Chess endgames: 6-man data and strategy

Article
Accepted Version

Bourzutschky, M. S., Tamplin, J. A. and Haworth, G. M. ORCID: https://orcid.org/0000-0001-9896-1448 (2005) Chess endgames: 6-man data and strategy. Theoretical Computer Science, 349 (2). pp. 140-157. ISSN 0304-3975 doi: https://doi.org/10.1016/j.tcs.2005.09.043 Available at https://centaur.reading.ac.uk/4524/

It is advisable to refer to the publisher's version if you intend to cite from the
work. See Guidance on citing.
To link to this article DOI: http://dx.doi.org/10.1016/j.tcs.2005.09.043
Publisher: Elsevier

All outputs in CentAUR are protected by Intellectual Property Rights law, including copyright law. Copyright and IPR is retained by the creators or other copyright holders. Terms and conditions for use of this material are defined in the End User Agreement.

www.reading.ac.uk/centaur

CentAUR

Central Archive at the University of Reading

Reading's research outputs online

Chess endgames: 6-man data and strategy

M.S. Bourzutschky, J.A. Tamplin, and G.McC. Haworth
msbky@msn.com, jat@jaet.org, g.haworth@reading.ac.uk; http:// http://www.jaet.org/jat/

Abstract

While Nalimov's endgame tables for Western Chess are the most used today, their Depth-to-Mate metric is not the most efficient or effective in use. The authors have developed and used new programs to create tables to alternative metrics and recommend better strategies for endgame play.

Key words: chess: conversion, data, depth, endgame, goal, move count, statistics, strategy

1 Introduction

Chess endgames tables (EGTs) to the 'DTM' Depth to Mate metric are the most commonly used, thanks to codes and production work by Nalimov [10,7]. DTM data is of interest in itself, even if conversion, i.e., change of force, is more often adopted as an interim objective in human play. However, more effective endgame strategies using different metrics can be adopted, particularly by computers [3,4]. A further practical disadvantage of the DTM metric is that, as maxDTM increases, the EGTs take longer to generate and are less compressible.

Here, we focus on metrics DTC, DTZ^{1} and $\mathrm{DTZ}_{50}{ }^{2}$; the first two were effectively used by Thompson [19], Stiller [14], and Wirth [20]. New programs by Tamplin [15] and Bourzutschky [2] have already enabled a complete suite of 3-to-5-man DTC $/ \mathrm{Z} / \mathrm{Z}_{50}$ EGTs to be produced [18]. This note is an update, focusing solely on Tamplin's continuing work, assisted by Bourzutschky, with the latter code on 6-man, pawnless endgames for which $\mathrm{DTC} \equiv \mathrm{DTZ}$ and $\mathrm{DTC}_{50} \equiv \mathrm{DTZ}_{50}$. Section 2 outlines the algorithm used. Sections 3 and 4 review the new DTZ and DTZ_{50} data tabled in the Appendix. In section 5, endgame strategy is defined and improved strategies are recommended for the 50 -move and k-move contexts.

2 The NBT code

Here, we review the algorithm and the 'NBT' code developed in turn by Nalimov, Bourzutschky and Tamplin. The first author extended Nalimov's DTM-code to enable it to generate EGTs to metrics $\mathrm{DTC}_{(k)}, \mathrm{DTM}_{k}$ and $\mathrm{DTZ}_{(k)}{ }^{3}$. This involved generalising some DTM-specific aspects of the algorithm, as well as making the obvious changes to the iterative formula for deriving depth. For $\mathrm{DTC}_{(k)}$, the code retains the efficiencies of the DTM-code while requiring maxDTC rather than maxDTM cycles ${ }^{4}$. Because EGT

[^0]generation to the DTZ metric has not been implemented generically as a sequence of 'fixed pawn structure' sub-EGT generations, this is not so for DTZ $_{(k)}$ computations. The second author ran the code on single- and multi-processor UNIX systems, and evolved the code to:
a) increase portability as Nalimov's C++ is non-standard and Windows-oriented,
b) manage virtual stores and files greater than 2GBytes,
c) accumulate integer counts greater than $2^{31}-1$,
d) pursue EGT depths >126, requiring 16-bit database entries, and
e) synchronise multiple processes more rigorously.

Experience confirms the observation [13] that manual file-management can be a source of error. This suggests that the Nalimov file-format should include a file-header to help prevent such errors with details, e.g., of author, code version, metric, degree and date of completion, and compression algorithm.

Table 1. Examples of extreme, atypical maxDTC wins and losses.

Endgame	Result	Position	maxDTC	avgeDTC maxDTC/avgeDTC	
KRPKN	$0-1$	$\mathrm{~K} 1 \mathrm{k} 5 / 8 / \mathrm{Pn} 6 / 8 / \mathrm{R} 7 / 8 / 8 / 8 \mathrm{w}$	1	0.01	98.00
KRBNKQ	$1-0$	$1 \mathrm{k} 4 \mathrm{q} 1 / 8 / \mathrm{N} 2 \mathrm{~K} 4 / 8 / 8 / 8 / 8 / \mathrm{R} 3 \mathrm{~B} 3 \mathrm{~b}$	98	1.31	74.96
KRBNKQ	$1-0$	$1 \mathrm{k} 4 \mathrm{q} 1 / 8 / 3 \mathrm{~K} 4 / 8 / 1 \mathrm{~N} 6 / 8 / 8 / \mathrm{R} 3 \mathrm{~B} 3 \mathrm{w}$	99	1.33	74.45
KQRKQR	$1-0$	$4 \mathrm{q} 3 / 7 \mathrm{R} / 7 \mathrm{Q} / 4 \mathrm{r} 3 / 4 \mathrm{k} 3 / 8 / 8 / 2 \mathrm{~K} 5 \mathrm{w}$	92	1.92	48.03
KQPKN	$0-1$	$\mathrm{~K} 1 \mathrm{k} 5 / 8 / \mathrm{Pn} 6 / 8 / \mathrm{Q} 7 / 8 / 8 / 8 \mathrm{w}$	1	0.02	47.00
KRBKR	$1-0$	$8 / 3 \mathrm{~B} 4 / 8 / 1 \mathrm{R} 6 / 5 \mathrm{r} 2 / 8 / 3 \mathrm{~K} 4 / 5 \mathrm{k} 2 \mathrm{w}$	59	1.4	42.13

Table 2. Chess EGTs: comparative file sizes.

		$\begin{gathered} \text { DTM } \\ \text { MB } \end{gathered}$	$\begin{gathered} \text { DTC } \\ \% \end{gathered}$	$\begin{gathered} \text { DTZ } \\ \% \end{gathered}$	$\begin{gathered} \text { DTZ }_{50} \\ \% \end{gathered}$	$\begin{gathered} \delta\left(\mathrm{DTZ}_{50}, \mathrm{DTZ}\right) \\ \% \end{gathered}$	$\begin{gathered} \text { DTZ + ' } \mathbf{\delta} \text { ' } \\ \% \end{gathered}$
3-5-man	pawnless	1,822	71.29	71.29	0.00	0.00	71.29
3-5-man	with Ps	5,579	59.14	43.36	15.36	0.70	44.06
3-5-man	all	7,401	62.13	50.24	11.58	0.53	50.77
3-3/4-2	pawnless	220,623	56.37	56.37	20.56	1.12	57.50
3-6-man	to date	228,024	56.56	56.17	20.27	1.11	57.28

3 The DTC and DTZ metrics

DTC EGTs are interesting, not only for completeness, but because conversion is an intuitively obvious objective and the DTC EGTs document precisely the phase of play when the material nominated is on the board. The DTZ metric is more important than DTC, being necessary if the length of the current phase of play is to be guarded in the context of chess' k-move rule, k currently being 50 . Where no Pawns are involved, as here, DTZ \equiv DTC.

The NBT-code measures depth consistently in winner's moves and does not assume that conversion is effected by the winner. Also, it does not allow the loser to make a voluntary, 'natural' if unavailing capture, e.g., $\{w K e 1 Q f 1 R b 1 / b K a 1 \mathrm{~b}: 1 . \ldots$ Kxb1 $\}$. The ICGA website (2004) provides the latest data, including $\%$-wins and average win-length. Because there are many wins in 1 , the $\%$ of positions won does not characterise well the presence of wins in an endgame. Similarly, maxDTx is not a good indicator of typical DTx and Table 1 gives some maxDTC positions for endgames with extreme maxDTC/averageDTC. We therefore calculate a new characteristic,

$$
x \text {-Presence } \equiv \% \text { _of_decisive_positions } \times \text { (Average DTx })
$$

x-Presence may be compared with maxDTx and $\%$-wins [8]. It is not unduly affected by the wins in 1 or by the long tail of deep wins, and is the number of moves for which a win is expected to be on the board when $\mathrm{DT} x \equiv \mathrm{DTC}$.

3.1 A Review of the DTZ data

The results are in the Appendix, Table 3. These agree with the earlier results of Stiller [14] and Thompson [17] with two exceptions. ${ }^{55}{ }^{6}$ Note that legal but unreachable positions can affect the statistics. ${ }^{7}$

KBNK wtm wins had the largest C-presence (2455.76) of 3-5-man endgames with density 99.51% and average DTC 24.68. Only KRBKNN btm losses exceed this (4068.54) with density 57.52% and average DTC 70.73.

Table 2 summarises the absolute and comparative sizes of the various EGTs.

4 The DTZ_{50} metric

The DTZ_{50} metric rates as wins only those positions winnable against best play given the 50 -move rule. Figure 1 shows those 5 -man endgames for which some DTZ and DTZ $_{50}$ depths differ ${ }^{8}$, thereby affecting the value or depth of some 6 -man positions. Let KwKb , e.g., KBBKN, be an endgame with wtm and btm 1-0 wins impacted by the 50 -move rule. Then the DTZ_{50} EGTs for $K w x K b$ and $K w K b y$, e.g., KQBBKN and KBBKNN, must be computed and are likely to differ from their DTZ equivalents.

Figure 1. 5-man endgames with $\mathrm{EZ}_{50} \neq \mathrm{EZ}$.
Table 4 in the Appendix lists 6-man $\mathrm{DTZ}_{50} \mathrm{EGT}$ data for endgames where $\mathrm{EZ}_{50} \neq \mathrm{EZ}$. Table 5 summarises 50 -move impact, minimal for KRRKRB (1-0), considerable for KBBKNN. Table 6 gives an example position for each affected endgame. 63 of the 1356 man pawnless endgames are affected by the 50 -move rule. Although $\mathrm{DTZ}_{50} \geq \mathrm{DTZ}$, $\operatorname{maxDTZ}_{50}$ is rarely greater than maxDTZ: KQNKBB, KQQKBB, KBBBKN and KBNNKN are the only examples to date. Wins frustrated by the 50 -move rule produce a

[^1]$\operatorname{maxDTZ}_{50}<\operatorname{maxDTZ} \leq 50$ for only KBBKBN and KBBKNN so far. KBBKNN has the majority of its wins frustrated, and relatively few wins can be retained by a deeper strategy in the current phase. Here, the 50 -move rule bars the now well defined route to many KBBKN wins [12]. There are significant percentages of frustrated wins in $\mathrm{KBB} x \mathrm{KQ}(0-1)$, and of delayed 1-0 wins in $\mathrm{KBB} x \mathrm{KN}$. Elsewhere, the 50 -move impact is sparsely distributed and one might expect that this becomes sparser as the number of men increases.

Note that, as $\mathrm{DTZ}_{50} \geq \mathrm{DTZ}$ for a decisive position, we may construct an EGT coding, $E d Z_{50} Z$, of $\delta\left(\mathrm{DTZ}_{50}, \mathrm{DTZ}\right)^{9}$ enabling DTZ_{50} to be derived from DTZ and $\mathrm{EdZ}_{50} \mathrm{Z}$. The latter notes only $\mathrm{DTZ}_{50}-\mathrm{DTZ}$ for the delayed wins, and 'new draws' when DTZ ≤ 50 : DTZ >50 already implies 'new draw'. If $\mathrm{EdZ}_{50} \mathrm{Z}$ is null, it is not required. For 3-5-men, these EGTs are only 0.53% the size of the corresponding DTM EGTs. They can in fact be made much smaller by designer-compression techniques more tailored to the data than the established compression method adopted by Nalimov.

5 Endgame strategies

An endgame strategy, denoted here by $S s$, is an algorithm for filtering the available moves to a preferred choice. Endgame strategies can be applied in sequence. $\mathrm{Ss}_{1} s_{2} \ldots s_{n}$ denotes a compound endgame strategy using strategies $S s_{1}, S s_{2}, \ldots, S s_{n}$ in turn. Let $d t x$ be the depth by metric DTx, and Ex an EGT to metric DTx. Let Sx be an endgame strategy minimising dtx, e.g., 'quickest mate' $\mathrm{SM}^{-}, \mathrm{SC}^{-}, \mathrm{SZ}^{-}$or $\mathrm{SZ}_{50}{ }^{-}$. Let $S x^{+}$be a strategy maximising $d t x$. With some exceptions, q.v. Section 5.2, Sx^{-}strategies are used by attackers and Sx^{+}strategies are used by defenders.

Let SZ° and $\mathrm{SZ}_{k}{ }^{\circ}$ be endgame strategies guarding the length of the current phase in the context of a k-move rule and a remaining mleft moves before a possible draw claim. By definition, if $d t x>m l e f t, \mathrm{Sx}^{\mathrm{o}} \equiv \mathrm{S} x^{-}$.

