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Abstra
t

Itai and Rodeh showed that, on the average, the 
ommuni
ation of a leader ele
tion

algorithm takes no more than LN bits, where L ≃ 2.441716 and N denotes the size of the

ring. We give a pre
ise asymptoti
 analysis of the average number of rounds M(n) required
by the algorithm, proving for example that M(∞) := lim

n→∞
M(n) = 2.441715879 . . ., where n

is the number of starting 
andidates in the ele
tion. A

urate asymptoti
 expressions of the

se
ond momentM (2)(n) of the dis
rete random variable at hand, its probability distribution,

and the generalization to all moments are given. Corresponding asymptoti
 expansions

(n → ∞) are provided for su�
iently large j, where j 
ounts the number of rounds. Our

numeri
al results show that all 
omputations perfe
tly �t the observed values. Finally, we

investigate the generalization to probability t/n, where t is a non negative real parameter.

The real fun
tionM(∞, t) := lim
n→∞

M(n, t) is shown to admit one unique minimum M(∞, t∗)

on the real segment (0, 2). Furthermore, the variations of M(∞, t) on the whole real line

are also studied in detail.

1 Introdu
tion

In [3, 4℄, Itai and Rodeh introdu
e several symmetry breaking proto
ols on rings of size N ,

among whi
h the �rst is 
onsidered here. They also show that the average 
ommuni
ation 
ost

of this parti
ular leader ele
tion algorithm takes no more than LN bits, where the value of L is


omputed in [4℄ to be about 2.441716.
However, their method is less dire
t and less general than the asymptoti
 analysis 
ompleted in

the present paper. Besides, the method is tailor-made for �nding only the average number of

rounds required by the algorithm: the se
ond moment (and a fortiori all other moments), and

the probability distribution are not 
onsidered in [4℄.

By 
ontrast, the asymptoti
 method used in the analysis of our re
urren
e relations is very

general and quite powerful. All moments as well as the probability distribution of the random

variable 
an be also me
hani
ally derived from their asymptoti
 re
urren
es. A full asymptoti


expansion, (for large n) 
an be obtained, and it is illustrated for the mean. An asymptoti


approximation of the probability distribution (when n → ∞, and j gets large enough) is also


ompleted. The latter is derived by 
omputing singular expansions of generating fun
tions around

their smallest singularity. The present method may serve as a basi
 bri
k for �nding the 
om-

plexity measures of quite a lot of distributed algorithms.
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The last Se
tion of the paper is generalizing the problem to a probability of the form t/n,
where t is a non negative real parameter. We show that there exists one unique optimal value

t∗ = 1.065439 . . . on the segment (0, 2), where the real fun
tion M(∞, t) admits one unique

minimum, M(∞, t∗) = 2.434810964 . . ., on the real line. Finally, the variations of M(∞, t) when
t > 2 are investigated in detail.

1.1 Algorithm s
heme and notation

For the reader's 
onvenien
e, we rephrase in our own words the �symmetry breaking� (leader

ele
tion) algorithm designed in [3, 4℄.

Consider a ring (
y
le) of N indistinguishable pro
essors, i.e. with no identi�ers (the ring is

said to be �symmetri
�), and assume every pro
essor knows N . The leader ele
tion algorithm

works as follows.

Let n denote the number of a
tive pro
essors. In the �rst round (initialization), n = N and

ea
h pro
essor is a
tive. At the beginning of ea
h 
urrent round, there remains 1 < n ≤ N a
tive

pro
essors along the ring. To 
ompute the number of 
andidates in the round (i.e. all a
tive

pro
essors that 
hoose to parti
ipate in the ele
tion), ea
h 
andidate sends a pebble. This pebble

is passed around the ring, and every a
tive pro
essor 
an dedu
e n by 
ounting the number of

pebbles whi
h passed through. So, in the beginning of a round every a
tive pro
essor knows n
and de
ides with probability 1/n to be
ome a 
andidate.

Thus, three 
ases may happen in a 
urrent round:

• if there is one 
andidate left, it is the leader;

• otherwise, the non 
andidates are reje
ted (be
oming non a
tive), and the remaining a
tive

pro
essors (the 
andidates of the 
urrent round) pro
eed to the next round of the algorithm;

• if no a
tive pro
essors 
hooses to be a 
andidate, all a
tive pro
essors start the next round.

Throughout the paper, we let X(n) denote the random variable (r.v.) that 
ounts the number

of rounds required to redu
e the number of a
tive pro
essors from n to 1 (
hoose the leader),

when starting with n = N a
tive pro
essors. The following notations are used.

P (n, j) := P

(

X(n) = j
)

, M(n) := E

(

X(n)
)

,

M (2)(n) := E
(

X(n)2
)

and ϕ(n) := E

(

e−αX(n)
)

.

For the sake of simpli
ity, we also let M(∞) and M (2)(∞) denote lim
n→∞

M(n) and lim
n→∞

M (2)(n)

(resp.); similarly, P (∞, j) denotes lim
n→∞

P (n, j).

Finally, let b(n, k) denote the probability that k out of n a
tive pro
essors 
hoose to be
ome


andidates, ea
h with probability 1/n. In other words,

b(n, k) :=

(

n

k

)(

1

n

)k (

1− 1

n

)n−k

.

The re
urren
e equation for the expe
tationM(n) is easily derived from the algorithm s
heme.

