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Asymptoti Analysis

of a Leader Eletion Algorithm
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Abstrat

Itai and Rodeh showed that, on the average, the ommuniation of a leader eletion

algorithm takes no more than LN bits, where L ≃ 2.441716 and N denotes the size of the

ring. We give a preise asymptoti analysis of the average number of rounds M(n) required
by the algorithm, proving for example that M(∞) := lim

n→∞
M(n) = 2.441715879 . . ., where n

is the number of starting andidates in the eletion. Aurate asymptoti expressions of the

seond momentM (2)(n) of the disrete random variable at hand, its probability distribution,

and the generalization to all moments are given. Corresponding asymptoti expansions

(n → ∞) are provided for su�iently large j, where j ounts the number of rounds. Our

numerial results show that all omputations perfetly �t the observed values. Finally, we

investigate the generalization to probability t/n, where t is a non negative real parameter.

The real funtionM(∞, t) := lim
n→∞

M(n, t) is shown to admit one unique minimum M(∞, t∗)

on the real segment (0, 2). Furthermore, the variations of M(∞, t) on the whole real line

are also studied in detail.

1 Introdution

In [3, 4℄, Itai and Rodeh introdue several symmetry breaking protools on rings of size N ,

among whih the �rst is onsidered here. They also show that the average ommuniation ost

of this partiular leader eletion algorithm takes no more than LN bits, where the value of L is

omputed in [4℄ to be about 2.441716.
However, their method is less diret and less general than the asymptoti analysis ompleted in

the present paper. Besides, the method is tailor-made for �nding only the average number of

rounds required by the algorithm: the seond moment (and a fortiori all other moments), and

the probability distribution are not onsidered in [4℄.

By ontrast, the asymptoti method used in the analysis of our reurrene relations is very

general and quite powerful. All moments as well as the probability distribution of the random

variable an be also mehanially derived from their asymptoti reurrenes. A full asymptoti

expansion, (for large n) an be obtained, and it is illustrated for the mean. An asymptoti

approximation of the probability distribution (when n → ∞, and j gets large enough) is also

ompleted. The latter is derived by omputing singular expansions of generating funtions around

their smallest singularity. The present method may serve as a basi brik for �nding the om-

plexity measures of quite a lot of distributed algorithms.
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The last Setion of the paper is generalizing the problem to a probability of the form t/n,
where t is a non negative real parameter. We show that there exists one unique optimal value

t∗ = 1.065439 . . . on the segment (0, 2), where the real funtion M(∞, t) admits one unique

minimum, M(∞, t∗) = 2.434810964 . . ., on the real line. Finally, the variations of M(∞, t) when
t > 2 are investigated in detail.

1.1 Algorithm sheme and notation

For the reader's onveniene, we rephrase in our own words the �symmetry breaking� (leader

eletion) algorithm designed in [3, 4℄.

Consider a ring (yle) of N indistinguishable proessors, i.e. with no identi�ers (the ring is

said to be �symmetri�), and assume every proessor knows N . The leader eletion algorithm

works as follows.

Let n denote the number of ative proessors. In the �rst round (initialization), n = N and

eah proessor is ative. At the beginning of eah urrent round, there remains 1 < n ≤ N ative

proessors along the ring. To ompute the number of andidates in the round (i.e. all ative

proessors that hoose to partiipate in the eletion), eah andidate sends a pebble. This pebble

is passed around the ring, and every ative proessor an dedue n by ounting the number of

pebbles whih passed through. So, in the beginning of a round every ative proessor knows n
and deides with probability 1/n to beome a andidate.

Thus, three ases may happen in a urrent round:

• if there is one andidate left, it is the leader;

• otherwise, the non andidates are rejeted (beoming non ative), and the remaining ative

proessors (the andidates of the urrent round) proeed to the next round of the algorithm;

• if no ative proessors hooses to be a andidate, all ative proessors start the next round.

Throughout the paper, we let X(n) denote the random variable (r.v.) that ounts the number

of rounds required to redue the number of ative proessors from n to 1 (hoose the leader),

when starting with n = N ative proessors. The following notations are used.

P (n, j) := P

(

X(n) = j
)

, M(n) := E

(

X(n)
)

,

M (2)(n) := E
(

X(n)2
)

and ϕ(n) := E

(

e−αX(n)
)

.