Some elementary observations are worth noting first:

- Sx must not filter out all available moves, hence the contingency definition of $S x^{0}$,
- Sxy defines at least as narrow a choice of moves as $S x$,
- if Sxy fails to safeguard the theoretical value of the position, then $S x$ also fails,
- if Sy has no effect after the use of $S x$, then $S x y \equiv S x$,
- $\mathrm{SZ}_{k}{ }^{\circ}$ has no effect if the position is a draw under the k-move rule
- $S x x \equiv S x$, i.e. a strategy 'filter' has no further effect when applied a 2 nd time,
- Sxy is not necessarily identical to Syx, e.g., SMZ^{-}and $\mathrm{SZ}^{-}{ }^{-}$are different,
- Sxy $\equiv S x \equiv S y x$ if $S x$ excludes any move that Sy excludes,
- $\mathrm{SZ}^{\circ} \mathrm{Z}^{-} \equiv \mathrm{SZ}^{-}: \mathrm{SZ}^{\circ}$ allows DTZ-optimal moves through its filter in all positions.

A likely set of goals for an attacking endgame strategy is to:

- win from any position that can be won under the prevailing k-move rule,
- avoid a draw-claim in the current phase if possible, and
- maximize the probability of finessing a win from a draw against a fallible player.

[^2]It is already clear from KBBKP, KNNKP, KQPKQ and KRPKP examples [18] that the three strategies $\mathrm{SC}^{-}, \mathrm{SM}^{-}$and SZ^{-}, even in combination, are not enough to achieve even the first goal. As conjectured by Haworth [3], and demonstrated by Bourzutschky [2], KBBKNN includes positions where these three strategies all fail, not even including the move which safeguards a win available under the current 50 -move rule. Similar positions have been found in KBBKBN, KQNKBB and KBNNKQ by Tamplin and their strategydriven lines are illustrated in Appendix 1 after Table 6. However, the first objective is in fact relatively easy: $\mathrm{SZ}_{k}{ }^{-}$wins any position winnable against best play under a k-move rule. As k is currently $50, \mathrm{DTZ}_{50}$ EGTs and $\mathrm{SZ}_{50}{ }^{-}$have a clear role. The strategy $\mathrm{SZ}_{50}{ }^{-}$provides no help in other situations where finesse and/or the opponent's acquiescence are required: more sophisticated strategies are required.

5.1 Strategies for playing a fallible opponent

By definition, a fallible opponent is not certain to achieve a result as good as the theoretical value of the position. They may lose a half or full point, fail to avoid a 50 -move draw claim from the opponent or fail to defend a lost position long enough to claim an available draw. Let us suppose that it is possible to avoid a draw-claim in the current phase, if not in a later phase. Clearly, it is critical to achieve this if a win is to follow.

The strategy SZ^{-}does so but strives for nothing else. The strategy $\mathrm{SZ}^{\circ} \mathrm{Z}_{k}^{-}$does so, and also seizes on any winnable position once offered. The strategy $\mathrm{SZ}^{\circ} \mathrm{Z}_{k}{ }^{-} \mathrm{Z}^{-}$also achieves a third, ancillary goal of achieving both goals in the shortest current phase. $\mathrm{SZ}^{\circ} \mathrm{Z}_{k}{ }^{-} \mathrm{Z}^{-}$is not however the best use of DTZ and DTZ_{k} data. It does not attempt to minimize the difficulty of finessing the win in the second and subsequent phases of play. In particular, the third goal runs counter to giving the fallible opponent the best opportunity to concede ground in the current phase.

To increase the chance of finessing a win against a fallible opponent, it is helpful to play the opponent as well as the game by exploiting any apparent fallibility [5,6,9]. This is done by having an opponent model OM, e.g., R_{c} [5], and using it in a forward search. As the opponent's fallibility replaces certainty by probabilities, the forward search minimaxes expected depth rather than depth. The OM may be revised by a Bayesian learning process in the light of experience during play.

5.2 Winning under a k-move rule

The underlying difficulty is that the data so far does not help us to answer the question "By how much does the current position fail to be a win under the 50 -move rule?". However, the question implicitly defines a new metric:
$d t r=$ the least k for which a position is won or lost, given a k-move drawing rule,
$0 \leq d t r \leq d t m$ and therefore the integer $d t r$ can be determined. $d t r-k$ measures the defender's margin for error and the attacker's challenge when there are k moves left before a drawclaim in the current phase. Although the 50 -move rule seems unlikely to be changed to a different k-move rule, the DTR EGT enables an attacker to win any position winnable under any k-move rule, regardless of k. It obviates the need for specific DTZ $_{50}$ EGTs.

Because a sequence of positions on the winning line can have the same DTR value, the following metric is also necessary [4] while generating and using the DTR EGTs:

$$
d t z_{R}=\text { the minimaxed depth to a (move-count zeroing) move while minimaxing } d t r
$$

$\mathrm{SR}^{-} \mathrm{Z}_{\mathrm{R}}{ }^{-}$is a necessary and sufficient strategy to achieve any win available against best play given a k-move rule. $\mathrm{SR}^{+} \mathrm{Z}_{\mathrm{R}}{ }^{+}$is a necessary and sufficient strategy to defend a k-move draw.

Generating the DTR EGTs remains a future challenge, made the more difficult because two metrics are used in parallel, and the process is not as efficient as that for DTC, DTM and potentially DTZ. However, because $d t r \geq d t z_{R} \geq d t z, d t z_{R}$ and $d t r$ may be derived economically from tables EZ, $E d Z_{\mathrm{R}} Z$ and $E d R Z_{\mathrm{R}}$ in the same way ${ }^{10}$ as $d t z_{50}$ is derived from tables EZ and $\mathrm{EdZ}_{50} \mathrm{Z}$.

The $\mathrm{SZ}^{\circ} \mathrm{R}^{-} \mathrm{Z}_{\mathrm{R}}{ }^{-}$strategy minimizes DTR , but only within the constraints of completing the current phase in the available moves and without forward search. It might therefore require too many moves to retain a target dtr to the end of the phase.

With the addition of the $\mathrm{SZ}_{\mathrm{R}}{ }^{0}$ filter, strategy $\mathrm{SZ}^{\circ} \mathrm{Z}_{\mathrm{R}}{ }^{\circ} \mathrm{R}^{-} \mathrm{Z}_{\mathrm{R}}{ }^{-}$aims to adopt an in-range DTR goal to ameliorate this problem. It:

- guards the length of the current phase in the context of the current k-move rule,
- wins any position that is winnable under whatever k-move rule is in force,
- aims to minimize $d t r$ for the attacking side with pragmatic DTR goals, and
- achieves the first three goals in a current phase of least possible moves.

Similar caveats apply to $\mathrm{SZ}^{0} \mathrm{Z}_{\mathrm{R}}{ }^{0} \mathrm{R}^{-} \mathrm{Z}_{\mathrm{R}}{ }^{-}$as to $\mathrm{SZ}^{\circ} \mathrm{Z}_{k}{ }^{-} \mathrm{Z}^{-}$. The strategy does not necessarily minimize DTR, or $\breve{\mathrm{R}}=\operatorname{Expected}[\mathrm{DTR}]$ against a fallible opponent. It does not even make best use of the moves available to give the opponent more opportunity to err. Within constraints which avoid 3 x repetition ${ }^{11}$, a more liberal strategy such as $\mathrm{SZ}^{\circ} \mathrm{Z}_{\mathrm{R}}{ }^{0} \mathrm{R}^{-} Z_{R}{ }^{+}$can be more effective than $\mathrm{SZ}^{\circ} \mathrm{Z}_{\mathrm{R}}{ }^{\circ} \mathrm{R}^{-} \mathrm{Z}_{\mathrm{R}}{ }^{\text {. }}$. In position $\mathrm{NN}-\mathrm{P}^{12}, \mathrm{SZ}^{\circ} \mathrm{Z}_{\mathrm{R}}{ }^{\circ} \mathrm{R}^{-} \mathrm{Z}_{\mathrm{R}}{ }^{-}$makes the optimal movechoice ${ }^{13} \mathrm{Nb} 1+: \mathrm{SZ}^{\circ} \mathrm{Z}_{50}{ }^{-}$can, and $\mathrm{S} \sigma\left(\sigma \equiv \mathrm{C}^{-}, \mathrm{M}^{-}, \mathrm{Z}^{-}, \mathrm{Z}^{\circ} \mathrm{Z}_{50}{ }^{-} \mathrm{Z}^{-}\right)$do, concede DTR depth with Kc 2 .

5.3 Strategy effectiveness

The effectiveness of an attacking strategy may be measured in two dimensions:

- \% of theoretically won positions in which the strategy retains the win
i.e. in which the strategy offers no moves which are not offered by $\mathrm{SZ}_{50}{ }^{-}$
- $\%$ of drawn positions in which a win is finessed against a fallible opponent

Different reference defenders are needed for the two dimensions. We suggest here:

- for a lost position, an infallible defender playing strategy $\mathrm{SR}^{+} \mathrm{Z}_{\mathrm{R}}{ }^{+}$, and otherwise,
- a fallible defender $R_{c}[6]$ playing 'to' DTR and DTZ ${ }_{R}$.

[^3]In the context of the 50 -move rule, $\mathrm{SZ}_{50}{ }^{-}$retains the win in 100% of positions. Although this has not been examined, we expect $\mathrm{SZ}^{-}, \mathrm{SC}^{-}, \mathrm{SM}^{-}$and SM^{-}to exhibit increasing rates of failure. SZ^{-}fails both in the 0.34% of positions where $\mathrm{DTZ}^{-}<\mathrm{DTZ}_{50}$ and in positions with $\mathrm{DTZ}=\mathrm{DTZ}_{50}$ where it offers moves which $\mathrm{SZ}_{50}{ }^{-}$rejects. ${ }^{14}$

6 EGT integrity

All EGT files were immediately given MD5sum signatures [11] to guard against subsequent corruption or loss ${ }^{15}$. The EGTs were checked for errors in various ways:

- DTx EGTs $\{E x\}, x=Z$ and Z_{50}, verified by Nalimov's standard test.
- consistency of the $\{E M\}$ and $\{E Z\}$ EGTs confirmed:
counts of all positions found identical to predicted index-ranges, and theoretical values found identical with $d t m \geq d t z$.
- consistency of the $\left\{\mathrm{EZ}_{50}\right\}$ and $\{E Z\}$ EGTs confirmed: values identical with $d t z_{50} \geq d t z$, or 'EZ' win/loss an 'EZ ${ }_{50}$ ' draw,
- DTZ statistics compared with Stiller's results [14],
- published DTZ-minimaxing lines [14] checked against DTZ EGTs, and
- DTZ statistics compared with Thompson's results [17].

Multi-metric working introduces new risks to the process of EGT generation and we recommend that the EGTs are self-identifying to increase integrity assurance.

7 Summary

This paper is a second snapshot of continuing work on the evolution and use of a multimetric code 'NBT'. This was created by Nalimov, generalized by Bourzutschky [2] and managed on Unix by Tamplin. Here, we surveyed the newly completed 6-man pawnless DTZ and DTZ_{50} data. The 3-6-man pawnless DTZ EGTs $\{E Z\}$ to date are 56.17% the size of the equivalent set $\{E M\}$ and the compressed $E d Z{ }_{50} Z$ EGTs increase this figure to 57.28%. These percentages will reduce as the 6 -man P-endgame and 5-1 pawnless EGTs are generated. This is an attractive, practical benefit as the 3-to-6-man EMs will be some 1.45 TB in size.

Clearly, there are more effective and efficient endgame strategies than the commonly used SM^{-}, and the only constraint is access to EGTs. It is recommended that $\mathrm{SC}^{-}{ }^{-}, \mathrm{SZ}^{\circ} \mathrm{M}^{-} Z^{-}$, $\mathrm{SZ}^{\circ} \mathrm{Z}_{50} \mathrm{Z}^{-}$and perhaps other strategies are considered, and that the EC, EZ and $\mathrm{EdZ}_{50} \mathrm{Z}$ EGTs are made available to enable their use. The computation of DTR and DTZ ${ }_{R}$ EGTs remains a future challenge. Endgame strategies related to $\mathrm{SZ}^{\circ} \mathrm{Z}_{\mathrm{R}}{ }^{0} \mathrm{R}^{-} \mathrm{Z}_{\mathrm{R}}{ }^{-}$promise to remove many of the chessic artificialities induced by current metric-based strategies, such as DTZmotivated sacrifices by the attacker and incorrect choices of defensive goal by the losing side.

[^4]
Acknowledgements

We thank Eugene Nalimov for two versions of his code, the 2001 version which the first author evolved to multi-metric form, and the 2003 version. Marc Bourzutschky also championed the merits of DTZ_{50} in the absence of DTR data, and contributed several major computations. We thank Rafael Andrist [1] for a 'multi-metric' Wilhelm to data-mine the EGTs, and Bob Hyatt for occasional help.

