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Abstract

In classic scheduling theory, real-time tasks are usually assumed to be periodic,
i.e. tasks are released and computed with fixed rates periodically. To relax the
stringent constraints on task arrival times, we propose to use timed automata to
describe task arrival patterns. In a previous work, it is shown that the general
schedulability checking problem for such models is a reachability problem for a
decidable class of timed automata extended with subtraction. Unfortunately, the
number of clocks needed in the analysis is proportional to the maximal number of
schedulable task instances associated with a model, which is in many cases huge.
In this paper, we show that for fixed priority scheduling strategy, the schedulability
checking problem can be solved using standard timed automata with two extra
clocks in addition to the clocks used in the original model to describe task arrival
times. The analysis can be done in a similar manner to response time analysis in
classic Rate-Monotonic Analysis (RMA). The result is further extended to systems
with data-dependent control, in which the release time of a task may depend on
the time-point at which other tasks finish their execution. For the case when the
execution times of tasks are constants, we show that the schedulability problem can
be solved using n + 1 extra clocks, where n is the number of tasks. The presented
analysis techniques have been implemented in the TIMES tool. For systems with only
periodic tasks, the performance of the tool is comparable with tools implementing
the classic RMA technique based on equation-solving, without suffering from the
exponential explosion in the number of tasks.
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1 Introduction

In the area of real time scheduling methods such as rate monotonic schedul-
ing are widely applied for the analysis of periodic tasks with deterministic
behaviours. For systems with non-uniformly recurring tasks, it is a known
fact that there are no satisfactory techniques. In reality, control tasks are
often triggered by sporadic events coming from the environment. The com-
mon approach to analyse the schedulability of such systems is to consider the
minimal inter-arrival time of a task as its period and then adopt the ordinary
technique used for periodic tasks. Obviously such an approximate method will
be in many cases pessimistic since the task control structures are not consid-
ered. In order to specify more relaxed timing constraints on events and model
other behavioural aspects such as concurrency and synchronization, Extended
Timed Automata (ETA) have been suggested in [14] as a generic model for
timed systems. It unifies timed automata [7] with the classical task models
from scheduling theory allowing to execute tasks asynchronously and specify
hard time constraints on computations. Furthermore, the problem of schedu-
lability analysis for this model is proven to be decidable for any scheduling
policy. An algorithm for schedulability analysis is presented in [14] based on
a translation of the schedulability problem into a reachability problem for the
decrementation automata [22]. Unfortunately, the number of clocks needed in
the analysis is proportional to the maximal number of schedulable task in-
stances associated with a model, which is often huge. A remaining challenge
is to make the result applicable to industrial systems.

In this paper we present an efficient algorithm for the case when fixed priority
scheduling strategies are adopted. We show that for a fixed priority scheduling
strategy, the schedulability checking problem can be solved by reachability
analysis on standard timed automata using only two extra clocks in addition
to the clocks used in the original model to describe task arrival times. The
analysis can be done in a similar manner to response time analysis in classical
Rate-Monotonic Scheduling, which calculates the worst-case response time for
tasks one by one according to the fixed-priority order. We believe that this is
the optimal solution to the problem, a problem that was suspected undecidable
previously.

We shall extend the result to systems with data-dependent control, in which
the timed automata and the tasks may read and update shared data variables
i.e. the release time-point of a task may depend on the values of the shared
variables, and hence on the time-point at which the released tasks finish their
execution. When the execution times of tasks are known constants, we show
that the schedulability problem can be encoded as a reachability problem for
timed automata using n + 1 extra clocks, where n is the number of tasks.
Unfortunately when the execution times of tasks are intervals, the problem is



undecidable [19]. For the undecidable case, we shall present a solution using
over-approximation. The techniques presented for all the decidable cases, have
been implemented in the TIMES tool based on reachability analysis of timed
automata. For periodic tasks, the performance of our tool is comparable with
tools implementing the classical RMA technique based on equation-solving.
For systems with only periodic tasks, the analysis is insensitive to the number
of tasks as the worst case scenario is assumed to appear in the first periods of
the tasks.

Related Work. For schedulability analysis of systems restricted to periodic
tasks, a large number of techniques are available, see e.g. [10, 18, 21]. These
methods can be extended to handle non-periodic tasks by considering them
as periodic with the minimal inter-arrival time as the task periods. For fixed
priority periodic tasks with offsets and release jitters, techniques for schedula-
bility analysis have been developed in [25, 23, 24]. Our work is more related
to work on using automata to model and solve scheduling problems, aiming
at systems whose tasks have complex control structures and arrival patterns.
In [12, 11], stopwatch automata [6] are applied to model scheduling algo-
rithms with sporadic tasks and semi-decision algorithms are presented. Timed
automata [7] have been used to solve non-preemptive scheduling problems
mainly for job-shop scheduling [1, 13, 16]. Similarly, stopwatch automata have
been used to solve preemptive job-shop scheduling problems e.g. [2]. These
techniques specify pre-defined locations of an automaton as goals to achieve
by scheduling and use reachability analysis to construct traces leading to the
goal locations. The traces are used as schedules. A work on relating classi-
cal scheduling theory to timed systems is the controller synthesis approach
[3, 4, 5]. The idea is to achieve schedulability by construction. The authors
present a controller synthesis technique that can be used to construct a sched-
uler to control the system so that all given scheduling constraints in the model
are satisfied. An alternative approach is presented in [26] in which the schedu-
lability of a system is established by proving that the specification (formalised
in the temporal logic TLA) of the system and the scheduler satisfy the given
scheduling constraint.

The rest of this paper is organized as follows: Section 2 describes the syntax
and semantics of ETA and defines scheduling problems related to the model. In
Section 3, we present the main result of this paper — an algorithm to perform
schedulability analysis of systems with relaxed timing constraints. Section 4
is devoted to schedulability analysis of systems with fixed priorities and data-
dependent control. In Section 5, we describe implementation issues and how
to perform worst-case response time analysis. Section 6 concludes the paper
with summary and related work.



