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Abstract

We address the concept of abstraction in the setting of probabilistic reactive systems, and study its formal underpinnings for
the strictly alternating model of Hansson. In particular, we define the notion of branching bisimilarity and study its properties by
studying two other equivalence relations, viz. coloured trace equivalence and branching bisimilarity using maximal probabilities.
We show that both alternatives coincide with branching bisimilarity. The alternative characterisations have their own merits and
focus on different aspects of branching bisimilarity. Coloured trace equivalence can be understood without knowledge of probability
theory and is independent of the notion of a scheduler. Branching bisimilarity, rephrased in terms of maximal probabilities gives
rise to an algorithm of polynomial complexity for deciding the equivalence. Together they give a better understanding of branching
bisimilarity. Furthermore, we show that the notions of branching bisimilarity in the alternating model of Hansson and in the non-
alternating model of Segala differ: branching bisimilarity in the latter setting turns out to discriminate between systems that are
intuitively branching bisimilar.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

One of the hallmarks of process theory is the notion of abstraction. Abstractions allow one to reason about systems in
which details, unimportant to the purposes at hand, have been hidden. It is an invaluable tool when dealing with complex
systems. Research in process theory has made great strides in coping with abstraction in areas that focus on functional
behaviours of systems. However, when it comes to theories focusing on functional behaviours and extra-functional
behaviours such as probabilistic behaviour, we suddenly find that many issues are still unresolved.

This paper addresses abstraction in the setting of systems that have both non-deterministic and probabilistic traits,
hereafter referred to as probabilistic systems. The model that we use throughout this paper to describe such systems is
that of graphs that adhere to the strictly alternating regime as studied by Hansson [13], rather than the non-alternating
model [19,20] as proposed by Segala et al. In particular, we study the notion of branching bisimilarity for this model.
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The need for this particular equivalence relation is already convincingly argued by e.g. van Glabbeek and Weijland
in [11], and by Groote and Vaandrager in [12]. Recall that branching bisimilarity for probabilistic systems has been
defined earlier for the non-alternating model by Segala and Lynch [20] and a variation on that notion was defined by
Stoelinga [21]. However, we stress that the differences between the alternating model and the non-alternating model
lead to incompatibilities of the notions of branching bisimilarity in both settings. In fact, these differences are a key
motivation for our investigation: while our notion of branching bisimulation satisfies the properties commonly attributed
to it, the existing notions turn out to be too strict in their current phrasing (as we explain in detail in Section 7), and
discriminate between systems that are intuitively branching bisimilar.

Van Glabbeek and Weijland [11] showed that a key property of branching bisimilarity is that it preserves the branching
structure of processes, i.e. it preserves computations together with the potentials in all intermediate states of a system
that are passed through, even when unobservable events are involved. Roughly speaking, the potentials are the options
the system has to branch and behave. This property sets branching bisimilarity apart from weak bisimilarity, which does
not have the property. They illustrated this property by defining two new equivalences, called concrete coloured trace
equivalence (in a setting without abstraction) and coloured trace equivalence (in a setting with abstraction), which
both use colours to code for the potentials. Subsequently, they showed that strong bisimilarity and concrete coloured
trace equivalence coincide, proving that colours can indeed be used to code for the potentials of a system. Next, they
showed that also branching bisimilarity and coloured trace equivalence coincide, and both are strictly finer than weak
bisimilarity. This proved that branching bisimilarity indeed preserves the branching structure of the system.

Although our setting is considerably more complex than the non-probabilistic setting, the key concept of preservation
of potentials should still hold. We show that this is indeed the case by defining probabilistic counterparts of concrete
coloured trace equivalence and coloured trace equivalence, and show that these coincide with strong bisimilarity
and branching bisimilarity, respectively. A major advantage of (concrete) coloured trace equivalence is that it can be
understood without knowledge of probability theory and without appealing to schedulers.

Another property of branching bisimilarity (one that is due to the alternating model, and which can also be found
for weak bisimilarity [18]), is the preservation of maximal probabilities. We show that branching bisimilarity can be
rephrased in terms of such maximal probabilities, thus yielding another alternative definition of branching bisimulation.
Apart from the more appetising phrasing that this yields, this result is also at the basis of the complexity results for
deciding branching bisimilarity. We also provide the algorithm for deciding branching bisimilarity.

Both alternative characterisations of branching bisimulation have their own merits and focus on orthogonal aspects.
We emphasise that together, these are instrumental in understanding branching bisimulation and its properties for
probabilistic systems.

This paper is outlined as follows. In Section 2, we introduce the semantic model we use in the remainder of
this paper, together with the notions of strong bisimulation and branching bisimulation. In Section 3, we prove that
branching bisimulation can be rephrased in terms of maximal probabilities, and we discuss the decidability of branching
bisimulation in detail. Section 4 formalises the notions of colours and blends. Then, in Sections 5 and 6 we define
concrete coloured trace equivalence and coloured trace equivalence and we show that these two equivalence relations
coincide with strong bisimilarity and branching bisimilarity, respectively. In Section 7 we give an overview of related
work, which in turn provides the motivation for conducting this research in the first place. Section 8 summarises the
results of this paper and addresses issues for further research.

2. Semantic model

We use graphs 1 to model probabilistic systems. The graphs we consider follow the strictly alternating regime of
Hansson [13]. They can be used to describe systems that have both non-deterministic and probabilistic characteristics.

Graphs consist of two types of nodes: probabilistic nodes and non-deterministic nodes. These nodes are connected
by two types of directed edges, called probabilistic transitions and non-deterministic transitions. The latter are labelled
with actions from a set of action labels, representing atomic activities of a system or with the unobservable event,
which is denoted � and which is not part of the set of action labels of any graph. A graph, not containing �-transitions is
referred to as a concrete graph. The probabilistic transitions model the probabilistic behaviour of a system. We assume

1 The model we use is also known as Labelled Concurrent Markov Chains.. We use the term graph to stay in line with [11].
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the existence of a special node nil, which is not part of the set of nodes of any graph. This node is used as a terminal
node for all graphs.

Definition 1. A graph is a 7-tuple 〈N, P, s, Act, →,�, pr〉, where
• N is a non-empty finite set of non-deterministic nodes. We write Nnil for the set N ∪ {nil}.
• P is a non-empty finite set of probabilistic nodes. We write Pnil for the set P ∪ {nil}.
• s ∈ P is the initial node, also called root.
• Act is a finite set of action labels. We abbreviate the set Act ∪ {�} with Act�.
• →⊆ N × Act�×Pnil is the non-deterministic transition relation. We require that for all n ∈ N , there is at least one

(n, a, p) ∈→ for some a ∈ Act� and p ∈ Pnil.
• � ⊆ P × N is a probabilistic transition relation.
• pr :�→ (0, 1] is a total function for which

∑
n∈N pr(p, n) = 1 for all p ∈ P .

We write n
a→ p rather than (n, a, p) ∈→ and p�n rather than (p, n) ∈�. The set of all graphs is denoted G. In

the remainder of this paper, x, y, . . . range over G. We write Nx, Px, sx, etc. for the components of the graph x, and use
Sx to denote the union Px ∪ Nx. We write Snil,x for the set Sx ∪ {nil}. When x is the only graph under consideration, or
when no confusion can arise, we drop the subscripts altogether.

As a derived notion, we introduce the cumulative probability � : Snil×2Snil → [0, 1], which yields the total probability

of reaching a set of nodes via probabilistic transitions: �(p, M)
def= ∑

n∈M∩N pr(p, n) if p ∈ P and 0 otherwise.
There are several variations on the graph model that we use throughout this paper. In [18], a more liberal version is

considered, in which the alternation between probabilistic transitions and non-deterministic transitions is not as strict
as in our model: in between two probabilistic transitions, one or more non-deterministic transitions may be specified.
Other variations allow for non-deterministic nodes as starting nodes. From a theoretical point of view, these variations
do not add to the expressive power of the model, and the theory outlined in this paper easily transfers to those models.

2.1. Strong bisimulation

Equivalence relations can be seen as a characterisation of the discriminating power of specific observers. Strong
bisimilarity [16] is known to capture the capabilities of one of the most powerful observers that still has some appealing
properties. It compares the stepwise behaviour of nodes in graphs and relates nodes when this behaviour is found to be
identical.

Definition 2. Let x and y be graphs, let N = Nx ∪ Ny and let P = Px ∪ Py. A symmetric relation R ⊆ N2
nil ∪ P 2 is a

strong bisimulation relation when for all nodes s and t for which sRt holds, we have
(1) if s ∈ N and t ∈ N and s

a→ s′ then there is some t ′, such that t
a→ t ′ and s′Rt ′ holds.

(2) if s ∈ P and t ∈ P then �(s, M) = �(t, M) holds for all M ∈ (Nnil ∪ P)/R.
We say that x and y are strongly bisimilar, denoted x ↔ y, iff there is a strong bisimulation relation R such
that sxRsy.

A corollary of requirement 2 in the definition of strong bisimilarity is that all probabilistic nodes that can be related
by some strong bisimulation relation share the same cumulative probability of reaching another equivalence class.
This justifies the overloading of the notation � for cumulative probability to denote the probability of reaching a set of
nodes from an entire equivalence class rather than from a single node. For a strong bisimulation relation R, we define

�([s]R, M)
def= �(s, M) for arbitrary s ∈ P and arbitrary M ∈ (Nnil ∪ P)/R.

Proposition 3. ↔ is an equivalence relation on G.

2.2. Paths, probabilities and schedulers

A decomposition of a graph into a set of so-named computation trees is necessary for further quantitative analysis
of the graph: rather than conducting the analysis on the graph itself, the computation trees are analysed.
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The decomposition requires all non-determinism in the graph to be resolved. This is typically achieved by employing
a scheduler (also known as adversary or policy). A scheduler resolves the non-determinism by selecting at most one of
possibly many non-deterministic transitions in each non-deterministic nodes. A computation tree is then obtained from
the graph by resolving a non-deterministic choice according to the scheduler and keeping probabilistic information for
the relevant nodes. Dependent on the type of scheduler, this choice is based on e.g. some history, randomisation or
local information.

We subsequently formalise the notion of schedulers. Let x be a graph. A path starting in a node s0 ∈ Snil is an
alternating finite sequence c ≡ s0 l1 . . . ln sn, or an alternating infinite sequence c ≡ s0 l1 s1 . . . of nodes and labels,
where for all i�1, si ∈ Snil and li ∈ Act� ∪ (0, 1] and

(1) for all nodes sj ∈ N (j�0), we require sj
lj+1→ sj+1.

(2) for all nodes sj ∈ P (j�0), we require sj�sj+1 and lj+1 = pr(sj , sj+1).
Paths always consist of at least one node (its starting node). For a path c starting in s0, we write first(c) = s0 for

the initial node of c and, if c is a finite path, we write last(c) for the last node of c. The set of all nodes occurring in
c is denoted nodes(c). We denote the trace of c by trace(c), which is the sequence of action labels from the set Act�
that occur in c. The concatenation of two paths is again a path: given a finite path c ≡ s0 l1 . . . ln sn (for n�0) and
a path c′ with last(c) = first(c′), we denote their concatenation by c◦c′ and it is defined as the path s0 l1 . . . lnc

′. If
c ≡ (s0 l1 s1) ◦ c′ we write rest(c) = c′.

The set of all paths starting in s0 is denoted Path(s0) and the set of finite paths starting in s0 is denoted Pathf (s0).
A path c is a maximal path iff c is a finite path with last(c) = nil or c is an infinite path. The set of maximal paths
starting in s0 is denoted Pathm(s0).

Definition 4. A scheduler of paths starting in a node s0 is a partial function � : Pathf (s0) → (→ ∪{⊥}) (where ⊥
represents “halt”). If, for some c ∈ Pathf (s0), �(c) is defined we require that the following two conditions are met:

(1) if last(c) ∈ N , then �(c) = ⊥ or �(c) = last(c)
a→ t for some a and t .

(2) if last(c) ∈ Pnil, then �(c) = ⊥.
Moreover, we impose the following two sanity restrictions on �: for all paths c ∈ Pathm(s0) ∩ Pathf (s0), we have
�(c) = ⊥ and for all paths c ∈ Pathf (s0) with last(c) ∈ N , we require that �(c) is defined. We denote the set of
all schedulers of a node s0 by Sched(s0). When defining schedulers, we will often leave the extra definitions that are
required to meet these sanity restrictions implicit and focus on the remaining rules.

Note that the second condition in the definition of a scheduler expresses that a finite path c ending in a probabilistic
node can only be scheduled (if scheduled at all) to ⊥. In case such a path is not scheduled, then � is defined for all
extensions of this path by a probabilistic transition. This is also illustrated in Example 7 at the end of this section.

For most practical purposes, we are not interested in all paths of a graph, but only in those paths that are scheduled
by a given scheduler. Let � ∈ Sched(s0) be a scheduler of a node s0 in a graph x. We write SPath(s0, �) for the set

of all finite and infinite paths c ≡ s0 l1 s1 . . ., where for each si ∈ N we have �(s0 l1 s1 . . . si) = si
li+1→ si+1. The

set of maximal scheduled paths starting in s0 that is induced by � is denoted SPathm(s0, �) and contains all infinite
scheduled paths and all finite scheduled paths c for which �(c) = ⊥.