M(n) = 1 +

(

1− 1

n

)n

M(n) +

n
∑

k=2

(

n

k

)(

1

n

)k (

1− 1

n

)n−k

M(k) for n > 1, (1)

and M(1) = 0 (by de�nition).
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2 Asymptoti
 analysis of the re
urren
e

Theorem 2.1 The asymptoti
 average number of rounds required by the algorithm to ele
t a

leader is the 
onstant M(∞). When n → ∞, an asymptoti
 approximation of M(n) writes

M(n) ∼ 1

1− e−1



1 +
∑

k≥2

e−1

k!
M(k)



 = 2.441715879 . . . (2)

The se
ond moment of the dis
rete r.v. X(n) is asymptoti
ally

M (2)(n) ∼ 1

1− e−1



−1 + 2M(∞) +
∑

k≥2

e−1

k!
M (2)(k)



 = 8.794530817 . . . ,

and an asymptoti
 approximation of its varian
e (n → ∞) yields

var
(

X(n)
)

∼ 1

(1− e−1)2

(

e−1 + (1 − e−1)S2 − S2
1

)

= 2.832554383 . . . ,

where S1 =
∑

k≥2

e−1

k!
M(k) and S2 =

∑

k≥2

e−1

k!
M (2)(k).

More generally,

ϕ(n) ∼ e−α

1− e−(α+1)



e−1 +
∑

k≥2

e−1

k!
ϕ(k)



 .

Finally, the probability distribution P (∞, j) (n → ∞) satis�es the following asymptoti
 approxi-

mation when j → ∞,

P (∞, j) ∼ 2ρ

1− 2e−1
2−j,

where ρ = .2950911517 . . .

Up until now, we have been unable to use the 
lassi
al generating fun
tion approa
h to


ompute M(n).

However, 
he
king that M(n) is bounded is possible. Indeed, assuming that there exists a

positive 
onstant B(n− 1) su
h that

M(i) ≤ B(n− 1) for i = 1, . . . , n− 1, and B(1) = 0, (3)

the following inequality holds

M(n) ≤ 1

1− (1 − 1/n)n − (1/n)n

(

1 +B(n− 1)

n−1
∑

k=2

b(n, k)

)

.

So M(n) ≤ B(n), with

B(n) = B(n− 1) +
1−B(n− 1)(1− 1/n)n−1

1− (1− 1/n)n − (1/n)n
, (4)

3



and B(1) = 0. (We show below that B(n) is in
reasing.)

Let us �rst analyze the re
urren
e (4). If B(n) is 
onverging, it must 
onverge to the �xed

point of Eq. (4), i.e. e. So, we let B(n) = e−∆(n), and ∆(1) = e.

For �xed k and large n,

Tn :=

(

1− 1

n

)n

∼ e−1

(

1 − 1

2n
− 5

24n2
+ · · ·

)

(5)

Tn−k :=

(

1− 1

n

)n−k

∼ e−1

(

1 +
2k − 1

2n
+

12k2 − 5

24n2
+ · · ·

)

. (6)

We have

∆(n) = a(n)∆(n− 1) +
b(n)

n
, (7)

with

a(n) = 1 − Tn−1

1− Tn − (1/n)n
,

b(n) = n
eTn−1 − 1

1− Tn − (1/n)n
.

Note that n ≥ 3, a(2) = 0, 0 < a(n) < 1/2, and 0 < b(n) < 1. Several 
onstants will be used in

the sequel:

c0 :=
e− 2

e− 1
, c1 :=

1

2

e

e− 1
, c2 := −1

2

e− 2

(e − 1)2
, c3 :=

1

24

e(7e− 13)

(e − 1)2
,

c4 :=
1

24

−7e2 + 25e− 24

(e− 1)2
, c5 := c1c2c6 + c3, c6 :=

1

1− c0
, c7 :=

c0
(1− c0)2

, c8 := c1c7 + c5c6.

For instan
e, a(n) ∼ c0 +O(1/n) and b(n) ∼ c1 +O(1/n).
Iterating Eq. (7) gives

∆(n) =
n−2
∏

i=0

a(n− i)∆(i) +
n−2
∑

i=0

b(n− i)

n− i

i−1
∏

j=0

a(n− j)

=
1

n

n/2−1
∑

i=0

b(n− i)

1− i/n

i−1
∏

j=0

a(n− j) +
n−2
∑

i=n/2

b(n− i)

n− i

i−1
∏

j=0

a(n− j).

Now,

n−2
∑

i=n/2

b(n− i)

n− i

i−1
∏

j=0

a(n− j) ≤ 1

2

∞
∑

i=n/2

(1/2)i → 0 (n → ∞),

and so,

∆(n) ∼ c6c1/n.

Hen
e, for n su�
iently large, ∆(n) is de
reasing, B(n) is in
reasing and Eq. (3) holds for n.
Moreover, ∆(n) is indeed de
reasing to 0 and B(n) 
onverges to e.
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For the sake of 
ompleteness, we 
an also get a 
omplete 
hara
terization of ∆(n).

∆(n) ∼ c0∆(n− 1) +
c1 + c2∆(n− 1)

n
+

c3 + c4∆(n− 1)

n2
+ O(1/n3), (8)

pro
eeding by bootstrapping, we �rst obtain

∆(n) ∼ c1

∞
∑

i=0

ci0
n− i

∼ c1
n

(

c6 +
c7
n

)

,

and next, by plugging the above equivalen
e into Eq. (8),

∆(n) ∼ c1c6
n

+
c8
n2

+ O(1/n3).

2.1 Asymptoti
 approximation of M(n)

Sin
e M(n) is bounded and positive, the limit 
an be taken in (1) for �xed k, more generally

for k = o(n1/2) (see Subse
tion 2.2 below). In virtue of Stirling formula and Eqs. (5)-(6), the

summand writes

b(n, k) ∼ e−1

k!

(

1 − k2 − 3k + 1

2n
+

3k4 − 22k3 + 39k2 − 9k − 5

24n2
+ · · ·

)

. (9)

Hen
e, by Eq. (9), the asymptoti
 approximation of M(n) is

M(n) ∼ 1

1− e−1



1 +
∑

k≥2

e−1

k!
M(k)



 , (10)

whi
h is already given in [4℄.