References

[1] R. Andrist. http://www.geocities.com/rba_schach2000/. WILHELM download, 2004.
[2] M.S. Bourzutschky. Private Communications to the other authors, 2003.
[3] G.M ${ }^{\mathrm{c}}$ C. Haworth. Strategies for Constrained Optimisation, ICGA Journal 23 (1) (2000) 9-20.
[4] G.ḾC. Haworth. Depth by The Rule, ICGA Journal 24 (3) (2001) 160.
[5] G.Mch. Haworth. Reference Fallible Endgame Play, ICGA Journal 26 (2) (2003) 81-91.
[6] G.M ${ }^{\text {c C. Haworth, R.B. Andrist. Model Endgame Analysis, in: H.J. van den Herik, H. Iida, and }}$ E.A. Heinz (Eds), Advances in Computer Games 10, Kluwer Academic Publishers, Norwell, MA, 2003, pp. 65-79. ISBN 1-4020-7709-2.
[7] R. Hyatt. ftp://ftp.cis.uab.edu/pub/hyatt/TB/. Server providing CraftY and Nalimov's EGTs and statistics, 2004.
[8] ICGA. www.icga.org. Game-specific Information: Western Chess - The Endgame, 2005.
[9] P.J. Jansen. KQKR: Awareness of a Fallible Opponent, ICCA Journal 15 (3) (1992) 111-131.
[10] E.V. Nalimov, G.M ${ }^{\mathrm{c}}$ C. Haworth, E.A. Heinz (2000). Space-Efficient Indexing of Endgame Databases for Chess. ICGA Journal 23 (3) (2000) 148-162.
[11] R. Rivest. RFC 1321: the MD5 Message-Digest Algorithm, 1992. http://www.ietf.org/rfc/rfc 1321.txt.
[12] A.J. Roycroft. Expert against the Oracle, in: J.E. Hayes, D. Michie and J. Richards (Eds.), Machine Intelligence 11, Oxford University Press, Oxford, 1988, pp. 347-373..
[13] J. Schaeffer, Y. Bjornsson, N, Burch, R. Lake, P. Lu, S. Sutphen. Building the Checkers 10piece Endgame Database, in: H.J. van den Herik, H. Iida, and E.A. Heinz (Eds), Advances in Computer Games 10, Kluwer Academic Publishers, Norwell, MA, 2003, pp. 193-211.
[14] L.B. Stiller. Multilinear Algebra and Chess Endgames, in: R.J. Nowakowski (Ed.), Games of No Chance, MSRI Publications, v29, CUP, Cambridge, England, 1994, pp. 151-192. ISBN 0-5215-7411-0. Reprinted in p'back (1996). ISBN 0-5216-4652-9.
[15] J. Tamplin. Private communication of pawnless Nalimov-compatible DTC EGTs, 2001.
[16] J. Tamplin. http://chess.jaet.org/endings/. Multi-metric EGT site with multi-metric services and file downloads, 2004.
 85.
[18] J. Tamplin, G.M ${ }^{\mathrm{c}} \mathrm{C}$ Haworth. (2003). Chess Endgames: Data and Strategy, in: H.J. van den Herik, H. Iida, and E.A. Heinz (Eds), Advances in Computer Games 10, Kluwer Academic Publishers, Norwell, MA, 2003, pp. 81-96.
[19] K. Thompson. Retrograde Analysis of Certain Endgames, ICCA Journal 9 (3) (1986) 131-139.
[20] C. Wirth, J. Nievergelt (1999). Exhaustive and Heuristic Retrograde Analysis of the KPPKP Endgame, ICCA Journal 22 (2) (1999) 67-80.

Appendix: Chess Endgame Data and Examples

Table 3a. Chess Endgames: 6-man, pawnless DTC/Z data. ${ }^{16}$

Endgame			DTC Metric											
			$\begin{array}{lr}\text { \# of maxDTC positions } \\ 1-0 & 0-1\end{array}$				maxDTC, moves							
Endgame	GBR	w-b					wtm	btm	wtm	btm	wtm	btm	wtm	btm
KBBKBB	0080.00	3-3	704	224	224	704	6	5	5	6				
KBBKBN	0053.00	3-3	10	2	26	180	28	27	9	10				
KBBKNN	0026.00	3-3	11	1	488	1,518	38	38	3	4				
KBNKBN	0044.00	3-3	29	4	4	29	9	8	8	9				
KBNKNN	0017.00	3-3	1	1	12	154	13	12	6	7				
KNNKNN	0008.00	3-3	44	8	8	44	7	6	6	7				
KQBKBB	1070.00	3-3	3	13	1,317	6,118	13	13	3	4				
KQBKBN	1043.00	3-3	13	107	944	4,097	16	16	3	4				
KQBKNN	1016.00	3-3	71	331	28	81	13	13	2	3				
KQBKQB	4040.00	3-3	2	3	3	2	46	45	45	46				
KQBKQN	4013.00	3-3	2	1	3	15	36	36	32	32				
KQBKRB	1340.00	3-3	2	11	15	30	42	41	6	7				
KQBKRN	1313.00	3-3	1	6	9	34	27	27	7	8				
KQBKRR	1610.00	3-3	1	79	21	23	85	84	10	11				
KQNKBB	1061.00	3-3	8	32	1,521	6,573	15	15	3	4				
KQNKBN	1034.00	3-3	1	7	3	3	17	17	4	5				
KQNKNN	1007.00	3-3	27	137	74	207	16	16	2	3				
KQNKQN	4004.00	3-3	6	2	2	6	29	29	29	29				
KQNKRB	1331.00	3-3	11	26	8	20	26	26	8	9				
KQNKRN	1304.00	3-3	1	1	2	11	40	40	9	9				
KQNKRR	1601.00	3-3	7	6	6	7	152	152	11	12				
KQQKBB	2060.00	3-3	984	5,128	137	714	6	6	3	4				
KQQKBN	2033.00	3-3	4	28	99	376	8	8	3	4				
KQQKNN	2006.00	3-3	2	8	1	36,110	7	7	1	1				
KQQKQB	5030.00	3-3	8	1	1	2	62	62	22	23				
KQQKQN	5003.00	3-3	4	26	4	20	50	50	18	19				
KQQKQQ	8000.00	3-3	1	2	2	1	44	44	44	44				
KQQKQR	5300.00	3-3	4	2	1	12	48	47	56	56				
KQQKRB	2330.00	3-3	4	22	21	26	14	13	5	6				
KQQKRN	2303.00	3-3	2	12	14	11	14	14	5	6				
KQQKRR	2600.00	3-3	3	7	483	575	18	18	5	6				
KQRKBB	1160.00	3-3	3	13	689	3,514	12	12	3	4				
KQRKBN	1133.00	3-3	3	14	419	1,645	11	11	3	4				
KQRKNN	1106.00	3-3	1	243	20	40	11	10	2	3				
KQRKQB	4130.00	3-3	2	12	5	3	73	73	31	32				
KQRKQN	4103.00	3-3	3	4	2	6	71	71	26	27				
KQRKQR	4400.00	3-3	3	1	1	3	92	92	92	92				
KQRKRB	1430.00	3-3	2	10	75	92	21	21	5	6				
KQRKRN	1403.00	3-3	1	7	8	16	21	21	6	7				
KQRKRR	1700.00	3-3	6	4	2	8	34	34	10	11				
KRBKBB	0170.00	3-3	14	3	97	252	83	83	5	6				
KRBKBN	0143.00	3-3	1	6	1	9	98	98	5	6				
KRBKNN	0116.00	3-3	1	2	82	196	223	222	2	3				
KRBKRB	0440.00	3-3	5	1	1	5	17	16	16	17				
KRBKRN	0413.00	3-3	78	45	2	25	21	20	13	14				
KRNKBB	0161.00	3-3	13	14	4	20	140	140	9	10				
KRNKBN	0134.00	3-3	1	7	12	36	190	189	5	6				

[^5]Table $3 b$. Chess Endgames: 6-man, pawnless DTC/Z data.

Endgame			DTC Metric							
			\# of maxDTC positions				maxDTC, moves			
Endgame	GBR	w-b	wtm	btm	wtm	btm	wtm			btm
KRNKNN	0107.00	3-3	1	7	29	54	243	242	3	4
KRNKRN	0404.00	3-3	6	3	3	6	21	20	20	21
KRRKBB	0260.00	3-3	2	16	1	4	37	37	4	5
KRRKBN	0233.00	3-3	3	42	6	30	26	25	4	5
KRRKNN	0206.00	3-3	2	3	37	77	33	33	2	3
KRRKRB	0530.00	3-3	22	13	1	455	54	54	6	6
KRRKRN	0503.00	3-3	2	3	37	89	73	73	6	7
KRRKRR	0800.00	3-3	2	3	3	2	18	17	17	18
KBBBKB	0090.00/31	4-2	19	6	6,150	21,903	20	20	1	2
KBBBKN	0093.00/30	4-2	6	6	951	4,838	12	12	0	1
KBBBKQ	1090.00/30	4-2	1	9	1	3	10	9	51	51
KBBBKR	0390.00/30	4-2	1	23	13	72	69	68	4	5
KBBNKB	0051.00	4-2	3	4	10,340	38,254	36	36	1	2
KBBNKN	0024.00	4-2	9	54	3,663	18,984	31	31	0	,
KBBNKQ	3021.00	4-2	122	16	17	1	12	11	62	63
KBBNKR	0321.00	4-2	4	2	10	50	68	68	6	7
KBNNKB	0042.00	4-2	6	4	4,779	18,249	38	38	1	2
KBNNKN	0025.00	4-2	17	56	4,335	22,890	28	28	0	1
KBNNKQ	3012.00	4-2	5	1	1	4	12	11	49	49
KBNNKR	0312.00	4-2	12	4	1	398	49	48	7	7
KNNNKB	0039.00/30	4-2	1	2	1,275	2,891	92	91	0	1
KNNNKN	0009.00/31	4-2	2	2	1,584	8,562	86	86	0	1
KNNNKQ	1009.00/30	4-2	1	1	6	11	9	8	35	35
KNNNKR	0309.00/30	4-2	2	2	8	31	12	11	6	7
KQBBKB	1050.00	4-2	221	1,027	9,168	34,389	8	8	1	2
KQBBKN	1023.00	4-2	122	515	1,327	6,813	7	7	0	1
KQBBKQ	4020.00	4-2	1	1	2	3	93	93	15	16
KQBBKR	1320.00	4-2	2	12	146,288	830,146	20	20	1	2
KQBNKB	1041.00	4-2	28	191	7,873	31,019	7	7	1	2
KQBNKN	1014.00	4-2	133	708	3,262	17,347	6	6	0	1
KQBNKQ	4011.00	4-2	1	1	1	1	65	65	16	17
KQBNKR	1311.00	4-2	4	28	408,029	2,319,030	22	22	1	2
KQNNKB	1032.00	4-2	3	21	1,457	3,516	11	11	0	1
KQNNKN	1005.00	4-2	7	21	1,806	9,962	9	9	0	1
KQNNKQ	4002.00	4-2	2	2	5	20	71	71	13	14
KQNNKR	1302.00	4-2	2	12	25	163	22	22	2	3
KQQBKB	2040.00	4-2	2	10	1,665	7,712	5	5	1	2
KQQBKN	2013.00	4-2	23	130	440	2,285	5	5	0	1
KQQBKQ	5010.00	4-2	6	30	7	23	29	29	9	10
KQQBKR	2310.00	4-2	1	5	75,802	478,709	26	26	1	2
KQQNKB	2031.00	4-2	9,757	37,511	383	1,005	4	4	0	1
KQQNKN	2004.00	4-2	49	260	477	2,700	5	5	0	1
KQQNKQ	5001.00	4-2	1	1	2	13	28	28	8	9
KQQNKR	1301.00	4-2	2	12	112,955	720,034	24	24	1	2
KQQQKB	9030.00/30	4-2	673,004	2,775,033	0	0	3	3	-	-
KQQQKN	9003.00/30	4-2	827	4,016	0	0	4	4	-	-
KQQQKQ	9000.00/31	4-2	6	40	1	5	19	19	9	10
KQQQKR	9300.00/30	4-2	3	19	11,025	77,175	20	20	1	2
KQQRKB	2130.00	4-2	438	1,766	0	0	4	4	-	,
KQQRKN	2103.00	4-2	5	29	572	2,459	5	5	0	1
KQQRKQ	5100.00	4-2	3	7	3	13	28	28	9	10
KQQRKR	2400.00	4-2	1	7	63,979	447,853	24	24	1	2
KQRBKB	1140.00	4-2	83	415	5,158	23,146	5	5	,	2

Table 3c. Chess Endgames: 6-man, pawnless DTC/Z data.

DTC Metric										
Endgame			\# of maxDTC positions				maxDTC, moves			
Endgame	GBR	w-b	wtm	btm	wtm	btm	wtm	btm	wtm	btm
KQRBKN	1113.00	4-2	977	4,872	3,390	15,732	5	5	0	1
KQRBKQ	4110.00	4-2	6	19	4	9	49	49	12	13
KQRBKR	1410.00	4-2	1	7	269,633	1,690,187	25	25	1	2
KQRNKB	1131.00	4-2	1,358,087	5,054,177	1,150	2,838	4	4	0	1
KQRNKN	1104.00	4-2	12	76	3,450	16,495	6	6	0	1
KQRNKQ	4101.00	4-2	3	7	1	3	55	55	11	12
KQRNKR	1401.00	4-2	2	14	375,359	2,375,039	24	24	1	2
KQRRKB	1230.00	4-2	74,085	294,223	0	0	4	4	-	-
KQRRKN	1203.00	4-2	299	1,474	1,498	6,333	5	5	0	1
KQRRKQ	4200.00	4-2	1	4	1	2	41	41	8	9
KQRRKR	1500.00	4-2	12	82	115,042	805,294	23	23	1	2
KRBBKB	0150.00	4-2	4	13	12,789	47,143	18	18	1	2
KRBBKN	0123.00	4-2	7	57	3,717	17,552	12	11	0	1
KRBBKQ	3120.00	4-2	3	1	2	1	44	44	25	26
KRBBKR	0420.00	4-2	1	27	104	787	36	35	2	3
KRBNKB	0141.00	4-2	9	2	10,985	42,661	13	13	1	2
KRBNKN	0114.00	4-2	1	6	8,152	39,422	12	12	0	1
KRBNKQ	3111.00	4-2	4	3	3	1	99	98	28	29
KRBNKR	0411.00	4-2	1	1	9	55	36	36	3	4
KRNNKB	0132.00	4-2	31	44	2,094	4,814	12	12	0	1
KRNNKN	0105.00	4-2	154	2,477	4,138	20,608	13	12	0	1
KRNNKQ	3102.00	4-2	2	1	2	3	28	27	41	41
KRNNKR	0402.00	4-2	1	3	28	114	39	39	3	4
KRRBKB	0240.00	4-2	530	1,911	3,931	17,132	7	7	1	2
KRRBKN	0213.00	4-2	2,459	12,709	3,664	16,427	6	6	0	1
KRRBKQ	3210.00	4-2	3	4	2	5	82	82	16	17
KRRBKR	0510.00	4-2	2	10	221,774	1,375,964	31	31	1	2
KRRNKB	0231.00	4-2	716	2,439	825	1,937	7	7	0	1
KRRNKN	0204.00	4-2	69	333	3,537	16,109	7	7	0	1
KRRNKQ	3201.00	4-2	5	2	2	1	101	101	18	19
KRRNKR	0501.00	4-2	9	46	289,032	1,811,539	33	33	1	2
KRRRKB	0930.00/30	4-2	51,108	219,810	0	0	5	5	-	-
KRRRKN	0903.00/30	4-2	6	30	950	3,965	6	6	0	1
KRRRKQ	3900.00/30	4-2	3	5	1	2	65	65	13	14
KRRRKR	0900.00/31	4-2	3	6	64,686	452,802	21	21	1	2

Table 4a. Chess Endgames: 6-man, pawnless DTZ_{50} data.