Note that our sanity restrictions on schedulers turn finite maximal paths into finite maximal scheduled paths (since
the former are necessarily scheduled to ⊥). This is required for a proper definition of the probability space and a
probability measure.

Several types of schedulers are defined in the literature, such as randomised schedulers, determinate schedulers
and history dependent schedulers. For the exhibition of the theory, we do not fix a specific type of schedulers, but in
Section 3.3 we show that a particular type of scheduler, so-called simple schedulers are sufficiently powerful for our
purposes.

Definition 5. Let s0 ∈ Snil be a node and let � ∈ Sched(s0) be a scheduler. We say that � is a simple scheduler if for
all c, c′ ∈ Pathf (s0) with last(c) = last(c′), �(c) = �(c′).

Obviously, for a graph x the set of all schedulers that can be defined for a given node s0 may be infinite, while the set
of all simple schedulers for that graph is finite. This fact will be used in Section 3.3 where an algorithm for deciding
branching bisimulation on graphs is given.



S. Andova, T.A.C. Willemse / Theoretical Computer Science 356 (2006) 325 –355 329

Definition 6. A probabilistic tree is a 7-tuple 〈N, P, s, Act, →,�, pr〉, where
• N is a non-empty countable set of non-deterministic nodes.
• P is a non-empty countable set of probabilistic nodes.
• → : N × Act� → Pnil is the non-deterministic transition function.
• s ∈ P , Act,� and pr are defined as in Definition 1.

Graphs and probabilistic trees differ with respect to the non-deterministic branching degree that is allowed. While
graphs have finite non-deterministic branching degree, probabilistic trees have branching degree 1. In other words, all
non-deterministic transitions are uniquely determined by a pair consisting of a non-deterministic node and an action
label. Furthermore, the set of nodes of a graph are necessarily finite, while probabilistic trees can have infinitely many
nodes. It is well-known that probabilistic trees can be used to represent fully probabilistic systems (see e.g. [1,5]).

Every scheduler � ∈ Sched(s0) for a graph x defines a probabilistic tree CTx(s0, �) whose nodes are finite scheduled
paths in x. The probabilistic and non-deterministic transitions of CTx(s0, �) are uniquely defined by the transition
relations of x and � in the obvious way. The probabilistic tree CTx(s0, �) is called a computation tree starting in s0
and induced by �. When no confusion can arise we omit the index x. The probabilistic transition relation � of x is
used to define a probability on a finite path in CTx(s0, �). These probabilities are then employed to define a probability
measure for the probability space associated to �. We proceed with the formal definitions. Let c ≡ s0 l1 . . . ln sn be a
finite path. Then, the probability of c, denoted P(c), is defined as:
(1) P(c) = ∏

li∈(0,1] li if at least one li ∈ (0, 1] for 1� i�n.
(2) P(c) = 1 otherwise.

Let c be a finite scheduled path. Then, the basic cylinder of c, induced by � is given by

c↑ = {c′ ∈ SPathm(s0, �) | c is a prefix of c′}. (1)

The probability measure of c↑, denoted by P(c↑) is defined as P(c↑) = P(c). The probability space (��, F�, P�)

induced by � ∈ Sched(s0) is defined as follows: 2

(1) �� = SPathm(s0, �).
(2) F� is the smallest sigma-algebra on SPathm(s0, �) that contains all basic cylinders c↑ for c a finite scheduled

�-path.
(3) P� is a probability measure on F�, and is completely defined by P(·).

Let CT(s0, �) be a computation tree for graph x. Recall that every node in CT(s0, �) is a finite path in x starting in
s0. We say that a node t of x appears (or, it has an appearance) in CT(s0, �) if there is a node c in CT(s0, �) such that
last(c) = t . In case we are also interested in the node c of CT(s0, �) that gives rise to an appearance of a node t of x
in CT(s0, �), we say that t is due to node c. In general, there may be more nodes c, c′ in CT(s0, �) to which t is due.
To distinguish between these, we sometimes reason about the occurrence tc when we mean that t is due to the node c

in CT(s0, �). Note that from the context, it is always clear whether we mean the node c in the computation tree or the
node t in the graph when we reason about a particular occurrence tc. We say that tc and tc′ are different occurrences of
t in CT(s, �) iff c �= c′.

Let tc be an occurrence of t due to node c in CT(s, �). Note that by definition, we have c ∈ Pathf (s) with last(c) = t .
The scheduler � that is used to obtain the computation tree CT(s, �) is said to induce a scheduler (�−c) ∈ Sched(t).
This scheduler is defined as follows:

for all paths c′ ∈ Pathf (t) (�−c)(c′) = �(c◦c′). (2)

Clearly, when we consider the path consisting of a single node s, we obtain (�−s)(c′) = �(c′) for all c′. This induced
scheduler (�−c) agrees with the original scheduler � ∈ Sched(s), but its “starting” node is shifted towards some
other node, and therefore, it only defines a computation tree that starts in last(c). This means that the computation tree
CT(last(c), (�−c)) yields a subtree of the computation tree CT(s, �). Finally, we define the depth of an occurrence tc,
which is given by the depth of the node c in the computation tree.

The notions that we have introduced thus far are illustrated in Example 7.

2 Note that we here overload the notation P .
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Fig. 1. A graph with an unobservable self-loop.

Example 7. Consider the graph of Fig. 1 with initial node p. The graph is not fully probabilistic because of the non-
deterministic node n that has two outgoing non-deterministic transitions. It is also not a concrete graph because one of
the transitions is labelled with �.

The set of paths, starting in p is as follows:

Path(p) = {p, p 1 k} ∪ {p 1 k a q ( 1
2 n � q)i | i�0 }

∪ {p 1 k a q ( 1
2 n � q)i 1

2 n | i�0}
∪ {p 1 k a q ( 1

2 n �q)i 1
2 n b nil | i�0}

∪ {p 1 k a q ( 1
2 n � q)i 1

2 m | i�0}
∪ {p 1 k a q ( 1

2 n � q)i 1
2 m c nil | i�0}

∪ {p 1 k a q ( 1
2 n � q)�}

Among this set, the only infinite path is p 1 k a q ( 1
2 n � q)�; all remaining paths are finite. The maximal paths are the

infinite path and all paths that end in nil:

Pathm(p) = {p 1 k a q ( 1
2 n � q)i 1

2 n b nil | i�0}
∪ {p 1 k a q ( 1

2 n � q)i 1
2 m c nil | i�0}

∪ {p 1 k a q ( 1
2 n � q)�}

To illustrate the effect of a particular scheduler on the set of paths of a graph we consider the following scheduler:{
�1(p 1 k) = k

a→ q

�1(c) undefined for other finite paths c.

Note that we have left some parts of the definition of �1 implicit: finite maximal paths and paths ending in non-
deterministic nodes are not (correctly) covered by �1. By our convention (see Definition 4), �1 assigns ⊥ to those paths
when they are not explicitly defined. The set of scheduled paths is:

SPath(p, �1) =
{
p, p 1 k, p 1 k a q, p 1 k a q 1

2 n, p 1 k a q 1
2 m

}
.

The subset of maximal scheduled paths is

SPathm(p, �1) =
{
p 1 k a q 1

2 n, p 1 k a q 1
2 m

}
.
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Remark that the scheduler is undefined for p 1 k a q. This does not mean, however, that the scheduling stops at this
point. On the contrary, it is defined for all extensions of the path p 1 k a q, which are obtained using one of the specified
probabilistic transitions, in this case for the paths p 1 k a q 1

2 n and p 1 k a q 1
2 m.

The second scheduler we consider is slightly more involved, and we use it to illustrate the probability of sets of
paths. Let �2 be defined as follows:⎧⎪⎪⎪⎨

⎪⎪⎪⎩
�2(p 1 k) = k

a→ q

�2(p 1 k a q 1
2 n) = n

b→ nil

�2(p 1 k a q ( 1
2 n � q)10 1

2 n) = n
b→ nil

�2(c) undefined for other finite paths c.

We find that the set of scheduled paths is as follows:

SPath(p, �1) =
{
p, p 1 k, p 1 k a q, p 1 k a q 1

2 n, p 1 k a q 1
2 m, p 1 k a q 1

2 n b nil
}

.

Its subset of maximal scheduled paths is

SPathm(p, �1) =
{
p 1 k a q 1

2 n b nil, p 1 k a q 1
2 m

}
The probability P , for various paths is as follows: P((p)↑) = P((p 1 k)↑) = P((p 1 k a q)↑) = 1, while

P((p 1 k a q 1
2 n)↑) = 1

2 , P((p 1 k a q 1
2 n b nil)↑) = 1

2 and P((p 1 k a q 1
2 m)↑) = 1

2 . Note that even though
�2 is defined for a path such as p 1 k a q ( 1

2 n � q)10 1
2 n, this finite path is not a node in CT(p, �2), since it is not a

scheduled path by �2.
The last scheduler that we consider is defined as follows:⎧⎪⎪⎪⎨

⎪⎪⎪⎩
�3(p 1 k) = k

a→ q

�3(c) = n
�→ q if last(c) = n

�3(c) = p
c→ nil if c is such that last(c) = m

�3(c) undefined for other finite paths c.

Note that �3 is a simple scheduler, as it always schedules a non-deterministic transition on the basis of the last non-
deterministic node of the path. The set of scheduled paths is as follows:

SPath(p, �3) = {p, p 1 k} ∪ {p 1 k a q ( 1
2 n � q)i | i�0}

∪ {p 1 k a q ( 1
2 n � q)i 1

2 n | i�0 }
∪ {p 1 k a q ( 1

2 n � q)i 1
2 m | i�0 }

∪ {p 1 k a q ( 1
2 n � q)i 1

2 m c nil | i�0 } ∪ {p 1 k a q ( 1
2 n � q)�}

and

SPathm(p, �3) =
{
p 1 k a q ( 1

2 n � q)i 1
2 m c nil | i�0

}
∪
{
p 1 k a q ( 1

2 n � q)�
}

.

For every c ∈ SPathf (p, �3) we have c↑ = SPathm(p, �3) and P(SPathm(p, �3)) = 1. Furthermore, the node
n appears in the computation tree CT(p, �3). It has several different occurrences. For instance, consider the nodes
c1 ≡ p 1 k a q 1

2 n � q 1
2 n and c2 ≡ p 1 k a q 1

2 n � q 1
2 n � q 1

2 n in CT(p, �3). Then we say that the occurrences nc1

and nc2 are different occurrences of n in CT(p, �3).
Note that CT(p, �1) and CT(p, �2) are finite computation trees while CT(p, �3) is infinite.

2.3. Branching bisimulation

Strong bisimilarity is most appropriate when considering concrete graphs, but the equivalence is too fine in a setting
with abstraction. This is because it treats the unobservable event � as if it were any other observable event. While
abstraction is of utmost importance in the analysis of probabilistic systems, it is also one of the harder notions to grasp.
This is because the unobservable event (represented by the action �) plays an almost diabolical role: while the � itself
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Fig. 2. Branching bisimulation in a non-probabilistic setting.

may not be visible, its effect might be noted by the disabling or enabling of some observable events. For instance,
while the inspection of a coin that has been put in a coffee-machine may be unobservable, it manifests itself through a
(consistent) rejection of that particular coin. This illustrates that we cannot bluntly remove all � actions from a graph:
only the ones that do not manifest themselves may be removed. We call such � actions inert.

The equivalence relation we define in this section is called branching bisimilarity. It is strictly in between strong
bisimilarity and weak bisimilarity (for the latter see e.g. [18]). Branching bisimilarity enjoys several pleasing properties.
Unlike strong bisimilarity, it treats the inert � actions as unobservable. Further, in contrast to weak bisimilarity, it
preserves the non-deterministic branching structure of graphs. This is due to the fact that it differentiates between �
actions that are truly inert and � actions that are not really inert.

We briefly repeat one of the central ideas behind branching bisimulation from the non-probabilistic setting (see
e.g. [2,11]). The crucial point in that setting is that a node t can be related to a node s by a branching bisimulation

relation only whenever all (observable) transitions s
a→ s′ from node s can be matched by transitions t

�→ · · · �→ t ′′ a→ t ′
from node t such that t ′ can again be related to s′ by the branching bisimulation relation. Unlike in e.g. weak bisimulation
or delay bisimulation, it is required that this sequence of � transitions traverses through nodes that all can be related to
s (see Fig. 2). In our setting, the sequences of transitions readily translate to paths.

Before we turn to the definition of branching bisimulation, we fix some shorthand notation to ease notational burden
and to capture the ideas depicted by Fig. 2 in a formal framework. Let c be an arbitrary finite path. Then the path c

satisfies a path-predicate �, denoted by c sat �, is defined as follows for the following path-predicates:
(1) c sat s �⇒M s′ iff first(c) = s, last(c) = s′, trace(c) = �∗ and nodes(c) ⊆ M.
(2) c sat s �⇒M · a→ s′′ iff ∃c′ : c ≡ c′as′′ and c′ sat s �⇒M last(c′).
(3) c sat s �⇒M ·� s′′ iff ∃c′ ∃l ∈ (0, 1] : c ≡ c′ls′′ and c′ sat s �⇒M last(c′).

