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Abstract

In addition to statistical graph properties (diameter, degree, clustering, ...),
Kleinberg [6] showed that a small-world can also be seen as a graph in which
the routing task can be efficiently and easily done. More precisely, in a lattice
network augmented by extra random edges (but not chosen uniformly), a short
path of polylogarithmic expected length can be found using a greedy algorithm
with a local knowledge of the nodes. We call such a graph a navigable small-
world since short paths exist and can be followed with partial knowledge of the
network. In this paper, we show that a wide class of graphs can be augmented
into navigable small-worlds.

Keywords: small-world, random graph model, routing algorithm.

Résumé

Outre des propriétés statistiques de graphes (diametre, degré, connectivité,
...), Kleinberg [6] a montré qu’un petit monde peut aussi étre considéré
comme un graphe ou le routage se fait aisément, et de fagon efficace. Plus
précisément, dans une grille de dimension 2 augmentée par des longs liens
aléatoires supplémentaires (mais qui ne sont pas choisis uniformément), ’algo-
rithme glouton trivial trouve un chemin court de longueur moyenne polyloga-
rithmique en utilisant uniquement une connaissance locale des noeuds. Nous ap-
pelons un tel graphe petit monde navigable, puisque des chemins courts existent
et peuvent étre suivis en utilisant une connaissance partielle du réseau. Dans
cet article, nous montrons qu’il existe une classe importante de graphes pouvant
étre augmentés en petits mondes navigables.

Mots-clés: petit monde, modele aléatoire de graphe, algorithme de routage.



1 Introduction

In the last decade, effective measurements of real interaction networks have revealed specific unexpected
properties. Among these, most of these networks present a very small diameter and a high clustering. Fur-
thermore, very short paths can be found efficiently between any pair of nodes without global knowledge of
the network, which is known as the small-world phenomenon (exhibited by Milgram [10]). Several models
have been proposed to explain this phenomenon. Among them, one approach is based upon an augmentation
process : starting from a graph H and adding a relatively small set of extra edges L, we hope to obtain a new
graph G sharing some graph properties with H, and exhibiting additional properties due to the design of L.
For instance, the circulant graph H consisting in an n-node ring where each node is also connected to the
k—th closest nodes is locally clustered and is often used as a base graph for small-worlds [11, 6]. Watts and
Strogatz, in 1998 [12], showed that adding a controlled amount of randomness in the circulant graph gives
rise to some of the small-world characteristics : rewiring an increasing fraction « of the links to random nodes
chosen uniformly exhibits the desired characteristics (locally clustered and small diameter) for a reasonably
large range of a away from 0 and 1. In fact, this model can be easily seen as an augmentation process :
allowing to rewire only one link per node (defining in this way L) would not alter a lot the model and the
results (cf. [11]).

However, Kleinberg showed in 2000 [6] that this model lacks the essential navigability property : in spite
of a polylogarithmic diameter, none of the short paths can be computed efficiently without global knowledge
of the network ; i.e., routing requires the visit of a polynomial number of nodes (in the size of the network). He
showed that navigability can be obtained by adjusting the amount of randomness to the underlying metric
(the ring here). Precisely, he introduced an augmented graph model consisting of a grid where each node is
given a constant number of random additional directed long range links distributed according to the harmonic
distribution, i.e., the probability that a node v is the i-th long range contact of a node u is proportional to
1/|u—v|®, where |[u—v| denotes their Manhattan distance in the grid and s is some parameter of the model.
In this model, the local knowledge at each node is the underlying metric of the grid (which can be viewed as
the geographic locations of the nodes) and the positions on the grid of its long range neighbors. Note that a
global knowledge would be the set of positions of all the long range neighbors on the grid. Kleinberg proved
that there exists a decentralized algorithm (using only local knowledge) that computes, between any pair of
nodes, a path of polylogarithmic length in the size of the network, after visiting a polylogarithmic number
of nodes, if and only if the exponent s is equal to the dimension of the grid. The simplest such algorithm
is greedy routing : each node obliviously forwards the message to its neighbor (local or long range) that is
the closest (in the known metric) to the destination. Later on, Barriere et al. [1] generalized this result to a
torus of any dimension. Moreover, they showed that the expected number of steps of the greedy algorithm is
(9(10g2 n), and that, noticeably, the number of steps is independent of the dimension. This reveals a strong
correlation between the underlying grid metric and the additional long range links distribution that turns the
grid into a small-world. This statement raises an essential question to capture the small-world phenomenon :
are there only specific graph metrics that can be turned into small-worlds by the addition of shortcuts?