Endgame			DTZ ${ }_{50}$ Metric							
			\# of maximal positions				max depth, moves			
			1-0		0-1					
	GBR	w-b	wtm	btm	wtm	btm	wtm	btm	wtm	btm
KBBKBN	0053.00	3-3	5	1	26	180	21	20	9	10
KBBKNN	0026.00	3-3	46	17	488	1,518	29	28	3	4
KBNKBN	0044.00	3-3	29	4	4	29	9	8	8	9
KBNKNN	0017.00	3-3	1	1	12	154	13	12	6	7
KQBKBB	1070.00	3-3	8	30	1,317	6,118	13	13	3	4
KQBKNN	1016.00	3-3	71	331	28	81	13	13	2	3
KQBKRR	1610.00	3-3	111,887	251,377	21	23	50	50	10	11
KQNKBB	1061.00	3-3	15	61	1	6,826	15	15	4	4
KQNKBN	1034.00	3-3	1	7	3	3	17	17	4	5
KQNKNN	1007.00	3-3	27	137	74	207	16	16	2	3

Table 4b. Chess Endgames: 6-man, pawnless DTZ $_{50}$ data.
DTZ $_{50}$ Metric

Endgame			DTZ ${ }_{50}$ Metric							
			\# of maximal positions				max depth, moves			
	GBR	w-b	wtm	btm	wtm	btm				btm
KQNKRR	1601.00	3-3	3,007,192	2,814,979	6	7	50	50	11	12
KQQKBB	2060.00	3-3	1	5	137	714	8	8	3	4
KQQKNN	2006.00	3-3	2	8	1	36,110	7	7	1	1
KQQKQB	5030.00	3-3	81	247	1	2	50	50	22	23
KQQKQR	5300.00	3-3	4	2	6	26	48	47	50	50
KQRKBB	1160.00	3-3	3	13	689	3,514	12	12	3	4
KQRKNN	1106.00	3-3	1	243	20	40	11	10	2	3
KQRKQB	4130.00	3-3	1,989	1,841	5	3	50	50	31	32
KQRKQN	4103.00	3-3	1,953	1,698	2	6	50	50	26	27
KQRKQR	4400.00	3-3	1,191	837	837	1,191	50	50	50	50
KQRKRB	1430.00	3-3	2	10	75	92	21	21	5	6
KRBKBB	0170.00	3-3	69,308	36,223	97	252	50	50	5	6
KRBKBN	0143.00	3-3	12,633,808	15,861,502	1	9	50	50	5	6
KRBKNN	0116.00	3-3	1,944,494	2,800,448	82	196	50	50	2	3
KRBKRB	0440.00	3-3	5	1	1	5	17	16	16	17
KRBKRN	0413.00	3-3	78	45	2	25	21	20	13	14
KRNKBB	0161.00	3-3	2,037,618	1,042,171	4	20	50	50	9	10
KRNKBN	0134.00	3-3	2,488,599	1,948,808	13	38	50	50	5	6
KRNKNN	0107.00	3-3	1,202,592	1,198,532	29	54	50	50	3	4
KRRKRB	0530.00	3-3	372	107	1	455	50	50	6	6
KRRKRN	0501.00	3-3	4,335	3,898	37	89	50	50	6	7
KBBBKN	0093.00/30	4-2	3	6	951	4,838	14	14	0	1
KBBBKQ	3090.00/30	4-2	1	9	11	15	10	9	50	50
KBBBKR	0390.00/30	4-2	685,975	1,619,489	13	72	50	50	4	5
KBBNKN	0024.00	4-2	9	54	3,663	18,984	31	31	0	1
KBBNKQ	3021.00	4-2	122	16	8,148	4,176	12	11	50	50
KBBNKR	0321.00	4-2	139,436	248,016	10	50	50	50	6	7
KBNNKN	0015.00	4-2	3	3	4,335	22,890	29	29	0	1
KBNNKQ	3012.00	4-2	5	1	1	4	12	11	49	49
KNNNKB	0039.00/30	4-2	195,576	232,786	1,275	2,891	50	50	0	1
KNNNKN	0009.00/31	4-2	6,272	12,853	1,584	8,562	50	50	0	1
KNNNKQ	3009.00/30	4-2	1	1	6	11	9	8	35	35
KQBBKN	1023.00	4-2	122	515	1,327	6,813	7	7	0	1
KQBBKQ	4020.00	4-2	52,602	136,241	2	3	50	50	15	16
KQBNKN	1014.00	4-2	135	719	3,262	17,347	6	6	0	1
KQBNKQ	4011.00	4-2	297	885	1	1	50	50	16	17
KQNNKQ	4002.00	4-2	10,534	9,796	5	20	50	50	13	14
KQQRKQ	5100.00	4-2	3	7	3	13	28	28	9	10
KQRBKQ	41100.00	4-2	6	19	4	9	49	49	12	13
KQRBKR	1410.00	4-2	1	7	269,633	1,690,187	25	25	1	2
KQRNKQ	4101.00	4-2	12	76	1	3	50	50	11	12
KQRRKQ	4200.00	4-2	1	4	1	2	41	41	8	9
KRBBKN	0123.00	4-2	7	57	3,717	17,552	12	11	0	1
KRBBKQ	3120.00	4-2	3	1	2	1	44	44	25	26
KRBBKR	0420.00	4-2	1	27	104	787	36	35	2	3
KRBNKN	0114.00	4-2	1	6	8,152	39,422	12	12	0	1
KRBNKQ	3111.00	4-2	120,325	34,369	3	1	50	50	28	29
KRBNKR	0411.00	4-2	1	1	9	55	36	36	3	4
KRNNKQ	3102.00	4-2	2	1	2	3	28	27	41	41
KRRBKQ	3210.00	4-2	23,857	56,552	2	5	50	50	16	17
KRRBKR	0510.00	4-2	2	10	221,774	1,375,964	31	31	1	2
KRRNKQ	3201.00	4-2	35,405	45,611	2	1	50	50	18	19
KRRRKQ	3900.00/30	4-2	271	1,195	1	2	50	50	13	14

Table 5a. The impact of the 50 -move drawing rule on 6 -man pawnless endgames. ${ }^{17}$

Endgame	res.	nominal wins				\% of nominal wins			
		\# extra draws		\# delayed		extra draws		delayed	
		wtm	btm	wtm	btm	wtm	btm	wtm	btm
KBBKBN	1-0	128,572,657	16,294,259	884,907	109,678	47.03	66.89	0.32	0.45
KBBKNN	1-0	141,874,223	38,562,549	4,961,624	1,402,773	50.15	70.98	1.75	2.58
KBNKBN	1-0	1,222,632	9,420	5,616	117	2.53	0.92	0.01	0.01
KBNKNN	1-0	1,179,997	14,499	17,361	918	2.81	1.19	0.04	0.08
KQBKBB	1-0	250,935	6,569,025	7,089,297	29,692,117	0.01	0.40	0.40	1.81
KQBKNN	1-0	397	38,516	23,320	38,516	ε	ε	ε	ε
KQBKRR	1-0	586,397	1,305,447	0	0	0.04	0.16	0	0
KQNKBB	1-0	300,774	6,546,430	11,971,950	45,591,146	0.02	0.41	0.64	2.84
	0-1	6,167,236	125,922,828	17,522	259,838	69.89	47.75	0.20	0.10
KQNKBN	0-1	3,703	1,213,657	26	1,328	1.05	2.80	0.01	ε
KQNKNN	1-0	188	36,110	59,575	242,663	ε	ε	ε	0.01
KQNKRR	1-0	72,985,602	79,251,396	0	0	4.87	15.42	0	0
KQQKBB	1-0	23,343	6,776,509	1,244,572	5,432,160	ε	0.58	0.18	0.47
KQQKNN	1-0	130	44,687	4,704	22,000	ε	ε	ε	ε
KQQKQB	1-0	689	2,278	0	0	ε	ε	0	0
KQQKQR	0-1	17,313	41,775	42,552	66,504	0.02	0.01	0.04	0.01
KQRKBB	1-0	125,901	6,357,673	2,948,393	11,781,268	0.01	0.37	0.18	0.69
KQRKNN	1-0	249	39,230	9,116	46,469	ε	ε	ε	ε
KQRKQB	1-0	23,934	17,235	94,650	90,746	ε	ε	ε	0.01
KQRKQN	1-0	12,641	11,010	70,821	86,758	ε	ε	ε	0.01
KQRKQR	1-0	21,395	12,416	48,844	50,736	ε	ε	ε	0.01
KQRKRB	0-1	251	11,459	3	410	0.01	0.02	ε	ε
KRBKBB	1-0	2,561,991	1,304,230	0	0	0.22	0.68	0	0
KRBKBN	1-0	426,514,269	767,645,636	0	0	12.14	41.47	0	0
KRBKNN	1-0	331,894,421	676,322,987	0	0	16.18	45.17	0	0
KRBKRB	1-0	9,084	783	1,605	122	ε	ε	ε	ε
KRBKRN	1-0	9,706	1,202	2,684	359	ε	ε	ε	ε
KRNKBB	1-0	407,078,847	370,216,259	0	0	26.20	66.08	0	0
	0-1	13,836,487	133,053,338	117,223	640,177	65.00	47.50	0.55	0.23
KRNKBN	1-0	139,761,310	107,975,414	0	0	4.98	15.04	0	0
	0-1	9,921	1,225,920	316	6,092	1.12	2.53	0.04	0.01
KRNKNN	1-0	82,794,630	83,586,263	0	0	5.18	14.78	0	0
KRRKRB	1-0	380	145	0	0	ε	ε	0	0
	0-1	396	11,281	30	799	0.02	0.03	ε	ε
KRRKRN	1-0	17,610	16,206	0	0	ε	ε	0	0
KBBBKN	1-0	743,762	37,035,833	55,589,963	161,070,140	0.15	6.16	11.28	26.80
KBBBKQ	0-1	21,650,797	31,223,711	6,004,068	11,096,464	15.04	6.15	4.17	2.19
KBBBKR	1-0	463,105	1,079,492	0	0	0.10	0.35	0	0
KBBNKN	1-0	640,358	36,582,112	136,891,517	318,970,567	0.03	1.74	6.44	15.17
KBBNKQ	0-1	55,226,710	40,880,784	27,763,565	27,296,005	10.16	2.52	5.11	1.68
KBBNKR	1-0	184,213	312,436	0	0	0.01	0.05	0	0
KBNNKN	1-0	96,123	1,016,653	10,322,215	13,062,956	ε	0.05	0.46	0.70
KBNNKQ	0-1	178,774	178,631	179,015	143,015	0.03	0.01	0.03	0.01
KNNNKB	1-0	539,360	648,931	0	0	0.08	0.20	0	0
KNNNKN	1-0	86,880	154,950	0	0	0.01	0.03	0	0
KNNNKQ	0-1	125,488	181,848	91,063	99,907	0.09	0.04	0.07	0.02
KQBBKN	1-0	122,388	45,118,478	24,140,183	88,092,478	0.01	1.72	1.55	3.35
KQBBKQ	1-0	206,322	526,510	0	0	0.01	0.05	0	0
	0-1	413,225	39,206,954	96	4,608	12.21	8.59	ε	ε

[^6]Table $5 b$. The impact of the 50 -move drawing rule on 6-man pawnless endgames.

