⊆ Tkr ⊆ content(ty). Therefore,
we immediately obtain

⋃
r∈N Tkr = c, a contradiction to (3). This proves the

claim, and hence the verification of the sufficiency part is completed. 2

Compared to the learning devices introduced in the other characterization
theorems, the IIM defined in the proof of Theorem 25 uses a different technique
to detect that its actual hypothesis may be incorrect. Clearly, no IIM can
prove that its actual guess is really correct, unless it finitely learns. Hence,
the machine has to collect evidence allowing it to decide whether or not it
should prefer a new hypothesis instead of maintaining its actual one. The
machine defined in the proof of Theorem 25 achieves this goal by using a
priori knowledge concerning both the hypothesis space and the family of tell-
tale sets. This a priori knowledge is provided by the computable relation ≺.

4 Learning from Positive and Negative Data

In this section, we briefly summarize the results that can be obtained when
learning with anomalies from both positive and negative examples is studied.

Let X be the learning domain, let c ⊆ X be a concept, and let i = ((xn, bn))n∈N
be any infinite sequence of elements from X × {+,−} such that content(i) =
{xn | n ∈ N} = X , content+(i) = {xn | n ∈ N, bn = +} = c, and
content−(i) = {xn | n ∈ N, bn = −} = X \ c = c. Then, we refer to i as
an informant. By Info(c) we denote the set of all informants for c. More-
over, let i = ((xn, bn))n∈N be an informant and let y ∈ N. Then, iy denotes
the initial segment of i of length y + 1. By content(iy), content+(iy), and
content−(iy) we denote the sets {xj | j ≤ y}, {xj | j ≤ y, bj = +}, and
{xj | j ≤ y, bj = −}, respectively. Let (wj)j∈N be the fixed enumeration of X .
Then, for every concept c ⊆ X , we define the canonical informant to be the
sequence (wj, c(wj))j∈N.

For all a ∈ N∪{∗}, the learning models FinaInf , SdraInf , ConsvaInf , LimaInf
and BcaInf are defined analogously as their text counterparts by replacing
text by informant.

37

Since, for all C ∈ IC, C ∈ ConsvInf as well as C ∈ SdrInf (cf. Gold [11]), we
may easily conclude:

Corollary 26.
For all a ∈ N ∪ {∗}: ConsvInf = ConsvaInf = SdraInf = LimaInf = BcaInf .

Next we study finite learning with anomalies. As in the case of learning from
positive data, there is a difference between finite learning with an a priori
bounded number of allowed anomalies and finite learning with a bounded
number of allowed anomalies. While the latter is invariant to the choice of the
hypothesis space, the former is not.

Theorem 27. For all C ∈ IC: C ∈ Fin∗Inf iff there are an indexing (cj)j∈N
of C and a recursively generable family (Sj)j∈N of finite sets such that

(1) for all j, k ∈ N, if Sj ∩ ck = Sj ∩ cj, then ck =∗ cj.

Proof. Necessity. Assume that a hypothesis space H = (hj)j∈N and an IIM M
that Fin∗Inf H–learns C are given. Moreover, let (cj)j∈N be any indexing of C.
The family (Sj)j∈N is defined as follows.

Let j ∈ N and let icj be the canonical informant of cj. Since M finitely
infers cj, there exists a least y ∈ N such that M(i

cj
y) = m for some m ∈ N. We

set Sj = content(i
cj
y).

We have to show that (Sj)j∈N fulfills Property (1). Suppose j, k ∈ N such that
Sj ∩ ck = Sj ∩ cj. By construction, there is an initial segment of cj’s canonical
informant icj , say i

cj
y , such that content(i

cj
y) = Sj and M(i

cj
y) = m. Now, M

finitely learns cj, thus hm =∗ cj. Since Sj ∩ ck = Sj ∩ cj, i
cj
y is also an initial

segment of some informant i for ck. But M finitely infers ck when fed i and
M(iy) = m. Hence, we obtain hm =∗ ck.