The average number of rounds required by the algorithm follows,

M(∞) = lim
n→∞

M(n) = 2.441715878809285246587072 . . .

Numeri
ally, 15 terms are enough to obtain a very good pre
ision: the error resulting from the

sum in Eq. (10) limited to ν terms is bounded by

1

1− e−1

∑

k>ν

1

k!
.

Note also that if the size of the ring is known to be N , the expe
ted bit 
omplexity of the

algorithm is 2.4417158788 . . .N . It is easily found, sin
e N bits per round are used on the average

in the algorithm.

Remark 2.2 Carrying on with the analysis of M(n) gives me
hani
ally a 
omplete asymptoti


expansion of M(n). Eqs. (1) and (9) lead to M(n) ∼ M(∞) + C1/n + C2/n
2 + · · ·, where

C1 = − e−1

2(1− e−1)2
+
∑

k≥2

e−1
(

− k2 + e−1k2 + 3k − 3e−1k − 1 + e−1 − e−1
)

2(1− e−1)2k!
M(k)

= −e−1(1 + 2e−1)

4(1− e−1)2
+
∑

k≥3

e−1
(

(1− e−1)k(3− k)− 1
)

2(1− e−1)2k!
M(k) = −.7438715372 . . .

The expression of C2 being too long to trans
ribe, we just give the result: C2 = −.1974635346 . . ..
The 
onvergen
e of M(n) to M(∞) is thus very slow: O

(

n−1
)

.
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2.2 Inter
hanging limit and summation

There remains to justify the inter
hange of the limit and the summation within the sum in

Eq. (1), whi
h yields the result in (10).

2.2.1 Lapla
e method

Sin
e the 
uto� point in b(n, k) is approximately k0 = n1/2
, the asymptoti
 form of the sum

∑

2≤k≤n

b(n, k) 
an be derived from the Lapla
e method for sums (see [1℄, [5, p. 130-131℄), or

�splitting of the sum� te
hnique.

By taking a suitable positive integer r = o(n1/2), we prove that

i) the sum

n
∑

k=r

b(n, k) (the �right tail� of the distribution) is small for large n, and

ii) lim
n→∞

r
∑

k=2

∣

∣

∣

∣

b(n, k)− e−1

k!

∣

∣

∣

∣

= 0.

i) The ordinary generating fun
tion (OGF) of b(n, k), Fn(z) :=
∑

k≥0

b(n, k)zk is

Fn(z) =

(

1− 1− z

n

)n

,

and the OGF of

∑

r+1≤k≤n

b(n, k) is the produ
t of Fn(z)− 1 and 1/(z − 1), given by

Fn(z)− 1

z − 1
.

Considering

∑

r≤k≤n

b(n, k), Cau
hy integral formula yields

[zr−1]
Fn(z)− 1

z − 1
=

∑

r≤k≤n

b(n, k) =
1

2πi

∫

Ω

Fn(z)− 1

(z − 1)zr
dz,

where Ω is inside the analyti
ity domain of the integrand and en
ir
les the origin. We see that

z = 1 is not a singularity for the integrand, so we 
an negle
t the term 1 in the numerator, and

asymptoti
ally,

1

2πi

∫

Ω

Fn(z)− 1

(z − 1)zr
dz ∼ 1

2πi

∫

Ω

exp
(

n ln
(

1− (1−z)
n

)

− r ln(z)
)

z − 1
dz.

Again, asymptoti
ally, if we 
an limit the integration within a neighbourhood of z − 1 = o(n)
(whi
h is 
he
ked below), one obtains

1

2πi

∫

Ω

exp
(

− (1− z)− r ln(z)
)

z − 1
dz.

6



To equilibrate, we set z = ry, whi
h yields

1

2πi

∫

Ω

e−1

ry − 1
exp

(

ry − r
(

ln(y) + ln(r)
))

r dy.

We now use the Saddle point method. The Saddle point is given by y∗ = 1 (and z∗ = r). So we

set y = 1 + ix and, by standard algebra, we obtain an asymptoti
 approximation when n → ∞,

∑

k≥r

b(n, k) ∼ e−1er√
2π rr+1/2 (1− 1/r)

,

whi
h shows that the right tail of distribution

∑

b(n, k) 
onverges indeed to zero when n → ∞.

ii) Next, from approximation (9),

∑

2≤k≤r

∣

∣

∣

∣

b(n, k)− e−1

k!

∣

∣

∣

∣

= O





∑

2≤k≤r

e−1

k!

k2

n



 = O

(

r2

n

)

,

whi
h tends to zero as n → ∞.

Finally, by 
ompleting the sum in (10), it is bounded from above by

∑

k≥r

e−1

k!
,

whi
h also tends to zero as n → ∞.

Therefore, inter
hanging the limit and the summation in Eq. (1) is proved justi�ed.

2.2.2 Lebesgue's dominated 
onvergen
e method

The latter justi�
ation may also use the Lebesgue's dominated 
onvergen
e Theorem (see e.g.,

[8, p. 27℄).

By Stirling formula and Eqs. (5)-(6),

b(n, k)− e−1

k!
∼ e−1

k!





exp
(

k
n − 1

2n + k
2n2 +O

(

n−k
n3

)

)

(

1 + 1
12n

)

ek
(

1− k
n

)n−k+1/2
(

1 + 1
12(n−k)

) − 1





∼ e−1

k!









exp





k(k − 3)

2n
−
∑

i≥2

ki

ni

2k − i− 1

2i(i+ 1)
+

1

2n
− k

2n2
+

k/n

12(1− k/n)









−1

− 1






.

(11)

Set x = k/n, then

b(n, k)− e−1

k!
∼ e−1

k!

