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Abstract

The effective fractal dimensions at the polynomial-space level and above can all be equiva-
lently defined as the C-entropy rate where C is the class of languages corresponding to the level
of effectivization. For example, pspace-dimension is equivalent to the PSPACE-entropy rate.

At lower levels of complexity the equivalence proofs break down. In the polynomial-
time case, the P-entropy rate is a lower bound on the p-dimension. Equality seems unlikely, but
separating the P-entropy rate from p-dimension would require proving P # NP.

We show that at the finite-state level, the opposite of the polynomial-time case happens:
the REG-entropy rate is an upper bound on the finite-state dimension. We also use the finite-
state genericity of Ambos-Spies and Busse (2003) to separate finite-state dimension from the
REG-entropy rate.

However, we point out that a block-entropy rate characterization of finite-state dimen-
sion follows from the work of Ziv and Lempel (1978) on finite-state compressibility and the
compressibility characterization of finite-state dimension by Dai, Lathrop, Lutz, and Mayor-
domo (2004).

As applications of the REG-entropy rate upper bound and the block-entropy rate charac-
terization, we prove that every regular language has finite-state dimension 0 and that normality
is equivalent to finite-state dimension 1.

1 Introduction

The effective fractal dimensions, introduced by Lutz [17, 18] using success sets of gales, can be
equivalently formulated using growth rates of martingales [2] or log-loss of predictors [13] at all levels
of complexity. At the polynomial-space, computable, and constructive levels of effectivization, each
of these dimensions also admits an entropy rate characterization using the corresponding language
class [14, 12]. More specifically, polynomial-space dimension is equivalent to the PSPACE-entropy
rate, computable dimension is the DEC-entropy rate, and constructive dimension is the CE-entropy
rate.

At lower levels of complexity the equivalence proofs for dimension and entropy rates break
down. All we know in the polynomial-time case is that the P-entropy rate is a lower bound on
the p-dimension. Equality seems unlikely, but it follows from recent work [15] that separating the
P-entropy rate from p-dimension would require proving P # NP.

In this paper we investigate entropy rates at an even lower level of effectivization: finite-state
dimension, which was introduced by Dai, Lathrop, Lutz, and Mayordomo [8]. We show in section
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3 that the opposite of the polynomial-time case happens at the finite-state level: the REG-entropy
rate is an upper bound on the finite-state dimension. We also observe that the REG-entropy rate
behaves more like an effective box-counting dimension than an effective Hausdorff dimension.

In section 4 we establish relationships between the finite-state genericity of Ambos-Spies and
Busse [1] and the REG-entropy rate. In particular, an individual sequence is finite-state generic if
and only if its REG-entropy rate is 1. By results on the finite-state dimension of frequency classes
[8], this immediately implies a separation of finite-state dimension from the REG-entropy rate.

While finite-state dimension is not equivalent to the REG-entropy rate (and it does not seem to
admit an entropy rate characterization using any other language class), we point out in section 5
that a block-entropy rate characterization of finite-state dimension for individual sequences follows
from previous work. Ziv and Lempel [27] showed that the finite-state compressibility of a sequence
is equivalent to its block-entropy rate. Combining this with the finite-state compressibility charac-
terization of finite-state dimension [8] yields the equivalence. (In this introduction we are ignoring
some asymptotic details involving the difference between dimension and strong dimension [3] that
are handled in the body of the paper.) We also develop an extension of this characterization for
classes of sequences.

In section 6 we give some applications of the REG-entropy rate upper bound and the block-
entropy rate characterization, improving two results from [8]:

(i) Any sequence has finite-state dimension 1 if and only if it is normal.

(ii) Every regular language has finite-state dimension 0.

2 Preliminaries

We write {0,1}* for the set of all finite binary strings and C for the Cantor space of all infinite
binary sequences. A language is a subset of {0,1}*. In the standard way, a sequence S € C can
be identified with the language for which it is the characteristic sequence. The length of a string
w € {0,1}* is |w|. For a language A C {0,1}*, A_, is the set of all strings in A of length n.
The string consisting of the first n bits of € {0,1}* U C is denoted by z [ n and the substring
consisting of the i*® through ;% bits of = is z[i..j]. We write w C z if w is a prefix of z. For a
string w € {0,1}*, C,, = {S € C|wC S}.