Endgame	nominal wins				\% of nominal wins			
	\# extra draws		\# delayed		extra draws		delayed	
res.	wtm	btm	wtm	btm	wtm	btm	wtm	btm
KQBNKN 1-0	38,709	1,197,026	852,368	2,263,825	ε	0.02	0.03	0.04
KQBNKQ 1-0	1,347	5,171	0	0	ε	ε	0	0
KQNNKQ 1-0	49,329	38,050	0	0	ε	0.01	0	0
0-1	1,538	206,733	0	2	0.04	0.05	0	ε
KQQRKQ 1-0	70	3,469	1,646	9,539	ε	ε	ε	ε
KQRBKQ 1-0	153	4,061	4,771	22,119	ε	ε	ε	ε
KQRBKR 1-0	598	31,924	21,765	66,560	ε	ε	ε	ε
KQRNKQ 1-0	654	6,196	4,707	22,857	ε	ε	ε	ε
KQRRKQ 1-0	186	4,325	2,632	14,630	ε	ε	ε	ε
KRBBKN 1-0	237,234	45,273,232	22,875,477	92,309,468	0.01	1.73	1.22	3.52
KRBBKQ 0-1	6,552,902	57,721,197	434,948	2,088,056	12.88	7.91	0.86	0.29
KRBBKR 1-0	4,834	29,950	115,546	131,589	ε	ε	0.01	0.01
KRBNKN 1-0	43,735	1,208,539	2,631,449	6,577,857	ε	0.02	0.07	0.13
KRBNKQ 1-0	1,172,828	314,964	0	0	0.06	0.08	0	0
KRBNKR 1-0	6,661	30,114	190,074	226,929	ε	ε	ε	0.01
KRNNKQ 0-1	33,448	252,183	10,270	30,764	0.04	0.03	0.01	ε
KRRBKQ 1-0	102,282	248,335	0	0	0.01	0.03	0	0
KRRBKR 1-0	918	30,159	76,780	179,899	ε	ε	ε	0.01
KRRNKQ 1-0	225,245	274,440	0	0	0.01	0.03	0	0
KRRRKQ 1-0	1,137	4,225	0	0	ε	ε	0	0

Table 6a. Example Positions showing $\mathrm{EZ}_{50} \neq \mathrm{EZ}^{18}$

$\begin{gathered} \text { Key } \\ \mathrm{EZ}_{50} \neq \mathrm{EZ} \end{gathered}$	Position		stm	depth in p dtm dtr dtz	$\begin{array}{l\|} \hline \text { lies } \\ \text { dtz }_{50} \end{array}$	Notes
BB-BN	1-0	7b/6nB/8/8/3B4/8/2K5/4k3	w	131 ? 3		1. Bd3?? Ne6" 2. Bxh8 $\{d t z=52 \mathrm{~m}\}$
BB-NN	1-0	8/8/6n1/8/k3BB2/8/n1K5/8	w	133 ?	55	1. Bxg6?? $\{d t z=54 \mathrm{~m}\}$
BN-BN	1-0	5n2/8/8/8/8/2K2b2/3N4/k3B3	w	1111	11	1. Nxf 3 ?? $\{d t z=70 \mathrm{~m}\}$
BN-NN	1-0	8/8/8/8/2B5/2n2N2/2K4n/k7	w	147 ? 1	11	1. Nxh2?? $\{d t z=51 \mathrm{~m}\} \mathrm{Nd} 5$ "
QB-BB	1-0	8/8/5b2/8/8/Q6b/4k2B/K7	w	39 ? 3	23	1. Be5?? Bxe5+ $\{\mathrm{dtz}=65 \mathrm{~m}$ \}
QB-NN	1-0	8/7Q/8/8/4n3/Bkn5/8/3K4	w	57 ? 7	23	1. Ke1?? Kxa3 $\{d t z=52 \mathrm{~m}\}$
QB-RR	1-0	8/2Kr4/5k2/8/8/5B2/6Q1/3r4	w	213169169	-	a maxDTM/Z pos.
QN-BB1	1-0	8/6bb/5N2/1Q6/5k2/8/8/K7	w	41 ? 3	23	1. Qb4+?? Kg5 2. Qg4+ Kxf6
QN-BB2	0-1	1b6/8/8/K6N/8/8/6Q1/3k1b2	b	129 ?	7	1. ... Bxg2?? $\{d t z=52 \mathrm{~m}\}$
QN-BN	0-1	8/8/8/8/6Q1/4n3/8/KNk4b	b	5 5	5	1. ... Nxg4?? $\{d t z=53 \mathrm{~m}\}$
QN-NN	1-0	8/6Q1/4n3/8/2k2n2/3N4/8/2K5	w	37 ? 3	15	1. Qg 4 ? ? Kxd 3 \{dtz $=52 \mathrm{~m}\}$
QN-RR	1-0	r5r1/8/k7/8/8/8/3K4/1Q4N1	b	348305305	-	a maxDTM/Z pos.
QQ-BB	1-0	8/Q7/8/3bb3/8/8/3k4/K4Q2	w	$\begin{array}{llll}17 & 13 & 3\end{array}$	13	SZ- \times; 1. Qd4+?? Bxd4
QQ-NN	1-0	8/8/8/3n4/Q7/4k3/2K3Q1/4n3	w	69 ? 3	7	1. Kd1?? Nxg2 $\{d t z=52 \mathrm{~m}\}$
QQ-QB	1-0	7Q/4Q3/8/8/6K1/8/2kq4/5b2	b	142124124	-	a maxDTM/Z pos.
QQ-QR	0-1	Q2Q4/2K5/8/8/8/8/r7/1k5q	b	91 ?	71	1. ... Qxa8?? $\{d t z=60 \mathrm{~m}\}$
QR-BB	1-0	8/8/5bb1/8/8/Q7/4k3/K2R4	w	35 ? 5	19	1. Rd4?? Bxd4 $\{d t z=66 \mathrm{~m}\}$
QR-NN	1-0	8/8/8/1Q6/3n4/2k5/8/1RK3n1	w	19 ?	7	1. Rb3+?? $\mathrm{Nxb}^{\circ}{ }^{\circ}$ \{dtz $\left.=51 \mathrm{~m}\right\}$

[^7]Table $6 b$. Example Positions showing $\mathrm{EZ}_{50} \neq \mathrm{EZ}$.

$\begin{gathered} \text { Key } \\ \mathrm{EZ}_{50} \neq \mathrm{EZ} \end{gathered}$		Position	stm	$\begin{aligned} & \text { depth in pli } \\ & \text { dtm dtr dtz } \end{aligned}$		Notes
QR-QB	1-0	8/1Q6/4q3/8/8/6k1/8/1RK4b	w	115 ?		1. Qxh1?? $\{d t z=58 \mathrm{~m}\}$
QR-QN	1-0	1Q6/8/8/5q2/8/4k3/8/1RK4n	w	101 ? 17	75	1. Qb6+??
QR-QR	1-0	8/7R/8/3q4/8/8/1K3k2/Q6r	w	85 ?	41	1. Qxh1?? $\{d t z=57 \mathrm{~m}\}$
QR-RB	0-1	8/4R3/5b2/6Q1/8/2k5/6r1/K7	b	$7 \quad 7$	7	1. ... Rxg 5 ? $\{$ \{ $\mathrm{dtz}=56 \mathrm{~m}\}$
RB-BB	1-0	7k/4R2B/8/8/8/3K2bb/8/8	w	183149149	-	a maxDTM pos.
RB-BN	1-0	Bb6/8/8/8/8/1R6/3kn3/K7	b	224196196	-	a maxDTM/Z pos.
RB-NN	1-0	8/8/8/8/2n2k2/2n5/5BR1/1K6	w	475445445	-	a maxDTM/Z pos.
RB-RB	1-0	1R6/8/8/1b6/8/B7/k1K5/r7	w	23 ?	15	1. Rxb 5 ? $\{d \mathrm{dtz}=54 \mathrm{~m}\}$
RB-RN	1-0	8/8/3n4/4B3/3K2r1/8/5R2/k7	w	95 ? 9	25	1. Kc3?? Kb1" 2. Bxd6 $\{d t z=52 \mathrm{~m}\}$
RN-BB1	1-0	2k1b3/7R/8/8/4NK2/8/8/6bl	w	137103103		
RN-BB2	0-1	8/3b4/8/8/5b2/K6R/8/1k5N	b	51 ?	13	1. ... Bxh3?? $\{d t z=53 \mathrm{~m}\}$
RN-BN1	1-0	NbR5/8/n7/8/8/8/8/2K2k2	w	417379379	-	a maxDTM/Z pos.
RN-BN2	0-1	2N5/5R2/8/7b/8/2k5/8/1K2n3	b	163 ?	11	1. ... Bxf7?? $\{d t z=52 \mathrm{~m}\}$
RN-NN	1-0	6k1/5n2/8/8/8/5n2/1RK5/1N6	w	523485485	-	a maxDTM/Z pos.
RR-RB1	1-0	3R4/8/R7/8/8/8/6r1/k3K2b	b	122102102	-	
RR-RB2	0-1	8/8/8/1r6/R4b2/6R1/2k5/K7	b	$67 \quad 7$	7	1. ... Bxg3?? $\{d t z=55 \mathrm{~m}\}$
RR-RN	1-0	2K5/k2RR3/8/8/6n1/8/8/r7	b	178146146	-	a maxDTM/Z pos.
BBB-N	1-0	8/1B6/8/8/4n3/2BkB3/8/1K6	w	43 ? 2	23	1. Ba6+?? Kxe3 $\{d t z=59 \mathrm{~m}\}$
BBB-Q	0-1	5q2/7K/8/6B1/8/B6B/8/k7	b	91 ?	59	1. ... Qxa3?? $\{d t z=64 \mathrm{~m}\}$
BBB-R	1-0	6B1/8/8/6r1/8/7k/7B/K5B1	w	149137137	-	a maxDTM/Z pos.
BBN-N	1-0	8/8/8/8/5n2/2K5/1N6/1BkB4	w	79 ? 4	41	1. $\mathrm{Bf} 3 \mathrm{Kxb1}\{d t z=55 \mathrm{~m}\}$
BBN-Q	0-1	8/4K3/7q/1B6/8/3k4/N7/4B3	b	$\begin{array}{lll}133 & 85 & 13\end{array}$	85	1. ... Kd4??
BBN-R	1-0	N7/6B1/8/8/8/7B/1r1k4/K7	b	170136136	-	a maxDTM/Z pos.
BNN-N	1-0	8/8/8/8/1k6/N7/2K5/N3n2B	w	77 ? 3	47	1. Kd2?? Kxa3 $\{d t z=55 \mathrm{~m}\}$
BNN-Q	0-1	7N/6q1/8/8/2N5/3K1k2/8/B7	b	125 ?	71	$\mathrm{S}(\mathrm{M} / \mathrm{Z}) \sigma \times$ 1. ... Qxal??
NNN-B	1-0	6bN/8/8/8/8/1N6/2k5/K6N	w	191183183	-	a maxDTM/Z pos.
NNN-N	1-0	7N/N7/8/1k6/8/8/2K1n3/1N6	b	180172172	-	a maxDTM/Z pos.
NNN-Q	0-1	N7/8/8/8/q7/5KN1/8/3k3N	b	127 ?	41	1. ... Qxa8?? $\{d t z=57 \mathrm{~m}\}$
QBB-N	1-0	1Q6/8/8/8/8/7k/BB6/K3n3	w	11 ? 2	8	1. $\mathrm{Qg} 3+$?? $\mathrm{Kxg} 3^{\circ}$ \{ $\{d t z=54 \mathrm{~m}\}$
QBB-Q1	1-0	8/7K/8/8/2B5/8/1k2Bq2/7Q	b	192186186	-	a maxDTM/Z pos.
QBB-Q2	0-1	8/Q7/8/8/2B4B/2K5/q7/2k5	b	61 ?	7	1. ... Qxa7?? $\{d t z=52 \mathrm{~m}\}$
QBN-N	1-0	Q7/1B6/8/8/2n5/8/5N2/1k1K4	w	9 ? 2	7	
QBN-Q	1-0	8/8/2K5/8/8/1Q1B4/8/2kN2q1	b	168130130	-	a maxDTM pos.
QNN-Q1	1-0	7q/1Q6/8/5N2/8/8/8/K1k4N	w	107101101	-	1. Ng7".
QNN-Q2	0-1	8/2N5/8/2q5/5N2/2k5/8/2K4Q	b	$\begin{array}{lll}9 & 7 & 5\end{array}$		SZ $\sigma \times$ SM ok. 1. ... Qa3+??
QQR-Q	1-0	8/7R/8/8/5q2/7Q/5k2/2K4Q	w	25 ?	19	1. Qe3+ Qxe3+ $\{d t z=56 \mathrm{~m}\}$
QRB-Q	1-0	1R5Q/1B6/6k1/5q2/8/8/8/1K6	w	41 ?	35	1. Be4?? Qxe4+ $\{d t z=51 \mathrm{~m}\}$
QRB-R	1-0	6B1/8/3r4/8/8/8/3KRQ2/7k	w	63 ? 3	18	1. Qd 4 ?? $\mathrm{Rxd} 4\{d t z=52 \mathrm{~m}\}$
QRN-Q	1-0	8/7q/8/8/7N/6k1/2K5/1R5Q	w	83 ? 3	67	1. Nxf5+?? Qxf5 $+\{d t z=54 \mathrm{~m}\}$
QRR-Q	1-0	2R5/3q4/8/8/8/1k6/8/Q2K2R1	w	39 ? 6	29	1. Kc1?? Qxc8+ $\{d t z=54 \mathrm{~m}\}$
RBB-N	1-0	8/8/8/1k6/2R5/1nB5/3K4/7B	w	19 ? 3	13	1. Kc2?? Kxc4 $\{d t z=55 \mathrm{~m}\}$
RBB-Q	0-1	8/8/q7/5K2/8/1B6/3k1B2/2R5	b	131 ?	29	1. ... kxcl $\{\mathrm{dtz}=55 \mathrm{~m}\}$
RBB-R	1-0	8/8/8/B7/3K4/8/4R3/2Bk2r1	w	51 ? 7	47	1. Kd 3 ?? $\mathrm{Kxcl}\{d t z=55 \mathrm{~m}\}$
RBN-N	1-0	8/8/8/8/2n4B/8/2N3k1/3K3R	w	25 ? 2	13	
RBN-Q	1-0	1k4q1/8/3K4/8/1N6/8/8/R3B3	w	241197197	-	a maxDTM/Z pos.
RBN-R	1-0	8/8/8/3R4/1B4r1/1k1K4/N7/8	w	47 ? 7	37	1. Bd6?? Kxa2" $\{d t z=54 \mathrm{~m}\}$
RNN-Q	0-1	7N/R2q4/8/N7/3k4/8/4K3/8	b	125 ? 23	65	1. $\mathrm{Qg} 4+$? ?
RRB-Q	1-0	1RK5/1R6/8/1q6/k7/8/7B/8	b	180164164	-	a maxDTM/Z pos.
RRB-R	1-0	8/8/R7/8/6r1/B7/R2K4/1k6	w	13 ? 2	12	1. Ra1+?? $\mathrm{Kxa}^{\circ}{ }^{\circ}$ \{dtz $\left.=55 \mathrm{~m}\right\}$
RRN-Q	1-0	2K5/7k/8/8/4q3/7R/8/5R1N	b	216202202	-	a maxDTM/Z pos.
RRR-Q	1-0	1R4R1/8/1q6/7R/8/8/5k2/3K4	b	138130130	-	a maxDTM/Z pos.