Note that by requiring that c is a finite path, we have last(c) = s′′ in the last two path-predicates. Moreover, we also
find that last(c′) a→ s′′ (resp. pr(last(c′), s′′) = l). The intuition behind the path-predicates is that a finite number of
nodes from the set M may be visited, provided that this does not require the execution of an observable action (unless,
as is stated for the second path-predicate, it is the last action and s′′ ∈ M).

Proposition 8. Let s, s′ ∈ Snil, a ∈ Act� and l ∈ (0, 1]. Let M ⊆ Snil be such that s ∈ M. Then
(1) s sat s �⇒M s.
(2) (s a s′) sat s �⇒M · a→ s′.
(3) (s l s′) sat s �⇒M ·� s′.

Let � be a scheduler, and let M, M′ be sets of nodes. Let B�(s
a�⇒M M′) be the set of all maximal �-scheduled

paths that start in s and silently (i.e. using � actions) traverse through a set of nodes M and reach a node in M′ by
executing a given a action (a ∈ Act�). More concretely, let B�(s

a�⇒M M′) be defined as follows:

B�(s
a�⇒M M′) = {c ∈ SPath(s, �) | �(c) = ⊥ and either

c sat s �⇒M · a→ s′, s′ ∈ M′, or

c sat s �⇒M ·� s′, s′ ∈ M′, a = �, or

c ≡ s, a = �, M = M′}. (3)

When a = �, we generally write B�(s �⇒M M′) instead of B�(s
��⇒M M′). Next, we overload the function � to

denote the normalised cumulative probability. Given two disjoint, non-empty sets of nodes M and M′ and a node
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Fig. 3. Two branching bisimilar graphs.

p ∈ M, the function �M(p, M′) is used to denote the probability of entering M′ from p (in one step) weighted by
the probability of remaining in M. Formally, we have

�M(p, M′) =
⎧⎨
⎩

�(p, M′)
1 − �(p, M)

if p ∈ P and �(p, M) �= 1.

0 otherwise.
(4)

Definition 9. Let x and y be graphs. Let N = Nx ∪ Ny, P = Px ∪ Py, S = Sx ∪ Sy and Snil = S ∪ {nil}. Let R be an
equivalence relation on Snil. R is a branching bisimulation relation when for all nodes s and t for which sRt holds,
we have
(1) if s ∈ N and s

a→ s′, then there is a scheduler � such that P(B�(t
a�⇒[t]R [s′]R)) = 1.

(2) if s ∈ P , then for some scheduler �, �[s]R(s, M) = P(B�(t �⇒[t]R M)) for all M ∈ Snil/R \ {[s]R}.
We say that x and y are branching bisimilar, denoted x ↔ b y, iff there is a branching bisimulation relation R on Snil,
such that sxRsy.

In words, branching bisimilarity requires all non-deterministic transitions (i.e. also the inert � transitions) emanating
from a node in an equivalence class to be schedulable from all nodes related to that node, with probability 1. We say that
all nodes in the same equivalence class have the same potentials. The second condition requires that a single scheduler
for a node can be used to simulate the normalised cumulative probability of a related probabilistic node. This particular
scheduler can be employed to find a “silent” path (i.e. a path with unobservable actions only) through a set of nodes
that are related to the originating node before it leaves this class of nodes and reaches another equivalence class. This
last step is done either via the execution of another � action or by a probabilistic transition.

Example 10. Consider the two graphs of Fig. 3. We find that the two graphs are branching bisimilar. For instance, the
non-deterministic node k and the probabilistic node p′ are in the same equivalence class. This can be seen as follows.
Say R is the branching bisimulation relation. We have �[p′]R(p′, [n′]R) = �[p′]R(p′, [m′]R) = 1

2 . To mimic these

probabilities, we can define a scheduler � ∈ Sched(k) as follows:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

�(k (� p 1
5 k)i) = k

�→ p for all i�0,

�(k � p ( 1
5 k � p)i 2

5 n) = ⊥ for all i�0,

�(k � p ( 1
5 k � p)i 2

5 m) = ⊥ for all i�0,

�(c′) is undefined for any other finite path c′.
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Using this scheduler, we find that P(B�(k �⇒[k]R [n]R)) = P(B�(k �⇒[k]R [m]R)) = 1
2 . To see that node p′ is in

the same equivalence class as node k, we must show the existence of a scheduler that mimics the non-deterministic
�-transition of node k with probability 1. This boils down to preventing p′ from leaving its own class, which is achieved
by the scheduler � ∈ Sched(p′), defined as �(p) = ⊥. Nota Bene: in Section 7, we use the same example to illustrate
that using branching bisimulation in the non-alternating setting, the two graphs are not branching bisimilar. The crux
turns out to be the non-deterministic node k.

3. Branching bisimulation: Maximal probabilities and decidability

Finding a branching bisimulation relation between two graphs can be quite hard. The culprit is the fact that in both
conditions of the branching bisimulation relation definition, a quantification over an infinite set of schedulers appears.
From this set, a scheduler must be picked that meets the conditions of the bisimulation relation. Moreover, this feat
must be repeated for all nodes of the two graphs, making the entire process of checking for branching bisimulation
rather cumbersome and even problematic to automate.

As we will show in this section, the above problems are not insurmountable. For instance, Philippou et al. [18]
showed that weak bisimilarity can be rephrased in terms of maximal probabilities. Since branching bisimulation and
weak bisimulation are closely related, this raises the question whether also branching bisimulation might be rephrased
in terms of maximal probabilities. In Section 3.2 we give an affirmative answer to this question. This result allows us
to narrow down the choice of schedulers to those schedulers that induce maximal probabilities.

This result is at the basis of a decision procedure for branching bisimulation. Instead of the infinite set of schedulers
that must be checked in Definition 9, we can now narrow down the search criterion to those schedulers that induce a
maximal probability.

We first introduce some auxiliary notation in Section 3.1. Some of this notation will only be used in the main proofs in
Section 3.2, in which we show that Definition 9 can be rephrased in terms of maximal probabilities. Then, in Section 3.3
we provide results for deciding branching bisimulation, together with the algorithm for doing so.

3.1. Preliminaries

For the remainder of this section, we fix a graph x. Let a ∈ Act� and M, M′ ⊆ Snil, and let s ∈ Snil. In Section 2.3
(Eq. 3), we introduced the notation B�(s

a�⇒M′ M) for a set of scheduled paths that silently traverse through M′
before executing action a and reaching M. The probability of this set of paths is highly dependable on the scheduler
�. Given that the set of probabilities is ordered, we can search for the maximal probability among this set by selecting
an appropriate scheduler. We introduce the following notation:

Pmax(s
a�⇒M′ M)

def= max
�∈Sched(s)

P(B�(s
a�⇒M′ M)). (5)

If a = � we omit a and we simply write Pmax(s �⇒M′ M). Note that even though the maximal probability is a unique
number, this does not mean that there is necessarily a single scheduler that induces this maximal probability.

The following series of propositions are useful in understanding the interplay between maximal probabilities, branch-
ing bisimulation and (operations on) schedulers.

Proposition 11. Let R be a branching bisimulation relation on Snil. Let a ∈ Act� be an action and let M ∈ Snil/R
be an equivalence class. For all nodes s ∈ Snil with Pmax(s

a�⇒[s]R M) = 0 we find that for every t ∈ [s]R,

Pmax(t
a�⇒[t]R M) = 0.

Proof. The result follows directly from the definition of branching bisimulation. Namely, the existence of a node
t ∈ [s]R for which Pmax(t

a�⇒[t]R M) > 0 is in immediate conflict with the assumptions Pmax(s
a�⇒[s]R M) = 0

and sRt . �
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Now let us assume that R is an equivalence relation on Snil. Let a ∈ Act� and M ∈ Snil/R. Let � ∈ Sched(s) be a

scheduler such that Pmax(s
a�⇒[s]R M) = P(B�(s

a�⇒[s]R M)). Let t be a node in x such that sRt and let tc be an
occurrence in the computation tree CT(s, �).

Proposition 12. Let (�−c) ∈ Sched(t) be the scheduler induced by �, as defined in Section 2.2. Then Pmax(t
a�⇒[t]R

M) = P(B(�−c)(t
a�⇒[t]R M)).

Proof. We prove this by contradiction. Assume that Pmax(t
a�⇒[t]R M) > P(B(�−c)(t

a�⇒[t]R M)). This implies

Pmax(s
a�⇒[s]R M) > P(B�(s

a�⇒[s]R M)) which contradicts our assumption that � induces maximal probabilities.

Therefore, we find that Pmax(t
a�⇒[t]R M) = P(B(�−c)(t

a�⇒[t]R M)), which finishes the proof. �

Vice versa, assume that � ∈ Sched(t) is such that Pmax(t
a�⇒[t]R M) = P(B�(t

a�⇒[t]R M)), i.e. � induces the
maximal probability of reaching M from t . Let � be as defined above, and let �+ ∈ Sched(s) be the scheduler defined
as follows:{

�+(c) = �(c) if c is such that t /∈ nodes(c),
�+(c) = �(c2) if ∃c1 : c ≡ c1◦c2 with t /∈ nodes(c1) and first(c2) = t.

Proposition 13. We find Pmax(s
a�⇒[s]R M) = P(B�+(s

a�⇒[s]R M)) = P(B�(s
a�⇒[s]R M)).

The remaining shorthand notations and propositions are used mainly in the proofs that appear in the next two sections.
As such, they can be skipped on first reading this paper.

Definition 14. Let s, t ∈ Snil be arbitrary nodes, and let � ∈ Sched(s) be a scheduler starting in node s. Let M, M′ ⊆
Snil be subsets of Snil. We introduce the following two shorthands:

B�(s
a�⇒M−t M′) def= {c ∈ B�(s

a�⇒M M′) | c ≡ s or c ≡ (s l s′)◦c′ for some l ∈ Act� ∪ (0, 1],
s′ ∈ Snil and path c′ satisfying t /∈ nodes(c′)}.

and

B�(s
a�⇒M+t M′) def= B�(s

a�⇒M M′) \ B�(s
a�⇒M−t M′).

In words, B�(s
a�⇒M−t M′) denotes the subset of B�(s

a�⇒M M′) containing all paths that do not pass through
t ; if s = t then it starts in t but it never returns to node t again. The complement of this set is given by the subset
B�(s

a�⇒M+t M′), which contains all paths that do pass through t at least once after leaving the root node. Now,
when s = t it denotes the set of paths that start in t and that returns to t at least once more.

Proposition 15. For all s, t , a, M, M′ and �:

P(B�(s
a�⇒M M′)) = P(B�(s

a�⇒M−t M′)) + P(B�(s
a�⇒M+t M′)).

Proof. Standard result from probability theory. �

Proposition 16. If for some � ∈ Sched(s), we find Pmax(s
a�⇒[s]R M) = P(B�(s

a�⇒[s]R M)) > 0 then there

is an occurrence sc in CT(s, �), satisfying P(B(�−c)(s
a�⇒[s]R−s M)) > 0.

Proof. By assuming that for every occurrence sc in CT(s, �) we have P(B(�−c)(s
a�⇒[s]R−s M)) = 0 we obtain

that each path starting in the root s contains countably infinitely many different occurrences sci
and therefore it never

reaches M. Then, B�(s
a�⇒[s]R M) = ∅ and therefore, Pmax(s

a�⇒[s]R M) = 0. �
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Corollary 17. Let � be as defined in Proposition 16. Then for any occurrence sc in CT(s, �), we find
B(�−c)(s

a�⇒[s]R M) �= ∅ and hence P(B(�−c)(s
a�⇒[s]R M)) > 0.

3.2. Branching bisimulation using maximal probabilities

Using the concept of maximal probabilities as outlined in the previous section, we show that the definition of branching
bisimulation can be rewritten to an equivalent definition in which we employ the notion of maximal probabilities. This
is stated by the following theorem.

Theorem 18. Let x and y be two graphs, and denote the set of their nodes by S. Let Snil = S ∪{nil}. Then, a relation R
on Snil is a branching bisimulation relation iff the following two conditions are met for all nodes s, t ∈ Snil satisfying
sRt :
(1) Pmax(s

a�⇒[s]R M) = Pmax(t
a�⇒[t]R M) for all a ∈ Act and M ∈ Snil/R.

(2) Pmax(s �⇒[s]R M) = Pmax(t �⇒[t]R M) for all M ∈ Snil/R \ {[s]R}.

The remainder of this section is devoted to proving the above theorem. The two directions of the proof will be
discussed separately. For the implication, we prove that branching bisimilar nodes have the same maximal probabilities
of executing actions or reaching other equivalence classes. Due to the different way in which branching bisimulation
treats the unobservable event � and observable actions a ∈ Act, we split the proof for our claim for these two classes
of events. In Lemma 19 we deal with the � transitions and in Lemma 21 we prove the claim for actions a ∈ Act.
Lemma 22 states that by requiring equal maximal probabilities we also obtain a branching bisimulation relation.