(

(

exp
(

nf1(x) + f2(x) +
f3(x)

n

)

)−1

− 1

)

,

7



with

f1(x) = (1− x) ln(1− x) + x =
x2

2
+ O(x3),

f2(x) =
1

2
ln(1− x) − x = −3x

2
+ O(x2),

f3(x) =
1− x

2
+

1

12

x

1− x
,

and

f1(x) ≥ 0, f2(x) ≤ 0, for |x| ≤ 1.

Thus, for large n, the largest root of nf1(x) + f2(x) + f3(x)/n in [0, 1] is given by

γ/n + O
(

n−2
)

,

with

γ = (3 +
√
5)/2 = 2.618033988 . . . ,

whi
h shows that nf1(x) + f2(x) + f3(x)/n ≥ 0 for k ≥ 3 and su�
iently large n (uniformly in

k). Che
king that it remains true for k = n− δ(n), with δ(n) = O
(

nλ
)

, λ < 1, is easy.

Hen
e approximation (11) is ≤ 0 for large n, and by Lebesgue's dominated 
onvergen
e

Theorem, we 
an justify the inter
hange of the limit and the summation in Eq. (1).

Note that Eqs. (6) and (9) already show that we must take k ≥ 3: the 
oe�
ient of 1/n must

be positive.

2.3 Asymptoti
 approximation of M (2)(n)

We turn now to the 
omputation of M (2)(n).

M (2)(1) = 0, and

M (2)(n) =

(

1− 1

n

)n

E
(

(1 +X(n))2
)

+

(

1− 1

n

)n−1

· 1 +

n
∑

k=2

b(n, k)E
(

(1 +X(n))2
)

= 1 + 2

(

1− 1

n

)n

M(n) +

(

1− 1

n

)n

M (2)(n)

+ 2
n
∑

k=2

b(n, k)M(k) +
n
∑

k=2

b(n, k)M (2)(k).

Hen
e, when n → ∞ (again, inter
hanging the operators may be justi�ed as in Subse
tion 2.2),

M (2)(n) ∼ 1

1− e−1



1 + 2e−1M(∞) + 2
∑

k≥2

e−1

k!
M(k) +

∑

k≥2

e−1

k!
M (2)(k)





∼ 1

1− e−1



−1 + 2M(∞) +
∑

k≥2

e−1

k!
M (2)(k)



 = 8.794530817 . . . (12)
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Of 
ourse, a full expansion for large n 
an also be derived step by step.

Now, sin
e the varian
e of the r.v. X(n) is de�ned as var
(

X(n)
)

= M (2)(n)−
(

M(n)
)2

, an

asymptoti
 approximation is straightforward (from Eqs. (10) and (12)).

var
(

X(n)
)

∼ 1

(1− e−1)2

(

e−1 + (1 − e−1)S2 − S2
1

)

= 2.832554383 . . . ,

where S1 =
∑

k≥2

e−1

k!
M(k) and S2 =

∑

k≥2

e−1

k!
M (2)(k).

2.4 Generalization

More generally, using ϕ(n) = E

(

e−αX(n)
)

as de�ned in the Introdu
tion,

ϕ(n) = e−α

(

(

1− 1

n

)n

ϕ(n) +

(

1− 1

n

)n−1

· 1 +

n
∑

k=2

b(n, k)ϕ(k)

)

,

with

ϕ(1) = 1 and ϕ(k) = 1 − αM(k) +
α2

2
M (2)(k) + · · ·

Therefore,

ϕ(n) ∼ e−α

1− e−(α+1)



e−1 +
∑

k≥2

e−1

k!
ϕ(k)



 .

Also, from the above relations, all moments asymptoti
 equations 
an me
hani
ally be found.

Note that, in 
ontrast to the asymptoti
 analysis of usual leader ele
tion algorithms (e.g. in [2,

6, 7℄), no periodi
 
omponents are arising in the present asymptoti
 results.

3 Asymptoti
 approximation of P (n, j)

3.1 Asymptoti
 re
urren
e of P (n, j) (n → ∞)

The following re
urren
e on P (n, j) stems from Eq. (1).

P (n, 1) =

(

1− 1

n

)n−1

,

P (n, j) =

(

1− 1

n

)n

P (n, j − 1) +
n
∑

k=2

b(n, k)P (k, j − 1) for j > 1. (13)

And the expression of an asymptoti
 approximation for large n follows,

P (n, 1) ∼ e−1,

P (n, j) ∼ e−1 P (∞, j − 1) +
∑

k≥2

e−1

k!
P (k, j − 1) for j > 1. (14)
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The above asymptoti
 approximation on P (n, j) provides the following �rst 13 values of

P (∞, j) (j = 1, . . . , 13):

.3678794411, .2625161028, .1634224110, .0946536614, .0524658088, .0282518527, .0149122813,
.0077602315, .0039970064, .0020432067, .0010386252, .0005257697, .0002653262

Remark 3.1 By de�nition, the following alternative expressions of M(∞) and M (2)(∞) also

hold,

M(∞) =
∑

j≥1

jP (∞, j) and M (2)(∞) =
∑

j≥1

j2P (∞, j).

So, M(∞) and M (2)(∞) 
ould also be 
omputed from the above de�nitions. However, more

than 15 terms should of 
ourse be required; viz. about 50 terms are a
tually needed to obtain the

same pre
ision as in the previous 
omputations.

3.2 Asymptoti
 approximation of P (∞, j) (j → ∞)

Let us now 
ompute an asymptoti
 approximation for P (∞, j) when j gets large. First, let

D(j) :=
∑

k≥2

e−1

k!
P (k, j).

When
e the re
urren
e relation (14) also writes

P (∞, j) = e−1P (∞, j − 1) + D(j − 1).