For the sake of simpliity, we also let M(∞) and M (2)(∞) denote lim
n→∞

M(n) and lim
n→∞

M (2)(n)

(resp.); similarly, P (∞, j) denotes lim
n→∞

P (n, j).

Finally, let b(n, k) denote the probability that k out of n ative proessors hoose to beome

andidates, eah with probability 1/n. In other words,

b(n, k) :=

(

n

k

)(

1

n

)k (

1− 1

n

)n−k

.

The reurrene equation for the expetationM(n) is easily derived from the algorithm sheme.

M(n) = 1 +

(

1− 1

n

)n

M(n) +

n
∑

k=2

(

n

k

)(

1

n

)k (

1− 1

n

)n−k

M(k) for n > 1, (1)

and M(1) = 0 (by de�nition).
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2 Asymptoti analysis of the reurrene

Theorem 2.1 The asymptoti average number of rounds required by the algorithm to elet a

leader is the onstant M(∞). When n → ∞, an asymptoti approximation of M(n) writes

M(n) ∼ 1

1− e−1



1 +
∑

k≥2

e−1

k!
M(k)



 = 2.441715879 . . . (2)

The seond moment of the disrete r.v. X(n) is asymptotially

M (2)(n) ∼ 1

1− e−1



−1 + 2M(∞) +
∑

k≥2

e−1

k!
M (2)(k)



 = 8.794530817 . . . ,

and an asymptoti approximation of its variane (n → ∞) yields

var
(

X(n)
)

∼ 1

(1− e−1)2

(

e−1 + (1 − e−1)S2 − S2
1

)

= 2.832554383 . . . ,

where S1 =
∑

k≥2

e−1

k!
M(k) and S2 =

∑

k≥2

e−1

k!
M (2)(k).

More generally,

ϕ(n) ∼ e−α

1− e−(α+1)



e−1 +
∑

k≥2

e−1

k!
ϕ(k)



 .

Finally, the probability distribution P (∞, j) (n → ∞) satis�es the following asymptoti approxi-

mation when j → ∞,

P (∞, j) ∼ 2ρ

1− 2e−1
2−j,

where ρ = .2950911517 . . .

Up until now, we have been unable to use the lassial generating funtion approah to

ompute M(n).

However, heking that M(n) is bounded is possible. Indeed, assuming that there exists a

positive onstant B(n− 1) suh that

M(i) ≤ B(n− 1) for i = 1, . . . , n− 1, and B(1) = 0, (3)

the following inequality holds

M(n) ≤ 1

1− (1 − 1/n)n − (1/n)n

(

1 +B(n− 1)

n−1
∑

k=2

b(n, k)

)

.

So M(n) ≤ B(n), with

B(n) = B(n− 1) +
1−B(n− 1)(1− 1/n)n−1

1− (1− 1/n)n − (1/n)n
, (4)
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and B(1) = 0. (We show below that B(n) is inreasing.)

Let us �rst analyze the reurrene (4). If B(n) is onverging, it must onverge to the �xed

point of Eq. (4), i.e. e. So, we let B(n) = e−∆(n), and ∆(1) = e.

For �xed k and large n,

Tn :=

(

1− 1

n

)n

∼ e−1

(

1 − 1

2n
− 5

24n2
+ · · ·

)

(5)

Tn−k :=

(

1− 1

n

)n−k

∼ e−1

(

1 +
2k − 1

2n
+

12k2 − 5

24n2
+ · · ·

)

. (6)

We have

∆(n) = a(n)∆(n− 1) +
b(n)

n
, (7)

with

a(n) = 1 − Tn−1

1− Tn − (1/n)n
,

b(n) = n
eTn−1 − 1

1− Tn − (1/n)n
.

Note that n ≥ 3, a(2) = 0, 0 < a(n) < 1/2, and 0 < b(n) < 1. Several onstants will be used in

the sequel:

c0 :=
e− 2

e− 1
, c1 :=

1

2

e

e− 1
, c2 := −1

2

e− 2

(e − 1)2
, c3 :=

1

24

e(7e− 13)

(e − 1)2
,

c4 :=
1

24

−7e2 + 25e− 24

(e− 1)2
, c5 := c1c2c6 + c3, c6 :=

1

1− c0
, c7 :=

c0
(1− c0)2

, c8 := c1c7 + c5c6.