Fix two graphs x and y, and denote the set of their probabilistic nodes by P and the set of their non-deterministic
nodes by N . We write S = P ∪ N and Snil = S ∪ {nil}.

Lemma 19. Let R be a branching bisimulation on Snil and C ∈ Snil/R.
i. If s, t ∈ C, then Pmax(s �⇒C M) = Pmax(t �⇒C M), for all M �= C.

ii. If s ∈ P ∩ C and �(s, C) �= 1 then for all M ∈ Snil/R with M �= C, Pmax(s �⇒C M) = �C(s, M).

Proof. We first show that by employing claim (i), the second claim follows straightforwardly. We then proceed to
prove claim (i).

(ii) We distinguish two cases. Suppose �(s, C) = 0. In this case, the claim follows immediately. Now, suppose that
�(s, C) �= 0, then using claim (i) we find:

Pmax(s �⇒C M) = �(s, M) + ∑
s′∈C

pr(s, s′) · Pmax(s
′ �⇒C M)

= �(s, M) + Pmax(s �⇒C M) · ∑
s′∈C

pr(s, s′)

= �(s, M) + Pmax(s �⇒C M) · �(s, C)

from which we obtain: Pmax(s �⇒C M) = (�(s, M))/(1 − �(s, C)) = �C(s, M). We next focus on the proof of
claim (i), which together with the above line of reasoning finishes the proof for claim (ii).
(i) Consider an arbitrary equivalence class C ∈ Snil/R. We observe that claim (i) follows immediately when |C| = 1,

so the interesting case is when |C| > 1. So, assume that |C| > 1.
We first focus on the non-deterministic nodes in class C: assume that n ∈ C ∩ N . If Pmax(n �⇒C M) �= 0, then

either n
�→ p for some p ∈ M or n

�→ p for some p ∈ C ∩P . In the first case, Pmax(n �⇒C M) = 1 and therefore (by
definition of branching bisimulation) for all other t ∈ C, Pmax(t �⇒C M) = 1, and the result follows. In the second

case, Pmax(n �⇒C M) = max{ Pmax(p �⇒C M) | n
�→ p and pRn}. In other words, for some pn ∈ C ∩ P such that

n
�→ pn, we find:

Pmax(n �⇒C M) = Pmax(pn �⇒C M). (6)

Consequently, it suffices to investigate probabilistic nodes only. Let us assume that there is a node s in C with
the highest maximal probability to reach M among the other nodes in C and that there is a node t ∈ C with the
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strictly smaller maximal probability to reach M. We will show that the assumption that such a node t exists leads to
contradiction. Formally, let us assume that

∃ s ∈ C ∩ P : ∀s′ ∈ C : Pmax(s �⇒C M)�Pmax(s
′ �⇒C M) ∧ ∃t ∈ C : Pmax(s �⇒C M) > Pmax(t �⇒C M).

(7)

Depending on the probability of s to leave the class C in one transition (i.e. the value of �(s, C)) we distinguish three
cases. We show that each case leads to a contradiction of assumption (7).
(= 0:) Assume that �(s, C) = 0. From the definition of branching bisimulation we immediately obtain Pmax(s �⇒C

M) = �(s, M), since by all transitions emanating from s the class C is left. Since t ∈ C, again by the definition
of branching bisimulation there is a scheduler �t ∈ Sched(t) such that P(B�t (t �⇒C M)) = �(s, M), from
which we obtain

Pmax(t �⇒C M)�Pmax(s �⇒C M).

But this leads to an immediate violation of assumption (7).
(�= 0:) Assume that 0 < �(s, C) < 1. Then:

Pmax(s �⇒C M) = �(s, M) + ∑
s′∈C

pr(s, s′) · Pmax(s
′ �⇒C M)

= �(s, M) + ∑
s′∈C,pr(s,s′)>0

pr(s, s′) · Pmax(s
′ �⇒C M)

��(s, M) + �(s, C) · Pmax(s �⇒C M).

Hence, Pmax(s �⇒C M)�(�(s, M))/(1 −�(s, C)) = �C(s, M). But by the definition of branching bisimula-
tion and the fact that sRt we find that there is a scheduler �t ∈ Sched(t) such that P(t �⇒C M) = �C(s, M).

Hence, we obtain

Pmax(t �⇒C M)�Pmax(s �⇒C M).

This is again in contradiction with assumption (7).
(= 1:) Assume that �(s, C) = 1. Then

Pmax(s �⇒C M) = ∑
n:s� n

pr(s, n) · Pmax(n �⇒C M)

Now, assume that there is a node s′ ∈ C such that s� s′ and Pmax(s �⇒C M) > Pmax(s
′ �⇒C M).

Together with assumption (7) and using the fact that
∑

n:s� n pr(s, n) = �(s, C) = 1 we immediately arrive at
a contradiction:

Pmax(s �⇒C M) = ∑
n:s� n

pr(s, n) · Pmax(n �⇒C M) <
∑

n:s� n

pr(s, n) · Pmax(s �⇒C M)

= Pmax(s �⇒C M).

Therefore, we have that for all n ∈ C such that s� n

Pmax(s �⇒C M) = Pmax(n �⇒C M). (8)

We continue by assuming that � ∈ Sched(s) is a scheduler that yields Pmax(s �⇒C M). We now consider
the computation tree CT(s, �). We will first show that all nodes from C that appear in CT(s, �) have the same
maximal probability as s to (silently) reach M. Clearly, it is possible that not all nodes from C appear in CT(s, �).
In order to prove the claim for those nodes, we show that at least for one probabilistic node s′ which appears in
CT(s, �), �(s′, C) �= 1 holds. Then the result follows from the previous two cases that we considered.
First we observe that for every node p that appears in CT(s, �) the scheduler � induces at least one scheduler
�p ∈ Sched(p) satisfying:

Pmax(p �⇒C M) = P(B�p (p �⇒C M)). (9)
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Second, let pn be a probabilistic node in CT(s, �) with depth 3, that is, s� n and n
�→ pn for some n. (Note that

this means that for a path s l n, the scheduler � schedules transition n
�→ pn, that is, �(s l n) = n

�→ pn.) We
identify the node pn in the graph with the node s l n �pn in the computation tree CT(s, �). Clearly, P(B�n(n �⇒C
M)) = P(B�pn

(pn �⇒C M)). Moreover, from (9) it follows that Pmax(n �⇒C M) = P(B�n(n �⇒C M))

and Pmax(pn �⇒C M) = P(B�pn
(pn �⇒C M)). According to Eq. (8), Pmax(s �⇒C M) = Pmax(n �⇒C

M). From this, we can conclude that Pmax(s �⇒C M) = P(B�pn
(pn �⇒C M)) = Pmax(pn �⇒C M).Using

induction on the depth of the probabilistic node in CT(s, �) the claim that for every node s′ that appears in
CT(s, �), Pmax(s

′ �⇒C M) = Pmax(s �⇒C M) can be shown to hold.
For the nodes that do not appear in CT(s, �), we proceed as follows: Now, if we assume that for every node
s′ that appears in CT(s, �), �(s′, C) = 1 holds, then we obtain that Pmax(s �⇒C M) = 0 which contradicts
(7). Therefore, there is a node p that appears in CT(s, �) with �(p, C) < 1 and for which Pmax(p �⇒C M) =
Pmax(s �⇒C M) as proven above. The conclusion follows from the previous analysis.

Summarising, we conclude that assumption (7) leads to a contradiction. Hence, we have proven that the following
claim holds:

∀s, s′ ∈ C : Pmax(s �⇒C M) = Pmax(s
′ �⇒C M). � (10)

Lemma 19 shows that all nodes in one equivalence class have the same maximal probabilities to reach another
class M via a set of �-paths. Moreover, this maximal probability equals the normalised cumulative probability of
reaching that class. Henceforth, we use the notation Pmax(s �⇒[s]R M) and �[s]R([s]R, M) interchangeably for
all s ∈ Snil.

Proposition 20. Let R be a branching bisimulation relation on Snil and let C ∈ Snil/R. If there is a node n ∈ C such

that n
a→ p for a �= �, then �C(C, M) = 0 for all equivalence classes M ∈ Snil/R satisfying M �= C.

Proof. This follows from the definition of branching bisimulation. (Hint: we can conclude that for each q ∈ P ∩ C if
q� n′ then n′ ∈ C.) �

From this proposition, we immediately find the following lemma, which together with Lemma 19 wraps up the proof
for the implication part of Theorem 18.

Lemma 21. Let R be a branching bisimulation relation on Snil, and let a ∈ Act. If sRt , then Pmax(s
a�⇒[s]R M) =

Pmax(t
a�⇒[t]R M).

Proof. From Proposition 20 it follows that for every node s, all actions a ∈ Act and equivalence classes M,
Pmax(s

a�⇒[s]R M) = 0 or Pmax(s
a�⇒[s]R M) = 1. The claim then follows immediately. �

Next, we focus on the proof of the contraposition of Theorem 18. We repeat this part of the theorem as Lemma 22.

Lemma 22. Let R be an equivalence relation on Snil. Then R is a branching bisimulation relation if for all nodes
s, t ∈ Snil, for which sRt holds, the following two conditions are met:

i. Pmax(s
a�⇒[s]R M) = Pmax(t

a�⇒[t]R M) for all a ∈ Act and M ∈ Snil/R.
ii. Pmax(s �⇒[s]R M) = Pmax(t �⇒[t]R M) for all M ∈ Snil/R \ {[s]R}.

Proof. Assume that R satisfies the conditions of the above lemma. We need to prove that R satisfies the two conditions
of Definition 9.
a. Let sRt , s ∈ N and s

a→ s′. Hence, Pmax(s
a�⇒[s]R [s′]R) = 1. From the first condition (i) it follows that

Pmax(t
a�⇒[t]R [s′]R) = 1 as well, which (directly) implies the correctness of the first condition of Definition 9.

b. Let s ∈ P and sRt . We distinguish two cases:
b.1 Assume that �(s, [s]R) = 1. Then �(s, M) = 0 for all M ∈ Snil/R \ {[s]R}. We define a scheduler � ∈

Sched(t) as �(t) = ⊥. Then P(B�(t �⇒[t]R M)) = 0 and therefore, �[s]R(s, M) = P(B�(t �⇒[t]R M))

for all M ∈ Snil/R \ {[s]R}.
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b.2 Assume that �(s, [s]R) < 1 and M ∈ Snil/R \ {[s]R}. Then

Pmax(s �⇒[s]R M) = �(s, M) + �(s, [s]R) · Pmax(s �⇒[s]R M)

from which we derive

Pmax(s �⇒[s]R M) = �[s]R(s, M). (11)

Subcase b.2.1: Assume that there is an n ∈ [s]R∩N such that n
�→ M. Since Pmax(n �⇒[n]R M) = 1 it follows that

Pmax(s �⇒[s]R M) = 1 as well. Moreover, from (11) we have that �[s]R(s, M) = 1. Therefore, �[s]R(s, M′) = 0 for
M′ �= M and M′ �= [s]R, since �[s]R(s, ·) is a probability mass function over set Snil \ [s]R. 3 Hence, using (11) we
obtain Pmax(s �⇒[s]R M′) = 0 for every M′ ∈ Snil/R \ {[s]R, M}. Then sRt implies Pmax(t �⇒[t]R M) = 1 and
Pmax(t �⇒[t]R M′) = 0. We take a scheduler � ∈ Sched(t) such that P(B�(t �⇒[t]R M)) = Pmax(t �⇒[t]R M)

for which P(B�(t �⇒[t]R M′)) = 0, M �= M′ and M′ �= [s]R, since this holds for any scheduler in Sched(t). Thus
� is the required scheduler in the second condition of Definition 9.

Subcase b.2.2: We next analyse the case in which for all n ∈ [s]R ∩ N , n
�→ s′ implies nRs′. We aim to show

that all maximal probabilities Pmax(t �⇒[t]R M), for M ∈ Snil/R \ {[s]R}, can be obtained by a single scheduler
� ∈ Sched(t). This, together with (11), brings the proof to an end.

First, we sketch the approach we take. Given two arbitrary equivalence classes M1 (M1 �= [t]R) and M2 (M2 �=
[t]R), we show that if one scheduler induces the maximal probability Pmax(t �⇒[t]R M1) then the same scheduler
also induces the maximal probability Pmax(t �⇒[t]R M2). This procedure can be extended and generalised over all
equivalence classes Mi ∈ Snil/R \ {[s]R} for which Pmax(t �⇒[t]R Mi ) > 0.