2 Preliminaries

In this section, we review the model of extended timed automata with real
time tasks and the notion of schedulability as well as the decidability result
presented in [14]. A timed automaton [7] is a standard finite-state automaton
extended with a finite collection of real-valued clocks. One can interpret timed
automata as an abstract model of a running system that describes the possible
events occurring during its execution. The arrival times of the events must
satisfy the given timing constraints. To specify how events, accepted by a
timed automaton, should be handled or computed we extend timed automata
with asynchronous processes [14], i.e. tasks triggered by events synchronously
and computed asynchronously (i.e. buffered). The idea is to associate each
location of a timed automaton with an executable program called a task. We
assume that the execution times and hard deadlines of the tasks are known'! .

Let P ranged over by P and P;, P, etc, denote a finite set of task types. A
task type may have different instances that are copies of the same program
with different inputs. Throughout the paper, we shall not distinguish tasks
from task instances when it is understood from the context. Each task P
is characterized as a pair of natural numbers denoted P(C, D) with C < D,
where C'is the execution time (or computation time) of P and D is the deadline
for P. The deadline D is relative, meaning that when task P is released, it
should finish within D time units. We shall use C(P) and D(P) to denote the
worst case execution time and relative deadline of P respectively. We shall
use C(7) and D(i) instead of C'(P;) and D(P;) when it is understood from the
context.

As in timed automata, assume a finite alphabet Act for actions and a finite
set of real-valued variables C for clocks. We use a, b etc. to range over Act and
x1, Ty ete. to range over C. We use B(C) ranged over by g to denote the set of
conjunctive formulas of atomic constraints in the form: z;~C or z; — x;~D
where z;, z; € C are clocks, ~ € {<,<,>,>}, and C, D are natural numbers.
The elements of B(C) are called clock constraints.

Definition 1 A timed automaton extended with tasks, over actions Act,
clocks C and tasks P is a tuple (N, ly, E, I, M) where

e (N,ly, E,I) is a timed automaton where
- N is a finite set of locations ranged over by [, m,n,
- lo € N is the initial location, and
- EC N x B(C) x Act x 2¢ x N is the set of edges.

I Task may have other parameters such as fixed priority for scheduling and other
resource requirements, e.g. memory requirement.



- I : N — B(C) is a function assigning each location with a clock constraint
(a location invariant).

e M : N < P is a partial function assigning locations with tasks 2.
Intuitively, a discrete transition in an automaton denotes an event triggering
a task and the guard (clock constraints) on the transition specifies all the
possible arrival times of the event (or the release times of the associated task).
Whenever a task is triggered, it will be put in a scheduling (or task) queue for
execution (corresponding to the ready queue in operating systems).

Extended timed automata may perform two types of transitions just as stan-
dard timed automata. The difference is that delay transitions correspond to
the execution of running tasks with highest priority and idling for the other
tasks waiting to run. Discrete transitions correspond to the arrival of new task
instances.

We represent the values of clocks as functions (called clock assignments) from
C to the non—negative reals. A state of an automaton is a triple (I, u, q¢) where
[ is the current control location, u the clock assignment, and ¢ is the current
task queue. We assume that the task queue takes the form: [Py(¢q,dy), .. .,
P,(cp,dy,)] where Pi(c;,d;) denotes a released instance of task type P; with
remaining computing time ¢; and relative deadline d;

A scheduling strategy Sch e.g. FPS (fixed priority scheduling) or EDF (earli-
est deadline first) is a sorting function which changes the ordering of the task
queue elements according to the task parameters. For example, EDF([P(3.1, 10),
Q(4,5.3)]) = [Q(4,5.3), P(3.1,10)]). We call such sorting functions scheduling
strategies that may be preemptive or non-preemptive® . Thus an action transi-
tion will result in a sorted queue including the tasks released by this transition.
A delay transition with ¢ time units is to execute the task in the first posi-
tion of the queue with ¢ time units. Thus the delay transition will decrease
the computing time of the first task by c. If its computation time becomes 0,
the task should be removed from the queue (shrinking). We adopt the struc-
tural equivalence over queues respecting [P (0, d), Pa(c2,d3), ..., Py(cn,dy)] =
[Py(co,ds), ..., Py(cn,dy)]. Moreover, after a delay transition with ¢ time units,
the deadlines of all tasks in the queue will be decreased by c.

Run is a function which given a real number ¢ and a task queue ¢ returns

2 Note that M is a partial function meaning that some of the locations may have
no task. Note also that we may associate a location with a set of tasks instead of a
single one. It will not cause technical difficulties.

3 As in scheduling theory, we adopt the standard assumptions on scheduling strate-
gies: A non-preemptive strategy will never change the position of the first element
of a queue. A preemptive strategy may change the ordering of task types only, but
never change the ordering of task instances of the same type.



the resulted task queue after ¢ time units of execution according to available
computing resources. For simplicity, we assume that only one processor is
available. Then the meaning of Run(g,t) should be obvious and it can be
defined inductively. For example, let ¢ = [Q(4,5), P(3,10)]. Then Run(q,6) =
[P(1,4)] in which the first task is finished and the second has been executed
for 2 time units.

Further, for a non-negative real number ¢, we use u + t to denote the clock
assignment which maps each clock z to the value u(x) 4 ¢, u = ¢ to denote
that the clock assignment u satisfies the constraint ¢ and u[r + 0] for r C C,
to denote the clock assignment which maps each clock in r to 0 and agrees
with u for the other clocks (i.e. C\r).