This impression can be reinforced by the fact that whenever the exponent s is different from the di-
mension of the grid, the greedy algorithm follows a path of polynomial length even when the diameter is
polylogarithmic. For Kleinberg’s model, Martel and Nguyen [9] proved that the diameter is ©(logn) for
s = d and it is conjectured that for s < 2d, it is polylogarithmic. For a slightly different percolation model
(in which degrees are unbounded), Coppersmith et al. [3] showed indeed a polylogarithmic upper bound on
the diameter whenever s < 2d. The reader might believe that the navigability property is very specific to
the grid topology, but we will show that a wide family of graphs can be turned into navigable small-worlds.

In section 2, we give a formal definition of navigable small-world graphs with respect to a given underlying
metric. In this paper, we attempt to find a class of graph metrics as wide as possible for which the addition
of random long range links gives rise to the small-world phenomenon. Roughly speaking, as soon as the
original graph H is homogeneous in terms of ball expansion and as soon as balls centered on each node
grow up to slightly more than polynomially with their radius, H can be augmented to become a navigable
small-world. It follows that a wide class of graphs can be turned into a navigable small-world, in particular
including known Cayley graphs. In a second step, we try to catch the dimensional phenomenon by studying
the cartesian product of our graphs. We show that if two independent graphs can be augmented into two



navigable small-worlds then their cartesian product can also be augmented into a navigable small-world. For
instance, as a consequence, any unbalanced torus C,, x C,,, X ... x Cp, can be turned into a small-world in
which the greedy algorithm computes paths of length O(log**¢(max; n;)), for any € > 0.

2 Small-worlds and graph metrics

For a given graph G = (V, E), we write Bg,u(r) for the ball centered on a node u with radius r, and
ba,u(r) for its cardinality. Let b (r) = maxuey bg,u(r). The G subscript will be omitted in case the concerned
graph is obvious. We only consider graphs with maximum degree A, a fixed constant.

In the following, an underlying metric 6 of a graph G is the metric given by a spanning connected
subgraph H (i.e., g (u, V) is the distance between u and v in H). Definitions 1 and 2 are inspired by the
work of Kleinberg [6].

Definition 1 A decentralized algorithm using an underlying metric ég in a graph G is an algorithm that
computes a path between any pair of nodes by navigating through the network from the source to the target,
using only the knowledge 1) of dy 2) of the nodes it has previously visited as well as their neighbors. But,
crucially, 8) it can only visit nodes that are neighbors of previously visited nodes.

The efficiency of a decentralized algorithm depends crucially on the number of nodes it visits to compute a
path. Note that it upper bounds the length of the computed path.

Our definition of a navigable small-world is essentially probabilistic. We consider random graph models
in which a fixed “base” graph H is randomly augmented by adding random links (called long links below),
according to some probability distribution. Routing will then be performed by a decentralized algorithm,
using the base metric 0y (which is obviously an upper bound on distances in the augmented graph); our
goal is to identify such augmented graph models for which this procedure results in uniformly “fast” routing.

Given an underlying metric d in a graph G, the maximum length of shortest paths one can hope to find
in a constant degree graph G to reach all the nodes at distance r in H from a source u, is lower bounded by
Q(logbrr,u(r)). This motivates the following definition.

Definition 2 An infinite randomly augmented graph G, with base graph H, is a navigable small-world if
there exists a decentralized algorithm using the underlying base metric d0g that, for any two nodes u and
v, computes a path from u to v in G by visiting an expected number of nodes that is polylogarithmic in
bH,v (6H (ll, V)) .

A family of finite randomly augmented graphs (G;)icz, with base graphs H; for each G;, is a navigable
small-world family if there exists a (uniform) polynomial p, and a decentralized algorithm using the underlying
base metric dm, on G; that, for every i € T and any pair of nodes u and v in G;, computes a path from u
to v, by visiting an expected number of nodes at most p(logbm, ~ (0w, (u,v))).