Here and in the remainder of the paper, the following ordinary generating fun
tions (OGF)

H(z), G(z) and Π(k, z) (of P (∞, j), D(j) and P (k, j), resp.) are used; we de�ne

H(z) :=
∑

j≥1

P (∞, j)zj , G(z) :=
∑

j≥1

D(j)zj and

Π(k, z) :=
∑

j≥1

P (k, j)zj , for any �xed integer k ≥ 2. (15)

From the OGF H(z) de�ned in (15) and the re
urren
e (14), we obtain

H(z) − e−1z = e−1zH(z) + zG(z),

and

H(z) =
z
(

G(z) + e−1
)

1− e−1z
.

So, H(z) has a simple pole at z = e.

Yet, a numeri
al 
he
k in Eq. (14) shows that P (∞, j) = Ω
(

e−j
)

, and thus, H(z) must have a
smaller singularity whi
h is (stri
tly) less than e.

Now, the OGF Π(k, z) de�ned in (15) and the re
urren
e relation (13) yield

Π(k, z) −
(

1− 1

k

)k−1

z =

(

1− 1

k

)k

zΠ(k, z) +

k
∑

ℓ=2

b(k, ℓ)zΠ(ℓ, z), (16)

10



whi
h gives, for k = 2,

Π(2, z) =
z/2

1− z/2
.

The above result is of 
ourse due to the geometri
 distribution of P (2, j), with parameter 1/2.

Hen
e, Π(2, z) has a singularity at z = 2, and the singular expansion of Π(2, z) in a domain

D around z = 2 stands as

Π(2, z) ≍ 1

1− z/2
.

Let R(2) = lim
z→2

(1 − z/2)Π(2, z) = 1. In virtue of Eq. (16), it is easily seen that z = 2 is also a

singularity of all the Π(k, z)'s for any integer k ≥ 2. If we denote

R(k) := lim
z→2

(1− z/2)Π(k, z),

we derive from Eq. (16) that

R(k) =

(

1− 1

k

)k

2R(k) +

k
∑

ℓ=2

b(k, ℓ) 2R(ℓ).

When k gets su�
iently large, R(k) 
an be 
omputed (15 terms are quite enough for the pre
ision

required).

Sin
e

G(z) =
∑

k≥2

e−1

k!
Π(k, z),

the de�nition of Π(z) in (15) shows that z = 2 is also a singularity of G(z). By setting

lim
z→2

(1− z/2)
∑

k≥2

e−1

k!
Π(k, z) =

∑

k≥2

e−1

k!
R(k) = ρ = .2950911517 . . .

(again, inter
hanging the sum and the limit may be justi�ed as in Subse
tion 2.2), the singular

expansion of G(z) at z = 2 writes

G(z) ≍ ρ

1− z/2
.

Finally, we obtain the singular expansion of H(z) at z = 2,

H(z) ≍ 2ρ

(1− 2e−1)(1− z/2)
,

and therefore, when j → ∞,

P (∞, j) ∼ 2.233499118 . . . 2−j. (17)

4 Numeri
al results

As 
an be seen in the following Figures Fig. 1 and Fig. 2, the previous 
omputations of P (∞, j),
and M(∞) and M (2)(∞) perfe
tly �t the above ones. Moreover, Fig. 3 shows that the observed

values of P (∞, j) also perfe
tly �t the asymptoti
 approximation of P (∞, j) obtained in (17) for

su�
iently large j.

11
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Figure 3: P (∞, j) and its asymptoti
 approximation in (17) for large j (j = 20, . . . , 30)

5 Is 1/n the optimal probability?

Let t be a non negative real number. Following a question raised by J. Cardinal, let t/n be the

probability of 
hoosing to parti
ipate in the ele
tion.

Is there one unique optimal real positive value t∗ in some real domain?

Taken in the initial 
ontext of the �rst leader ele
tion (�symmetry breaking�) proto
ol designed

in [3, 4℄ (see Subse
tion 1.1), t is introdu
ed as a real non negative parameter whi
h is assumed

known to every pro
essor on the ring.

Initially, all the pro
essors are a
tive. At the beginning of ea
h 
urrent round of the ele
tion

algorithm, every a
tive pro
essor knows n (the 
ounting pro
ess of n is des
ribed in Subse
-

tion 1.1), and 
an de
ide with probability t/n whether to be
ome a 
andidate in the round. So,

by de�nition, t must a priori meet the 
ondition 0 ≤ t/n ≤ 1.

The re
urren
e equation for the expe
tation M(n, t) (with 0 < t < 2) is similar to Eq. (1),

M(n, t) = 1 +

(

1− t

n

)n

M(n, t)

+

n
∑

k=2

(

n

k

)(

t

n

)k (

1− t

n

)n−k

M(k, t) for n ≥ 2,

and M(1, t) = 0 (by de�nition). (18)
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Upon Di�erentiating Eq. (18) with respe
t to t, we obtain

M ′(n, t) = −
(

1− t

n

)n−1

M(n, t) +

(

1− t

n

)n

M ′(n, t)

+

n
∑

k=2

(

n

k

)

k

n

(

t

n

)k−1(

1− t

n

)n−k

M(k, t)

−
n
∑

k=2

(

n

k

)(

t

n

)k
n− k

n

(

1− t

n

)n−k−1

M(k, t)

+
n
∑

k=2

(

n

k

)(

t

n

)k (

1− t

n

)n−k

M ′(k, t) (19)

Now, as in Eq. (10), an asymptoti
 approximation of M(n, t) for large n yields

M(∞, t) = 1 + e−tM(∞, t) +
∑

k≥2

e−t t
k

k!
M(k, t), (20)

and, similarly, upon di�erentiating Eq. (20) with respe
t to t,

M ′(∞, t) = −e−tM(∞, t) + e−tM ′(∞, t) +
∑

k≥2

e−t tk−1

(k − 1)!
M(k, t)

+
∑

k≥2

e−t t
k

k!
M ′(k, t) −

∑

k≥2

e−t t
k

k!
M(k, t)

or

M ′(∞, t) = 1 − M(∞, t) + e−tM ′(∞, t) +
∑

k≥2

e−t tk−1

(k − 1)!
M(k, t) +

∑

k≥2

e−t t
k

k!
M ′(k, t).