Definition 2 Given a scheduling strategy Sch* , the semantics of an extended
timed automaton (N,lo, E, I, M) with initial state (I, ug,qo) is a transition
system defined by the following rules:

o (I,u,q)~seh(m, ulr — 0], Sch(M(m) :: q)) if I 22 m and u = ¢

o (I,u,q)—>sen(l,u +t,Run(g,t)) if (u+1) = I(1)

where M (m) :: q denotes the queue q with M(m) inserted into it.

Now, we briefly review the verification problems of ETA. For more details,
we refer the reader to [14]. We first mention that we have the same notion of
reachability as for ordinary timed automata.

Definition 3 We shall write (I, u, q)— (', u',¢') if (I, u,q)—— (', v, ¢") for an
action a or (l,u,q)#(l’,u’,q’) for a delay t. For an automaton with initial
state (lo, uo, qo), (1, u,q) is reachable iff (lo, uo, qo)(—)* (I, u, q).

Note that the reachable state-space of an ETA is infinite not only because of
the real-valued clocks, but also unbounded size of the task queue.

Definition 4 (Schedulability) A state (I,u,q) where ¢ = [Pi(c1,dy), ...,
P,(cn,dy,)] is a failure denoted (l,u,Error) if there exists i such that ¢; > 0
and d; <0, that is, a task failed in meeting its deadline. Naturally an
automaton A with initial state (lo,uo,qo) is non-schedulable with Sch iff
(lo, w0, qo)(—scn)* (I, u, Error) for some | and u. Otherwise, we say that A
is schedulable with Sch. More generally, we say that A is schedulable iff there
exists a scheduling strateqy Sch with which A is schedulable.

The schedulability of a state may be checked by the standard schedulability
test. We say that (I, u, q) is schedulable with Sch if Sch(q) = [Pi(c1,d1) . .. Py(cn,

4 Note that we fix Run to be the function that represents a one-processor system.



dp)] and (X;<; ci) < di for all k < n. Alternatively, an automaton is schedu-
lable with Sch if all its reachable states are schedulable with Sch.

Theorem 1 The problem of checking schedulability for extended timed au-
tomata is decidable.

PROOF. The proof is given in [14]. O

3 Encoding of Fixed-Priority Schedulers

In this section we present the main result of this paper. It shows that for
timed automata extended with tasks executed according to fixed priorities,
the scheduling problem can be encoded into a reachability problem of ordinary
timed automata using only two additional clocks.

Assume an ETA A and a fixed priority scheduling strategy Sch. To solve the
scheduling problem, for each P, € P we construct timed automata FE;(Sch)
and F(A), and check for reachability of a predefined error state in the product
automaton of the two. If the error state is reachable, task P; of automaton
A is not schedulable with Sch, i.e. P; will eventually miss its deadline. The
check is performed following the given fixed priority order for each task in P,
starting with the task of highest priority.

Our analysis technique is inspired by Joseph and Pandya’s rate-monotonic
analysis of periodic tasks [17], where the worst-case response time of each
task is calculated as the sum of the task’s execution time, and the blockings
imposed by other tasks. Following Joseph and Pandya’s work, for each task
type we check independently that it meets its deadline. However, the model
of ETA gives rise to a more general scheduling problem than systems with
periodic tasks only. As a result, we can not base our analysis on the existence
of an a priori known worst-case scenario for a given task. Instead, it will be
part of the analysis to find all situations in which a task may execute.

To construct the F(A), the automaton A is annotated with distinct synchro-
nization actions release; on all edges leading to locations labelled with the
task name P;. The actions will allow the scheduler to observe when tasks are
released for execution in A. The rest of this section is devoted to show that
E;(Sch) can be constructed as a timed automaton using only two clocks.

Theorem 2 Given a fized priority scheduling strategy Sch, E;(Sch) can be
encoded as a timed automaton containing two clocks.

Proor. Follows from Lemma 1 and 2 shown later in this section.
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Fig. 1. Task execution schemes for tasks P; and P; with Prio(j) > Prio(i). The
symbols 1 and | indicate release and completion of tasks, respectively.

In the encoding of E;(Sch), we shall use C(i), D(i) and Prio(i) to denote
the worst-case execution time, the deadline, and the priority of task type P;,
respectively. E;(Sch) uses the following variables:

e d - a clock measuring the time since the analysed task instance of P; was
released for execution,

e c - a clock accumulating the time since the task queue was last empty (or
containing only tasks Pj, with Prio(k) < Prio(7)).

e r - a data variable used to sum up the time needed to complete all tasks
released since the processor was last idle (i.e. not executing instances of
P; and all higher priority tasks). The boundedness of r will be stated in
Lemma 1.

The clock d is reset when the analysis of a task instance begins, and will
be used to check if it completes before its deadline. The clock c is used to
compute the time point when the analysed task instance of P; completes. The
variable r will be assigned so that P; completes when ¢ = r. Fig.1 shows in
two Gantt charts how the variables are used in E;(Sch). In Fig.1(a) task P;
executes immediately but is preempted by P;. In Fig.1(b) task P; is released
when task P; is already executing. Note that the clocks c and d are reset, and
the variable r is updated in the two scenarios so that task P; is completed when
the condition ¢ = r is satisfied. Note also that the deadline of P; is reached
when d = D(i) (as d is reset when P; is released for execution).

The encoding of E;(Sch) is shown in Fig.2. Intuitively, the locations have the
following interpretations:

e Idle; - denotes a situation where no task P; with Prio(j) > Prio(4) is being
executed (or ready to be executed).

e Check; - an instance of task type P; is currently ready for execution (possibly
executing) and is being analysed for schedulability.

e Busy; - a task of type P; with priority Prio(j) > Prio(7) is currently execut-
ing.
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Fig. 2. Encoding of schedulability problem.

e Error; - the analysed task queue is not schedulable with Sch.