2.1 Finite-State Dimension

Finite-state dimension was developed by Dai, Lathrop, Lutz, and Mayordomo [8] as a generaliza-
tion of Hausdorff dimension [11]. Later, finite-state strong dimension was similarly introduced by
Athreya, Hitchcock, Lutz, and Mayordomo [3] as a generalization of packing dimension [26, 25].
We now recall an equivalent formulation of all these dimensions using log-loss prediction [13, 3].

Definition. A predictor is a function 7 : {0,1}* x {0,1} — [0,1] such that for all w € {0,1}*,
m(w,0) + m(w,1) = 1.

Definition. Let m be a predictor, w € {0,1}*, S € C, and X C C.

1. The cumulative log-loss of m on w is

(We use the convention that log% = 00.)



2. The log-loss rate of m on S is

log
£9%(r, §) = liminf 225 T0).

n—oo n
3. The worst-case log-loss rate of m on X is

L°8(r, X) = sup L£(r, S).
SeX

4. The strong log-loss rate of m on S is

log
Elog(ﬂ, S) = limsup 7£ (m, 8 [n)

str
n—oo
5. The worst-case strong log-loss rate of w on a X is

LB, X) = sup L5 (w, S).
S

In [13, 3], the following definitions are shown equivalent to the original definitions of Hausdorff
dimension and packing dimension. We refer to [10, 17, 3] for more background on these dimensions.

Definition. Let X C C. Let II be the class of all predictors.

1. The Hausdorff dimension of X is

dimy (X) = inf{£°%(7, X) | m € T1}.

2. The packing dimension of X is

dimp (X)) = inf{£%%(r, X) | = € I}

str

The finite-state dimensions may be similarly defined by using predictors that arise from finite-
state gamblers.

Definition. A finite-state gambler (FSG) is a tuple G = (Q, 0, 3, qo) where
e () is a nonempty, finite set of states,
e §:Q x{0,1} — @ is the transition function,
e :Q x{0,1} - QnN|0,1] is the betting function, which satisfies
B(q,0) +B(g,1) =1
for all ¢ € Q, and

® go €  is the initial state.



An FSG G = (Q, 4, 3, qo) defines a predictor mg by
Ta(w,a) = B(6*(w),a)

for all w € {0,1}* and a € {0,1}. Here §*: {0,1}* — @ is the standard extension of § to strings
defined by the recursion

5(N) = a0,
5 (wa) = 0(0%(w), a).
We say that a predictor « is finite-state if m = wg for some FSG G.
Definition. Let X C C. Let II(FS) be the class of all finite-state predictors.

1. The finite-state dimension of X is

dimpg(X) = inf{£"°8(7, X) | 7 € TI(FS)}.

2. The finite-state strong dimension of X is
Dimpg(X) = inf{£%(r, X) | 7 € II(FS)}.

The following holds for every X C C:

0 < dimy(X)

IN

dimpg(X)
IA IN
dimp(X) < Dimpg(X) < 1.
We will also consider the finite-state dimensions of individual sequences.
Definition. Let S € C.
1. The finite-state dimension of S is dimpg(S) = dimpg({S}).
2. The finite-state strong dimension of S is Dimpg(S) = Dimpg({S}).

The following proposition states that changing an initial segment of a sequence does not change
its finite-state dimension.

Proposition 2.1. For all S € C and z,y € {0,1}*, dimpg(xS) = dimps(yS) and Dimpg(zS) =
Dimps(yS).
2.2 Entropy Rates

We now review entropy rates of languages and their relationship to dimension. The following
concept dates back to Chomsky and Miller [6] and Kuich [16].

Definition. Let A C {0,1}*. The entropy rate of A is

Hj =limsup

n—oo

log [A=y|
=



Intuitively, H4 gives an asymptotic measurement of the amount by which every string in A_,, is
compressed in an optimal code. The following equivalent definition of H 4 is useful in some contexts.

Lemma 2.2. (Staiger [23]) For any A C {0,1}*,

> ool < oo} .

Hy =inf {s
weEA

For any language A we define two classes of sequences A"* and A*®.
Definition. Let A C {0,1}*.

1. The i.0.-class of A is A" = {S € C|(3I®n)S|n c A}.

2. The a.e.-class of Ais A*> ={S e C| (V*®n)S|n e A}.
The name §-limit of A and notation A% have also been used for A% [23, 24].
Definition. Let C be a class of languages and X C C.