Note that some graphs are intrinsically navigable small-worlds (and do not require any augmentation).
Indeed, any graph such that each by (r) is bounded below by a (uniform) exponential function of r is a small-
world, since the greedy algorithm, using the graph metric, computes a path of optimal length r = §(u, v)
between two nodes at distance r, and r = polylog(b(r)) in this case. The simplest example of this situation
is an infinite k-ary tree (with k& > 3); balls with radius r have size ©((k — 1)").

3 Turning graphs into small-worlds

In this section, we describe a wide class of infinite graphs, or of infinite families of finite graphs, for which
we are able to define random augmentation models that result in navigable small-worlds. In all cases, our
routing algorithm will be the greedy algorithm, thus the set of visited nodes will coincide with the path
computed. Furthermore, even if some algorithms can compute significantly shorter paths [4, 9, 7], it has
been shown in [8] that no decentralized algorithm can compute a polylogarithmic path between two nodes
while visiting significantly less nodes than the greedy.



All models we will consider add exactly one directed edge' leaving each node u, and the destination L,
of this outgoing edge is randomly chosen according to a random distribution that gives equal weight to any
two nodes that are equally distant from u (in the base graph). Thus, for each node u, there is a function f,
such that each other node v has probability proportional to fy(d(u,v)) of being Ly, ; the normalizing factor
Zu 18

Za= Y Fuld(w,v)) = 3 (bu(r) = bulr — 1) fulr).

veV r>0

Definition 3 We say that an infinite graph is smallworldizable if there ezists, for each u, a distribution
fu(r) such that the randomly augmented graph obtained by the addition of one random long range link to
each node u according to fu(r) (any node u is the origin of one long range link whose destination is v with
probability proportional to fu(d(u,v)), is a navigable small-world.

Similarly, we say that an infinite family of finite graphs (H;);cz is smallworldizable if there exists, for each
u and i, a distribution f; w(r), such that the family of finite randomly augmented graphs (G;)icz, where G; is
obtained by the addition of one random long range link to each node u of H; according to f; w(r) (any node
u is the origin of one long range link whose destination is v with probability proportional to f; u(0m,(u,v)),
is a navigable small-world family.

The following class of graph is defined for the sake of readability. As shown below, it characterizes a class of
smallworldizable graphs.

Definition 4 A bounded degree infinite graph H is a moderate growth graph if there exists a constant
a > 0, such that the ball size of each node u of H can be written as by(r) = r%(") | where du(r) : [2,00) — R
is C1 and satisfies Vr > 2,dl,(r) < «/(rlnr). Similarly, an infinite family of finite uniformly bounded degree
graphs (H;);ez is a moderate growth graphs family if there exists a uniform constant o > 0, such that the
ball size of each node u of each H; can be written as b; u(r) = r%u(") where d; 4(r) : [2,00) = R is C' and

satisfies Vr > 2,d; ,(r) < a/(rlnr).

» Yia

Note that the function dy(r) is simply defined as a C! interpolation of (In(by(r))/Inr),c(23,...}, then the C*
condition is not restrictive by itself. We can now state our main result.

Theorem 1 Any moderate growth infinite graph is smallworldizable by the addition of one long range link
per node, distributed according to fu(r) = m, for any q > 1. Any infinite moderate growth graphs
family (H;);ez is smallworldizable by the addition of one long range link per node, distributed according to

fiu(r) = W in each graph H;, for any q¢ > 1.

Proof. We consider the greedy routing algorithm that, at each step, forwards the message to the closest (in
the sense of the 0y metric) neighbor (in the augmented graph) of the current node. Assume that s and t
are respectively the source and target. The main argument in Kleinberg’s analysis, from which our proof is
inspired, is that, among a polylogarithmic number of nodes at distance between r and /2 (r > 2) of the
target, with constant probability, at least one node has a long range link that goes to a node at distance less
than r/2 from the target, which gives the polylogarithmic path length. We use a similar argument, modified
so that the upper bound can be expressed only in terms of the original metric (and not the total size of the
graph).