For instane, a(n) ∼ c0 +O(1/n) and b(n) ∼ c1 +O(1/n).
Iterating Eq. (7) gives

∆(n) =
n−2
∏

i=0

a(n− i)∆(i) +
n−2
∑

i=0

b(n− i)

n− i

i−1
∏

j=0

a(n− j)

=
1

n

n/2−1
∑

i=0

b(n− i)

1− i/n

i−1
∏

j=0

a(n− j) +
n−2
∑

i=n/2

b(n− i)

n− i

i−1
∏

j=0

a(n− j).

Now,

n−2
∑

i=n/2

b(n− i)

n− i

i−1
∏

j=0

a(n− j) ≤ 1

2

∞
∑

i=n/2

(1/2)i → 0 (n → ∞),

and so,

∆(n) ∼ c6c1/n.

Hene, for n su�iently large, ∆(n) is dereasing, B(n) is inreasing and Eq. (3) holds for n.
Moreover, ∆(n) is indeed dereasing to 0 and B(n) onverges to e.
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For the sake of ompleteness, we an also get a omplete haraterization of ∆(n).

∆(n) ∼ c0∆(n− 1) +
c1 + c2∆(n− 1)

n
+

c3 + c4∆(n− 1)

n2
+ O(1/n3), (8)

proeeding by bootstrapping, we �rst obtain

∆(n) ∼ c1

∞
∑

i=0

ci0
n− i

∼ c1
n

(

c6 +
c7
n

)

,

and next, by plugging the above equivalene into Eq. (8),

∆(n) ∼ c1c6
n

+
c8
n2

+ O(1/n3).

2.1 Asymptoti approximation of M(n)

Sine M(n) is bounded and positive, the limit an be taken in (1) for �xed k, more generally

for k = o(n1/2) (see Subsetion 2.2 below). In virtue of Stirling formula and Eqs. (5)-(6), the

summand writes

b(n, k) ∼ e−1

k!

(

1 − k2 − 3k + 1

2n
+

3k4 − 22k3 + 39k2 − 9k − 5

24n2
+ · · ·

)

. (9)

Hene, by Eq. (9), the asymptoti approximation of M(n) is

M(n) ∼ 1

1− e−1



1 +
∑

k≥2

e−1

k!
M(k)



 , (10)

whih is already given in [4℄.

The average number of rounds required by the algorithm follows,

M(∞) = lim
n→∞

M(n) = 2.441715878809285246587072 . . .

Numerially, 15 terms are enough to obtain a very good preision: the error resulting from the

sum in Eq. (10) limited to ν terms is bounded by

1

1− e−1

∑

k>ν

1

k!
.

Note also that if the size of the ring is known to be N , the expeted bit omplexity of the

algorithm is 2.4417158788 . . .N . It is easily found, sine N bits per round are used on the average

in the algorithm.

Remark 2.2 Carrying on with the analysis of M(n) gives mehanially a omplete asymptoti

expansion of M(n). Eqs. (1) and (9) lead to M(n) ∼ M(∞) + C1/n + C2/n
2 + · · ·, where

C1 = − e−1

2(1− e−1)2
+
∑

k≥2

e−1
(

− k2 + e−1k2 + 3k − 3e−1k − 1 + e−1 − e−1
)

2(1− e−1)2k!
M(k)

= −e−1(1 + 2e−1)

4(1− e−1)2
+
∑

k≥3

e−1
(

(1− e−1)k(3− k)− 1
)

2(1− e−1)2k!
M(k) = −.7438715372 . . .

The expression of C2 being too long to transribe, we just give the result: C2 = −.1974635346 . . ..
The onvergene of M(n) to M(∞) is thus very slow: O

(

n−1
)

.
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2.2 Interhanging limit and summation

There remains to justify the interhange of the limit and the summation within the sum in

Eq. (1), whih yields the result in (10).

2.2.1 Laplae method

Sine the uto� point in b(n, k) is approximately k0 = n1/2
, the asymptoti form of the sum

∑

2≤k≤n

b(n, k) an be derived from the Laplae method for sums (see [1℄, [5, p. 130-131℄), or

�splitting of the sum� tehnique.

By taking a suitable positive integer r = o(n1/2), we prove that

i) the sum

n
∑

k=r

b(n, k) (the �right tail� of the distribution) is small for large n, and

ii) lim
n→∞

r
∑

k=2

∣

∣

∣

∣

b(n, k)− e−1

k!