1. The C-entropy rate of X is
He(X) =inf{H4 | A € C and X C A},

2. The strong C-entropy rate of X is
HI(X) =inf{H4 | A€ C and X C A**}.
Informally, He(X) is the lowest entropy rate with which every element of X can be covered infinitely

often by a language in C.
For all X C C, classical results (see [20, 23]) imply

dimp (X) = Harn(X),

where ALL is the class of all languages and dimy is Hausdorff dimension. It is also known [3] that
packing dimension is the corresponding strong entropy rate:

dimp (X) = H3T [ (X).

Using other classes of languages gives equivalent definitions of the constructive, computable, and
polynomial-space dimensions (see [14, 12, 3, 15] for definitions and more details): for all X C C,

Cdlm(X) =Hce (X), dimcomp (X) = HpEC (X)7 dimpspace(X) = 7_(PSPACE(AX)

and
cDim(X) = H%tﬁ (X), Dimcomp(X) = H%EC(X)v Dimpspace (X) = H%PACE(X)‘

In the polynomial-time setting, all that we know is Hp(X) < dim,(X) and HE"(X) < Dim,(X)
always hold.

3 Regular Entropy Rate

In this section we study Hrgqg, the regular entropy rate, and its relationships with box-counting
dimension and finite-state dimension.



3.1 Upper Bound on Box-Counting Dimension

We will show that Hrgg is an upper bound on the box-counting dimension. For any set X C C
and n € N, let
Np(X)=|{SIn|S e X}

be how many distinct strings of length n are prefixes of elements of X. Then the (upper) boz-
counting dimension of X (see [10]) is

dimp(X) = limsup M.

n—oo

We will use an everywhere version of the infinitely-often and almost-everywhere classes Al
and A*¢.

Definition. For any A C {0,1}*, let A = {S e C|(Vn)S|n € A}.
Using AY we can define a concept similar to the entropy rates.

Definition. For any X C C and class C of languages, let
HZ(X)=inf{H, | X C A” and A € C}.
When the class of languages is unrestricted in this definition, we get the box-counting dimension.
Proposition 3.1. For every X C C, dimp(X) = HY;; (X).

We will see that Hrrge and Hﬁfm are both equivalent to HEEG. First, we need some notation
and a lemma.

Notation. For any A C {0,1}*, let pref(A) = {w € {0,1}* | (3z € A)w C z}.
Lemma 3.2. (Staiger [23]) For every A € REG, Ha = Hpep(a)-

Now we can see that the REG-entropy rate behaves like a finite-state box-counting dimension,
and that there is no difference between it and the strong REG-entropy rate.

Theorem 3.3. For every X C C, Hrpa(X) = Hihq (X) = HRpg(X).

Proof. The inequalities Hrra(X) < Hihq(X) < HRpg(X) are immediate from the definitions.
Let s > Hrpa(X). It suffices to show that HE(X) < s. Let A € REG such that Hs < s and
X C A", Then pref(4) € REG and X C pref(4)Y. By Lemma 3.2 we have Hpret(ay < s, s0

HRpa(X) < s. u

By Proposition 3.1, it follows that the box dimension is a lower bound on the regular entropy
rate.

Corollary 3.4. For every X C C, dimp(X) < Hrea(X).



3.2 Upper Bound on Finite-State Dimension

Next we show that the REG-entropy rate is always an upper bound on the finite-state strong
dimension.

Theorem 3.5. For any X C C, Dimpg(X) < Hrea(X).

Proof. 1f X is empty, then the statement trivially holds, so assume X # (. Let t > s > Hrpg(X) =
HPeq(X) and let 0 < € < t — s. Tt suffices to show that Dimpg(X) < t. Let A € REG such that
X C A9 and Hy < s. Since X is not empty, we have A # 0.

Let M = (Q, 0, qo, F) be a minimal DFA for A. For each g € @, let

W, = {w € {0,1}" | 6(g,w) € F}

and

m(g) = Y 277

weWy

Since M is a minimal DFA, for each ¢ there is some string x, such that d(qo, z4) = ¢. Let
Alzg) ={w e Al zqg T w} = z,W,.