The analysis of an instance of P; starts when a transition from Idle; or Busy;
to Check; is taken. The transitions in E;(Sch) have the following intuitive
interpretations:

e Idle; - is (re-)entered when the task instance being checked in Check;, or a
sequence of tasks arrived in Busy;, has finished execution. In both cases the
enabling condition c=r ensures that the location is reached when all tasks
P; with Prio(j) > Prio(¢) have finished their executions.

° BusyZ - the ingoing transitions to Busy; are taken when a task P; such that
Prio(j) > Prio(i) is released. The additional self-loop, is taken to decrement
both ¢ and r with the constant value C"™**. This does not change the truth-
value of any of the guards in which ¢ and r appear, as the values are always
compared to each other.

o Check; - transitions entering Check; from Idle; or Busy; are taken when a
task instance of P; is (non-deterministically) chosen for checking. Self-loops
in Check; are taken to update r at the release of higher-priority tasks. New
instances of P; in Check; are ignored as they are considered by the non-
deterministic choice in location Busy;.

e Error; - is reached when the analysed task instance reaches its deadline
(encoded d = D(i)) before completion (encoded ¢ < r). In addition, Error;
is entered if the set of released tasks is guaranteed to be non-schedulable
(encoded r > R the value of R"** is discussed below).

In addition to these transitions, in Fig 2 we have omitted self-loops in all
locations, which synchronize with E(A) whenever a task of priority lower



than Prio() is released. They can be ignored as these tasks do not affect the
response time of P;.

The constant C™** mentioned above can be any value greater than 0. We
use C™* = max;(C(i)). To find a value for R we need the result of the
previous analysis steps. Recall that the analysis of all P; € P is performed in
priority order, starting with the highest priority. Thus, when P; is analysed we
can find the maximum value assigned to r in the previous analysis steps. Let
r'* denote this value. Recall that r —c is always the time remaining until the
released tasks complete their executions (except in location Idle; and Error;
where r is not updated). For the set of released tasks to be schedulable we
have that r — ¢ < ™ 4 D(i). It follows that r < r™*® + D(i) 4 C™** since
c < C™*® We set the constant R = r™% + D(i) + C™* and use r > R
to detect non-schedulable tasks sets in E(Sch).

The last step of the encoding is to construct the product automata E(A)||E;(Sch)
for each P; € P, and check by reachability analysis that location Error; is not
reachable in the product automaton. We now show that E(A)||E;(Sch) is
bounded.

Lemma 1 The clocks c and d and the data variable r of E;(Sch) in E(A)||
E;(Sch) are bounded.

ProOOF. The clocks d and ¢ are bounded by the constants D(7) and C™** re-
spectively. The data variable r is bounded by RI™**4+maxy; . prio(j)>Prio(i} C (J)-

Lemma 2 Let A be an extended timed automaton and Sch a fixed-priority
scheduling strategy. Assume that (1o, uo,qo) and ({lo,dle;),vo) are the initial
states of A and the product automaton E(A)||E;(Sch) respectively where 1y is
the initial location of A, ug and vy are assigning all clocks with O and qq is the
empty task queue. Then for any | the statement

(lo, uo, qo)(—)* (1, u, Error)
holds for some u if and only if the following holds for some v and i:

((lo, Idle;), vo)(—)* ({l, Error;), v)

PROOF. We assume that the task queue takes the form: [P;...P,] where P,
denotes a released instance of task type ¢ with remaining computing time ¢(F;)
and relative deadline d(P;), and the variable (and clock) assignment v in the
product automaton takes the form (u, v), where u is an assignment for A and v
is an assignment for F;(Sch). Whenever it is understood, we shall write ¢, d, r
to denote v(c), v(d), v(r).



We show the existence of simulations between the states of A and E(A)||
E;(Sch). Let S; = {(l,u,q), ({{,|dleg), (u,v)) | empty(q)}, So = {(l,u,q), ({I,
Busy), (u,0)) | (S, ¢(R)) = r — ¢}, S = {(L,u,q), ({1, Checky), (u,v)) |
(S, e(P) = — e d=D(Py) — d(Pp)}, Sy = {(1,u,q), ({1, Checky), (u,))
' e(P)) > d(P), r ¢ > D(F) — d}, S5 = {(Lu,q), ({1, Erory), (u,))
| ¢(Py) > 0,d(Py) =0} and S=5; U Sy, U S3USyUSs.

We prove that S and S~ are simulations. First we prove that S is a simulation.

Assume that ((1,u,q), (({,1dleg), (u,v))) € S;. We consider the two types of
transitions:

e (Action) Assume (I, u, q)—=(',u’,Sch(M(I') :: q)). Further assume that this
transition is induced by { 223 I and u = ¢g. Then the product automaton
can also make the following a-transitions: ((I,ldle;), (u,v))—= ({I', Busy;),
(u'wle:=0,r:=C(M(l")])). Here a new task is inserted into the queue, and
the variable r is set to the WCET of the new task. Therefore, (X5, ¢(P)) =
C(M(l")) = r — ¢, and then ((I',u', Sch(M(I") == q)), ((I', Busy;), (v, v[c :=
0,r:=C(M(l"))]))) € Sa. Alternatively, if M(I') = Py, the product automa-
ton can also have the transition: ({{, Idle;), (u,v))—=((I', Check;), (v, v[c :=
0,r := C(P), d :=0])). Here Py is inserted into the queue, and the variable
r is set to the C(Py). Therefore, (XF_, ¢(P)) = C(P,) = r — ¢, and then
((I'yu', Sch(M(1") == q)), ({(I',Check;), (u',v[c := 0,7 := C(Py),d := 0])))
€ S;

e (Delay) Assume (I, u, q)—>sen(l, u+t, Run(g, t)), where (u-+t) }= I(I). Then
the product automaton can make the following delay transition: ((/, Idle;),
(u,c,r,d)) — ((I, Idle;), (u+t,c+t,r,d+t)). Running the empty queue
for ¢ time units results in an empty queue, therefore ((I, u+ ¢, Run(g, 1)), ({l,
ldle;), (u+t,v+1))) €S

The rest of the proof that S as well as S~! is a simulation is similar.