So, assume that M1, M2 ∈ Snil/R \ {[t]R} with Pmax(t �⇒[t]R M1) > 0 and Pmax(t �⇒[t]R M2) > 0. Let
�1, �2 ∈ Sched(t) and P(B�1

(t �⇒[t]R M1)) = Pmax(t �⇒[t]R M1) and P(B�2
(t �⇒[t]R M2)) = Pmax(t �⇒[t]R

M2). Now let us consider the computation trees CT(t, �1) and CT(t, �2). Note that both computation trees have t as
a root. Assume that schedulers �1 and �2 schedule the same transitions up to a node with depth k. In addition, we
assume that all nodes with depth k for which �1 and �2 schedule differently are ordered by <k . Suppose that nk1 is the
least node (by the ordering) with depth k for which �1(c) �= �2(c) where nk1 occurs in both CT(t, �1) and CT(t, �2)
due to a node c in both computation trees (this node c is a path c ∈ SPath(t, �1) ∩ SPath(t, �2) and hence a node
in both computation trees, because we have assumed that both schedulers �1 and �2 schedule in the same way for all
prefixes of the path c). Clearly, last(c) = nk1. Moreover, nk1 is a nondeterministic node as �1 and �2 cannot schedule

a probabilistic node differently! Let us assume �1(c) = nk1
�→ p1 and �2(c) = nk1

�→ p2. From our assumption we
have that p1, p2 ∈ [t]R. Therefore,

Pmax(p
1 �⇒[t]R M2) = Pmax(p

2 �⇒[t]R M2) = Pmax(t �⇒[t]R M2).

Thus, there is a scheduler �(1)
2 ∈ Sched(p1) for which we have P(B�(1)

2
(p1 �⇒[t]R M2)) = Pmax(p

1 �⇒[t]R M2).

Now we have two schedulers: (�1−c�p1), which we denote by �(1)
1 , and �(1)

2 in Sched(p1). For these schedulers, we
find Pmax(p

1 �⇒[t]R M1) = P(B�(1)
1

(p1 �⇒[t]R M1)) and Pmax(p
1 �⇒[t]R M2) = P(B�(1)

2
(p1 �⇒[t]R M2))

and �(1)
1 (c) = �(1)

2 (c) = nk1
�→ p1 (note that we have preferred the transition scheduled by �1 over the transition

scheduled by �2). Moreover, p1 is “closer” to M1 and M2 than the root (t) of CT(t, �1) and CT(t, �2) in the sense that
all paths that start at t and reach M1 or M2 in CT(t, �1) or CT(t, �2), respectively are finite. Note that the set of infinite
paths that are part of the computation trees have probability measure 0, and hence, we do not need to consider those.
The procedure continues by comparing the schedulers �(1)

1 and �(1)
2 in the same way we have done it with �1 and �2.

Remark that node p1 cannot be processed further until all nondeterministic nodes with depth k have been investigated
for �1 and �2.

3 This probability mass function describes a discrete random variable X representing a node reached in one probabilistic transition from s under
the condition that the class [s]R is left.
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If transitions scheduled by �(m)
1 , m�1 (which are all basically induced by the scheduler �1) are always chosen over

transitions by any other scheduler in consideration, we obtain that �1 induces the maximal probability Pmax(t �⇒[t]R
M2) as well. �

Proof of Theorem 18. Follows immediately from Lemmata 19 and 21. �

As a result of Theorem 18, we find the following corollary, which states that branching bisimilarity is an equivalence
relation on the set of all graphs.

Corollary 23. ↔ b is an equivalence relation on G.

3.3. Deciding branching bisimulation

In this section, we extend the result that we obtained in the previous section. More concretely, we show that the
alternative definition of branching bisimulation in terms of maximal probabilities is at the basis for deciding branching
bisimulation. In line with the results obtained by Philippou et al. [18], we show that it suffices to consider a finite subset
of all possible schedulers for a given graph. Whereas in [18], so-named determinate schedulers are introduced and used,
we draw our attention to an even smaller class of schedulers, viz. the class of simple schedulers (see also Section 2.2).
Remark that the computation tree under a simple scheduler can always be represented by a fully probabilistic graph,
even when the computation tree itself may be of infinite size. This fact can be used to show that deciding branching
bisimulation amounts to solving a linear optimisation problem.

We proceed as follows. First, the main theorem of this section is stated and proved, showing that among the schedulers
that induce maximal probabilities, there is always at least one simple scheduler.

Theorem 24. Let x be a graph. We denote the set of its nodes by S and Snil = S ∪ {nil}. Let R be a branching
bisimulation relation on Snil. Let s ∈ Snil, a ∈ Act� and M ∈ Snil/R. Then, there is a simple scheduler �′ such that

Pmax(s
a�⇒[s]R M) = P(B�′(s

a�⇒[s]R M)) when a �= � or M �= [s]R.

Proof. We show that from a given scheduler � with Pmax(s
a�⇒[s]R M) = P(B�(s

a�⇒[s]R M)) > 0 a scheduler

�′ can be derived such that Pmax(s
a�⇒[s]R M) = P(B�′(s

a�⇒[s]R M)) and which for all paths that end in a node

t (for some t) schedules the same transition. The case Pmax(s
a�⇒[s]R M) = 0 is trivial, so we assume that we have

Pmax(s
a�⇒[s]R M) > 0.

Let R be a branching bisimulation relation on Snil. Assume that scheduler � ∈ Sched(s) is such that Pmax(s
a�⇒[s]R

M) = P(B�(s
a�⇒[s]R M)). Assume that node t appears in CT(s, �). We distinguish between the case when t has

finitely many occurrences and the case where t has infinitely many occurrences in the computation tree.
(1) Suppose t has finitely many occurrences in CT(s, �): then there is an occurrence tc (i.e. t is due to c) in CT(s, �)

such that the appearance of t in the subtree of CT(s, �) with the root in c is only due to c. Or in terms of B
set, B(�−c)(t

a�⇒[t]R M) = B(�−c)(t
a�⇒[t]R−t M) where (�−c) is the scheduler in Sched(t) induced by � as

described in Section 2.2. Clearly, CT(t, (�−c)) does not have any occurrence of t except its root. Now, we can
define a scheduler �′ ∈ Sched(s) that schedules the same transitions to all paths that end at t .

�′(c) =
{

�(c) if t /∈ nodes(c),
(�−c)(c′′) if c ≡ c′◦c′′, first(c′′) = t and t /∈ nodes(rest(c′′)). (12)

Note that c′ may be t in which case c′◦c′′ = c′′.
(2) Suppose that t has infinitely many occurrences in CT(s, �). If there is a subtree of CT(s, �) with root in some

occurrence of t which does not contain any other occurrences of t , then we proceed in the same way as in the
previous case.
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Now assume that there is no such a subtree of CT(s, �). This means that for every occurrence of t in CT(s, �) there
is a path in CT(s, �) starting in this occurrence of t that passes infinitely many times through t . Note that this does
not mean that all paths starting in this occurrence of t have to pass infinitely many times through t . On the contrary,
according to Proposition 16 there is an occurrence tc in CT(s, �), such that P(B(�−c)(t

a�⇒[t]R−t M)) > 0.
Now we focus out attention on the tree CT(t, (�−c)). For short let us denote (�−c) by �. Let us enumerate all
(different) occurrences tci

, i > 0 in this tree where t is due to ci in CT(t, �). We define a function t-depth which
to every occurrence tci

in CT(t, �) assigns the number of times ci passes through t including the ending in t and
excluding the starting in t (i.e. the root of CT(t, �)). W.L.G. we can assume that CT(t, (�−ci)) = CT(t, (�−cj ))
if t-depth(ti) = t-depth(tj ). Thus we start with the computation tree CT(t, �). Then

P(B�(t
a�⇒[t]R M)) = P(B�(t

a�⇒[t]R−t M)) + P(B�(t
a�⇒[t]R+t M))

= P(B�(t
a�⇒[t]R−t M)) + P(ci) · P(B(�−ci )(t

a�⇒[t]R M)),

where (�−ci) is the scheduler in Sched(t) induced by � as described in Section 2.2. Moreover, P(B(�−ci )(t
a�⇒[t]R

M)) = Pmax(t
a�⇒[t]R M) = P(B�(t

a�⇒[t]R M)) = P(B�(s
a�⇒[s]R M)). Recall that ci denotes the unique

scheduled path from the root t to the occurrence tci
with t−depth 1 in CT(t, �). (According to our assumption there is

only one such an occurrence, otherwise the second summand would be
∑

t-depth(ci) = 1 P(ci)·P(B(�−ci )(t
a�⇒[t]R

M)).) Let us denote � = P(B(�−c)(t
a�⇒[t]R−t M)) and 	 = P(ci). Note that 	 �= 1 since � > 0. Now we obtain

easily that P(B(�−c)(t
a�⇒[t]R M)) = �/1−	.

We proceed by defining a scheduler �′ ∈ Sched(t) (which can easily be extended to a scheduler starting in s) that
schedules the same transitions to all paths that end in t :

�′(c◦t◦c′) def= (�−c)(t◦c′), where t /∈ rest(c′). (13)

Then

P(B�′(t
a�⇒[t]R M)) = P(B�′(t

a�⇒[t]R−t M)) + P(B�′(t
a�⇒[t]R+t M))

= P(B(�−c)(t
a�⇒[t]R−t M) + P(ci) · P(B�′(t

a�⇒[t]R M)).

from which P(B�′(t
a�⇒[t]R M)) = � + 	 · P(B�′(t

a�⇒[t]R M)) and finally,

P(B�′(t
a�⇒[t]R M)) = �

1 − 	
.

With this we have shown that Pmax(t
a�⇒[t]R M) = P(B�′(t

a�⇒[t]R M)). �
As we already mentioned, the above result holds the key to the algorithm of polynomial time complexity for deciding

branching bisimulation.
The algorithm for deciding branching bisimulation is similar to the algorithm for deciding weak bisimulation de-

scribed in [18]. Since the reader can find many details in that paper, we will not elaborate on those details here.
The technique that is employed by the algorithm uses the well-known partitioning technique (which is also used

in algorithms for deciding other bisimulation relations [12]). Starting from the trivial partition {Snil}, a sequence of
partitions of Snil is generated, each of them finer than any previous. The procedure is repeated until a partition that
corresponds to a branching equivalence is obtained. A partition is refined by means of a splitter.

Definition 25. Let 
 be a partition of Snil. The tuple (C, a, M), where C ∈ 
, a ∈ Act� and M ∈ 
, is a splitter of

 if there are s, s′ ∈ C for which Pmax(s

a�⇒C M) �= Pmax(s
′ a�⇒C M) where a �= � or M �= C.

In other words, a splitter (C, a, M) is found if the partition does not correspond to a branching bisimulation. Namely,
the class C contains two nodes that do not have the same maximal probability to reach the class M by executing a.
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Thus, C should be split into at least two classes in the next partition. The main algorithm is given below. It calls several
procedures that we explain afterwards.

Input: 〈N, P, s, Act, →, � , pr〉
Output: Snil/ ↔ b

Steps: 
 := {Snil};
(C, a, M) := FindSplit(
);
while C �= ∅ do


 := Refine(
, C, a, M)

(C, a, M) := FindSplit(
)

od
return 


The procedure FindSplit(
) for partition 
 finds and returns a splitter (C, a, M) if one exists and returns (∅, ε, ∅)

otherwise.

Input: 

Output: (C, a, M)

Steps: for a ∈ Act� do
for C ∈ 
 do

for M ∈ 
 do
for s, s′ ∈ C do

maxs := FindMax(s, a, M);
maxs′ := FindMax(s′, a, M);
if maxs �= maxs′ return (C, a, M)

od
od

od
od
return (∅, ε, ∅)

The function FindMax(s, a, M) computes the maximal probability to reach M from s by executing a. To this end
to each node s a variable X�

s is associated, and if a �= � a variable Xa
s as well. The variables are bound by the following

system of equations:

Xa
s =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∑
s

��t

� · Xa
t , s ∈ Sp, t ∈ [s]
,

1, s ∈ Sn, s ∈ M,

max{Xa
t | s

�→ t}, s ∈ Sn, s
a�−→ M, t ∈ [s]
,

0 otherwise,

X�
s =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1, s ∈ M,∑
s

��t

� · X�
t , s ∈ Sp, s /∈ M, t ∈ [s]
,

max{X�
t | s

�→ t}, s ∈ Sn, s /∈ M, t ∈ [s]
,

0 otherwise.

As explained in [18] a solution of a system in such a form can be found by solving a linear optimisation programming
problem. Namely, for all equations in the form X = max{Xi | i ∈ I } a set of inequalities X�Xi is introduced and then
the optimisation problem reduces to finding minimum of the function

∑
s∈S X�

s + Xa
s . This problem can be solved in

polynomial time in the number of variables that are involved.



S. Andova, T.A.C. Willemse / Theoretical Computer Science 356 (2006) 325 –355 343

4. Colours and blends

The focus of the previous section was on the understanding of the interplay between probabilities and functionality,
i.e. we looked at the notion of branching bisimulation from a rather quantitative point of view. In the remaining sections
of this paper, we investigate branching bisimulation from a different perspective, more focused on the qualitative aspects
of branching bisimulation.

We claimed, in our introduction (and repeated this in Section 2), that one of the pleasing properties of branching
bisimulation is that it preserves the potentials of a node, thereby preserving the non-deterministic branching structure
of the system. In the next sections, we add weight to this claim: we show how we can employ colours to code for the
potentials and prove that the observation of the colours of a node can be used to distinguish between inert transitions
and non-inert transitions.