∣

∣

∣

∣

= 0.

i) The ordinary generating funtion (OGF) of b(n, k), Fn(z) :=
∑

k≥0

b(n, k)zk is

Fn(z) =

(

1− 1− z

n

)n

,

and the OGF of

∑

r+1≤k≤n

b(n, k) is the produt of Fn(z)− 1 and 1/(z − 1), given by

Fn(z)− 1

z − 1
.

Considering

∑

r≤k≤n

b(n, k), Cauhy integral formula yields

[zr−1]
Fn(z)− 1

z − 1
=

∑

r≤k≤n

b(n, k) =
1

2πi

∫

Ω

Fn(z)− 1

(z − 1)zr
dz,

where Ω is inside the analytiity domain of the integrand and enirles the origin. We see that

z = 1 is not a singularity for the integrand, so we an neglet the term 1 in the numerator, and

asymptotially,

1

2πi

∫

Ω

Fn(z)− 1

(z − 1)zr
dz ∼ 1

2πi

∫

Ω

exp
(

n ln
(

1− (1−z)
n

)

− r ln(z)
)

z − 1
dz.

Again, asymptotially, if we an limit the integration within a neighbourhood of z − 1 = o(n)
(whih is heked below), one obtains

1

2πi

∫

Ω

exp
(

− (1− z)− r ln(z)
)

z − 1
dz.
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To equilibrate, we set z = ry, whih yields

1

2πi

∫

Ω

e−1

ry − 1
exp

(

ry − r
(

ln(y) + ln(r)
))

r dy.

We now use the Saddle point method. The Saddle point is given by y∗ = 1 (and z∗ = r). So we

set y = 1 + ix and, by standard algebra, we obtain an asymptoti approximation when n → ∞,

∑

k≥r

b(n, k) ∼ e−1er√
2π rr+1/2 (1− 1/r)

,

whih shows that the right tail of distribution

∑

b(n, k) onverges indeed to zero when n → ∞.

ii) Next, from approximation (9),

∑

2≤k≤r

∣

∣

∣

∣

b(n, k)− e−1

k!

∣

∣

∣

∣

= O





∑

2≤k≤r

e−1

k!

k2

n



 = O

(

r2

n

)

,

whih tends to zero as n → ∞.

Finally, by ompleting the sum in (10), it is bounded from above by

∑

k≥r

e−1

k!
,

whih also tends to zero as n → ∞.

Therefore, interhanging the limit and the summation in Eq. (1) is proved justi�ed.

2.2.2 Lebesgue's dominated onvergene method

The latter justi�ation may also use the Lebesgue's dominated onvergene Theorem (see e.g.,

[8, p. 27℄).

By Stirling formula and Eqs. (5)-(6),

b(n, k)− e−1

k!
∼ e−1

k!





exp
(

k
n − 1

2n + k
2n2 +O

(

n−k
n3

)

)

(

1 + 1
12n

)

ek
(

1− k
n

)n−k+1/2
(

1 + 1
12(n−k)

) − 1





∼ e−1

k!









exp





k(k − 3)

2n
−
∑

i≥2

ki

ni

2k − i− 1

2i(i+ 1)
+

1

2n
− k

2n2
+

k/n

12(1− k/n)









−1

− 1






.

(11)

Set x = k/n, then

b(n, k)− e−1

k!
∼ e−1

k!

(

(

exp
(

nf1(x) + f2(x) +
f3(x)

n

)

)−1

− 1

)

,

7



with

f1(x) = (1− x) ln(1− x) + x =
x2

2
+ O(x3),

f2(x) =
1

2
ln(1− x) − x = −3x

2
+ O(x2),

f3(x) =
1− x

2
+

1

12

x

1− x
,

and

f1(x) ≥ 0, f2(x) ≤ 0, for |x| ≤ 1.

Thus, for large n, the largest root of nf1(x) + f2(x) + f3(x)/n in [0, 1] is given by

γ/n + O
(

n−2
)

,

with

γ = (3 +
√
5)/2 = 2.618033988 . . . ,

whih shows that nf1(x) + f2(x) + f3(x)/n ≥ 0 for k ≥ 3 and su�iently large n (uniformly in

k). Cheking that it remains true for k = n− δ(n), with δ(n) = O
(

nλ
)

, λ < 1, is easy.