Thus, we have shown that the scheduling problem can be solved by a reach-
ability problem for timed automata, and from Lemma 1 we know that the
reachability problem is bounded. This completes the proof of Theorem 2.

4 Analysing Data-Dependent Control

In this section we extend the result of the previous section to handle extended
time automata in which the tasks may use (read and update) data variables,
shared between the tasks and the automata. This results in a model with data-
dependent control in the sense that the behaviour of the control automaton,
and the release time-point of tasks may depend on the values of the shared



variables, and hence on the time-points at which other tasks complete their
executions. We first present the model of ETA extended with data variables [9].

4.1  FExtended Timed Automata with Data Variables

Syntax. Assume a set of variables D ranged over by u, which takes their
values from finite data domains, and are updated by assignments in the form
u := &, where £ is a mathematical expression. We use R to denote the set of
all possible assignments. A task P is now characterized by a triple P(C, D, R),
where C' and D are the execution time and the deadline as usual, and R C R
is a set of assignments. We use R(P) to denote the set of assignments of P,
and we assume that a task assigns the variables according to R(P) by the end
of its execution.

The data variables assigned by tasks may also be updated and tested (or read)
by the extended timed automata. Let A =R U {x :=0 | 2 € C} be the set of
updates. We use r to stand for a subset of A. To read and test the values of the
data variables, let B(D) be a set of predicates over D. Let B = B(D) U B(C)
be ranged over by ¢ called guards.

Unfortunately the analysis of data-dependent control structures can not be
based on the WCET of tasks only for the obvious reason that if a task updates
shared variables by the end of its execution (before WCET) it can trigger
releases of the other tasks and lead to a negative schedulability result. This
means that a system may be schedulable when all the tasks actually consume
the WCET and it may not be schedulable when some of the tasks consume
less than the WCET.

In the following, we present a solution for the schedulability analysis problem
for the case when the execution times, denoted C'(P) for task P, are constants.
The case when the execution times are intervals i.e. best and worst execution
times is considered later.

Operational Semantics. To define the semantics, we use valuations to de-
note the values of variables. A valuation is a function mapping clock variables
to the non-negative reals, and data variables to the data domain. We denote
by V the set of valuations ranged over by o. For a non-negative real number ¢,
we use o+t to denote the valuation which updates each clock x with o(x)+t,
and o[r] to denote the valuation which maps each variable « to the value of
€ if a:= & € r (note that & is zero if « is a clock) and agrees with o for the
other variables. We are now ready to present the semantics of extended timed
automata with data variables by the following rules:
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where M (m) :: ¢ denotes the queue ¢ with M (m) inserted into it and Hd(q)
denotes the first element of q.

4.2 Schedulability Analysis

As in the previous section, we shall encode the ETA A and the fixed-priority
scheduling strategy Sch into timed automata and check for reachability of pre-
defined error states. The encoding F(A) is the same as in the previous section.
However, the encoding of Sch will be different with data-depended control, as
the result of the schedulability analysis depends on the data-variables that
may be updated whenever a task completes its execution. In the rest of this
section we describe how to construct E(Sch):

Theorem 3 For an extended timed automaton A with data variables, and
a fized priority scheduling strategy Sch, E(Sch) can be constructed as timed
automaton containing n + 1 clocks, where n is a number of task types used in

A.
Proor. Follows from Lemma 3 and 4 shown later in this section.

The construction of E(Sch) is illustrated in Fig.3. It consists of two parallel
automata: Fsp(Sch) - encoding the scheduling policy (containing n clocks),
and Epc - encoding a generic deadline checker (containing one clock). As in
the previous section, the two scheduling automata (in this case both Esp(Sch)
and Epc) synchronize with E(A) on the action release; when an instance of
task P; is released. In addition, Fsp(Sch) and Epc synchronize on finished;
whenever an instance of P; finishes its execution.

Encoding of Scheduling Policy Esp(Sch). Let P;; denote instance j of
task P;. For each P;j, Esp(Sch) has a state variable status(i,j) that is ini-
tially set to free. Let status(i,j) = running denote that P;; is executing on
the processor, preempted that Pj; is started but not running, and released
that P,; is released but not yet started. We use status(i, j) = free to denote
that P,; is not released yet. Note that for all (4,j) there can be only one j
such that status(i,j) = preempted (i.e. only one instance of the same task

type is started), and for all (i,7) there can only be one pair (k,[) such that
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Fig. 3. Encoding of schedulability problem.

status(k,[) = running (i.e. only one task is running in a one-processor system).
For each task type P; we use three variables:

e ¢; - clock measuring the time passed since P; started its execution. We reset
c; whenever an instance of P; is started.

e r; - data variable accumulating the response time of P; from the moment
it starts to execute. r; is set to C'(i) when an instance of P; is started, and
updated to r; + C(j) when a higher-priority task P; is released.

e n; - data variable keeping track of the number of P; currently released.

In Fig. 4, we show how the above variables are used in Fsp(Sch). At time point
x state variable status has the values status(1,1) = running, status(2,1) =
preempted, status(2,2) = released, and status(3, 1) = released.