Before we commence, we provide the mathematical underpinnings and notations to facilitate mathematical reasoning
about colours. Let C be a sufficiently large, but finite set of unique colours. A raw blend is a mix of colours in a particular
ratio, i.e. a raw blend b is a bag of pairs (c, �) ∈ C × (0, 1], with the sanity-condition

∑
(c,�)∈b � = 1. The set of all

raw blends is denoted Br , i.e. Br is a set of bags. In short, raw blends are built from fractions of colours, that together
add up to 1. Raw blends are necessarily represented by bags rather than sets, since we want to consider blends in
which the same quantity of a colour appears more than once (e.g. for a colour c ∈ C, we want to allow the raw blend
{(c, 1

2 ), (c, 1
2 )}). Note that we use ordinary set notation for bags, as, from the context it is always clear whether we are

dealing with bags or sets.
The function probe : Br × C → [0, 1], defined as bprobe c = ∑

(c,�)∈b �, yields the “weight” a colour c has in
the raw blend b. To test whether a colour actually occurs in a blend, we introduce the predicate b�c, which holds iff
bprobe c > 0. Thus, for a raw blend b and a colour c, the predicate b�c is true iff the colour c occurs with a positive
weight in blend b.

In the remainder of this paper, we use a subset of raw blends, simply called blends. A raw blend is a blend b iff for
all colours c, b�c implies (c, bprobe c) ∈ b. In other words, a colour occurs only once in a blend. Alternatively, a blend
can be seen as a partial function with domain C and co-domain (0, 1], thus representing a distribution of colours. Let
B be the set of blends. We have B ⊂ Br . Raw blends can be turned into blends using the operator � : Br → B. For a

raw blend b, the blend �(b) is given by the set �(b)
def= {(c, bprobe c) | for all c satisfying b�c}.

For reasons of convenience, we freely interpret a blend consisting of a single element as a colour (i.e. we write b ∈ C
iff |b| = 1), and a colour is interpreted as a blend (i.e. we think of the colour c as the blend {(c, 1)}).

5. Concrete coloured traces

Information that can be obtained from any (reactive) system is trace information. By this, we mean a sequence of
actions that are observed during execution of the system.

Definition 26. A concrete trace, starting in a node s of a graph x is a finite sequence of actions a1 a2 . . . an, (ai ∈ Act�)
for which there exists a finite path c, with first(c) = s and trace(c) = a1 a2 . . . an.

Note that both the probabilistic information and the non-deterministic branching structure are lost in such traces.
Hence, it may come as no surprise that an equivalence that is based on the comparison of the sets of concrete traces of
two systems is necessarily coarser (i.e. less discriminative) than strong bisimilarity.

We show that we can use colours and blends to recapture this information, and obtain a “decorated trace equivalence”
(in the sense of e.g. [3,8,14]) that coincides with strong bisimilarity. The colours can be used to encode the potentials
of the system in a node, while the blends can be used to encode the probabilistic information. Graphs that are endowed
with a colouring of their nodes are referred to as coloured graphs.

Definition 27. A coloured graph is a tuple 〈x, �〉, where x is a graph and � is a labelling function, assigning blends or
colours to the nodes of x.

We next consider “decorated traces” of a coloured graph. We assume that we can observe the colours and blends
of the nodes (but not the probabilistic and the non-deterministic branching structure of the graph). In other words, by
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Fig. 4. Graph x.

Fig. 5. Graph y.

executing the system, we can observe sequences of blends, colours and actions. We refer to such decorated traces as
concrete coloured traces.

Definition 28. Let 〈x, �〉 be a coloured graph. A concrete coloured trace, starting in a node s ∈ Snil is a sequence of
one of the following forms:
(1) �(s) is a concrete coloured trace for s = nil.
(2) b′

0 a1 b1 b′
1 . . . am+1 bm+1 when s ∈ N and there is at least one path c ≡ n0 a1 p1 . . . nmam+1 pm+1 with

trace(c) = a1 . . . am+1, first(c) = s = n0 and for all 1� i�m + 1, �(pi) = bi and �(ni−1) = b′
i−1.

(3) �(s) u when s ∈ P , s� n for some n ∈ N and u is a concrete coloured trace starting in n.

In our coloured graphs, we use colours as an indication for the potentials of a node. This suggests that we should
distinguish between informative colourings and non-informative colourings. We make the following observations:
(1) In the non-probabilistic case colours suffice (see e.g. [2,11]) to code for the potentials of a node.
(2) For each node p ∈ P , the cumulative probability �(p, M) can be seen as a function that assigns values to each

partition of the set of nodes. This roughly corresponds to the notion of a blend.
This leads us to consider a subset of coloured graphs in which non-deterministic nodes are labelled with colours and
probabilistic nodes are labelled with blends that encode the probability distributions over successor nodes.

Definition 29. A properly coloured graph is a coloured graph 〈x, �〉 where � satisfies:
(1) all nodes n ∈ Nnil are labelled with a colour �(n) ∈ C.
(2) all nodes p ∈ P are labelled with the blend �({(�(n), pr(p, n)) | p� n}).

We say that the colouring of a coloured graph is proper to indicate that we are in fact dealing with a properly coloured
graph.

The assumption that we can use colours to code for the potentials in a graph is not immediately vindicated. For
instance, assigning the same colour to nodes from which different actions are possible conflicts with the idea that
colours code for the potentials of a node. To rule out such situations, we distinguish between colourings that respect our
assumption and those that violate our assumption. Colourings that respect our assumption are referred to as consistent.
Formally, given a set of graphs, we say that the colouring of their nodes is consistent iff non-deterministic nodes have
the same colour and probabilistic nodes have the same blend only if they have the same concrete coloured trace sets.

Example 30. The graph x = 〈{n}, {p}, p, {a}, n a→ p, p� n, pr(p, n) = 1〉, depicted in Fig. 4 can have many con-
sistent colourings.

For instance, the colouring � that assigns the colour blue to all nodes is consistent and proper. The colouring � that as-
signs the colour blue to noden and the “blend” yellow top is consistent but not proper. Generalising, a coloured graph that
is coloured using a trivial colouring, i.e. a colouring that assigns different colours to each node, is consistently coloured

(but almost never properly coloured). The graph y = 〈{n, m}, {p, q}, p, {a, b}, {n a→ q, m
b→ p}, {p� n, q�m},

{pr(p, n) = pr(q, m) = 1}〉, depicted in Fig. 5 has a non-proper and non-consistent colouring �, assigning blue to all
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nodes. The same graph also admits a proper and consistent colouring �. For instance, take � such that it assigns blue to
nodes p and n, and yellow to nodes q and m.

Definition 31. Graphs x and y are concrete coloured trace equivalent, notation x ≡cc y if for some consistent, proper
colouring �, 〈x, �〉 and 〈y, �〉 have the same concrete coloured traces, or, equivalently, their root nodes have the same
colour or blend.

Concrete coloured trace equivalence is an equivalence relation on graphs. In fact, we next establish a firm relation
between concrete coloured trace equivalence and strong bisimilarity. First, we show that concrete coloured trace
equivalence is at least as discriminating as strong bisimilarity, i.e. graphs that are strong bisimilar are also concrete
coloured trace equivalent.

Lemma 32. For all x and y, x ↔ y implies x ≡cc y.

Proof. Let x and y be graphs. We denote the union of their nodes by S, the union of their non-deterministic nodes
by N and the union of their probabilistic nodes by P . We denote the union of S and the special termination node
nil by Snil.

Assume x ↔ y. Let R be the largest strong bisimulation relation on Snil that only relates probabilistic nodes to
probabilistic nodes and non-deterministic nodes to non-deterministic nodes; nil is related to itself. Let  : Snil/R → B
be a total, injective mapping with the following two characteristics:
(1) (M) ∈ C when M ⊆ Nnil,
(2) (M) = �({((M′), �(M, M′)) | �(M, M′) �= 0}) when M ⊆ P .

This mapping is well-defined. Now, consider the coloured graphs x and y that are obtained by colouring all nodes
with the colour of their equivalence classes. Formally, we define the coloured graphs 〈x, �〉, 〈y, �〉 where � is defined
as �(s) = ([s]R). By definition of , � yields properly coloured graphs. By construction, the root nodes of 〈x, �〉 and
〈y, �〉 have the same colour. Hence, it suffices to show that � is a consistent colouring. We distinguish two cases.
(1) First, we show that non-deterministic nodes that have the same colour, also have the same sets of concrete coloured

traces. Let n0, n1 ∈ N be two arbitrary nodes with �(n0) = �(n1). Then, by definition of � and injectivity of ,
we know that n0Rn1. Let b′

0 a1 b1 b′
1 . . . am bm be a concrete coloured trace starting in n0. Since b′

0 a1 b1 is a

concrete coloured subtrace of t , we know there is a p0 ∈ P with �(p0) = b1 such that we have n0
a1→ p0. By strong

bisimilarity, we then also have n1
a1→ p1 for some p1 with p0Rp1. Thus, �(p0) = �(p1). Thus, b′

0 a1 b1 is also a
concrete coloured subtrace that starts in n1. Hence, it remains to show that when probabilistic nodes have the same
colour, they also have the same sets of concrete coloured traces.

(2) Next, we show that two probabilistic nodes with the same blend (or colour) also have the same sets of concrete
coloured traces. Let p0, p1 ∈ P be arbitrary nodes with �(p0) = �(p1). Then, by definition of � and injectivity of ,
we know that p0Rp1. Let b0 b′

0 a1 b1 b′
1 . . . am bm be a concrete coloured trace starting in p0. Since b0�b′

0 (which
follows from the definition of ), we know that there is a node n0 with �(n0) = b′

0, such that �(p0, [n0]R) > 0.
Since p0Rp1, it then follows that �(p0, [n0]R) = �(p1, [n0]R), and hence, b0 b′

0 is also a concrete coloured
subtrace that starts in p1. By case 1, we then also know that b0 b′

0 a1 b1 is a concrete coloured trace starting in p1.
Repeating the above arguments for m times, we find that also b0 b′

0 a1 b1 b′
1 . . . am bm is a concrete coloured trace

starting in p0.
Hence, we can conclude that the colouring � is both proper and consistent. This means that we have x ≡cc y. �

Second, we show that strong bisimilarity is at least as discriminating as concrete coloured trace equivalence, i.e.
graphs that are concrete coloured trace equivalent are also strong bisimilar.

Lemma 33. For all graphs x, y, x ≡cc y implies x ↔ y.

Proof. Let x and y be graphs. We denote the union of their nodes by S, the union of their non-deterministic nodes by
N and the union of their probabilistic nodes by P . We write Snil for S ∪ {nil}.

Let � be a consistent colouring of the nodes Snil, such that the graphs 〈x, �〉 and 〈y, �〉 are properly coloured graphs.
Assume that �(sx) = �(sy). Define the relation R on Snil as sRt iff �(s) = �(t) for all (s, t) ∈ N2

nil and all (s, t) ∈ P 2.
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By definition, we have sxRsy. Thus, it suffices to show that R is a strong bisimulation relation. We proceed by showing
that R satisfies the two conditions of Definition 2.
(1) Let n0 ∈ N and n1 ∈ N such that n0Rn1. Assume that n0

a→ p0 for some p0. Then we know that �(n0) a�(p0) is a
concrete coloured trace starting in n0. Since � is consistent, we know that �(n0) a�(p0) is also a concrete coloured
trace starting in n1. In turn, this means that there is a node p1 with �(p1) = �(p0), such that n1

a→ p1. Hence, by
definition of R, also p0Rp1.

(2) Let p0 ∈ Px and p1 ∈ Py such that p0Rp1. Let M ∈ Snil/R. Suppose that M ⊆ P . Then, immediately
we obtain �(p0, M) = �(p1, M) = 0. Thus, without loss of generality, we assume that M ⊆ Nnil. The
properness of � implies �(M) ∈ C. Because p0Rp1, we also have �(p0) = �(p1), from which we imme-
diately find that �(p0)probe �(M) = �(p1)probe �(M). Since � is proper, we have �(p0)probe �(M) =
�({(�(n), pr(p0, n)) | p� n})probe �(M) = �(p0, M). Likewise, we derive �(p1)probe�(M) = �(p1, M).
Thus, we have �(p0, M) = �(p1, M).

Hence, R is a strong bisimulation relation. �
The following theorem, stating that strong bisimilarity and concrete coloured trace equivalence are equi-discriminating,

is an immediate consequence of Lemmata 32 and 33. This means that strong bisimilarity and concrete coloured trace
equivalence both preserve potentials and probabilistic information. Moreover, this also proves that colours and blends
can be used to code for the potentials of a system, a result that we can reuse in the setting with abstraction.

Theorem 34. For all graphs x and y, x ↔ y iff x ≡cc y.

6. Coloured traces

In the previous section, we showed that colours and blends can fill in the missing information in concrete traces,
allowing us to define a trace-based equivalence that coincides with strong bisimulation. A natural question is whether
this feat can be repeated in a setting with abstraction. The results in this section answer this question positively.

We start by making the following observation, which is crucial for our further reasonings: abstraction obscures the
strict separation between probabilistic nodes and non-deterministic nodes. This is because unobservable events allow
us to move between the two without notice.

Consider again the notion of coloured graphs of Section 5 and the concrete coloured traces in such graphs. To
facilitate the comparison of potentials of non-deterministic nodes and probabilistic nodes, we consider a variation on
the concrete coloured traces of Section 5, which we call pre-coloured traces.