(21)

Note that the same expression of M ′(∞, t) 
an also be derived from the re
urren
e Eq. (19) by

using asymptoti
 expansions similar to the ones given in Se
tion 2.

5.1 Optimal probability on the domain (0, 2)

A numeri
al study of the equation M ′(∞, t) = 0 on the open segment U = (0, 2) easily leads to

the solution.

t∗ = 1.0654388051 . . . , with M(∞, t∗) = 2.4348109638268515517966 . . .

The relative gain on M(∞, 1) is a bit larger than .0028278945 (hardly more than .28 %).

Sin
e the (ne
essary) 
ondition M ′(∞, t∗) = 0 is not su�
ient for M(∞, t) to have an extremum

at t∗, there remains to prove

1. that M(∞, t) has a minimum at t∗ ∈ U ,

2. that this minimal solution t∗ is indeed unique on the segment (0, 2).

Both results derive from the following Subse
tion 5.1.1.
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5.1.1 M(∞, t) is a stri
tly 
onvex fun
tion on the segment (0, 2)

All de�nitions regarding real and 
onvex fun
tions that are used in the following may be found

in [8, Chap. 1 and 3℄.

Sin
e a stri
tly 
onvex fun
tion on some real segment admits at most one global minimum on

that segment, both above results (1 and 2) are shown simultaneously by proving that M(∞, t)
is indeed a stri
tly 
onvex positive real fun
tion in U = (0, 2).

For the sake of simpli
ity (and in the line of notations in Subse
tion 1.1), we let M(∞, t)
denote lim

n→∞
M(n, t),

b(n, k; t) :=

(

n

k

)(

t

n

)k (

1− t

n

)n−k

,

and �nally, we also use the notation

λ(n, t) :=
1

1− (1− t/n)n − (t/n)n
for n ≥ 2.

Besides, the following form of the basi
 re
urren
e Eq. (18) is 
onsidered:

M(n, t) = λ(n, t) + λ(n, t)

n−1
∑

k=2

b(n, k; t)M(k, t) and M(1, t) = 0. (22)

Starting from the above re
urren
e Eq. (22), we show below by indu
tion on n, that at any
point t ∈ U and for any integer n ≥ 2 all fun
tions M(n, t) are stri
tly 
onvex positive real

fun
tions.

Therefore, as the pointwise limit of su
h a sequen
e

(

M(n, t)
)

n≥2
in U , M(∞, t) := lim

n→∞
M(n, t)

will be itself a stri
tly 
onvex positive real fun
tion in (0, 2) (see [8, p. 73℄).

Note also that, by indu
tion on n, all fun
tions M(n, t) (n ≥ 2) are in C∞(U,R) (i.e., in�nitely
di�erentiable in (0, 2)), and this is also true for the limit M(∞, t). In the same line of argument,

M(n, 0+) := lim
t→0+

M(n, t) = M(n, 2−) := lim
t→2−

M(n, t) = +∞ for any integer n ≥ 2, whi
h

remains true in the limit M(∞, t).

• Basi
 step. Whenever n = 2, and n = 3, Eq. (18) yields

M(2, t) =
2

t(2 − t)
and M(3, t) =

18− 3t− 2t2

3t(2− t)(3− t)
.

So when k = 2 and k = 3, M(k, t) are two positive fun
tions in C∞(U,R) s.t. M(k, 0+) =
M(k, 2−) = +∞.

Moreover, sin
e

M ′′(2, t) = 4
3t2 − 6t+ 4

t3(2− t)3
≥ M ′′(2, 1) = 4 and

M ′′(3, t) = −2
2t6 + 9t5 − 189t4 + 837t3 − 1674t2 + 1620t− 648

3t3(2− t)3(3− t)3
> 3,

M(2, t) and M(3, t) are two stri
tly 
onvex fun
tions in U .
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• Indu
tion Hypothesis. Assume now that for all t ∈ U , every fun
tion M(k, t) is a

stri
tly 
onvex positive real fun
tion in C∞(U,R), s.t. M(k, 0+) = M(k, 2−) = +∞ for any

integer 2 ≤ k < n.

At any point t ∈ U , λ(n, t) ≥ 1 for any positive integer n and b(n, k; t) ≥ 0 for any pair (k, n) of
non negative integers.

In virtue of Eq. (22) and the indu
tion hypothesis, λ(n, t)

n−1
∑

k=2

b(n, k; t)M(k, t) is a linear


ombination of stri
tly 
onvex (positive real) fun
tions with non negative 
oe�
ients, λ(n, t) ×
b(n, k; t), in U .
Furthermore, λ(n, t) in in�nitely di�erentiable in U , lim

t→0+
λ(n, t) = +∞ and λ(n, 2) is bounded

(ex
ept for n = 2, sin
e λ(2, 2−) = +∞).

Next, there remains to prove that

(

λ(n, t)
)

n≥2
is also a sequen
e of stri
tly 
onvex positive

real fun
tion in U .

For any given 0 < t < 2 and for any n ≥ 2, the value λ(n, t) enjoys the two following inequalities,
whi
h derive from the tight inequalities shown in [9, p. 242℄: for 0 ≤ t/n < 1,

(

1 − e−t

(

1− t2

n

)

− t2

n2

)−1

≤ λ(n, t) ≤
(

1 − e−t − tn

2n

)−1

. (23)

It is easily seen that, for any �xed value of t ∈ U , λ(n, t) (n ≥ 2) is a stri
tly in
reasing sequen
e,

and lim
n→∞

λ(n, t) =
1

1− e−t
.