Hene approximation (11) is ≤ 0 for large n, and by Lebesgue's dominated onvergene

Theorem, we an justify the interhange of the limit and the summation in Eq. (1).

Note that Eqs. (6) and (9) already show that we must take k ≥ 3: the oe�ient of 1/n must

be positive.

2.3 Asymptoti approximation of M (2)(n)

We turn now to the omputation of M (2)(n).

M (2)(1) = 0, and

M (2)(n) =

(

1− 1

n

)n

E
(

(1 +X(n))2
)

+

(

1− 1

n

)n−1

· 1 +

n
∑

k=2

b(n, k)E
(

(1 +X(n))2
)

= 1 + 2

(

1− 1

n

)n

M(n) +

(

1− 1

n

)n

M (2)(n)

+ 2
n
∑

k=2

b(n, k)M(k) +
n
∑

k=2

b(n, k)M (2)(k).

Hene, when n → ∞ (again, interhanging the operators may be justi�ed as in Subsetion 2.2),

M (2)(n) ∼ 1

1− e−1



1 + 2e−1M(∞) + 2
∑

k≥2

e−1

k!
M(k) +

∑

k≥2

e−1

k!
M (2)(k)





∼ 1

1− e−1



−1 + 2M(∞) +
∑

k≥2

e−1

k!
M (2)(k)



 = 8.794530817 . . . (12)
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Of ourse, a full expansion for large n an also be derived step by step.

Now, sine the variane of the r.v. X(n) is de�ned as var
(

X(n)
)

= M (2)(n)−
(

M(n)
)2

, an

asymptoti approximation is straightforward (from Eqs. (10) and (12)).

var
(

X(n)
)

∼ 1

(1− e−1)2

(

e−1 + (1 − e−1)S2 − S2
1

)

= 2.832554383 . . . ,

where S1 =
∑

k≥2

e−1

k!
M(k) and S2 =

∑

k≥2

e−1

k!
M (2)(k).

2.4 Generalization

More generally, using ϕ(n) = E

(

e−αX(n)
)

as de�ned in the Introdution,

ϕ(n) = e−α

(

(

1− 1

n

)n

ϕ(n) +

(

1− 1

n

)n−1

· 1 +

n
∑

k=2

b(n, k)ϕ(k)

)

,

with

ϕ(1) = 1 and ϕ(k) = 1 − αM(k) +
α2

2
M (2)(k) + · · ·

Therefore,

ϕ(n) ∼ e−α

1− e−(α+1)



e−1 +
∑

k≥2

e−1

k!
ϕ(k)



 .

Also, from the above relations, all moments asymptoti equations an mehanially be found.

Note that, in ontrast to the asymptoti analysis of usual leader eletion algorithms (e.g. in [2,

6, 7℄), no periodi omponents are arising in the present asymptoti results.

3 Asymptoti approximation of P (n, j)

3.1 Asymptoti reurrene of P (n, j) (n → ∞)

The following reurrene on P (n, j) stems from Eq. (1).

P (n, 1) =

(

1− 1

n

)n−1

,

P (n, j) =

(

1− 1

n

)n

P (n, j − 1) +
n
∑

k=2

b(n, k)P (k, j − 1) for j > 1. (13)

And the expression of an asymptoti approximation for large n follows,

P (n, 1) ∼ e−1,

P (n, j) ∼ e−1 P (∞, j − 1) +
∑

k≥2

e−1

k!
P (k, j − 1) for j > 1. (14)

9



The above asymptoti approximation on P (n, j) provides the following �rst 13 values of

P (∞, j) (j = 1, . . . , 13):

.3678794411, .2625161028, .1634224110, .0946536614, .0524658088, .0282518527, .0149122813,
.0077602315, .0039970064, .0020432067, .0010386252, .0005257697, .0002653262

Remark 3.1 By de�nition, the following alternative expressions of M(∞) and M (2)(∞) also

hold,

M(∞) =
∑

j≥1

jP (∞, j) and M (2)(∞) =
∑

j≥1

j2P (∞, j).

So, M(∞) and M (2)(∞) ould also be omputed from the above de�nitions. However, more

than 15 terms should of ourse be required; viz. about 50 terms are atually needed to obtain the

same preision as in the previous omputations.