Sufficiency. We set H = (cj)j∈N and prove that there is an IIM M that
Fin∗Inf H–learns C. So, let c ∈ C, let i ∈ Info(c), and let y ∈ N.

IIM M : “On input iy do the following:
If y = 0 or M(iy−1) = ?, goto (A). Otherwise, output j = M(iy−1).
(A) For j = 0, . . . , y, generate Sj and test whether or not Sj ∩ cj ⊆

content+(iy) and Sj ∩ cj ⊆ content−(iy). In case there is a j fulfilling
the test, output the minimal one. Otherwise, output ?.”

One directly sees that M learns as required. 2

The next result provides some evidence that it is a bit more complicated to
characterize FinaInf for any a ∈ N+.

38

Theorem 28. Let a ∈ N+. There is an indexable class C ∈ FinaInf such that,
for all class preserving hypothesis spaces H for C, C is not FinaInf H–learnable.

Proof. We discuss the case of a = 1 only. The adaptation to the cases of a ∈ N,
a > 1, should be obvious.

Fix an acceptable programming system (ϕj)j∈N and an associated complexity
measure (Φj)j∈N. For all k ∈ N, we let ck = {bkdj | j ∈ N}. The required
indexable class C is defined as follows. For all k ∈ N with ϕk(k) ↑, C contains
the concept ck, while, for all k ∈ N with ϕk(k) ↓, C contains the concepts
c′k = ck \ {bkdΦk(k)+1} and c′′k = ck \ {bkdΦk(k)+2}.

It is not hard to see that C ∈ Fin1Inf . Suppose, there are a class preserving
hypothesis space H = (hj)j∈N and an IIM M that Fin1Inf H–infers C. Then,
the following algorithm A, based on H and M , solves the halting problem.

Algorithm A: On input k proceed as follows:
For z = 0, 1, . . ., execute (α) until (β1) or (β2) happens.
(α) Test whether or not Φk(k) ≤ z. In case it is not, fix the initial segment

ick
z of ck’s canonical informant ick and determine M(ick

z).
(β1) Φk(k) ≤ z has been verified. Then, output “ϕk(k) ↓” and stop.
(β2) M(ick

z) 6= ? has been verified. Then, output “ϕk(k) ↑” and stop.

The verification of A’s correctness is straightforward. 2

Analogously to Theorem 13, finite learning with an a priori bounded number
of allowed anomalies can be characterized as follows.

Theorem 29. For all C ∈ IC and all a ∈ N: C ∈ FinaInf iff there are
a hypothesis space H = (hj)j∈N and a recursively generable family (Sj)j∈N of
finite sets such that:

(1) for all c ∈ C, there is a j ∈ N such that Sj ∩ c = Sj ∩ hj,
(2) for all j ∈ N and all c ∈ C, if Sj ∩ c = Sj ∩ hj, then c =a hj.

Proof. The theorem can easily be proved by combining the ideas from the
demonstration of Theorems 13 and 27. We omit the details. 2

Next we show that the known inclusions FinTxt ⊂ FinInf ⊂ ConsvTxt
(cf. Lange and Zeugmann [15]) generalize as follows.

Theorem 30. FinaTxt ⊂ FinaInf ⊂ ConsvaTxt for all a ∈ N ∪ {∗}.

Proof. By definition, FinaTxt ⊆ FinaInf for all a ∈ N ∪ {∗}. Let C be the
collection of all singleton concepts {bk}, k ∈ N+, and of {b}+. One easily
verifies that C ∈ FinInf \ Fin∗Txt .

39

Next let c = {b}∗ and let ck = {b0, . . . , bk, dk} for all k ∈ N. Furthermore, let
Csep be the collection of all finite concept ck, k ∈ N, and of c. It is not hard
to see that Csep ∈ ConsvTxt . Moreover, one directly sees that there cannot be
a finite set S for the concept c satisfying Property (1) of Theorem 27. Hence,
we have Csep /∈ Fin∗Inf .