The following lines, starting from selected positions listed in Table 6, show strategy $\mathrm{SZ}_{50}{ }^{-}$delivering the available win while other strategies fail to retain it. They and others were discovered using the Tamplin (2004) web service, and include an established notation showing the criticality of the moves:

```
" \equiv unique value-preserving move; ' \equiv strategy's only optimal move; ' = only legal move.
```

Some themes emerge. The attacker can avoid making an ill-advised sacrifice ${ }^{19}$ and we include only QRN-Q here. More interestingly, White can delay a capture ${ }^{20}$ or go directly for mate ${ }^{21}$. The defender often avoids capturing where, against a fallible player, it would be in its interests to do so to maximize DTR.

KBBKBN position $\mathrm{BB}-\mathrm{BN}-d t m=66 \mathrm{~m}, d t z=2 \mathrm{~m}, d t z_{50}=18 \mathrm{~m}$:
$\mathbf{S} \boldsymbol{\tau} \boldsymbol{\tau}-\mathbf{S Z}_{50}{ }^{+}, \sigma=\mathbf{C}^{-}, \mathbf{M}^{-}$or $\mathbf{Z}^{-}: \mathbf{1}$. Bd3'?? Ne6" 2. Bxh8" $\{d t z=52 \mathrm{~m} \text {; Black can } 50 \mathrm{~m}-\mathrm{draw}\}^{1 / 2} \mathbf{2}^{1 / 2}$.
$\mathbf{S Z}_{50}{ }^{-}-\mathbf{S Z}_{50}{ }^{+}: 1 . \mathrm{Kd} 3 " \mathrm{Kf1}{ }^{\prime} 2$. Bg8" Kg2' 3. Ke4" Kg3' 4. Ba2" Kg4 5. Bb1" Kg3' 6. Bc2' Kg2' 7. Bd1' Kg3 8. Be5+' Kg2' 9. Bg4' Kf2' 10. Kd3' Kf1' 11. Kd2 Kf2' 12. Bd1 Kg2' 13. Ke2 Kh3' 14. Kf2' Kh4' 15. Bf6+' Kh3 ${ }^{\circ}$ 16. Bf3' Kh2' 17. Bg2' Nh5 18. Bxh8" $\{d t m=19 \mathrm{~m}\}$ 1-0.

KBBKNN position BB-NN $-d t m=67 \mathrm{~m}, d t z=1 \mathrm{~m}, d t z_{50}=28 \mathrm{~m}$:
$\mathbf{S} \sigma \boldsymbol{\tau}-\mathbf{S} \varphi, \sigma=\mathbf{C}^{-}$, M or $\mathbf{Z}^{-}: \mathbf{1}$. Bxg6'?? $\{d t z=54 \mathrm{~m}$; Black can $50 \mathrm{~m}-$ draw $\}{ }^{1 / 2}-1 / 2$.
$\mathbf{S Z}_{50}{ }^{-}-\mathbf{S Z}_{50}{ }^{+}$: 1. Bd6" Nh8' 2. Bc6+" Ka5 ${ }^{\circ}$ 3. Kb3" Nc1+' 4. Kc4" Nf7' 5. Bc7+" Ka6º 6. Bd5" Nh8' 7. Bf3' Ng6' 8. Bd6" Nh4' 9. Be4" Ne2' 10. Bh2" Ka5' 11. Bc7+' Ka6' 12. Kc5' Ka7' 13. Bd3' Ng1' 14. Bg3 Ng2' 15. Kc6' Nh3' 16. Bf1' Nhf4' 17. Bf2+" Kb8' 18. Bb6' Ka8' 19. Ba6' Kb8' 20. Bc4' Nh5' 21. Bc7+' Ka7 22. Be5' Nhf4' 23. Bd6' Nh5 24. Kc7' Nf6' 25. Bc5+' Ka8º 26. Bb5 Nd5+' 27. Kc8" Ne1 28. Bc6\#'.

KBNKBN position $\mathrm{BN}-\mathrm{BN}-d t m=6 \mathrm{~m}, d t z=1 \mathrm{~m}, d t z_{50}=6 \mathrm{~m}$:
$\mathbf{S Z}^{-}-\mathbf{S Z}_{50}{ }^{+}$: 1. Nxf3'?? $\{d t z=70 \mathrm{~m}$; Black can $50 \mathrm{~m}-$ draw $\}{ }^{1 / 2}-^{-1 / 2}$.
$\mathbf{S Z}_{50}{ }^{-}-\mathbf{S Z}_{50}{ }^{+}: 1$ 1. Kb3" Ne6' 2. Bf2" Bd1+ 3. Ka3" Bc2 4. Bb6 Bd1 5. Ba5' Nd4 6. Bc3\#" 1-0.
KBNKNN position $\mathrm{BN}-\mathrm{NN}-d t m=74 \mathrm{~m}, d t z=1 \mathrm{~m}, d t z_{50}=6 \mathrm{~m}$:
$\mathbf{S Z}^{-}-\mathbf{S Z}_{50}{ }^{+}$: 1. Nxh2'?? \{dtz = 51m; Black can 50m-draw \} $1 / 2-1 / 2$.
$\mathbf{S Z}_{50}{ }^{-}-\mathbf{S Z}_{50}{ }^{+}: 1 . \mathrm{Nd4}{ }^{\prime \prime} \mathrm{Nb} 11^{\prime} 2$. Be6 Na3+' 3. Kc1" Nf1' 4 . Nb3+" Ka2 ${ }^{\circ}$ 5. Nd2+' Ka1' 6. Nxf1' $\{d t z=38 \mathrm{~m}, d t m=68 \mathrm{~m}\}$ 1-0.

KQNKBB position $\mathrm{QN}-\mathrm{BB} 2-d t m=65 \mathrm{~m}, d t z=1 \mathrm{~m}, d t z_{50}=4 \mathrm{~m}$:
$\mathbf{S} \boldsymbol{\varphi}-\mathbf{S} \sigma \tau, \sigma=\mathbf{C}^{-}$, \mathbf{M}^{-}or $\mathbf{Z}: \mathbf{1}$. ... Bxg2?? $\{d t z=52 \mathrm{~m}$; White can $50 \mathrm{~m}-\mathrm{draw}\} 1 / 2-1 / 2$.
$\mathbf{S Z}_{50}{ }^{-}-\mathbf{S Z}_{50}{ }^{+}: 1$ 1... Bc7+" 2. Kb4' Bd6+" 3. Kc3' Be5+" 4. Kb4 Bxg2' $\{d t m=18 \mathrm{~m}\}$ 0-1.
KQNKBN position QN-BN $-d t m=3 \mathrm{~m}, d t z=1 \mathrm{~m}, d t z_{50}=3 \mathrm{~m}$:
$\mathbf{S} \boldsymbol{\varphi}$ - $\mathbf{S Z}^{-} \sigma: \mathbf{1 .} . . . \mathbf{N x g}^{\prime}$ '?? $\{d t z=53 \mathrm{~m} \text {; White can 50m-draw }\}^{1 / 2-1 / 2}$.
$\mathbf{S Z}_{50}{ }^{+}-\mathbf{S Z}_{50}{ }^{-}: 1$. ... Nc2+" 2. Ka2 ${ }^{\circ} \mathrm{Bd} 5+"$ 3. $\mathrm{Qc} 4^{\circ} \mathrm{Bxc} 4 \# "$ 0-1.
KQQKQR position QQ-QR $-d t m=46 \mathrm{~m}, d t z=1 \mathrm{~m}, d t z_{50}=36 \mathrm{~m}$:

$\mathbf{S Z}_{50}{ }^{+}-\mathbf{S Z}_{50}{ }^{-}: 1 \mathrm{Qh} 2+"$ 2. Kd7' Qh3+" 3. Kc7' Qg3+' 4. Kb6' Qe3+' 5. Kb5' Qb3+" 6. Kc5' Qc3+" 7. Kd6' Qd4+" 8. Ke6' Re2+" 9. Kf7 Rf2+" 10. Ke6' Qg4+' 11. Kd5' Rd2+" 12. Kc5' Rc2+" 13. Kd6' Qf4+' 14. Ke6' Re2+" 15. Kd7' Qf5+' 16. Kc7' Rc2+" 17. Kb8' Qf4+' 18. Ka7' Ra2+' 19. Kb6' Rb2+' 20. Kc6' Rc2+' 21. Kb7' Qf7+' 22. Kb8' Rb2+' 23. Kc8' Qc4+' 24. Qc7' Qg4+' 25. Qd7' Rc2+' 26. Kd8' Qg5+" 27. Qe7' Rd2+" 28. Ke8' Qg8+" 29. Qf8 ${ }^{\circ}$ Re2+' 30. Kd7' Qe6+" 31. Kc7' Rc2+" 32. Kb8' Qe5+" 33. Ka7' Qa5+' 34. Kb7' Rc7+ 35. Kb8º Qb6+" 36. Qb7º Qxb7\#' 0-1.

KQRKQB position $\mathrm{QR}-\mathrm{QB}-d t m=58 \mathrm{~m}, d t z=1 \mathrm{~m}, d t z_{50}=45 \mathrm{~m}$:
$\mathbf{S Z}^{-}-\mathbf{S \varphi : ~ 1 . ~ Q x h 1 ' ? ? ~}\{d t z=58 \mathrm{~m} \text {; Black can 50m-draw }\}^{1 / 2}-1 / 2$.
$\mathbf{S Z}_{50}{ }^{-}-\mathbf{S Z}_{50}{ }^{+}: 1 . \mathrm{Rb} 3+" \mathrm{Kf4}{ }^{\prime} 2 . \mathrm{Qb4+"}$ Be4' 3. Qd2+" Kg4' 4. Qe2+" Kf5' 5. Qf2+" Ke5' 6. Qg3+' Kd5' 7. Qg5+" Kc6' 8. Rc3+" Kd7' 9. Qg7+" Ke8' 10. Qh8+' Kd7' 11. Rc8' Qg6' 12. Qd8+" Ke6º 13. Qb6+" Ke5' 14. Qb8+' Ke6' 15. Re8+' Kf7' 16. Rf8+" Ke6' 17. Qb6+ Ke7' 18. Qd8+' Ke6º 19. Re8+' Kf5' 20. Qd7+' Kf4' 21. Qd2+' Kf3' 22. Qd1+' Kf4' 23. Qf1+' Ke3' 24. Qe1+" Kd4' 25. Qd2+' Kc4' 26. Qe2+' Kd5' 27. Rd8+' Ke6' 28. Qc4+" Kf5' 29. Rf8+ Ke5' 30. Qc3+' Kd5 31. Rd8+" Ke6' 32. Qc8+' Ke5' 33. Qc7+' Kf5' 34. Rf8+' Ke6' 35. Kb2' Qg2+' 36. Ka3" Bc6' 37. Qf4 Kd7' 38. Qf5+' Kc7 39. Qa5+' Kd6' 40. Rf6+' Kd7' 41. Qa7+' Bb7' 42. Rf7+" Kc8' 43. Qc5+' Kb8 44. Rf8+' Bc8 ${ }^{\circ}$ 45. Rxc8+' $\{d t m=2 m\} 1-0$.

[^8]KQRKQN position $\mathrm{QR}-\mathrm{QN}-d t m=51 \mathrm{~m}, d t z=9 \mathrm{~m}, d t z_{50}=38 \mathrm{~m}$:
SZ- -Sp: 1. Qb6+'?? Ke2 2. Qa6+' Kf3" 3. Qc6+' Kg3" 4. Qxh1" \{dtz = 59m; Black can 50m-draw\} ½-1/2.
$\mathbf{S Z}_{50}{ }^{-}-\mathbf{S Z}_{50}{ }^{+}: 1 . \mathrm{Qb3}+{ }^{\prime \prime} \mathrm{Kf4} 4$ 2. Qc3" Qg5' 3. Qd2+" Kg4' 4. Rb4+" Kh5' 5. Rf4" Ng3' 6. Kd1" Kh6 7. Qd6+' Kh5' 8.
Qd4' Nf5' 9. Qh8+" Kg6' 10. Qe8+" Kf6' 11. Qc6+' Ke7' 12. Qe4+' Kf6' 13. Kc2' Qh5' 14. Rf2" Qh3' 15. Kb2" Kg5 16. Rg2+" Kf6' 17. Qc6+' Ke5' 18. Qc7+' Kf6' 19. Qd8+' Kf7' 20. Qg8+' Kf6' 21. Rg6+' Ke5' 22. Re6+ Kf4' 23. Qb8+" Kg5' 24. Qd8+ Kf4' 25. Qd2+' Kg4' 26. Rg6+' Kf3' 27. Rg8' Qh7' 28. Qg2+' Kf4' 29. Rg4+' Ke5' 30. Qe4+' Kd6' 31. Qd3+' Ke7 32. Re4+' Kf6' 33. Qd8+' Kg6' 34. Rg4+' Kf7' 35. Qd7+' Ne7' 36. Rf4+' Kg8 37. Qe8+ Kg7 38. Qxe7+' $\{d t m=2 \mathrm{~m}\} 1-0$.