Definition 35. Let 〈x, �〉 be a coloured graph. A concrete coloured trace, starting in a node s ∈ Pnil is also a pre-
coloured trace starting in s. If t is a concrete coloured trace starting in a node s ∈ N then �(s) t is also a pre-coloured
trace starting in s.

Note that a pre-coloured trace starting in a non-deterministic node n always starts with two occurrences of the colour
(or blend) of node n. This puts us in the position to compare decorated traces starting in probabilistic nodes with those
starting in non-deterministic nodes.

Pre-coloured traces still contain � actions, which are intended to be unobservable. As we already argued in Section 2.3,
we cannot bluntly remove all � actions from such pre-coloured traces without affecting the potentials (and thereby the
behaviours) of a system. Intuitively, the idea of using colours (or blends) for coding for these potentials indicates that
by removing only those � actions in a pre-coloured trace that are in between nodes with the same colour (or blend), we
leave the potentials of the system unaffected. Pre-coloured traces from which these inert � actions have been removed
are called coloured traces.

Definition 36. A coloured trace starting in a node s is a finite sequence b0 b′
0 a1 . . . am bm, not ending with a

subsequence b � b, 4 that is obtained from a pre-coloured trace starting in node s in which all subsequences of the

4 Remark that the condition that a coloured trace does not end with the subsequence b � b is required to ensure that the coloured trace does not
end with a potentially inert � step. If the � step is not inert, then there must also be an extension of the coloured trace in which it appears.
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Fig. 6. Two coloured graphs.

form b (b � b)+ and (b � b)+ b have been replaced with b. When m = 0, we require that b0 is the colour of the
node nil.

Example 37. Consider the two coloured graphs of Fig. 6 (the colours and blends in this graph are indicated by distinct
patterns). Note that, as we saw in Section 2.3, these two graphs are in fact branching bisimilar. The set of concrete
coloured traces of the right graph is given by the following set:

C1 = {•, b •, c •, ◦ a , b •, c •, ◦ ◦ a , ◦ a b •,

◦ a c •, ◦ ◦ a b •, ◦ ◦ a c •}
From this set, we obtain the set of pre-coloured traces:

C2 = {•, b •, c •, ◦ ◦ a , b •, c •, ◦ ◦ a b •, ◦ ◦ a c •}
Similarly, we can obtain (an infinite) set of pre-coloured traces for the left graph:

C3 = {•, b •, c •, b •, c •, ◦ (◦ � ◦)i ,

◦ (◦ � ◦)j ◦ a ( � )k, ◦ (◦ � ◦)j ◦ a ( � )k b •,

◦ (◦ � ◦)j ◦ a ( � )k c • | i > 0, j, k�0}
Finally, we can derive the set of coloured traces from C2 and C3. Since there are no sequences of the form b (b � b)+
or (b � b)+b in the set C2 of pre-coloured traces, the set C2 is also a set of coloured traces. Replacing the sequences of
the form (b � b)+ by b in the set of pre-coloured traces C3, we also obtain the set C2 of coloured traces. Thus, the set
of coloured traces that we can obtain from C3 and C2 is the same. Note that the coloured traces ◦ (◦ � ◦)i , for i > 0
are of the form b (b � b)+. However, we cannot reduce this to ◦, as this colour is different from the colour of node nil.
Therefore, this entire subset of pre-coloured traces does not contribute to any of the coloured traces.

As we observed earlier, the strict distinction between probabilistic nodes and non-deterministic nodes is obscured.
We suggested that this might happen when we can move silently from a non-deterministic node to a probabilistic node.
Now, recall the definition of a proper colouring of Section 5. It requires that non-deterministic nodes are coloured
with colours and probabilistic nodes can be coloured with blends. Since branching bisimulation allows us to move
between both types of nodes without notice, we can no longer assume that this strict colouring regime is sufficient
for our purposes. This means that the definition of a proper colouring, given in Section 5 is too strict: the require-
ment that all non-deterministic nodes are labelled with real colours must be weakened to cope with unobservable
transitions.
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Definition 38. A properly coloured graph is a coloured graph 〈x, �〉 where � satisfies:
(1) A node n ∈ Nnil is labelled with a blend �(n) /∈ C only if

(a) n
�→ p for some p.

(b) for all a ∈ Act and p ∈ Pnil, n
a→ p implies a = � and �(n) = �(p).

(2) All nodes p ∈ P are labelled with the blend �({(c, pr(p, n) · (�(n)probe c)) | p� n and �(n)�c}).

We say that the colouring of a coloured graph is proper to indicate that we are dealing with a properly coloured
graph. Next, we overload the notion of consistency as defined in Section 5 as follows. For a set of coloured graphs we
say that the colouring that is used to colour the nodes of the graphs is consistent whenever two nodes have the same
colour (or blend) only when they have the same coloured trace sets.

Definition 39. Graphs x and y are coloured trace equivalent, notation x ≡c y iff for some consistent, proper colouring
�, 〈x, �〉 and 〈y, �〉 have the same coloured traces, or, equivalently, their root nodes have the same blend or colour.

Example 40. The graphs in Fig. 6 are coloured trace equivalent. In example 37, we showed that the set of coloured
traces match. Moreover, it is easy to see that the graph is consistent and properly coloured if we assume that

= �({( , 1
2 ), ( , 1

2 )}) and ◦, , ∈ C.

Coloured trace equivalence is an equivalence relation on graphs. The following theorem states that two graphs are
branching bisimilar if and only if they are coloured trace equivalent. First, we prove several propositions and two
lemmata that together form the basis for this theorem.

For the remainder of this section, we consider two arbitrary graphs x and y. We denote the union of their nodes by
S, the union of their non-deterministic nodes by N and the union of their probabilistic nodes by P . We write Snil for
S ∪ {nil}. When we assume x ↔ b y, we take R to be the largest branching bisimulation relation relating (the nodes
of) x and y. Let  : Snil/R → B be an injective, total function satisfying:
(1) (M) ∈ C when for all classes M′ �= M, we have �M(M, M′) = 0.
(2) (M) = �({(c, w · ((M′)probe c)) | for all M′ �= M with (M′)�c and w = �M(M, M′) > 0}.
We refer to  as an equivalence class colour-coding for the branching bisimilar graphs x and y.

Proposition 41. The equivalence class colour-coding function  is well-defined.

Proof. Showing that each equivalence class colour-coding function  is well-defined requires showing that its recursive
definition has a unique solution. We make the following observations.
(1) There is at least one equivalence class to which we can assign a colour. 5

(2) Each equivalence class to which a blend is assigned depends on a finite number of other classes that are either
assigned blends or colours. Given that there are only finitely many classes, we can represent  by a dependency
matrix. This matrix can be interpreted as a Markov Chain with absorbing states [15] (which correspond to the
colours that have been assigned). The absorption probabilities for ending up in a particular absorbing state then
correspond to the weight a particular colour has in the blend.

We formalise the above observations in some detail. Let N be an equivalence class for which we want to assign a blend.
We construct a Markov Chain MCN for the equivalence class N as follows:
(1) For each equivalence class M ∈ Snil/R, there is a state sM in the Markov Chain MCN . The state sN is the initial

state.
(2) A state sM is a absorbing state when its corresponding class M satisfies �M(M, M′) = 0 for all classes

M′ �= M.
(3) A state sM is a transient state when its corresponding class M satisfies �M(M, M′) > 0 for some classes

M′ �= M.

5 The reason for this is as follows: if there is no node n ∈ N , with n
a→ for some a ∈ Act, then the entire graph is branching bisimilar to

nil. Yet, if there is an n ∈ N with n
a→ p (for some p ∈ Pnil and a ∈ Act), then we have �[n]R ([n]R, [p]R) = 0 (when [n]R �= [p]R) or

�[n]R ([n]R, [p]R) = 1 (when [n]R = [p]R). In both cases, the equivalence class colour-coding will assign a colour to the class [n]R.
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(4) For each transient state sM, we have a transition sM → sM′ iff there is a probabilistic node p ∈ M, such that
p� n for some node n ∈ M′. The probability assigned to this transition is �M(M, M′).

(5) Every state not reachable from sN is removed, together with their outgoing transitions.
Note that when sM is a transient state in MCN , then MCM is a “sub-chain” of MCN . Moreover, if in MCN , the state
sN is reachable from the state sM then the Markov Chains MCN and MCM are the same.

The Markov Chain MCN is a finite Markov Chain with absorbing states. Finding the absorption probabilities for such
a Markov Chain boils down to solving a system of linear equations. As already observed, these absorption probabilities
are exactly the weights a colour has in a blend. In [15] it is shown that these absorption probabilities can always be
computed for finite Markov Chains. All absorption probabilities together make up the blends. �

Define the colouring � : Snil → B as �(s) = (M) iff s ∈ M. Henceforth, we refer to this colouring � as an
equivalence class colouring.

Proposition 42. The equivalence class colouring � induces properly coloured graphs 〈x, �〉 and 〈y, �〉.

Proof. To show that � is a proper colouring, we proceed as follows.
(1) Let n ∈ Nnil be a non-deterministic node or nil, and suppose �(n) /∈ C.

(a) By definition of �, we find that there is a class M′ �= [n]R, for which �[n]R([n]R, M′) > 0. Since n ∈ Nnil,

this can only be the case when n
�→ p for some p ∈ [n]R.

(b) Let a ∈ Act� and p ∈ Pnil, and assume n
a→ p. Let M �= [n]R be a class for which �[n]R([n]R, M) > 0. By

definition of � and , at least two such classes exist, hence also �[n]R([n]R, M) < 1. This means that there
must be a node p′ ∈ [n]R, such that 1 > pr(p′, M) > 0. Since R is a branching bisimulation relation, this
means that n

a→ p can be mimicked by p′ with probability 1. But this is only possible by a scheduler � that
schedules �(p′) = ⊥, and when a = � and p ∈ [n]R, i.e. �(n) = �(p).

(2) Let p ∈ P , and let (c, �) ∈ �(p) be a part of the blend or colour of p. This means that � > 0. By definition of the
equivalence class colour-coding  and the operator �, we find the following relation between c, � and p:

� = ∑
M�=[p]R

�[p]R([p]R, M) · ((M)probe c). (14)

The formula �[p]R([p]R, M) represents the maximal probability of reaching M via a node in [p]R using silent
transitions only (see also Section 3, where we established a correspondence between the normalised cumulative
probability and the schedulers inducing maximal probabilities). It can be defined in terms of the maximal probability
of reaching M from all nodes n that can be reached from p in one step. We use this observation to rewrite Eq. (14)
to:

� = ∑
M�=[p]R

(( ∑
p� n,[n]R=[p]R

pr(p, n) · �[n]R([n]R, M) · ((M)probe c)

)

+
( ∑

p� n,[n]R=M
pr(p, n) · ((M)probe c)

))
. (15)

Reordering the quantification over M, and substituting M for [n]R in the second part of Eq. (15), we find the
following equivalence:

� = ∑
p� n,[n]R=[p]R

pr(p, n) · ∑
M�=[n]R

�[n]R([n]R, M) · ((M)probe c)

+ ∑
p� n,[n]�=[p]R

pr(p, n) · (([n]R)probe c).

From this, we immediately find that

� = ∑
p� n,[n]R=[p]R

pr(p, n) · (�(n)probe c) + ∑
p� n,[n]R �=[p]R

pr(p, n) · (�(n)probe c) (16)
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Simplifying Eq. (16) we find � = ∑
p� n pr(p, n) · (�(n)probe c), which means that the probabilistic node p is

coloured properly. �

Proposition 43. All equivalence class colourings � for branching bisimilar graphs x and y are consistent.

Proof. We must show that for all nodes s, t ∈ Snil satisfying �(s) = �(t) the sets of coloured traces of s and t are the
same.

So, let s, t ∈ Snil be arbitrary nodes. Suppose that �(s) = �(t). Let � ≡ b0 b′
0 a1 . . . am bm be a coloured trace starting

in s. This coloured trace must come from a pre-coloured trace

� ≡ b0 (b0 � b0)
k0 (b′

0 � b′
0)

l0 b′
0 a1 · · · am bm (bm � bm)lm.

At this point, we must distinguish between the case when s ∈ P and s /∈ P . We only investigate the former. The latter
case can be treated similarly. Assume s ∈ P . Then the pre-coloured trace � must come from a path c for which we have

c sat s0 �⇒[s0]R s′
0� s′′

0 �⇒[s′′
0 ] s′′′

0
a1→ s1 · · · s′′′

m−1
am→ sm

for some si, s
′
i , s

′′
i and s′′′

i satisfying �(si) = �(s′
i ) = bi and �(s′′

i ) = �(s′′′
i ) = b′

i for all i�m. Since �(s) = �(t), we
find that sRt . By repeatedly applying the definition of branching bisimulation, we also find that there must be a path
c′ for which we have either:

c′ sat t0 �⇒[t0]R t ′0� t ′′0 �⇒[t ′′0 ] t ′′′0
a1→ t1 . . . t ′′′m−1

am→ tm

or (only when b0 = b′
0):

c′ sat t0 �⇒[t0]R t ′′′0
a1→ t1 �⇒[t1]R t ′1� t ′′1 . . . t ′′′m−1

am→ tm

for some ti , t
′
i , t

′′
i and t ′′′i satisfying siRtiRt ′i and s′

iRt ′iRt ′′′i . This means that also � is a pre-coloured trace starting in
t , and thus � is a coloured trace starting in t . �

Lemma 44. For all graphs x and y, x ↔ b y implies x ≡c y.