To represent each task instance in Esp(Sch) we use a triple (¢;, 14, status(i, 7)),
and the task queue ¢ will contain such triples. Note that the maximal number
of instances of P; appearing in a schedulable queue is [D(i)/C(i)]. Thus, the
size of the queue is bounded to Y p.cp [D(2)/C(i)]. We shall say that queue
is empty, denoted empty(q), if status(i, j) = free for all (i, 7).
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For a given scheduling strategy Sch, we use the predicate Run(m,n) to denote
that task instance P, is scheduled to run according to Sch. For a given fixed
priority scheduling policy Sch, it can be coded as a constraint over the state
variables. For example, for deadline-monotonic scheduling® , Run(m, n) is the
conjunction of the following constraints:

e 1, < D(k) for all k,[ such that status(k,[) # free: all response time integers
are less than deadlines

e status(m,n) # free: P, is released or preempted

e D(m) < D(i) for all i: P, has the highest priority

We use Run(m) to denote that a task instance of P, is scheduled to run
according to Sch. The predicate finished(m,n) denotes that P, has finished
its execution. We define finished(m,n) to (¢,, = r,) A (status(m,n) # free).
Finally, we use nonschedulable(g) to denote that the queue ¢ is non-schedulable
in a sense that there exists a pair (4,j) for which r; > D(i) and status(i, j) #
free.

The automaton Esp(Sch) contains three type of locations: Idle, Running; and
Error. Note that Running; is parameterized with ¢ representing the running task
type. Location ldle denotes that the task queue is empty. Running, denotes that
task instance of type P; is running, that is, for some j status(z, j) = running.
For each Running; we have the location invariant ¢; < r;. Error denotes that the
task queue is non-schedulable with Sch. There are five types of edges labelled
as follows:

(1) Idle to Running;: edges labelled with action release;, and reset {r; :=
C(i), ¢ :== 0,n; := 1,status(4, j) := running}.
(2) Running; to Running,,: two types of edges:

5 In deadline-monotonic scheduling, task priorities are assigned according to dead-
lines, such that Prio(¢) > Prio(y) iff D(i) < D(y).



(a) the running task Pj; is finished and P, is scheduled to run by
Run(m,n). There are two cases:

(i) Pnn was preempted earlier: encoded by guard finished(7,j) A
status(m, n) = preempted ARun(m, n), action finished;, and reset
{status(i, j) := free, n; := n; — 1, status(m, n) := running, R(P;)}

(ii) P, was released, but never preempted (not started yet): en-
coded by guard finished(i, j) Astatus(m, n) = released ARun(m, n)
action finished;, and reset {status(i,j) := free, n; :=n; — 1,7, :=
C(m), ¢y, = 0, status(m, n) := running, R(P;)}

(b) a new task P, is released, which preempts the running task P;:
encoded by guard status(m,n) = free A Run(m,n), action release,,,
and reset {status(m,n) := running,n,, := n, + 1,7, = C(m),
Cm = 0,status(i,j) := preempted} U {ry := r + C(m) | status(k,
[) = preempted} (we increment the response times of all preempted
tasks by the execution time of the released higher-priority task).

(3) Running; to Idle: edges labelled with guard empty(q) and reset {n; :=
0, R(P;)}.

(4) Running; to Running,: edges representing the case when a task release
does not preempt the running task P,;: encoded by guard status(k,[) =
free A Run(i, j), action releasedy, and reset {status(k,![) := released, nj, :=
ng + 1} U {ry :==rp + C(m) | status(k,l) = preempted}

(5) Running; to Error: an edge labelled by the guard nonschedulable(q).

Encoding of Deadline Checker FEpc. It is similar to the encoding of
E;(Sch) described in the previous section, in the sense that it checks for dead-
line violations of each task instance independently. The clock d is used in Epc
to measure the time since the analysed instance of P; was released for exe-
cution. Epc also uses a data variable, named instance. From location Idle the
automaton non-deterministically starts to analyse a task on the edge to Check;,
at which clock d is reset and instance is set to n;, i.e. the current number of re-
leased instances of task P;. In Check;, instance is decremented whenever an in-
stance of P; finishes its execution. The analysed task finishes when instance = 1
and the location Idle is reentered. However, if d is greater than D(7), the task
failed to meet its deadline and the location Error is reached.

The next step of the encoding is to construct the product automaton E(A)||
FEsp(Sch)||Epc in which the automata can only synchronize on identical action
symbols. We now show that the product automaton is bounded.

Lemma 3 The clocks ¢; and d, and the data variables r; and n; of Esp(Sch)||
Epc in E(A)||Esp(Sch)||Epc are bounded.

PRrROOF. First note that the integers ry are bounded by D(k)+max;(C(7)) due
to the fact that all edges incrementing ry (by some C(i)) are guarded by the
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Fig. 5. Interval execution times.

constraint Run(m,n) requiring r, < D(k). The bound for ny is [D(k)/C(k)].
The clocks d and ¢ are bounded by max;(D(i)) and ry, respectively.

Lemma 4 Let A be an extended timed automaton and Sch a fixed-priority
scheduling strategy. Assume that (1o, uo, qo) and ({ly, Idle,ldle), vy) are the ini-
tial states of A and the product automaton E(A)||Esp(Sch)||Epc respectively
where ly is the initial location of A, ug and vy are clock assignments assigning
all clocks with O and qq is the empty task queue. Then for any [ the statement

(lo, w0, g0)(—)* (1, u, Error)
holds for some u if and only if the statement
({lo, Idle, Idle), vg)(—)* ({I, m, n), v)
holds for some v, m and n where either m or n is Error.

PrRoOOF. The lemma can be proved by establishing the simulation between the
states of A and E(A)|| Esp(Sch)|| Epc. It is similar to the proof for Lemma 2.

4.3  Systems with Interval execution times

We may extend the model to handle tasks whose execution time is an inter-
val of the form [C;p, Ciw], where C;p and Cjyy denote the best and worst
case execution times of task P; respectively. Unfortunately the schedulability
checking problem for such systems is undecidable [19].