We have
m(q) = 95|14 Z 9—slw| < 951Tq] Z Q—S\w\7

weA(zq) weA

which is finite by Lemma 2.2. Note that for any ¢ € @), we have
OWs(q,0) U 1Ws(q,1) € W,

S0
m(4(q,0)) +m(d(g, 1)) < 2°m(q).
Define a betting function 5 : @ x {0,1} — [0,1] by

m((g,b))
m(d(q,0)) +m(d(g,1))

B(q,b) =

if the denominator is not 0, and (3(q,b) = % otherwise. Since 8 may not be rational-valued, let

B:Q x {0,1} — LO, 1] N Q be a betting function approximating 3 in the sense that for all ¢ and b,
|log B(q,b) —log B(q,b)| < e. Let G be the finite-state gambler G = (Q, d, 3, qo), and let 7 be the
finite-state predictor associated with G.



Let w € A. For each i (0 <1 < |w|), let ¢; = d(go, w [i). We have

lw|—1
ﬁlog(WG’7w) — Z —logﬁg(w[i,wm)
i=0
|w|—1 .
- Z —log B(gi, wli])
i=0
|w|—1
< euwl+ ) —log Blgi, wli)
i=0
|w|—1
B m(8(q,0)) +m(d(g, 1))
= ¢lw|+log ]}) m(gn)
|w|—1
< ew| +log l}) i)
m(qo)

= (s+e)|w|+log

m(Q|w|) .

(The assumption w € A is important here because it implies m(g;) is always nonzero.) It follows
that Elog(WG, S) <t for any S € AU, Therefore £IS‘;§(7TG,X) < t, so Dimpg(X) < t. O

str

4 Finite-State Genericity

This section establishes some connections between regular entropy rates and the finite-state generic-
ity of Ambos-Spies and Busse [1]. From this we will see a separation of the regular entropy rate from
finite-state dimension. We first recall the concepts we need from [1]. A function f :{0,1}* — {0,1}*
is finite-state computable if there is a DFA M along with strings labeling each of the states such
that f(w) is always the label for the state M is in after processing w.

Definition. Let S € C.

1. S meets a function f:{0,1}* — {0,1}* if for some n we have

(STn)f(SIn) ES.

2. S is finite-state generic if S meets every finite-state f : {0,1}* — {0,1}*.

Ambos-Spies and Busse prove that several other definitions are equivalent to this definition of
finite-state genericity.

Recall that a set X C C is nowhere dense if it is contained in the complement of a dense, open
set. Equivalently, X is nowhere dense if

(Vw) (3w’ T w)X NCy = 0.

In intuitive terms, X is full of holes: given any string w, we can always find an extension w’ that
is not a prefix of any sequence in X. We now define an effective version of nowhere density where
a finite-state function can always identify one of these holes.



Definition. We say that X is finite-state nowhere dense if there is a finite-state function f :
{0,1}* — {0,1}* such that
(Vw) X N Cypw) = 0.

This concept leads to another definition of finite-state genericity.

Proposition 4.1. A sequence S € C is finite-state generic if and only if S is not contained in any
finite-state nowhere dense set.

Proof. Assume that S is not finite-state generic. Let f be a finite-state function which S does not
meet. Then Xy = {T € C | T does not meet f} is finite-state nowhere dense (via f) and contains
S.

Now assume that S is contained in some finite-state nowhere dense set X. Let f be a finite-
state function showing that X is finite-state nowhere dense. Then S does not meet f, so S is not
finite-state generic. O

4.1 Entropy Rates and Genericity
Notation. For any A C {0,1}* and x € {0,1}*, let

Ay ={weA|zCw}
be the set of all extensions of x in A.

The following lemma is essentially a restatement of Lemma 3.2.

Lemma 4.2. Let A € REG and suppose that for infinitely many n,

{z € {0,1}" [ A, # 0} = 2°".

Then Hy > s.
Proof. Recall from Lemma 3.2 that Ha = Hpep(a)- If Az # 0, then x € pref(A), so the hypothesis
says |pref(A)=,| > 2°" for infinitely many n. Therefore Her(4) > s. O

We now show a relationship between the regular entropy rate and finite-state nowhere dense
sets.

Theorem 4.3. For every X C C, Hrpc(X) < 1 if and only if X is finite-state nowhere dense.