On the other hand, λ(n, t) is a stri
tly de
reasing fun
tion of t ∈ U for any �xed n ≥ 2.

In short, sin
e λ′′(2, t) ≥ 4 and λ′′(3, t) ≥ 32/27, λ(2, t) and λ(3, t) are two stri
tly 
onvex

positive real fun
tion in C∞(U,R).

Again, the proof is by indu
tion on n. If we assume (Indu
tion hypothesis) that, up to any

integer n ≥ 2, λ(n, t) is a stri
tly 
onvex fun
tion of t in U , then λ(n+ 1, t) is indeed a stri
tly


onvex fun
tion of t on U . For example, assuming that λ′′(n, t) > 0 for any integer n ≥ 2, it
is shown after some algebra that λ′′(n + 1, t) ≥ λ′′(n, t) > 0, by the above two inequalities in

Eq. (23) and their resulting properties on λ(n, t).

Thus, the positive sequen
e

(

λ(n, t)
)

n≥2
is also 
omposed of stri
tly 
onvex real fun
tion in

U

Finally, Eq. (22) and the above results show that, for all t ∈ U and for any integer n ≥ 2,
M(n, t) is a linear 
ombination of stri
tly 
onvex (positive real) fun
tions with non negative


oe�
ients : λ(n, t) and λ(n, t)× b(n, k; t).

Hen
e,

(

M(n, t)
)

n≥2
is a sequen
e of stri
tly 
onvex positive real fun
tions in C∞(U,R), s.t.

M(n, 0+) = M(n, 2−) = +∞.

In 
on
lusion, M(∞, t) is the pointwise limit of the stri
tly in
reasing sequen
e

(

M(n, t)
)

n≥2

of stri
tly 
onvex positive real fun
tions of t ∈ U (see [8, p. 73℄). Therefore,M(∞, t) is also stri
tly

onvex in (0, 2), and the value M(∞, t∗) at t∗ = 1.065439 . . ., is the unique global minimum of

M(∞, t) on this segment and we are done. A plot of M(∞, t) is given in Fig. 4.
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Figure 4: M(∞, t), t ∈ (0, 2)

In that sense, we answered the question set in Se
tion 5: on the real domain (0, 2), t∗/n is indeed

the unique optimal probability for an a
tive pro
essor to 
hoose and parti
ipate in the ele
tion.

Remark 5.1 For any integer n ≥ 2, M(n, t) is twi
e di�erentiable for all t ∈ (0, 2). Hen
e, if

M ′′(n, t) > 0 the fun
tions M(n, t) are all stri
tly 
onvex; but the 
onverse is not true.

The positive real fun
tion M(∞, t) is de�ned on the real segment U = (0, 2) as the pointwise

limit of stri
tly 
onvex positive real fun
tions de�ned in U . Su
h is a su�
ient 
ondition for

M(∞, t) to be also stri
tly 
onvex in U . However the 
ondition is not ne
essary.

Furthermore, M(∞, t) is the uniform limit of real fun
tions on any 
ompa
t subset of the segment

(0, 2). This is another way of deriving that sequen
es of stri
tly 
onvex fun
tions do remain

stri
tly 
onvex in the limit on any 
ompa
t subinterval of (0, 2).

6 What happens to M(∞, t) when t ≥ 2?

There remains to investigate how M(∞, t) varies as a fun
tion of t ≥ 2. In the �rst pla
e, we

just assume that the real parameter t belongs to the domain (2, 3).

6.1 Variation of M(∞, t) in the domain [2, 3)

Sin
e t ∈ (2, 3) and 0 ≤ t/n ≤ 1 (by de�nition), the value of the fun
tion M(n, t) must be

handled separately in the 
ase when n = 2 (i.e. on a ring with two pro
essors).

More pre
isely, two situations may then o

ur, in whi
h the symmetry 
annot be broken with the

original algorithm (see [4, p. 1℄:

• if t = 2, M(2, 2) = b(2, 2; 2) = 1. Both a
tive pro
essors on the ring de
ide with probability

1 to be
ome 
andidates in ea
h round, and the proto
ol either perfoms an ele
tion with

two leaders, or enters an in�nite 
omputation;
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• if 2 < t < 3, we must also set M(2, t) = 1 for the 
onsisten
y of de�nitions (when t → 3−,
M(2, 3−) = +∞, as is shown below). In su
h a 
ase no termination of the proto
ol 
an be

a
hieved.

Sin
e M(2, t) = 1 is set for all t ∈ (2, 3), the re
urren
e equation for the expe
tation M(n, t) is
expressed in a slightly di�erent form from Eqs. (18) and (22) on the segment [2, 3).

M(n, t) = λ(n, t) + λ(n, t) b(n, 2; t) + λ(n, t)

n−1
∑

k=3

b(n, k; t)M(k, t) and M(2, t) = 1, (24)

where, a

ording to the notation in Subse
tion 5.1.1,

b(n, 2; t) :=

(

n

2

)(

t

n

)2(

1− t

n

)n−2

, and λ(n, t) :=
1

1− (1− t/n)n − (t/n)n
for n ≥ 3.

There remains to prove that M ′(∞, t) > 0 on the segment [2, 3), with M(∞, 3−) = +∞.

First, following Subse
tion 5.1.1 (i.e. again by indu
tion on n ≥ 3), M(n, t) in Eq. (24) is

easily shown to be an in
reasing sequen
e of n ≥ 3 for �xed t in [2, 3).
Thus, for all n ≥ 3 and for any t ∈ [2, 3), M(n, t) ≤ M(n, t) ≤ M(∞, t).

Next, by (modi�ed) Eq. (20) with n ≥ 3 and t ∈ [2, 3), upper and lower bounds on M(∞, t)
are derived.