We verify FinaInf ⊆ ConsvaTxt for all a ∈ N. Let C ∈ FinaInf . By Theo-
rem 29, there is a hypothesis space H = (hj)j∈N and a recursively generable
family (Sj)j∈N of finite sets such that:

(1) for all c ∈ C, there is a j ∈ N such that Sj ∩ c = Sj ∩ hj,
(2) for all j ∈ N and all c ∈ C, if Sj ∩ c = Sj ∩ hj, then c =a hj.

The required conservative IIM M also uses the hypothesis space H and is
defined as follows.

Let c ∈ C, let t ∈ Text(c), and let y ∈ N.

IIM M : “On input ty do the following:
If y = 0 or M(ty−1) = ?, goto (A). Otherwise, set j = M(ty−1) and test
whether or not Sj ∩ content(ty) ⊆ hj. In case it is, output j. Otherwise,
goto (A).
(A) For j = 0, . . . , y, generate Sj and test whether or not Sj ∩ hj ⊆

content(ty) and Sj ∩ content(ty) ⊆ hj. In case there exists a j fulfilling
the test, output the minimal one. Otherwise, output ?.”

By definition, M performs exclusively justified mind changes, and thus it is
conservative. It suffices to show that M learns as required.

Let k = min{j | Sj ∩ hj = Sj ∩ c}. Since M never outputs a hypothesis that
has been rejected once, it is not hard to see that M must converge, say to k′.
By construction, we know that Sk′ ∩ hk′ ⊆ c. Moreover, for almost all y ∈ N,
Sj ∩ content(ty) ⊆ hj is fulfilled. Combining this with Sk′ ∩ c ⊆ hk′ , we may
conclude that Sk′ ∩hk′ = Sk′ ∩ c. Hence, by Condition (2), we obtain c =a hk′ .

Finally, Fin∗Inf ⊆ Consv∗Txt can be shown by applying similar arguments as
above. We omit the details. 2

Note that it is not hard to verify that the results obtained so far prove the
existence of an infinite hierarchy of more and more powerful finite learners
parameterized in the number of allowed anomalies.

40

5 Conclusions

The present paper provided a systematic study of inductive inference of ap-
proximations for recursive concepts. These approximations have been allowed
to describe a finite variant of the target concept as well as a variant that has
at most an a priori bounded number of anomalies. We studied finite inference,
set-driven identification, conservative inference, learning in the limit and be-
haviorally correct learning. Thus, our work completes to a large extent the
study of learning indexable classes with respect to their principal inferability.

Looking at results previously obtained in the field of inductive inference with
anomalies, some of our results could have been expected. For example, the
infinite hierarchies for finite learning, conservative inference, set-driven identi-
fication, learning in the limit and behaviorally correct inference in the number
of allowed anomalies are not surprising. But there are a several results, at least
we did not conjecture.

First, the equality Sdr ∗Txt = Consv ∗Text = Lim∗Txt nicely contrasts the
severe restriction caused by the requirement to learn conservatively in the
anomaly-free case. Second, as far as we are aware of, within the setting of
learning indexable classes till now consistency did not constitute a restriction
to the learning power. However, as Theorem 18 shows, conservative inference
with an a priori bounded number of allowed anomalies cannot always be
achieved.

Finally, our characterization theorems complete the picture that has been ob-
tained since Angluin’s [2] pioneering paper. All learning models considered
can be characterized by using finite tell-tale sets. Abstracting from techni-
cal details, if these sets are recursive, conservative learning is possible. For
recursively enumerable tell-tale sets learning in the limit can be achieved.
Furthermore, the pure existence of such tell-tale sets is sufficient to design
behaviorally correct learners (see also Baliga et al. [3]). Concerning the latter
result, our main contribution here is the proof that Bc∗Txt–identification for
indexable classes can always be achieved by using a hypothesis space with
uniformly decidable membership.