Note that, in order to show that the family (H;);c7 is smallworldizable, we only need to obtain uniform
bounds (independent of i) on the expected path length computed by the greedy algorithm on any finite
graph H;. Since the proof is analogous for finite and infinite graphs, we will only focus on the infinite graph
case.

We first need to check that the normalization constants Zy = )y fu(dm(u,v)) are uniformly bounded
(with respect to u and 7), so that the distribution is properly defined. Let « > 0 such that d;(r) < o/(rlnr).
Since the maximum degree is bounded by A, integrating the upper bound on d), yields a uniform upper
bound on d,(r). There exists a constant C' > 0 such that, for any u and r > 1,

du(r) < C+alnlnr.

LT Adding a constant number k of edges instead of one would not significantly alter the results, as will be made clear by the
proofs.



This, in turn, implies that all normalization constants Z,, are uniformly bounded. Indeed, we have

Zu:Z(bu( ) (r_]-))fu( )

r>1

and the upper bound on d, implies, for by (r) = exp(dy(r)Inr) :

balr) — ba(r — 1) < (Ll max du(t) + In(r) max d’u(t)> bu(r),

where both maxima are over ¢t € [r — 1,r]. Using the previous upper bounds on dy, and d.,, we get

C + alnln(r) aln(r) ) 1
r—1 (r—=1)In(r — 1)) In(r)

(bar) - (r—l))fu()_<

and the sum over r of the right-hand side converges to some constant Z < co.
One can bound the ratio by (r)/bu(5r), for any 0 < 8 < 1, as follows :

du(r)

r

C+a+alnlnr

) atr) < CEETAR )

r

b (r) = <d’u(r) Inr+

Integrating the ratio bl,(r)/bu(r) between fr and r gives :

In ( bu((ﬂg)> <—Clnf+alnrinlnr — aln(fr)lnln(sr).

But, Inln(8r) = Inlnr + In(1 + %) >Inlnr + C’% for some constant C' > 0, by concavity of In. Thus,

In (b?:}g:)) < —alnflnlnr — (C+C'a)lnp.

We conclude that, for all u,r >2and 0 < 5 < 1,

nr —alnpg
bl < B0 o). 1)

We now analyze the expected path length computed by the greedy algorithm. Consider some integer r > 2
and a node u such that r/2 < dg(u,t) < r, and denote by L, the destination of the long range link from
u. We give a lower bound on P[dg(Ly,t) < /2], the probability that the destination node L, belongs to
B (r/2). Since fy is a decreasing function and B (r/2) C Bu(3r/2), each node of B (r/2) has probability at
least fu(3r/2)/Z of being L,,. Since, in turn, By(3r/2) C B(5r/2), we can give a lower bound on f,(3r/2)

in terms of by : .

faBr/) 2 e S TG

Thus, we get a lower bound, depending only on t and r, on the wanted probability :

1 be(r/2)
Z1n(3r/2) by(5r/2)

(Z5C+C’a In?(3r/2) In®"™ 5 (5r /2)) B

Plor(Lu,t) <r/2] >

vV

> (Z2q+a In 55C+C'a 1nq+a In5 (1“)) -1

We now turn back to the initial question of the length of the greedy path from s to t. We mentally partition
the whole graph into concentric shells centered on t, where the k-th shell consists of all nodes whose dg
distance to t is between 2¥~! and 2*. The previous discussion proves that each node in the k-th shell has
probability Q(k~7) of having its long range contact in some i-th shell with i < k, where v = ¢ + aln5.