3.2 Asymptoti approximation of P (∞, j) (j → ∞)

Let us now ompute an asymptoti approximation for P (∞, j) when j gets large. First, let

D(j) :=
∑

k≥2

e−1

k!
P (k, j).

Whene the reurrene relation (14) also writes

P (∞, j) = e−1P (∞, j − 1) + D(j − 1).

Here and in the remainder of the paper, the following ordinary generating funtions (OGF)

H(z), G(z) and Π(k, z) (of P (∞, j), D(j) and P (k, j), resp.) are used; we de�ne

H(z) :=
∑

j≥1

P (∞, j)zj , G(z) :=
∑

j≥1

D(j)zj and

Π(k, z) :=
∑

j≥1

P (k, j)zj , for any �xed integer k ≥ 2. (15)

From the OGF H(z) de�ned in (15) and the reurrene (14), we obtain

H(z) − e−1z = e−1zH(z) + zG(z),

and

H(z) =
z
(

G(z) + e−1
)

1− e−1z
.

So, H(z) has a simple pole at z = e.

Yet, a numerial hek in Eq. (14) shows that P (∞, j) = Ω
(

e−j
)

, and thus, H(z) must have a
smaller singularity whih is (stritly) less than e.

Now, the OGF Π(k, z) de�ned in (15) and the reurrene relation (13) yield

Π(k, z) −
(

1− 1

k

)k−1

z =

(

1− 1

k

)k

zΠ(k, z) +

k
∑

ℓ=2

b(k, ℓ)zΠ(ℓ, z), (16)
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whih gives, for k = 2,

Π(2, z) =
z/2

1− z/2
.

The above result is of ourse due to the geometri distribution of P (2, j), with parameter 1/2.

Hene, Π(2, z) has a singularity at z = 2, and the singular expansion of Π(2, z) in a domain

D around z = 2 stands as

Π(2, z) ≍ 1

1− z/2
.

Let R(2) = lim
z→2

(1 − z/2)Π(2, z) = 1. In virtue of Eq. (16), it is easily seen that z = 2 is also a

singularity of all the Π(k, z)'s for any integer k ≥ 2. If we denote

R(k) := lim
z→2

(1− z/2)Π(k, z),

we derive from Eq. (16) that

R(k) =

(

1− 1

k

)k

2R(k) +

k
∑

ℓ=2

b(k, ℓ) 2R(ℓ).

When k gets su�iently large, R(k) an be omputed (15 terms are quite enough for the preision

required).

Sine

G(z) =
∑

k≥2

e−1

k!
Π(k, z),

the de�nition of Π(z) in (15) shows that z = 2 is also a singularity of G(z). By setting

lim
z→2

(1− z/2)
∑

k≥2

e−1

k!
Π(k, z) =

∑

k≥2

e−1

k!
R(k) = ρ = .2950911517 . . .

(again, interhanging the sum and the limit may be justi�ed as in Subsetion 2.2), the singular

expansion of G(z) at z = 2 writes

G(z) ≍ ρ

1− z/2
.

Finally, we obtain the singular expansion of H(z) at z = 2,

H(z) ≍ 2ρ

(1− 2e−1)(1− z/2)
,

and therefore, when j → ∞,

P (∞, j) ∼ 2.233499118 . . . 2−j. (17)

4 Numerial results

As an be seen in the following Figures Fig. 1 and Fig. 2, the previous omputations of P (∞, j),
and M(∞) and M (2)(∞) perfetly �t the above ones. Moreover, Fig. 3 shows that the observed

values of P (∞, j) also perfetly �t the asymptoti approximation of P (∞, j) obtained in (17) for

su�iently large j.
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Figure 3: P (∞, j) and its asymptoti approximation in (17) for large j (j = 20, . . . , 30)

5 Is 1/n the optimal probability?

Let t be a non negative real number. Following a question raised by J. Cardinal, let t/n be the

probability of hoosing to partiipate in the eletion.

Is there one unique optimal real positive value t∗ in some real domain?

Taken in the initial ontext of the �rst leader eletion (�symmetry breaking�) protool designed

in [3, 4℄ (see Subsetion 1.1), t is introdued as a real non negative parameter whih is assumed

known to every proessor on the ring.

Initially, all the proessors are ative. At the beginning of eah urrent round of the eletion

algorithm, every ative proessor knows n (the ounting proess of n is desribed in Subse-

tion 1.1), and an deide with probability t/n whether to beome a andidate in the round. So,

by de�nition, t must a priori meet the ondition 0 ≤ t/n ≤ 1.