Proof. Assume that Hreg(X) < s < 1. Then there is an A € REG with Hy < s and X C A°.
By Lemma 4.2 we know that for some ng, for all n > ng,

{z € {0,1}" | A, # 0} < 2°™. (4.1)

Let M = (Q,6,qo, F') be the minimal DFA that decides A. For each ¢ € Q, let w, be a string of
minimal length with 6*(go, w,) = g. Define

w = 3 if |wg| = no
? wq0"0*|wq | otherwise.



Let I be large enough so that 25(%al+) < 2l for all ¢ € Q. Then by (4.1), for each g € @ there is
some z, € {0,1}! with Ay, = 0. In each state ¢, our finite-state function outputs x4 if [wg| > no,

0"0*|“"1|xq if |wq| < ng. This function shows that X is finite-state nowhere dense.
For the other direction, assume that X is finite-state nowhere dense, and let f be a finite-state
function witnessing this. We can assume that f : {0,1}* — {0,1}* for some k > 0. Let

A=Az | (Vm <|z[/k) (z[mk)f(x]mk) L }.

Then X C A" and A is regular, so Hrra(X) < Ha. Now we will verify that H4 < 1. Let n be
any length and write n = mk + | where [ < k. An upper bound on |A_,|is (28 —1)™ - 2!, so

log |A=,| < 4+ mlog(2F — 1)
n - n

k_
< k n log(2" — 1)
n

k

and we obtain
< log(2F — 1)

H 1.
A S A <

O]

Combining Theorem 4.3 with Proposition 4.1, we obtain the following corollaries. We write
Hrec(S) = Hrea({S}) for any sequence S € C.

Corollary 4.4. A sequence S € C is finite-state generic if and only if Hrrg(S) = 1.
Corollary 4.5. If a set X C C contains a finite-state generic sequence, then Hrrpg(X) = 1.

A sequence S € C is saturated if it contains every finite binary string as a substring. Ambos-
Spies and Busse [1] showed a sequence is finite-state generic if and only if it is saturated. Therefore
Corollary 4.4 can be restated as follows.

Corollary 4.6. For every S € C, Hrrec(S) =1 if and only if S is saturated.

4.2 Separation of Dimension from Entropy Rates

We now separate the regular entropy rate from finite-state strong dimension. Recall from [8] that

the class
L #SIn) }
im —— =q
n—oo n

FREQ, = {S eC

has finite-state dimension

1 1
dimpg(FREQ,) = H(a) = alog o +(1—«)log .

for every a € [0,1]. In fact, the proof also shows that Dimps(FREQ,) = H(«). Since FREQ,, is
dense for all «, we obtain
Hrece(FREQ,) =1

from Theorem 4.3. Therefore (using o # %) we see that proper inequality can hold in Theorem 3.5.
In fact, the we can get the same separation for singletons. If we take a sequence S € FREQ,,
that is saturated, then Hrgrg(S) = 1 by Corollary 4.6 but Dimpg(S) < H(a).

10



5 Block-Entropy Rate

In this section we use a more general entropy notion, the block-entropy rate, to characterize the
finite-state dimensions. This is interesting because the block-entropy rate considers only frequency
properties of the sequence and does not involve finite-state machines.

5.1 Finite-State Dimension and Compressibility

First we recall the relationships between finite-state dimension and finite-state compressibility [8, 3].

Definition. A finite-state compressor (FSC) is a tuple C = (Q, 0, v, qo), where

e () is a nonempty, finite set of states,

d:Q x{0,1} — @Q is the transition function,

v:Q x{0,1} — {0,1}* is the output function, and
e ¢y € @ is the initial state.

The output of C' on an input w € {0,1}* is the string C'(w) defined by the recursion

C\) = A
C(zb) = C(z)v(6*(z),b),

for all z € {0,1}* and b € {0,1}, where 0* is defined as in Section 2. We say that C'is information-
lossless if the function w — (C(w), 6*(w)) is one-to-one.

Let C be the collection of all information-lossless finite-state compressors. For each k € N, let
Cr. be the collection of all k-state information-lossless finite-state compressors. For any S € C,
define

e ISR

prs(S) = Inf lim inf ===
e [C(STn)l
Rpg(S) = lirellf\l hzrisip min

The quantity Rps(S) was originally called p(S) in [27]. In [8], p(S) was modified to obtain
prs(S) and a compressibility characterization of finite-state dimension.

Theorem 5.1. (Dai, Lathrop, Lutz, and Mayordomo [8]) For every S € C,
dimps(S) = prs(9).