Thus, the greedy algorithm, once it reaches the k-th shell, examines at most O(k") vertices on expectation
before it finds one vertex whose long range link leads into a smaller shell. By linearity of expectation, the
expected length of the greedy path from a vertex in the k-th shell is O(k'*?), with (uniform) constants that
can be recovered from the above discussion. As a result, the expected length of the greedy path from s to
t is polylogarithmic in ¢ = g (s, t) (O(In'T7T*"5¢)) and a fortiori in be(dg(s,t)). Thus, the augmented
graph is a randomized navigable small-world. O

This theorem covers graphs with ball sizes b(r) growing like 7@ 108187 ', > 0, or slower. Note that we get
a similar upper bound O(In**¢r), for any € > 0, on the expected length of the greedy path between any pair
of nodes at distance r from each other. In a vertexz-transitive graphs, all balls grow similarly, since for any
pair of nodes (u, v), bu(r) = by(r) for any radius r. Remind that a graph is vertex-transitive iff for all pair of
nodes (u, V), there exists a one-to-one function o on the vertices preserving the edges, such that o(u) = v.
Among these graphs, all known Cayley graphs? are smallwordizable : either they are covered by our theorem
(polynomial expansion means o = 0) or the diameter is polylogarithmic (exponential or almost exponential
expansion, i.e. Q(Q‘“’b) for some a,b > 0). Indeed, groups of intermediate ball size, between polynomial and
exponential, are still unknown, and it is an open question whether there exists a group with ball size b(r)
superpolynomial but less than eV”, see for instance [5] and [2] for a state of the art.

Product of small-worlds. A remarkable fact on the small-world property is its relative independence
of the metric dimension in Kleinberg’s model. The expected path length computed by the greedy algorithm
is indeed unchanged whether the underlying metric is a ring or a very high dimension grid. This motivates
the study of product of smallworldizable graphs.

Definition 5 The cartesian product H = F' X G of two undirected graphs F and G is the graph (Vy,Ey)
where Vg = Vi x Vg and Eg = {((f,9),(f,9") 1 99’ € Eq, f € Ve U{((f,9),(f',9)) 1 9 € Ve, ff' € Er}.

Note that the cartesian product of two graphs of maximum degrees Ap and Ag is a graph of maximum
degree Ap + Ag.

Theorem 2 Let F' and G two moderate growth infinite graphs, ((F;)icz and (G;)iez two infinite moderate
growth graphs families). The cartesian product H = F x G (the family (H;)icr = (F; X G})iez) is smallworl-
dizable by the addition of one long range link per node u according the distribution hy(r) = 1/(bgu(r) In? T)
(hiu(r) = 1/(bm, u(r) In? r) for each graph H;), for all ¢ > qo, for some constant qo > 0.

Proof. As in proof of Theorem 1, we only prove the result for infinite graphs, other cases follow. Note that
it is unclear whether H is a moderate growth graph (i.e., if Ja > 0,Vu,Vr > 2,dy ,(r) < a/(rlnr)).

By construction of the graph H, for all u = (uy,uz) in H, bru, (r/2)bG,u, (1/2) < ba (uy,u0) (1) < bFu, ()06 0, (7).
Let a; and s such that dj, , (r) < ai/(rlnr) and dg; ., (1) < az/(rInr), for all u; in /' and us in G. From
Equation (1), there exists a constant A > 0 such that

bFuy (MG s (1) < A (Inr) @102 20 o (1/2)bg u, (r/2)
S A (lnT)(a1+a2)ln2bH7(u17u2)(T)

We first need to check that the normalization constants Zu = > <y, hu(dm(u,v)) are uniformly bounded,

2A Cayley graph is a graph defined by a group G whose vertices are the elements of G and such that there is an edge between
x and y iff there is an element g € G such that x = gy.



so that the distribution is properly defined. For ¢’ > 2 4+ (a1 + a2) In2 =ger qo,

1
Zu = Z beru(0m(u,v)) In? (6 (u,v))

veVh
Cy A
- bF,ll1 (6H (11, V)) bG,llz (6H (11, V)) In” (6H (11, V))

(ajtap)in2—q

(a1+ap)In2—gq’'
2

(In(d¢ (s, v5)))

a4y (et v))

veVh b (0r (11, v1)) bGu, (0 (uz, va))
<al ¥ (In(Sp (ur, v1)) " > (In(6 (2, v5))) =55
 \viewr bryu, (0r (1, v1)) va€Ve b u, (0 (12, v2))

<AZpu, Zau, <AZpZag =get Ly < 00,

where Zpy, and Zgu, are respectively the normalizing constants for nodes u; in F' and uy in G with

q= ql_(al';iw)l“, and Zr and Zg are the corresponding uniform bounds given in the proof of Theorem 1.
As in the proof of Theorem 1, we lower bound P[0 (Ly,t) < r/2], the probability that the long range

contact Ly of a given node u, at distance r to the target t in H, belongs to B(t,r/2).