In the following, we present an analysis method using over-approximation. The
idea is to modify the scheduler automaton so that the variables are updated
as shown in Figure 5. As before, we use ¢; to keep track of the accumulated
execution time of P;, and a pair of data variables r; 5 and r;y, to sum up the
best and the worst completion time of P;. Obviously r; 5 and r;y should be set
to C; 5 and Cyyy respectively when task P; starts to execute. Observe that each
preemption will enlarge the difference roy — rop for the preempted task Py
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Fig. 6. An example when the over-approximation gives the wrong answer.

with lower priority by the difference C}y, — C' g for the finishing task P; with
higher priority. Accordingly, we modify the scheduler automaton as follows:
on edges labelled finished; from locations Running(P;) the guard should be
rig < ¢; < rj, and variable updating should be ryp = ryg + Cjg, rpy =
w4 Cjyy for all k such that status(Fj) = preempted. The rest of the scheduler
automaton remains the same as before.

It is easy to see that the presented algorithm is an over-approximation. For
example, consider the system shown in Figure 6. Tasks Pp, Py, and Py have
priorities low, medium and high respectively. Task Pj, starts executing at time
0, and is being preempted by the task P,; at time 1. P); has execution times
in the interval [2, 5] and by the end of its execution it sets the boolean variable
flag to true, which is initially set to false. If Py, completes its execution before
3 time units, it can trigger the higher priority task Py that also preempts
the execution of Pp. Obviously, the worst-case response time of Pp is 13,
which means that it finishes its execution within its deadline. However, the
algorithm will compute the worst-case response time of P, as a sum of worst-
case execution times of Pp, Py; and Py, which equals 15 and exceeds the
deadline of Pr.

5 Implementation and Experiments

Except the approximate method for the undecidable case, the presented anal-
ysis techniques have been implemented in TIMES, a tool for modeling and
schedulability analysis of embedded real-time systems [8]. The modeling lan-
guage of TIMES is ETA as described in Section 4.1. As the scheduling problems
are modeled using timed automata, we are able to solve the related analysis
problems using symbolic techniques based on DBM’s (Difference Bound Ma-
trices). The analysis module of TIMES is based on the verification engine of
UpPAAL [20]. The tool currently supports symbolic simulation, schedulability
analysis, and model checking of safety and bounded liveness properties. In
addition, the tool can also be used to generate executable C-code [9] from the
verified models.
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5.1  An Overview of TIMES

The architecture of the TIMES tool is illustrated in Figure 7. The tool offers

the following main features:

e Editor to graphically model a system and the abstract behaviour of its
environment. A system description consists of a task set and a network of
timed automata extended with tasks. A task is described by the task code
(in C), its (worst-case) computation time and (relative) deadline, and if
applicable optional parameters for priority (for fixed priority scheduling),
period (for periodic tasks), and minimal inter-arrival time (for sporadic
tasks). It is also possible to specify precedence constraints on the tasks using
an editor for AND/OR precedence graphs, and resource access patterns
using semaphores.

Simulator to visualise the dynamic behaviour of a system model as Gantt
charts and message sequence charts. The simulator can be used to randomly
generate possible execution traces, or alternatively the user can control the
execution by selecting the transitions to be taken. The simulator can also
be used to visualise error traces produced in the analysis phase.

Analyser to check that the tasks associated to a system model are guar-
anteed to always meet their deadline. In case schedulability analysis finds a
task that may fail to meet its deadline, a trace is generated and visualised in
the simulator. It is also possible to compute the worst-case response times of
individual tasks. The schedulability analysis has also been extended to han-
dle resource and precedence constraints [15]. In addition to schedulability,
it is possible to analyse safety and liveness properties specified as temporal
logic formulae.



e Server consisting of two parts: a scheduler generator, and a module for
schedulabilty analysis based on the UPPAAL engine [20] with extensions.
The scheduler generator produces a scheduler automaton based on input
from the editor, which is composed in parallel with an annotated version
of the original system automata. The parallel composition is analysed by
on-the-fly reachability techniques in the schedulabilty analysis module. Cur-
rently supported scheduling policies are: rate monotonic, deadline mono-
tonic, fixed priority scheduling (with user defined priorities), earliest dead-
line first (EDF), and first come first served (FCFS). All scheduling policies
support preemptive or non-preemptive task sets.

e Compiler to generate executable C code from timed models i.e. timed
automata with tasks. If a model is proven to be schedulable, the execution
of the generated code will guarantee the timing constraints i.e. the deadlines
of tasks under the assumption that the target platform ensures that the task
code can be executed in the specified computation time.

e Animator to transform hybrid automata modeling the controlled environ-
ment into C code simulating the controlled objects in the environment of
the embedded system. The simulated environment enables the designer to
experiment with the design prior to implementation.

A screen-shot of the TIMES tool analysing a simple control system is shown
in Fig. 8. In the main window, a control automaton is displayed. To the left,
a table shows the specified task parameters. The task parameters currently
supported are: behaviour (B) %, priority (P), computation time (C), deadline
(D), and period (T).

5.2 Clalculation of Worst-Case Response Times

The schedulability analysis in TIMES is essentially performed by computing
the worst-case response times of tasks, and then comparing with the respective
deadlines. In practice, the worst-case response time is a system parameter that
can be used not only for checking the schedulability of a system, but also for
analysis of the system performance. Therefore, when schedulability analysis of
a system is performed in TIMES, it is possible to show the worst-case response
times of the tasks in the system.

The worst-case response time of a task is the time delay from the instant
the task is released to the instant it finishes. In general, the response time
of a task is a non-integer value due to the fact that a task can be released
at any time point at which the task queue may already contain tasks with
higher priorities, whose remaining computing times can be any reals. We take

6 The behaviour field is one of: periodic (P), sporadic (S), or controllable (C) if the
time points for the task release are specified by an automaton.
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Fig. 8. The TIMES tool performing schedulability analysis.

the worst-case response time to be the least integer greater or equal to the
longest response time of a task. The worst-case response time of task P; can
be obtained from the maximum value appearing in the upper bound on the
clock d in the symbolic states generated during the schedulability analysis of
task P; (i.e. in the reachability analysis).