The reurrene equation for the expetation M(n, t) (with 0 < t < 2) is similar to Eq. (1),

M(n, t) = 1 +

(

1− t

n

)n

M(n, t)

+

n
∑

k=2

(

n

k

)(

t

n

)k (

1− t

n

)n−k

M(k, t) for n ≥ 2,

and M(1, t) = 0 (by de�nition). (18)
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Upon Di�erentiating Eq. (18) with respet to t, we obtain

M ′(n, t) = −
(

1− t

n

)n−1

M(n, t) +

(

1− t

n

)n

M ′(n, t)

+

n
∑

k=2

(

n

k

)

k

n

(

t

n

)k−1(

1− t

n

)n−k

M(k, t)

−
n
∑

k=2

(

n

k

)(

t

n

)k
n− k

n

(

1− t

n

)n−k−1

M(k, t)

+
n
∑

k=2

(

n

k

)(

t

n

)k (

1− t

n

)n−k

M ′(k, t) (19)

Now, as in Eq. (10), an asymptoti approximation of M(n, t) for large n yields

M(∞, t) = 1 + e−tM(∞, t) +
∑

k≥2

e−t t
k

k!
M(k, t), (20)

and, similarly, upon di�erentiating Eq. (20) with respet to t,

M ′(∞, t) = −e−tM(∞, t) + e−tM ′(∞, t) +
∑

k≥2

e−t tk−1

(k − 1)!
M(k, t)

+
∑

k≥2

e−t t
k

k!
M ′(k, t) −

∑

k≥2

e−t t
k

k!
M(k, t)

or

M ′(∞, t) = 1 − M(∞, t) + e−tM ′(∞, t) +
∑

k≥2

e−t tk−1

(k − 1)!
M(k, t) +

∑

k≥2

e−t t
k

k!
M ′(k, t).

(21)

Note that the same expression of M ′(∞, t) an also be derived from the reurrene Eq. (19) by

using asymptoti expansions similar to the ones given in Setion 2.

5.1 Optimal probability on the domain (0, 2)

A numerial study of the equation M ′(∞, t) = 0 on the open segment U = (0, 2) easily leads to

the solution.

t∗ = 1.0654388051 . . . , with M(∞, t∗) = 2.4348109638268515517966 . . .

The relative gain on M(∞, 1) is a bit larger than .0028278945 (hardly more than .28 %).

Sine the (neessary) ondition M ′(∞, t∗) = 0 is not su�ient for M(∞, t) to have an extremum

at t∗, there remains to prove

1. that M(∞, t) has a minimum at t∗ ∈ U ,

2. that this minimal solution t∗ is indeed unique on the segment (0, 2).

Both results derive from the following Subsetion 5.1.1.
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5.1.1 M(∞, t) is a stritly onvex funtion on the segment (0, 2)

All de�nitions regarding real and onvex funtions that are used in the following may be found

in [8, Chap. 1 and 3℄.

Sine a stritly onvex funtion on some real segment admits at most one global minimum on

that segment, both above results (1 and 2) are shown simultaneously by proving that M(∞, t)
is indeed a stritly onvex positive real funtion in U = (0, 2).

For the sake of simpliity (and in the line of notations in Subsetion 1.1), we let M(∞, t)
denote lim

n→∞
M(n, t),

b(n, k; t) :=

(

n

k

)(

t

n

)k (

1− t

n

)n−k

,

and �nally, we also use the notation

λ(n, t) :=
1

1− (1− t/n)n − (t/n)n
for n ≥ 2.

Besides, the following form of the basi reurrene Eq. (18) is onsidered:

M(n, t) = λ(n, t) + λ(n, t)

n−1
∑

k=2

b(n, k; t)M(k, t) and M(1, t) = 0. (22)

Starting from the above reurrene Eq. (22), we show below by indution on n, that at any
point t ∈ U and for any integer n ≥ 2 all funtions M(n, t) are stritly onvex positive real

funtions.

Therefore, as the pointwise limit of suh a sequene

(

M(n, t)
)

n≥2
in U , M(∞, t) := lim

n→∞
M(n, t)

will be itself a stritly onvex positive real funtion in (0, 2) (see [8, p. 73℄).