KQRKQR position $\mathrm{QR}-\mathrm{QR}-d t m=43 \mathrm{~m}, d t z=1 \mathrm{~m}, d t z_{50}=21 \mathrm{~m}$:

$\mathbf{S Z}_{50}{ }^{-}-\mathbf{S Z}_{50}{ }^{+}: 1 . \mathrm{Qa} 7+" \mathrm{Kf3}{ }^{\prime} 2 . \mathrm{Qa} 3+" \mathrm{Kg} 4{ }^{\prime}$ 3. Qb4+" Kg5' 4. Qe7+" Kg4' 5. Qg7+' Kf3 6. Qf8+' Ke2 7. Qe8+" Kd3' 8. Qg6+" Kc4' 9. Qg4+ Kb5' 10. Qe2+" Kc5 11. Qe3+' Kc6 12. Qe8+" Kc5 13. Rc7+' Kd4' 14. Rd7' Rh2+' 15. Kc1' Rh1+' 16. Kd2' Rh2+' 17. Ke1' Rh1+' 18. Kf2' Rh2+' 19. Kg3' Rg2+' 20. Kh3' Rg5 21. Rxd5+' $\{d t z=29 \mathrm{~m}\} 1-0$.

KQRKRB position QR-RB $-d t m=4 \mathrm{~m}, d t z=1 \mathrm{~m}, d t z_{50}=4 \mathrm{~m}$:

$\mathbf{S Z}_{50}{ }^{+}-\mathbf{S Z}_{50}{ }^{-}: 1 . \ldots \mathrm{Kb} 3+{ }^{+\prime}$ 2. Kb1' Rb2+" 3. Ka1' Ra2+' 4. Kb1 ${ }^{\circ} \mathrm{Ra}$ \#\#' $^{\prime} 0-1$.
KRBKRB position RB-RB $-d t m=12 \mathrm{~m}, d t z=1 \mathrm{~m}, d t z_{50}=8 \mathrm{~m}$:
$\mathbf{S Z}^{-}-\mathbf{S \varphi : ~ 1 . ~ R x b 5 ' ? ? ~ \{ d t z ~ = ~ 5 4 m ; ~ B l a c k ~ c a n ~ 5 0 m - d r a w \} ~ R g 1 " ~ 2 . ~ B d 6 " ~ R g 2 + " ~ 3 . ~ K c 3 " ~ R g 6 " ~ 1 ⁄ 2 - 1 ⁄ 2 . ~}$
$\mathbf{S Z}_{50}{ }^{-}-\mathbf{S Z}_{50}{ }^{+}: 1$. Ra8'" Bd3+ 2. Kc3" Be4' 3. Ra4 Kb1 4. Rb4+" Ka2${ }^{\circ}$ 5. Bb2' Bc6' 6. Rb6" Rh1 7. Ra6+" Ba4 8. Rxa4+" \{dtm = 1m \} 1-0.

KRBKRN - position RB-RN $-d t m=48 \mathrm{~m}, d t z=5 \mathrm{~m}, d t z_{50}=13 \mathrm{~m}$:
SZ ${ }^{-}$-S $\boldsymbol{\varphi}$: 1. Kc3'? ? \{Black can $50 \mathrm{~m}-$ draw\} $\mathrm{Kb}^{\prime \prime}$ 2. Rf1+' $\mathrm{Ka}^{\circ}{ }^{\circ} 3$. Bxd6' $\{d t z=52 \mathrm{~m}\}$.
 Ra2' Rb5' 9. Re2" Kb1' 10. Re1+" Ka2 ${ }^{\circ}$ 11. Kc2" Ka3' 12. Bc3" Rb2+ 13. Bxb2+" $\{d t m=15 \mathrm{~m}\} 1-0$.

KRNKBB position RN-BB2 $-d t m=26 \mathrm{~m}, d t z=1 \mathrm{~m}, d t z_{50}=7 \mathrm{~m}$:
$\mathbf{S} \varphi$-SZ- $\boldsymbol{\text { : }}$ 1. ... Bxh3'?? $\{d t z=53 \mathrm{~m} \text {; White can } 50 \mathrm{~m} \text {-draw }\}^{1 / 2} \mathbf{-}^{-1 / 2}$.
$\mathbf{S Z}_{50}{ }^{+}-$SZ $_{50}{ }^{-}: 1 . \ldots$ Kc2" 2. Rh5' Bd6+" 3. Ka2' Be6+" 4. Ka1' Bb4" 5. Rh2+' Kc1" 6. Rf2 Bc3+" 7. Rb2 ${ }^{\circ}$ Bxb2\#' 0-1.
KRNKBN position RN-BN2 $-d t m=82 \mathrm{~m}, d t z=1 \mathrm{~m}, d t z_{50}=6 \mathrm{~m}$:
$\mathbf{S Z}_{50}{ }^{+}-$SZ $^{-}$: 1. ... Bxf7'?? $\{d t z=52 \mathrm{~m} \text {; White can } 50 \mathrm{~m} \text {-draw }\}^{1 / 2-1 / 2}$.
$\mathbf{S Z}_{50}{ }^{+}-\mathbf{S Z}_{50}{ }^{-}$: 1. ... Bg6+" 2. Kal' Nc2+" 3. Kb1' Nb4+' 4. Kc1' Nd3+" 5. Kd1' Bh5+" 6. Rf3º Bxf3\#".
KRRKRB position RR-RB $-d t m=34 \mathrm{~m}, d t z=1 \mathrm{~m}, d t z_{50}=4 \mathrm{~m}$:
$\mathbf{S} \varphi$-SZ' \mathbf{S} : 1. ... Bxg3'?? $\{d t z=55 \mathrm{~m} \text {; White can } 50 \mathrm{~m} \text {-draw }\}^{1 / 2-1 / 2}$.
$\mathbf{S Z}_{50}{ }^{+}-\mathbf{S Z}_{50}{ }^{\circ}: 1 . \ldots$ Be5+" 2. Ka2' Rb2+" 3. Ka3 Bd6+" 4. Rb4 ${ }^{\circ} \mathrm{Rxb} 4 "\{d t m=30 \mathrm{~m}\}$ 0-1.
KBBBKQ position BBB-Q $-d t m=46 \mathrm{~m}, d t z=1 \mathrm{~m}, d t z_{50}=30 \mathrm{~m}$:
$\mathbf{S} \varphi$-SZ $\boldsymbol{\sigma}$: 1. ... Qxa3'?? $\{d t z=64 \mathrm{~m} \text {; White can } 50 \mathrm{~m} \text {-draw }\}^{1 / 2} \mathbf{z}^{-1 / 2}$.
$\mathbf{S Z}_{50}{ }^{+}-\mathbf{S Z}_{50}{ }^{-}: 1 . .$. Qf3" 2. Bc8' Qh5+" 3. Bh6' Qf7+" 4. Bg7+' Ka2" 5. Baf8' Qd5" 6. Kh8' Kb3' 7. Bh6 Ka4' 8. Bh3' Kb5 9. Kg7' Qe5+" 10. Kh7' Qc7+' 11. Bfg7' Qc2+" 12. Kh8' Qe4" 13. Bf8' Kb6' 14. Kg7' Qe5+" 15. Kh7' Qc7+' 16. Bfg7' Qc2+" 17. Kh8' Qe4" 18. Bf8' Kb7' 19. Kg7' Qe5+" 20. Kh7' Qc7+' 21. Bfg7' Qc2+" 22. Kh8' Qg6' 23. Bf8 Kc7' 24. Bf4+ Kd8" 25. B8h6' Ke7' 26. Bfl' Qc2' 27. Kg7 Qb2+" 28. Kg8' Qa2+' 29. Kg7 Qa1+" 30. Kg6 Qxf1' \{dtm=17m\} 0-1.

KBBNKN position BBN-N $-d t m=40 \mathrm{~m}, d t z=2 \mathrm{~m}, d t z_{50}=21 \mathrm{~m}$:
$\mathbf{S Z}^{-}-\mathbf{S Z}_{50}{ }^{+}: \mathbf{1}$. $\mathbf{B f} \mathbf{3}^{\prime}$? ? $\mathrm{Kxb}^{\prime \prime}\{d t z=55 \mathrm{~m}$; Black can $50 \mathrm{~m}-$ draw $\} 1 / 2-1 / 2$.
$\mathbf{S Z}_{50}{ }^{-}-\mathbf{S Z}_{50}{ }^{+}$: 1. Bh7' Ne2+' 2. Kb3" Nd4+' 3. Ka2' Kd2' 4. Ka3' Kc3 5. Na4+' Kd2' 6. Bg4' Ke3' 7. Kb4' Nc6+' 8. Kc5' Ne5' 9. Bh3 Nf7 10. Kd5 Ng5' 11. B7f5' Kf4 12. Nc5 Kg3' 13. Bhg4' Nf7' 14. Bh5 Nh6' 15. Ke6 Kf4 16. Bfg6 Ke3 17. Kf6 Kd4 18. Na6 Ng8+ 19. Kf7' Nh6+' 20. Kg7' Ng4 21. Bxg4' $\{d t m=17 \mathrm{~m}\} 1-0$.

KBBNKQ position BBN-Q $-d t m=67 \mathrm{~m}, d t z=7 \mathrm{~m}, d t z_{50}=43 \mathrm{~m}$:
$\mathbf{S Z}_{50}{ }^{+}-\mathbf{S Z}: \mathbf{1 .}$... Kd4'?? 2. Bf2+" Ke5' 3. Bg3+" Kd5 4. Nc3+" Kd4" 5. Bd6" Kxc3' $\{d t z=51 \mathrm{~m}$; White can 50mdraw ${ }^{1 / 2}-1 / 2$.
$\mathbf{S Z}_{50}{ }^{+}-\mathbf{S Z}_{50}{ }^{-}$: 1. ... Ke3" 2. Be8' Qg5+" 3. Kf8' Qc5+' 4. Kg8' Qc8' 5. Kf8' Qa8' 6. Nb4' Qa3" 7. Kg7' Qb2+" 8. Kf7' Qb3+" 9. Kg7' Kf4' 10. Bd2+' Kg4" 11. Bd7+' Kh5' 12. Be8+' Kh4' 13. Be1+' Kg4' 14. Bd7+' Kf3' 15. Bf5' Kf4" 16. Bh7' Qb2+" 17. Kg6' Kg4' 18. Nd3' Qd4 19. Kf7' Qd7+' 20. Kg8' Qe8+ 21. Kg7º Qe7+' 22. Kg6' Qg5+' 23. Kf7º Kh5' 24. Bb4' Qd5+" 25. Kg7' Qd4+ 26. Kg8 Qg4+ 27. Kh8' Qc8+' 28. Bg8' Qc7' 29. Bd2' Qd6" 30. Nf4+' Kg4 31. Bd5' Kf5' 32. Kg8' Qb8+ 33. Kf7' Qc7+' 34. Kg8' Qc2' 35. Be6+' Ke5' 36. Be3' Qe4" 37. Bc1' Kf6' 38. Bb2+' Kg5" 39. Bc1' Qa8+' 40. Kf7' Qb7+" 41. Kf8 Kf6 42. Ba3 Qa8+ 43. Bc8 ${ }^{\circ}$ Qxc8\#' 0-1.

KBNNKN position BNN-N $-d t m=39 \mathrm{~m}, d t z=2 \mathrm{~m}, d t z_{50}=24 \mathrm{~m}$:
$\mathbf{S Z}-\mathbf{S Z}_{50}{ }^{+}$: 1. Kd2'?? Kxa3" $\{d t z=55 \mathrm{~m}$; Black can 50m-draw $\}{ }^{1 / 2}-1 / 2$.
$\mathbf{S Z}_{50}{ }^{-}-\mathbf{S Z}_{50}{ }^{+}: 1 . \mathrm{Kb2}{ }^{\prime \prime} \mathrm{Nd} 3+{ }^{+}$2. Ka2" Nc1+' 3. Kb1' Nd3' 4. N1c2+ Kc5' 5. Ba8 Kd6 6. Ne3 Kc5' 7. Kc2 Nb4+' 8. Kc3 Na2+' 9. Kd2' Nb4' 10. Nac4 Na6' 11. Kd3 Nb4+ 12. Ke4' Nc6 13. Ne5' Na7' 14. Nd3+' Kd6 15. Nc4+' Kc7' 16. Nb4' Kb8 17. Bd5' Nb5' 18. Bc6' Na7' 19. Ba4 Nc8' 20. Ke5 Ka7' 21. Ke6 Kb8 22. Kd7' Kb7 23. Nd6+' Kb6 24. Nxc8+' $\{d t m=$ 28m $\}$ 1-0.

KBNNKQ position BNN-Q $-d t m=63 \mathrm{~m}, d t z=1 \mathrm{~m}, d t z_{50}=36 \mathrm{~m}$:
$\mathbf{S} \varphi-\mathbf{S} \sigma, \sigma=\mathbf{C}^{-}, \mathbf{M}^{-}$or $\mathbf{Z}^{-}: \mathbf{1 .} .$. Qxa1'?? $\{d t z=52 \mathrm{~m}$; White can $50 \mathrm{~m}-d r a w\} 1 / 2-^{1 / 2}$.
$\mathbf{S Z}_{50}{ }^{+}-$SZ $_{50}{ }^{-}$: 1. ... Qh7+" 2. Kd2' Qd7+" 3. Kc3' Ke2' 4. Bb2' Qg4" 5. Kb3' Qe6" 6. Kc3' Qe4" 7. Kb3' Qg4' 8. Kc3' Qf4' 9. Kb3' Qb8+' 10. Kc2' Qb4' 11. Na3' Qe4+" 12. Kb3' Qd5+' 13. Kc3' Qf3+' 14. Kc4' Kd1 15. Kb4' Qb7+" 16. Nb5' Kc2' 17. Bd4' Qe7+' 18. Kc4' Qe6+' 19. Kc5' Qf5+' 20. Kc4' Qc8+' 21. Kb4' Qf8+' 22. Ka4 Qg8' 23. Kb4 Kd3' 24. Bc3' Qd5' 25. Bd4 Qc4+' 26. Ka5' Qg8' 27. Ka4' Qa8+' 28. Kb4' Qf8+' 29. Kb3' Qe7' 30. Bb2' Qe6+' 31. Ka4 Qa2+ 32. Ba3' Qc4+' 33. Ka5 Qd5' 34. Kb4' Qe4+ 35. Ka5 Qa8+' 36. Kb6 Qxh8 \{dtm = 22m \} 0-1.