Acknowledgements

We heartily thank the anonymous referees for their careful reading and the
many valuable comments made.

41

References

[1] D. Angluin. Finding patterns common to a set of strings. Journal of Computer
and System Sciences, 21:46–62, 1980.

[2] D. Angluin. Inductive inference of formal languages from positive data.
Information and Control, 45(2):117–135, 1980.

[3] G.R. Baliga, J. Case, and S. Jain. The synthesis of language learners.
Information and Computation, 152(1):16–43, 1999.

[4] J.M. Bārzdiņš. Two theorems on the limiting synthesis of functions. In Theory
of Algorithms and Programs Vol. 1, pages 82–88, Latvian State University, 1974
(in Russian).

[5] L. Blum and M. Blum. Toward a mathematical theory of inductive inference.
Information and Control, 28:125–155, 1975.

[6] M. Blum. A machine-independent theory of the complexity of recursive
functions. Journal of the ACM, 14:322–336, 1967.

[7] J. Case and C. Lynes. Machine inductive inference and language identification.
In Automata, Languages and Programming, 9th Colloquium, Proceedings,
volume 140 of Lecture Notes in Computer Science, pages 107–115. Springer-
Verlag, 1982.

[8] J. Case and C.H. Smith. Comparison of identification criteria for machine
inductive inference. Theoretical Computer Science 25:193–220, 1983.

[9] R.P. Daley. On the error correcting power of pluralism in BC-type inductive
inference. Theoretical Computer Science 24(1):95–104, 1983.

[10] M.A. Fulk. Prudence and other conditions on formal language learning.
Information and Computation, 85(1):1–11, 1990.

[11] E.M. Gold. Language identification in the limit. Information and Control,
10:447–474, 1967.

[12] S. Jain, D. Osherson, J.S. Royer, and A. Sharma. Systems that Learn - 2nd
Edition, An Introduction to Learning Theory. MIT Press, Cambridge, Mass.,
1999.

[13] E. Kinber and T. Zeugmann. One-sided error probabilistic inductive inference
and reliable frequency identification. Information and Computation 92(2):253–
284, 1991.

[14] S. Lange and R. Wiehagen. Polynomial-time inference of arbitrary pattern
languages. New Generation Computing, 8(4):361–370, 1991.

[15] S. Lange and T. Zeugmann. Types of monotonic language learning and their
characterization. In Proc. 5th Annual ACM Workshop on Computational
Learning Theory, pages 377–390. ACM Press, 1992.

42

[16] S. Lange and T. Zeugmann. Language learning in dependence on the space of
hypotheses. In Proc. 6th Annual ACM Conference on Computational Learning
Theory, pages 127–136. ACM Press, 1993.

[17] S. Lange and T. Zeugmann. Set-driven and rearrangement-independent learning
of recursive languages. Mathematical Systems Theory, 29(6):599–634, 1996.

[18] J.S. Royer. Inductive inference of approximations. Information and Control,
70(2/3):156–178, 1986.

[19] T. Tabe and T. Zeugmann. Two variations of inductive inference of languages
from positive data. Technical Report RIFIS-TR-CS-105, Kyushu University,
1995.

[20] K. Wexler and P.W. Culicover. Formal Principles of Language Acquisition.
MIT Press, Cambridge, Mass., 1980.

[21] R. Wiehagen and T. Zeugmann Ignoring data may be the only way to learn
efficiently. Journal of Experimental and Theoretical Artificial Intelligence,
6(1):131–144, 1994.

[22] T. Zeugmann and S. Lange. A guided tour across the boundaries of learning
recursive languages. In K.P. Jantke and S. Lange, editors, Algorithmic Learning
for Knowledge-Based Systems, Lecture Notes in Artificial Intelligence 961, pages
190–258. Springer-Verlag, 1995.

43