Later, when strong dimension was introduced, it was shown that Rpg(S) characterizes finite-
state strong dimension.

Theorem 5.2. (Athreya, Hitchcock, Lutz, and Mayordomo [3]) For every S € C,

11



5.2 Block Entropy and Compressibility

Let n,1 € N where [ divides n. Given a string z € {0,1}" and a string w € {0,1}!, let
N(w,z) = {0 <i<n/l|z[il..(i+ 1) — 1] = w}|

be the number of times w occurs in the length-I blocks of x. The relative frequency of w in x is

P(w,x) = %N(w,x).

The I*™ block entropy of x is

Hi(z) = - Z P(w,x)log

we{0,1}

P(w,z)’

i.e., the normalized entropy of the distribution P(-,z) on {0,1}'.
Definition. Let S € C.

1. The I*" block-entropy rate of S is

k—o0

2. The block-entropy rate of S is
H(S) = inf H;(S).
leN
3. The I*" upper block-entropy rate of S is

H,(S) = limsup H;(S [kl).

k—o0
4. The upper block-entropy rate of S is

H(S) = int Hi(S).

Ziv and Lempel showed that the upper block-entropy rate corresponds to the finite-state com-
pressibility of a sequence.

Theorem 5.3. (Ziv and Lempel [27]) For every S € C, Rps(S) = H(S).

5.3 Block Entropy and Dimension

From Theorems 5.2 and 5.3, we have the following block-entropy rate characterization of finite-state
strong dimension.

Theorem 5.4. For every S € C, Dimps(S) = H(S).

12



Does the analogous characterization dimpg(S) = H(.S) hold for finite-state dimension? We will
show that it does, establishing it as a corollary of a more general characterization theorem for
classes of sequences.

For any S € C and compressor C € C, let

pc(S) = liminf €Sl
n—00 n

and let pc(S) be the corresponding lim sup. From the proofs of Theorems 5.1 and 5.2 in [8, 3] for
individual sequences, it is straightforward to see the following for classes.

Theorem 5.5. For every X C C,

dimpg(X) = ggj ;1612 pc(S)

and

Dimps(X) = inf, sup pc(S).
S

We will also need the following three lemmas.

Lemma 5.6. Let | € N. There exists a compressor C € C such that for all S € C, pc,(S) <
H(S) + 2/l and pc,(S) < Hi(S) + 2/1.

Proof. Fix | € N. From Sheinwald’s proof [22] of Theorem 5.3 we know that for every = € {0, 1}*
there is a compressor Cy € Cy (using Huffman coding) such that
|Cu ()| 1

<H —.
R

From the proof of Theorem 5.2 given in [3], we obtain a compressor C; such that for all C' € Cy
and x € {0,1}*,

@) < jo@)+ 2 4 a,
where ¢; is a constant. Therefore for all z,
C 2
| l(l’)’ SHZ(',L‘)_‘_*—'—&’
|z L |a

so we have pc, (S) < H;(S)+2/l for all S € C. The proof of the second inequality is analogous. [

Lemma 5.7. Let C € C be a compressor. There is a constant ¢ such that foralll e N and S € C,
Hi(S) < pc(S)+ (c+1ogl)/l and H)(S) < pc(S) + (c+ logl)/L.

Proof. Let o be the number of states in C' and let r¢ be the maximum number of bits that C'
outputs on a single transition. From Sheinwald’s proof [22] of Theorem 5.3, we have

M@§mm+mwﬂwm

for all S € C and | € N. Letting ¢ be a constant such that ¢ + logl > log(c?(1 + Ir¢)) establishes
the second inequality. The proof of the first inequality is analogous. O

13



Lemma 5.8. Let S € C. For all k,l > 1, Hy(S) < H;(S) and Hy(S) < H(S).

Proof. Ziv and Lempel [27] proved that the limit lim H;(S) exists for all S € C. From this proof

n—oo
we can extract the inequality

(I +m)Hy(x) < IH (z) + mHy ()
for all z € {0,1}* and I, m > 1. It follows by induction that for all & > 1,
lekl(x) < lel(:L'),

i.e., Hy(z) < Hy(z). From this Hy(S) < H;(S) follows immediately.