An example. We use an example to illustrate how the tool is used for
schedulability analysis. Fig. 8 shows a system consisting of tasks with fixed
priorities and data-independent control. It is a simple controller of a motor,
periodically polling a sensor and at requests providing a user with sensor
statistics. In the initial location, an instance of task ReadSensor is released. The
controller waits 10 time units for a user to push the button. If the button is not
pushed, the controller releases the two tasks AnalyzeData and ActuateMotor.
If the button is pushed when the controller operates in its initial location, an
instance of task ComputeStatistics is released for execution, and the controller
waits 16 time units before releasing task ReadSensor again.

The system has been analysed with two algorithms implemented in the TIMES
tool. An implementation based on the original decidability result described
in [14] consumes 2.7 seconds, whereas an implementation of the algorithm
presented in Section 3 of this paper terminates in 0.1 seconds on the same
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Fig. 9. Encoding of periodic task release pattern PeriodicTasks(const N).

machine 7 . Thus, the time consumption is reduced significantly for this system.

5.3 Periodic Tasks and Ezxperiments

For the analysis of systems with only periodic tasks, the classical technique,
Rate-Monotonic Analysis (RMA) using equation solving, is the best known
technique to calculate the worst case response times. Based on the critical
instant assumption that the worst case scenario will appear in the first period
for all tasks, RMA calculates only the response time for the first period of each
task. To benefit from this assumption, as in RMA, for the analysis of periodic
tasks, TIMES is implemented to explore only the first periods of the tasks.
Therefore, as RMA, TIMES does not suffer from the exponential explosion in
the number of periodic tasks.

To further improve the performance of the tool for the analysis of periodic
tasks, we use a one-clock timed automaton shown in Fig. 9 to describe the
task arrival pattern of a task set containing only periodic tasks. The automaton
PeriodicTasks encodes releases of all periodic task using only one clock. The
automaton Scheduler shown in Fig. 10 is a slightly modified version of the
scheduler automaton described in Section 3, schedules only the first periods of
the released tasks. It is now parameterized with a constant ID that is the index
of the currently checked task. The automaton PeriodicTasks is parameterized
with a constant N that is a number of periodic tasks with indexes less than or
equal to ID. The automaton PeriodicTasks uses the following variables:

7 The measurements were made on a Sun Ultra-80 running SunOS 5.7. The UNIX
program time was used to measure the time consumption.
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e clock x keeps track of the moments when tasks are released,

e int t[N] is a sorted array of times remaining until next release for every task
(initialized with task offsets),

e int[0,N] ti[N] is an array of task indexes corresponding to the elements of
the array t[N],

e int decr is the time until next task release relative to the moment of the
previous task release,

e int[O,N] i is a counter for enumerating elements of t and ti, and

e const T[N] is an array of task periods.

The two automata communicate through the channel Release and integer vari-
able index which represents the index of the task released at the moment of
synchronization. In the initial location the automaton PeriodicTasks waits for
the next task release, sets the value of decr to the value of the first element
of t, and index to the value of the first element of ti. Then the scheduler is
signalled about a new task release. In the Shift and Skip locations all values of
t are decremented by decr and those less than the period of currently released
task are shifted one position to the beginning making room for the period
of the newly released task. Then the automaton PeriodicTasks moves back to
the Start location. The Scheduler automaton behaves similarly to the one de-
scribed in section 3 except one channel and one integer are used instead of N
channels. If in the system tasks with indexes < ID are only periodic then it is
sufficient to consider only the longest of their first periods, thus the transition
leading from the location Busy to the location ldle is omitted.

To evaluate the performance of our two clock encoding for fixed priority
scheduling strategy, we have studied several task sets containing up to 500
periodic tasks with randomly generated task parameters: periods, computing
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times and deadlines equal to the periods. The task periods are generated ac-
cording to the formula n 4+ random|0,n/10] where n is the number of tasks in
the respective task set, and the computing times are random numbers in the
interval [1, 3].

The implementation based on the original decidability result described in [14]
never terminated due to the large number of required clocks. The times taken
by schedulability analysis using two-clocks encoding are shown in Fig. 11.
One can see the dependency between the number of tasks in the task set
and the time it takes to analyse the set to be quadratic. The performance
is indeed comparable with the RMA technique based on equation solving for
schedulability analysis of perodic tasks. However, our technique is able to check
systems containing not only periodic tasks, but also tasks with non-uniformly
recurring patterns.

6 Conclusions

In this paper we have shown that for fixed priority scheduling strategy, the
schedulability checking problem of timed automata extended with tasks can
be solved by reachability analysis on standard timed automata using only two
additional clocks. We have also shown how to extend the result to systems with
data-dependent control, i.e. systems in which the release time-points of a task
may depend on the values of shared variables, and hence on the time-point at
which other tasks finish their execution. For such systems we use additional
clocks for keeping track of execution of the tasks that have shared variables



with the control automata. We need one additional clock for each task type
that updates variables shared between control automata and/or other tasks.
In this case the schedulability checking problem uses n+ 1 extra clocks, where
n is the number of tasks types that update the shared variables. However, this
result is applicable only when exact execution times of tasks are known. When
the task execution times of tasks are given as intervals, an over-approximation
technique can be used as the problem is undecidable.

Both these encodings use much fewer clocks than the analysis suggested in
the original decidability result, and we believe that we have found the optimal
solutions to the problems. The presented encodings seem to suggest that the
general schedulability problem of ETA can be transformed into a reachability
problem of standard timed automata, instead of timed automata with sub-
traction operation on clocks. This is indeed the case, but the number of clocks
used in the standard timed automaton will be the same as in the encoding
using timed automata with subtraction.

The schedulability checking algorithms described in this paper have been im-
plemented in the TIMES tool. An experiment shows that the new techniques
substantially reduces the computation time needed to analyse an example
systems with fixed priority scheduling strategy.

Acknowledgements: We would like to thank the anonymous referees for
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