Proof. Let x and y be graphs. Assume that x ↔ b y. Then, using propositions 41, 42 and 43, we find that there is
a proper and consistent colouring � for the graphs x and y, such that 〈x, �〉 and 〈y, �〉 have the same sets of coloured
traces. �

Let x be a graph. Let M ⊆ M′ ⊆ Snil be two non-empty sets of nodes. We define the distance function |s|M′
M , which

yields the minimal number of steps (probabilistic transitions and non-deterministic �-transitions) that is required to
reach a node in M via nodes in M′, starting in s ∈ M′.

|s|M′
M =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 if s ∈ M,

∞ if s /∈ M′,
1 + min

s� n
|n|M′

M if s ∈ (P ∩ M′) \ M,

1 + min
s

�→ p

|p|M′
M if s ∈ (N ∩ M′) \ M.

(17)

Note that we take as a convention that when there is no s� n (and, analogously, when there is no s
�→ p), then

mins� n |n|M′
M yields ∞.

Lemma 45. For all graphs x and y, x ≡c y implies x ↔ b y.

Proof. Assume x ≡c y. Then, there is a consistent and proper colouring � of x and y, such that x and y have the same
set of coloured traces. We show that there is a branching bisimulation relation R, such that sxRsy. Define R as sRt iff
�(s) = �(t). By definition of coloured trace equivalence, we have sxRsy. It thus suffices to show that R satisfies the
requirements for a branching bisimulation relation.
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(1) Let s ∈ N be a non-deterministic node and assume that for some t ∈ Snil, we have sRt . Suppose s
a→ s′ for some

a and s′. We distinguish two cases.
(a) Suppose a = � and s′ ∈ [s]R. It suffices to show that there is a scheduler �, such that P(B�(t �⇒[t]R [t]R)) =

1. This is readily achieved by the scheduler �(t) = ⊥.
(b) Suppose a �= � or s′ /∈ [s]R. It suffices to show that there is a scheduler �, such that P(B�(t

a→ [t]R [s′]R)) = 1.

Let M be the set of nodes {t ′′ | t ′′Rt, t ′′ a→ t ′, t ′Rs′}. Obviously, M ⊆ [s]R. Next, let � ∈ Sched(t) be a
scheduler that satisfies the following conditions.

�(c) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

last(c)
a→ t ′ if �(last(c)) = �(t) and �(t ′) = �(s′),

last(c)
�→ u if �(last(c)) = �(t) and �(u) = �(t) and

for all t ′′ with last(c)
�→ t ′′ we require|t ′′|[s]RM � |u|[s]RM and �(t ′′) �= �(s′),

⊥ if �(last(c)) �= �(t).

Since � is proper, we find that �(s) ∈ C (this follows immediately from a �= � or s′ /∈ [s]R). Using the
consistency of �, we know that there is a pre-coloured trace �(s) (�(s) � �(s))ka �(s′) starting in t , and, hence,
there is a path from t through [t]R to a node in M. Therefore, P(B�(t

a�⇒[t]R [s′])) > 0. It suffices to prove

that also P(B�(t
a�⇒[t]R [s′]R)) = 1. But this follows immediately from the fact that all probabilistic nodes

p in paths c ∈ B�(t
a�⇒[t]R [s′]R) are coloured with �(s) ∈ C. The properness of � ensures that we then stay

in the class [s]R (= [t]R) with probability 1 before executing a and entering a class with colour �(s′).
(2) Let s ∈ P be a probabilistic node and assume that for some t ∈ Snil, we have sRt . We distinguish three cases.

(a) Suppose �[s]R(s, M) = 0 for all M �= [s]R. It suffices to show that there is a scheduler � ∈ Sched(t),
such that P(B�(t �⇒[t]R M)) = �[s]R(s, M) for all M �= [s]R. This is readily achieved by the scheduler
�(t) = ⊥.

(b) Suppose there is a unique class M �= [s]R, such that �[s]R(s, M) = 1. Since � is a proper colouring, this
implies that �(s) = �(s′) for all nodes s′ ∈ M. But this cannot be since this implies that s′Rs, which contradicts
M �= [s]R. Hence, there cannot be a class M �= [s]R, for which �[s]R(s, M) = 1.

(c) Suppose there is a class M �= [s]R, such that 1 > �[s]R(s, M) > 0. Let N ⊆ [t]R be the set of nodes for
which there is a probabilistic transition leaving class [t]R in one step, i.e. N = {t ′′ | t ′′� t ′, t ′′Rt, t ′ /∈ [t]R}.
Let |u|[s]RN again denote the minimal distance from node u to a node in N . Let � ∈ Sched(t) be a scheduler
that satisfies the following conditions:

�(c) =

⎧⎪⎨
⎪⎩

last(c)
�→ u if �(last(c)) = �(t) and �(u) = �(t) and

for all t ′′ such that last(c)
�→ t ′′, we require |t ′′|[t]RN � |u|[t]RN ,

⊥ if �(last(c)) �= �(t).

Note that there is in general not a single scheduler that is determined by the above conditions, as there may at
some point be more than one node that has a minimal distance from a node in N . However each � is such that
�[s]R(s, M) = P(B�(t �⇒[t]R M)) for all M �= [s]R, due to the properness of the colouring �.

Hence, relation R satisfies the condition for branching bisimulation, and we have sxRsy. Thus, we find x ↔ b y. �

Theorem 46. For all x and y, x ↔ b y iff x ≡c y.

Proof. Follows immediately from Lemmas 44 and 45. �

7. Related work

The literature reports on two approaches for modelling reactive probabilistic system. The first approach is the model of
probabilistic (simple) automata (often called the non-alternating model), which was introduced in [20,19]. The second
approach, based on the Concurrent Markov Chains of [22], is that of the alternating model, which was introduced
in [13] by Hansson. The theory outlined in this paper is based on this latter model.
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One might argue that the differences between both models are fairly insignificant, and, up to a certain point, this is
true: as shown in [4], the two models do not differ up to strong bisimulation. However, when we consider equivalence
relations that are sensitive to internal activities, this picture suddenly changes. For instance, in [4], Segala and Bandini
show that weak bisimilarity for the alternating model (defined in [18]) and weak bisimilarity for the non-alternating
model (as defined in [19,20]) are incomparable. We briefly review the relevant literature and place our contribution
and motivation in perspective.

7.1. Alternating model vs. non-alternating model

Comparing our notion of branching bisimulation with the notion of branching bisimulation in the non-alternating
setting, as defined by Segala and Lynch [19,20] we find that their notion is more restrictive. This is illustrated by the
following example. Consider the two graphs of Fig. 3 (see Section 2.3, p. 9). In contrast with our notion of branching
bisimulation, we find that these two graphs are not related by branching bisimulation in the non-alternating model. The
reason is obvious: k appears as a node in the “non-alternating” counterpart of the left graph and it cannot be related
to any node in the “non-alternating” counterpart of the right graph. A variation of branching bisimulation called delay
branching bisimulation, which is defined by Stoelinga [21], exhibits the same phenomenon.

In this paper, we showed that our definition of branching bisimilarity satisfies the properties originally attributed
to it (by following the approach as laid out by van Glabbeek and Weijland [11] in the non-probabilistic case, see
Sections 5 and 6). We therefore believe that the definition of branching bisimulation in the non-alternating setting may
be incomplete and further research is required to solve this issue.

Note that the so-named combined version of branching bisimulation in [20] relates processes that are not related by
our branching bisimulation (but still not the ones from Fig. 3). This means that our branching bisimulation and the
combined version of branching bisimulation are incomparable. Further investigations along the lines of [4] are needed
to fully explore all differences. This, however, is beyond the scope of this paper.

7.2. Branching bisimilarity vs. weak bisimilarity

When we compare our definition of branching bisimilarity with weak bisimilarity as defined by Philippou et al. [18],
we find that branching bisimilarity is strictly finer (although there is a big overlap in systems that are both, and for some
classes of systems such as fully probabilistic systems [6], it is known that both equivalences coincide). This is due to
the fact that branching bisimilarity preserves the (non-deterministic) branching structure of a system, whereas weak
bisimilarity does not, which is also the case in the non-probabilistic setting. Note that in [10] a logic in the PCTL∗ style
is defined and the soundness and completeness properties of the equivalence relation induced by the logic are proven
with respect to the weak bisimulation of [18]. Having in mind the results in the non-probabilistic setting saying that
CTL∗ without the next operator corresponds to branching bisimulation (e.g. [17]), the result in [10] may suggest that
weak and branching bisimulation for the alternating model (for systems with both probabilistic and non-deterministic
behaviour) do coincide. However, this is not the case: the soundness and completeness results in [10] are due to the
“non-standard” semantics given to the PCTL∗-like operators. Namely, the path formulas are not interpreted on paths
but on behaviours—informally, a behaviour is the observable part of one path. Clearly, with this interpretation the logic
cannot make it possible to see the change of the potentials, which is the essential point that distinguishes weak and
branching bisimulation.

Below, we give two examples to illustrate the differences between weak and branching bisimulation. The first
example shows that two non-probabilistic systems, encoded as graphs are weak bisimilar but not branching bisimilar
(other examples of this can also be found in van Glabbeek and Weijland [11]).

Example 47. Consider the two graphs of Fig. 7. These graphs encode two non-probabilistic systems (i.e. only the
trivial probability 1 appears). Using the definition of weak bisimulation [18], one can easily check that both graphs
are weak bisimilar. However, the graphs are not branching bisimilar, or, equivalently, there is no proper consistent
colouring of the two graphs such that both have the same set of coloured traces.

The next example shows that weak bisimilarity and branching bisimilarity do not only differ for non-probabilistic
systems, but that they also differ for real probabilistic systems.
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Fig. 7. Two weak bisimilar graphs (representing non-probabilistic systems) that are not branching bisimilar.

Fig. 8. Two weak bisimilar graphs (representing probabilistic systems) that are not branching bisimilar.

Example 48. Consider the two graphs of Fig. 8. Using the definition of weak bisimulation [18], it easily follows that
the two graphs are weak bisimilar. Based on our definition of branching bisimulation, we find that the two graphs are
not equivalent. This is because in the right graph, after executing action a it is always possible to execute action c,
unlike in the right branch of the left graph.

7.3. Decidability

Finally, we find that no extensive study on the decidability and complexity of branching bisimulation has been
conducted. To this date, no algorithm for deciding branching bisimilarity (in the non-alternating model) has been
defined, whereas our notion can be decided in polynomial time (see Section 3.3). Deciding weak bisimilarity in the
alternating setting can be achieved in polynomial time [18], whereas the best known algorithm for deciding weak
bisimilarity in the non-alternating model as defined in [20] is exponential [9]. Only a finer variant of weak bisimulation
(for the non-alternating model), called weak delay bisimulation [21,7] is decidable in polynomial time [7].
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8. Summary

We defined the notion of branching bisimulation for the strictly alternating model of Hansson [13] for probabilistic
systems. We showed that it preserves the non-deterministic branching structure of a system by defining an alternative
equivalence, called coloured trace equivalence, that clearly satisfies this property, and we subsequently showed that
the two equivalences coincide. Furthermore, we showed that the branching bisimulation conditions can be rephrased
to conditions that use schedulers which induce maximal probabilities.

The alternative characterisations (in terms of colours and in terms of maximal probabilities) each have their own
merits. Coloured trace equivalence is easily understood without knowledge of probability theory, schedulers, etc.
It moreover clearly illustrates the fundamental property of branching bisimulation: the preservation of potentials
and computations (see Section 6). The result that indicates that it suffices to use schedulers which induce maximal
probabilities is at the basis for the decision procedure with polynomial time complexity that we give in Section 3.3.

We find that the two alternative characterisations add to the understanding of branching bisimulation in the alternating
model, and to the correctness of the definition. Moreover, we find that it also can be used to validate the existing notion
of branching bisimulation in another setting, i.e. the non-alternating model. A brief comparison of both notions already
indicates that there are fundamental differences between the two (see Section 7). These differences provide compelling
evidence that the notion of branching bisimulation in the non-alternating model may not live up to its name in its current
phrasing: we find that processes that are intuitively branching bisimilar (and can be proven to be branching bisimilar
in our setting) cannot be related in the non-alternating setting. However, more research (possibly along the lines of [4])
is required to compare the two notions in more detail. This is beyond the scope of this paper.

We pose two open problems. The first open problem is whether coloured trace equivalence gives rise to a different
type of algorithm for deciding branching bisimilarity than the ones that are based on schedulers. The second open
problem is to find an answer to whether the branching bisimulation relation of [20] admits a characterisation in terms
of an equivalence based on colours. Apart from these problems, we are in the process of giving a complete and sound
axiomatisation of branching bisimulation for the basic operators.
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