To show Hy(S) < Hi(S), let s > H;(S). Then there is an infinite set J C N such that for all
j€J, H(S|jl) < s. Fix k. For each j € J, let j' be a multiple of k such that j < j' < j + k.
Then as j becomes large, |H;(S [ j'l) — H(S [ jl)| — 0. For each j € J, Hy(S [j'l) < H/(S|j'l)
from the previous paragraph, so it follows that Hy(S) < s. This holds for all s > H;(S), so
Hy(S) < Hi(S). O

We now give block-entropy rate characterizations of finite-state dimension and finite-state strong
dimension for classes of sequences.

Theorem 5.9. For every X C C,

dimps(X) = inf sup H(S)

and
Dimpg(X) = inf sup H,(S5).
leN gex
Proof. We prove the finite-state dimension characterization; the argument for strong dimension is
analogous.

Let s > dimpg(X). Then by Theorem 5.5 there is a compressor C' € C such that for all S € X,
pc(S) < s. From Lemma 5.7 we have a constant ¢ such that H;(S) < s+ (c+1logl)/l for all S € X
and | € N. Taking the infimum over all [, we have that the right-hand side is at most s. This holds
for all s > dimpg(X), so the > inequality holds.

Now let s be greater than the right-hand side. Then there is an I € N such that H;(S) < s for
all S € X. From Lemma 5.8, we have Hy(S) < H;(S) for all S. Therefore from Lemma 5.6 we
obtain for each k a compressor Cy; such that pc,,(S) < s+2/kl for all S € X. Taking the infimum
over all k, we obtain dimpg(X) < s by Theorem 5.5. O

The dual of Theorem 5.4 follows immediately from Theorem 5.9.

Theorem 5.10. For every S € C, dimpg(S) = H(S).

6 Applications

In this section we apply the upper bound of Theorem 3.5 and the equivalence of Theorem 5.10 to
prove a few finite-state dimension results.
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6.1 Normality

Definition. (Borel [5]) A sequence S € C is normal if for every w € {0,1}*,

lim {2 < n‘S[i..i +lw| - 1] = w}‘ = olul, (6.1)
n—oo N
Dai, Lathrop, Lutz, and Mayordomo [8] used the work of Schnorr and Stimm [21] to show that
every normal sequence has finite-state dimension 1. We now use the block-entropy rate characteri-
zation to prove the converse, yielding that finite-state dimension 1 is equivalent to normality.! This
result is analogous to Corollary 4.6 that equates saturation with REG-entropy rate 1.

Theorem 6.1. For every S € C, dimpg(S) =1 if and only if S is normal.

Proof. As mentioned above, we already know that S is normal implies dimpg(S) = 1 from [8]. Now
assume that S is not normal. We will use Theorem 5.10 to show that dimpg(5) < 1.

Since S is not normal, there is some string w such that (6.1) fails. Let | = |w|. For each 7, write
x; = S[i..t + 1 — 1]. Then for some € > 0,

(gon) L=l m =l gel

n

This implies that

(3m < D(F<k) ‘ < B 1 Zitem 20l g

Fix an m that satisfies the previous line. Obtain a sequence S’ from S by removing the first m bits
from S. Then

S €
R

(3°k)| P(w, S Tkl) — 2711 > %
Whenever k satisfies the previous line, P(-, S’ [ kl) is not uniform, so
(3°k)H (S'Tkl) < 6
for some fixed § < 1. Therefore H;(S’) < ¢ and we have
dimpg(S) = dimps(S") = H(S') < H(S") <1

by Proposition 2.1 and Theorem 5.10. O

6.2 Regular Languages

A sequence S € C is rational if there exist u,v € {0,1}* such that S = wwv™. Let Q be the set of
all rational sequences.

Theorem 6.2. (Dai, Lathrop, Lutz, and Mayordomo [8]) dimpg(Q) = 1.

Remark. We can use Theorem 5.9 to give an easy proof of Theorem 6.2. Let [ > 1.
Define a long string x by concatenating all 2! strings of length [ together. Let S = 2.
Then S € Q and we have H;(S) = 1 since the frequency distribution for blocks of
length [ is nearly uniform for long prefixes of S. (It is exactly uniform at lengths that
are multiples of |z|.) We can do this for every [, so dimps(Q) = 1 by Theorem 5.9.

! An anonymous referee pointed out that this converse can also be proved using [21].
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Since every rational sequence is the characteristic sequence of a regular language [1], Theorem 6.2
implies the following.

Theorem 6.3. dimps(REG) = 1.