KNNNKQ position NNN-Q $-d t m=64 \mathrm{~m}, d t z=2 \mathrm{~m}, d t z_{50}=21 \mathrm{~m}$:

$\mathbf{S Z}_{50}{ }^{+}-\mathbf{S Z}_{50}{ }^{-}$: 1. ... Qa3+" 2. Kf4' Qd6+' 3. Kg4' Qd4+' 4. Kf3' Qf6+' 5. Kg4' Qg7+' 6. Kf3' Kd2' 7. Ne4+' Kd3" 8. Nc5+' Kc4' 9. Nd7' Qf7+" 10. Ke3 Qe6+' 11. Kf2' Qf5 $5+$ ' 12. Kg2' Qd5+' 13. Kh2 Qd2+' 14. Kg3 Kd3' 15. Nab6' Ke2" 16. Kg2' Qb2' 17. Kg3' Qd4' 18. Kg2' Qe4+' 19. Kh2 Kf3' 20. Nf8 Qg4 21. Ng3 Qxg3+' \{dtm= 1m\} 0-1.

KQBBKQ position QBB-Q2 $-d t m=31 \mathrm{~m}, d t z=1 \mathrm{~m}, d t z_{50}=4 \mathrm{~m}:$
$\mathbf{S} \varphi$-SZ: 1. ... Qxa7'? ${ }^{\text {? }}\{d \mathrm{dtz}=52 \mathrm{~m} \text {; White can } 50 \mathrm{~m} \text {-draw }\}^{1 / 2}-1 / 2$.

KQNNKQ position QNN-Q2 $-d t m=4 \mathrm{~m}, d t z=3 \mathrm{~m}, d t z_{50}=4 \mathrm{~m}$:
$\mathbf{S Z}_{50}{ }^{+}$-SZ: 1. ... Qa3+'?? 2. Kd1" Qa1+" 3. Ke2 ${ }^{\circ}$ Qxh1" $\{d t z=52 \mathrm{~m} \text {; White can 50m-draw }\}^{1 ⁄ 2} \mathbf{2}^{-1 / 2}$.
$\mathbf{S Z}_{50}{ }^{+}-$SZ $_{50}{ }^{-}$: 1. ... Qe3+" 2. Kb1' Qb6+" 3. Kc1' Qb2+' 4. Kd1 ${ }^{\circ}$ Qd2\#" 0-1.
KQRNKQ position QRN-Q $-d t m=42 \mathrm{~m}, d t z=2 \mathrm{~m}, d t z_{50}=34 \mathrm{~m}$:
$\mathbf{S Z}^{-}-\mathbf{S Z}_{50}{ }^{+}$: 1. Nf5+'?? $\left\{\right.$unnecessary sac.\} $1 \ldots$ Qxf5+" $\{d t z=54 \mathrm{~m}$; Black can $50 \mathrm{~m}-\mathrm{draw}\} \quad 1 / 2 \mathbf{-}^{1 / 2}$.
$\mathbf{S Z}_{50}{ }^{-}-\mathbf{S Z}_{50}{ }^{+}: 1 . \mathrm{Kb} 3^{\prime} \mathrm{Qd} 3+2 . \mathrm{Kb4}{ }^{\prime} \mathrm{Qd} 4+^{\prime} 3 . \mathrm{Kb} 5{ }^{\prime} \mathrm{Qd} 7+^{\prime} 4$. Ka6' Qd6+' 5. Ka5' Qa3+' 6. Kb5' Qd3+' 7. Kc6' Qc4+' 8.
Kb7' Qf7+' 9. Kb6' Qf2+' 10. Kc6' Qf6+' 11. Kb5' Qe5+' 12. Ka4' Qd4+' 13. Rb4' Qa7+' 14. Kb3' Qe3+' 15. Ka2' Qe2+'
16. Rb2' Qa6+' 17. Kb1' Qd3+' 18. Rc2' Qb3+' 19. Kc1' Qa3+' 20. Kd2' Qd6+' 21. Kc3 Qc5+' 22. Kd3' Qd6+' 23. Kc4' Qa6+' 24. Kd5' Qb5+' 25. Rc5' Qb3+ 26. Kd6' Qb8+' 27. Kd7' Qa7+' 28. Rc7' Qd4+ 29. Ke6" Qe3+' 30. Kf7' Qb3+' 31. Kg7' Qb2+' 32. Kh7' Qb4 33. Qf3+' Kh2' 34. Qg2\#' 1-0.

KRBBKQ position RBB-Q $-d t m=66 \mathrm{~m}, d t z=1 \mathrm{~m}, d t z_{50}=15 \mathrm{~m}$:
$\mathbf{S Z}_{50}{ }^{+}-$SZ $^{-}: 1 . .$. Kxc1'?? $\{d t z=55 \mathrm{~m}$; White can $50 \mathrm{~m}-$ draw $\} 1 / 22^{-1 / 2}$.
$\mathbf{S Z}_{50}{ }^{+}-\mathbf{S Z}_{50}$: 1. ... Qd3+" 2. Kf4' Qd6+" 3. Kf5' Qf8+' 4. Ke4 Qe8+' 5. Kd4' Qh8+" 6. Ke4' Qh7+' 7. Ke5' Qh2+' 8. Kd5' Qg2+" 9. Kc4' Qg8+' 10. Kc5' Qf8+' 11. Kc4' Qf7+' 12. Kb4' Qb7+" 13. Kc4' Qc7+' 14. Kd4' Qf4+' 15. Kd5 Kxc1' $\{\mathrm{dtm}=16 \mathrm{~m}\} 0-1$.

KRNNKQ position RNN-Q $-d t m=63 \mathrm{~m}, d t z=12 \mathrm{~m}, d t z_{50}=33 \mathrm{~m}$:
$\mathbf{S Z}_{50}{ }^{+}-$SZZ: 1. ... Qg4+'?? 2. Kd2" Qg2+" 3. Kc1" Qh2" 4. Rf7" Qg3" 5. Kd1 Qd3+" 6. Ke1" Ke3' 7. Re7+" Kf3" $8 . ~_{\text {2 }}$ Nf7" Qb1+' 9. Kd2 ${ }^{\circ}$ Qb4+" 10. Kd3" Qxe7" $\{d t z=52 \mathrm{~m}$; White can $50 \mathrm{~m}-\mathrm{draw}\} 1 / 2-^{1 / 2}$.
$\mathbf{S Z}_{50}{ }^{+}-\mathbf{S Z}_{50}{ }^{-}$: 1. ... Qe8+" 2. Kd2' Qe3+" 3. Kc2' Qc3+" 4. Kb1' Kd3' 5. Rd7+' Ke3" 6. Re7+' Kf2' 7. Rf7+' Kg1' 8. Nb7' Qd2' 9. Rg7+' Kf1' 10. Rc7' Qb4+" 11. Ka2 Qa4+' 12. Kb2' Qd4+' 13. Kc2' Qf2+' 14. Kd1' Qe2+' 15. Kc1º Qe5 16. Rf7+ Ke1 17. Kc2 Qe3 18. Kb2 Qd3 19. Ka2 Qc3 20. Re7+ Kd2 21. Rf7 Qb4 22. Rd7+ Ke2 23. Rc7 Qb6 24. Rc2+ Kd1 25. Rb2 Qa6+ 26. Kb1 Qd3+ 27. Ka2 Qc4+ 28. Ka1 Qa4+ 29. Kb1 Qe4+ 30. Ka2 Kc1 31. Ka3 Qd3+ 32. Rb3 Qa6+ 33. $\mathrm{Kb} 4 \mathrm{Qxb} 7+\{d t m=30 \mathrm{~m}\}$ 34. $\mathrm{Ka} 4 \mathrm{Qa} 8+35 . \mathrm{Kb} 4 \mathrm{Qxh} 8\{d t c=24 \mathrm{~m}\} 0-1$.

[^0]: ${ }^{1}$ DTC \equiv Depth to Conversion, i.e., to force change and/or mate. DTZ \equiv Depth to (Move-Count) Zeroing (Move), i.e., to Pawn-push, force change and/or mate - when a move-counter is set to zero again.
 ${ }^{2} d t z_{k}=d t z$ unless a k-move rule allowing a draw-claim sets a value of draw.
 ${ }^{3}$ The board-size, piece-type and rule generalizations also effected are not covered here.
 ${ }^{4} \mathrm{An}$ advantage, as, e.g., KQBNKN has maxDTM $=107$ but $\operatorname{maxDTC}=6$.

[^1]: ${ }^{5}$ Their maxDTC for KQNKRR and KQNNKQ is 1 greater: in both cases, Black is forced to convert.
 ${ }^{6}$ For KBNNKN [17], '27' should be '28': a foreshortened line went unseen.
 ${ }^{7}$ e.g., KQQKNN has ' 1 wtm loss in 1 ' in $8 / 8 / 8 / 8 / 8 / 1 \mathrm{n} 6 / \mathrm{QQn} 5 / \mathrm{K} 2 \mathrm{k} 4 \mathrm{w}$. The double-check is impossible.
 ${ }^{8}$ Endgames where DTZ and DTZ_{50} might have differed, but did not, are bracketed in lower-case.

[^2]: ${ }^{9}$ In fact, intelligent access-code interpreting ' DTZ_{50} ' >50 as "draw" enables this $\mathrm{EdZ}_{50} \mathrm{Z}$ encoding: "DTZ $>50 \vee E Z$ code $=E Z_{k}$ code" $\Rightarrow \mathrm{EdZ}_{50} Z$ stores 0 (reducing, e.g., $K R N K N N ~ E d Z ~ Z_{50} Z$ to null). $" D T Z \leq 50$ but new $E Z_{50}$ draw" $\Rightarrow E d Z_{50} Z$ stores 1. " $0<\mathrm{DTZ50}-\mathrm{DTZ}=\delta " \Rightarrow E d Z_{50} Z$ stores $\delta+1$.

[^3]: ${ }^{10}$ Because there are no 'extra' draws as in $\mathrm{EdZ}_{50} \mathrm{Z}, \mathrm{EdZ}_{\mathrm{R}} \mathrm{Z} \equiv\left\{d t z_{R}-d t z\right\}$ and $E d R Z_{R} \equiv\left\{d t r-d t z_{R}\right\}$.
 ${ }^{11}$ e.g., sufficient but not necessary, no $\left\{\mathrm{DTR}, \mathrm{DTZ}_{\mathrm{R}}\right\}$ combination to be visited three times.
 ${ }^{12} \mathrm{NN}-\mathrm{P}: 8 / 8 / 8 / 2 \mathrm{pN} 4 / 8 / \mathrm{k} 1 \mathrm{~N} 5 / 8 / 2 \mathrm{~K} 5$ w. $d t m=115 \mathrm{p}, d t r=102 \mathrm{p}, d t z=42 \mathrm{p}, d t z_{R}=60 \mathrm{p}$.
 ${ }^{13} \mathrm{SZ}_{\mathrm{R}}{ }^{\circ} \mathrm{R}^{-} \mathrm{Z}^{-}-\mathrm{SR}^{+} \mathrm{Z}_{\mathrm{R}}{ }^{+}: 1 . \mathrm{Nb} 1+{ }^{+} \mathrm{Ka} 4{ }^{4}$. White retains $\mathrm{DTR}=102 \mathrm{p}$ and converts in 30 m .

[^4]: ${ }^{14}$ e.g., $7 \mathrm{~K} / 8 / 3 q 4 / 3 \mathrm{~B} 4 / 5 \mathrm{Nk} 1 / 8 / 3 \mathrm{~B} 4 / 8 \mathrm{~b}: \mathrm{DTZ}=\mathrm{DTZ}_{50}=13$ but SZ^{-}allows Qc7 leading to a $50 \mathrm{~m}-\mathrm{draw}$.
 ${ }^{15}$ An invaluable guard which enabled the successful recovery of almost all the 0.6 TB of EGT data at risk after a RAID crash in the last stages of production work for this paper.

[^5]: ${ }^{16}$ The 'GBR' code, created by Guy, Blandford and Roycroft, associates the endgame force with a number of form qrbn.(w)p(b)p, assigning ' 1 ' to White's men and ' 3 ' to Black's. Thus KQNKRB $\equiv 1331.00$.

 A '9' indicates more than two like pieces of a colour. Thus, $K B B B K B \equiv 0090.00 / 31$.

[^6]: 17 ' ε ' indicates a non-zero value less than 0.005 .

[^7]: ${ }^{18} \operatorname{stm} \equiv$ 'side to move'. Without a DTR EGT, it is not always possible to determine $d t r$ precisely.

[^8]: ${ }^{19}$ e.g., positions QB-BB/NN, QN-BB1/NN, QQ-BB/NN, QR-BB/NN, BBB-N, BBN-N, BNN-N, QBB-N, QBN-N, QQRQ, QRB-Q/R, QRN-Q, QRR-Q, RBB-N/R, RBN-N/R and RRB-R.
 ${ }^{20}$ e.g., positions $B B-B N, B N-N N, Q N-B B 2, Q R-Q B / Q N / Q R, R B-R B / R N, R N-B N 2, R R-R B, B B B-Q, B B N-Q, B N N-Q$, NNN-Q, QBB-Q and RBB-Q.
 ${ }^{21}$ e.g., positions BB-NN, BN-BN, QN-BN, QQ-QR, QR-RB, RN-BB2/BN2 and QNN-Q2.