More pre
isely, after few 
omputations the following two inequalities hold for all t ∈ [2, 3),

M(∞, t) ≤ 2e−t

t(t+ 2)
+

t

t+ 2
(25)

M(∞, t) ≥ 1

1− e−t

(

1 +
1

2
t2e−t + M(3, t) e−t(et − t2/2− t− 1)

)

, (26)

where M(3, t) =
9− 3t2 − t3

3t(3− t)
.

(Note that sin
e 2.2797 . . . ≤ M(∞, 2) ≤ 2.34726 . . ., both inequalities (25) and (26) make sense.)

Finally, Eqs. (25) and (26) are used to bound M ′(∞, t) from below, and derive that

M ′(∞, t) > 0 on the segment [2, 3).
Indeed, by (modi�ed) Eq. (21) with t ∈ [2, 3), a few 
al
ulations yield a lower bound on M ′(∞, t)
for any t ∈ [2, 3).

M ′(∞, t) ≥ 2et

t(t+ 2)
− 2et(2et + t2)

t2(t+ 2)2
+

2(et − t− 1)(9− 3t2 − t3)

3t(t+ 2)(3− t)
. (27)

And, sin
e M ′(∞, t) > 2.26605840 . . . for all t ∈ [2, 3), M ′(∞, t) > 0 on that segment.

Furthermore, sin
e all fun
tions M(n, t) (n ≥ 3) are in C∞([2, 3),R) (see Subse
tion 5.1.1),

M(∞, 3−) = +∞ holds for all t ∈ [2, 3).

Hen
e, M(∞, t) is stri
tly in
reasing on the segment (2, 3) and M(∞, 3−) = +∞.

The 
urve M(∞, t) is represented in Fig. 5 on the segment [2, 3).
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Figure 5: M(∞, t), t ∈ [2, 3)

6.2 Variation of M(∞, t) in the domains (ξ, ξ + 1), with ξ ≥ 3

Investigating the variation of the fun
tions M(∞, t) when t ≥ 3 
an be 
arried out along the

same lines as in the previous Subse
tion 6.1.

As 
an be noti
ed (e.g. in Subse
tion 5.1.1), the only poles of the fun
tions M(n, t) are all
the non negative integers 0, 2, 3,. . . (1 ex
epted) on the real line. Thus, the variation of M(∞, t)
when t ≥ 3 must be 
onsidered on all su
h 
onse
utive real segments (ξ, ξ+1), where the ξ's are
all integers ≥ 3.

Sin
e t ∈ (ξ, ξ + 1) still meets the 
ondition 0 ≤ t/n ≤ 1 (by de�nition), ea
h value M(ξ, t)
must again be handled separately on ea
h open segment I = (ξ, ξ + 1).

More pre
isely, whenever n = ξ there are ξ pro
essors on the ring, and the 
ondition 0 ≤ t/ξ ≤ 1
must still hold. The situation is similar to the one in Subse
tion 6.1: the original algorithm


annot break the symmetry, neither if t = ξ, nor if ξ < t < ξ + 1 (see [4, p. 1℄).

To over
ome the di�
ulty, and for the sake of the 
onsisten
y of the de�nitions, we set

M(ξ, t) := ⌈lg(ξ)⌉ for all t ∈ I, with ξ ≥ 3. For example, M(3, t) := 2 (by de�nition) on the open

segment (3, 4), and the re
urren
e for the expe
tation M(n, t) is slightly di�erent from Eq. (24)

if t ∈ (3, 4).
Similarly, ea
h basi
 re
urren
e equation for M(n, t) (Eq. (24)), M ′(n, t) (Eq. (19)), M(∞, t)
(Eq. (20)) and M ′(∞, t) (Eq. (21)) must be adapted to the 
onditions on ea
h segment I 
on-

sidered.

On ea
h open segment I = (ξ, ξ + 1) (ξ ≥ 3), the variation of the real fun
tion M(∞, t) is
roughly the same. In parti
ular, M(∞, t) is monotone in
reasing in I, and it admits no minimum

on ea
h su
h segments.
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7 Con
lusions

As pointed out in the Introdu
tion, performing the asymptoti
 analyses of various re
urren
e

relations brings into play some basi
, though powerful, analyti
 te
hniques. This is the reason

why su
h methods make it possible to �nd easily all moments of the algorithm asymptoti
 �
ost�

(the numbers of rounds required), espe
iallyM(∞) andM (2)(∞) (when n gets su�
iently large),

as well as an asymptoti
 approximation of P (∞, j) (when j → ∞). The latter is derived by 
om-

puting singular expansions of generating fun
tions around their smallest singularity. Asymptoti


expansions of all moments 
an also be me
hani
ally derived. All the numeri
al results performed

(with Maple) by both te
hniques are quite a

urate and �t in perfe
tly.

Generalizing to a probability t/n, where t is a positive real number, shows that there exists one
unique minimum of the fun
tionM(∞, t) on the real segment (0, 2) : M(∞, t∗) = 2.434810964 . . .
at the point t∗ = 1.065439 . . . Besides, the variation of M(∞, t) whenever t ≥ 2 shows quite the

same behaviour on ea
h real open interval (ξ, ξ + 1), where the ξ's are all the integers ≥ 2.
In the asymptoti
 analysis, the major di�
ulty arises from the proof of inter
hanging the

limits and the summations in the re
urren
es. Two di�erent methods are given that may be

used in many other similar situations: the Lapla
e method for sums, whi
h requires the use of

asymptoti
s via the Saddle point te
hnique, and the Lebesgue's dominated 
onvergen
e property.

In 
on
lusion, su
h analyti
 te
hniques may serve as basi
 bri
ks for �nding the asymptoti



omplexity measures of quite a lot of other algorithms, in distributed or sequential settings.
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