1 brrt(r/2)
Fom(Lu t) s /2] 2 Zgn? (3r/2) b s(5r/2)
1 br, (r/4)bg 1, (r/4)

2 I (31/2) b, (57 /2)ba.4, (5r/2)

/ / -1
(ZHl()2C+C (onte2) 1n? (37 /2) In(Fe2)In 10(57~/2))

vV

> (ZH2qI+(Dz1+Dz2) In 10102C+C'(a1+a2) lnql+(a1+a2) In10 (r)) -1

We conclude as above that the expected path length computed by the greedy algorithm is polylogarithmic
in 65(s,t) (O(Int+eHerta)nid g (s £))) expected length) between s and t, and then polylogarithmic in
br+(0r(s,t)). H is then smallworldizable. O

Note that this theorem yields another simple method to obtain a generalization of Kleinberg’s graph to
tori of dimension d > 1 with arbitrary side sizes, seen as cartesian products of one dimensional Kleinberg
graphs of various sizes.

4 Conclusion and open problems

In this paper, we extend the scheme introduced by Kleinberg [6], that allows to generate small-worlds
from a wide variety of graph topologies. Our scheme treats in particular all known Cayley graphs. We are
also able to “smallworldize” less regular graphs whose ball growths depend on their center and their radius
and can grow up to r@(1°819¢7) for a radius r, or that are obtained as product of such graphs (e.g. unbalanced
d-dimensional tori).

Theorems 1 and 2 capture wide classes of smallwordizable graphs but leave open the question of deter-
mining whether any graph is smallworldizable. The condition on the derivative of the exponent d,(r) might
be too restrictive. If we take a closer look at graphs with polynomial ball expansion, some of them do not
satisfy the derivative condition but are still smallworldizable using an augmentation with our distribution.
To illustrate this idea, we give an example of an extreme graph containing two distinct parts of different
density (or two types of polynomial expansion) connected only by a single node : the infinite fly swatter. This
graph is defined by a half infinite chain connected to a half infinite square lattice. This graph has vertex set
(Z_oyx {0}) U(ZZ, x Z) and two nodes are adjacent if the Manhattan distance is equal to one. We give some
hints (but do not provide a real proof) on why the augmented infinite fly swatter is a navigable small-world.



Informally, the chain does not significantly disturb the greedy routing within the half plane. The tough part
is to find a short path from (0,0) to (—n,0). The lattice part is indeed the attractive part of the graph.

Let us consider the current node u = (—m,0) and the destination t = (—n,0) belonging to the chain
with n > m. The size of the balls centered on u are byu(r) = 2r + 1 for r < m and else by(r) = 2m + (r —
m) + (r —m + 1)?. One can check that dy(r) = % is close to 1 for r = m and close to 2 for r = 2m.
It follows that there exists m < r < 2m such that d,(r) = Q(1/m) and that the infinite fly swatter does
not fall into the smallwordizable graphs dealt with Theorem 1 : d,,(¢) cannot remain lower than O(-%) for
m € [m,2m].

However, following the same reasoning as in the proof of Theorem 1, we can first check that the partition
functions Z,, are uniformly bounded. Moreover, for the destination t = (—n,0), with probability Q(log™?m),
there exists a long-range link leading to a node (—m’,0) with m’ € [3m/2,2m)]. It follows that after visiting a
logarithmic number of nodes, using the greedy algorithm, the message will traverse with constant probability
a long-range link and almost double its distance from the origin. This situation occurs roughly logn times
before the message will be very close to t. Of course, others cases occur but they can be reduced to the above
discussion.

More generally, other classes of graphs should be smallwordizable : we suspect that smallwordizable graphs
could also include subgraphs of d-dimensionnal grids or tori. The characterization of smallworldizable graphs
is also open whenever the expansion of balls is locally exponential or almost exponential. A reasonable and
attractive case is the one of the family of vertex-transitive graphs due to the homegeneity of balls expansion
of these graphs.
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