In contrast, it is also shown in [8] that dimpg(.S) = 0 for every individual S € Q. We will strengthen
this in Theorem 6.7, showing the same for each individual regular language.

The factor set Fy(S) of a sequence S € C is the set of all finite strings of length [ that appear
in S. The factor complexity function counts the number of factors for each I:

ps(l) = [Fi(S)]-
We define an analog of entropy in terms of a sequence’s factors:

h(S) = lim 2&2s().

l—00 l
This gives an upper bound on the regular entropy rate.
Lemma 6.4. For every S € C, Hrrg(S) < h(S).
Proof. Let 1 > 1 and let A; = Fj(S)*. Then A; is regular and S € A}'O', SO

log ps(1)
T

This holds for all I, so Hrec(S) < h(S). O

Hrec(S) < Ha, =

Corollary 6.5. For any S € C with ps(l) = 2°0, dimgs(S) = Hrea(S) = 0.

Though “most” sequences are saturated, many well studied sequences satisfy the condition of
Corollary 6.5. Specifically, this result gives a new proof that for any S € Q, dimpg(S) = 0. Sturmian
sequences (see [4]), S € C that satisfy pg(l) = [+ 1 for all [, also have finite-state dimension 0.
Morphic sequences, sequences defined by an iteratively applied mapping {0,1} — {0,1}* have
dimension zero since their factor complexity function is quadratic [9].

Automatic sequences are sequences, (a,)n>0 defined by a finite-state function, f : [n]g — A
where A is some finite output alphabet that is applied to each final state. Given the limited
computation power of such a model, it is not surprising that k-automatic sequences are not too
complex.

Theorem 6.6. (Cobham [7]) For every automatic sequence S, ps(l) = O(l). In particular, h(S) =
0.

More precisely, (an)n>0 is defined by feeding a DFA with the canonical representation of n in
base-k. For our purposes, we only consider 2-automatic sequences with the same output alphabet
A = {0,1}. In addition, we can equivalently consider (s,),>0 where s, is the n'' string in the
standard enumeration since there exists a finite-state function g : [n]z — s, (add 1 to [n]z and drop
the leading bit—this can be computed by a simple finite-state transducer). An output mapping of
1 for any s, € L and 0 otherwise defines the characteristic sequence of a regular language. For a
generalization to any enumeration system see [19].

We now have the result promised earlier: regular languages have finite-state dimension 0.

Theorem 6.7. For every A € REG, dimpg(A) = Hreg(A) = 0.
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6.3 Morphic Sequences

Automatic sequences are closely related to morphic sequences. A function ¢ : {0,1}* — {0,1}*
is called a morphism if p(xzy) = p(z)p(y) for all x,y € {0,1}*. The iterative application of a
morphism ¢ is defined as ¢°(b) = b and *(b) = @(p*~1(b)) for b € {0,1}. A morphism is expanding
if |p(b)] > 2 for all b € {0,1}. We call a morphism k-uniform if |p(b)| = k for all b € {0,1}.
A 1l-uniform morphism is called a coding. Morphisms can be very naturally applied to sequences
SecC,
©(S) = p(S[0)e(S[1])e(S[2]) - -

If p(S) = S then ¢ is called a fized point morphism.

The continued application of an expanding morphism may define a sequence S € C. If for some
be {0,1} and z € {0,1}", p(b) = bz then we say that ¢ is prolongable on b. The sequence defined
by such a morphism converges to

S = ¢ (b) = brp(x)@*(x)’ () . ..

which is also a fixed point of ¢. That is, (¢“(b)) = ¢“(b). Such a sequence is called a pure
morphic sequence. If there is a coding 7 : {0,1} — {0, 1} such that S = 7(¢*¥(b)) then it is simply
a morphic sequence.

Theorem 6.8. (Ehrenfeucht and Rozenberg [9]) The complexity of a sequence S € C that is a
fized point of any morphism (not necessarily of constant length) satisfies ps(l) € O(I1?)

Corollary 6.9. Let S € C be a morphic sequence. Then dimps(S) = Hrrc(S) = 0.

Acknowledgments. We thank Peter Bro Miltersen, Jack Lutz, Elvira Mayordomo, and Pascal
WEeil for helpful comments and discussions. We also thank an anonymous referee for informing us
that [21] yields another proof of Theorem 6.1.
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