Note also that, by indution on n, all funtions M(n, t) (n ≥ 2) are in C∞(U,R) (i.e., in�nitely
di�erentiable in (0, 2)), and this is also true for the limit M(∞, t). In the same line of argument,

M(n, 0+) := lim
t→0+

M(n, t) = M(n, 2−) := lim
t→2−

M(n, t) = +∞ for any integer n ≥ 2, whih

remains true in the limit M(∞, t).

• Basi step. Whenever n = 2, and n = 3, Eq. (18) yields

M(2, t) =
2

t(2 − t)
and M(3, t) =

18− 3t− 2t2

3t(2− t)(3− t)
.

So when k = 2 and k = 3, M(k, t) are two positive funtions in C∞(U,R) s.t. M(k, 0+) =
M(k, 2−) = +∞.

Moreover, sine

M ′′(2, t) = 4
3t2 − 6t+ 4

t3(2− t)3
≥ M ′′(2, 1) = 4 and

M ′′(3, t) = −2
2t6 + 9t5 − 189t4 + 837t3 − 1674t2 + 1620t− 648

3t3(2− t)3(3− t)3
> 3,

M(2, t) and M(3, t) are two stritly onvex funtions in U .
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• Indution Hypothesis. Assume now that for all t ∈ U , every funtion M(k, t) is a

stritly onvex positive real funtion in C∞(U,R), s.t. M(k, 0+) = M(k, 2−) = +∞ for any

integer 2 ≤ k < n.

At any point t ∈ U , λ(n, t) ≥ 1 for any positive integer n and b(n, k; t) ≥ 0 for any pair (k, n) of
non negative integers.

In virtue of Eq. (22) and the indution hypothesis, λ(n, t)

n−1
∑

k=2

b(n, k; t)M(k, t) is a linear

ombination of stritly onvex (positive real) funtions with non negative oe�ients, λ(n, t) ×
b(n, k; t), in U .
Furthermore, λ(n, t) in in�nitely di�erentiable in U , lim

t→0+
λ(n, t) = +∞ and λ(n, 2) is bounded

(exept for n = 2, sine λ(2, 2−) = +∞).

Next, there remains to prove that

(

λ(n, t)
)

n≥2
is also a sequene of stritly onvex positive

real funtion in U .

For any given 0 < t < 2 and for any n ≥ 2, the value λ(n, t) enjoys the two following inequalities,
whih derive from the tight inequalities shown in [9, p. 242℄: for 0 ≤ t/n < 1,

(

1 − e−t

(

1− t2

n

)

− t2

n2

)−1

≤ λ(n, t) ≤
(

1 − e−t − tn

2n

)−1

. (23)

It is easily seen that, for any �xed value of t ∈ U , λ(n, t) (n ≥ 2) is a stritly inreasing sequene,

and lim
n→∞

λ(n, t) =
1

1− e−t
.

On the other hand, λ(n, t) is a stritly dereasing funtion of t ∈ U for any �xed n ≥ 2.

In short, sine λ′′(2, t) ≥ 4 and λ′′(3, t) ≥ 32/27, λ(2, t) and λ(3, t) are two stritly onvex

positive real funtion in C∞(U,R).

Again, the proof is by indution on n. If we assume (Indution hypothesis) that, up to any

integer n ≥ 2, λ(n, t) is a stritly onvex funtion of t in U , then λ(n+ 1, t) is indeed a stritly

onvex funtion of t on U . For example, assuming that λ′′(n, t) > 0 for any integer n ≥ 2, it
is shown after some algebra that λ′′(n + 1, t) ≥ λ′′(n, t) > 0, by the above two inequalities in

Eq. (23) and their resulting properties on λ(n, t).

Thus, the positive sequene

(

λ(n, t)
)

n≥2
is also omposed of stritly onvex real funtion in

U

Finally, Eq. (22) and the above results show that, for all t ∈ U and for any integer n ≥ 2,
M(n, t) is a linear ombination of stritly onvex (positive real) funtions with non negative

oe�ients : λ(n, t) and λ(n, t)× b(n, k; t).

Hene,

(

M(n, t)
)

n≥2
is a sequene of stritly onvex positive real funtions in C∞(U,R), s.t.

M(n, 0+) = M(n, 2−) = +∞.

In onlusion, M(∞, t) is the pointwise limit of the stritly inreasing sequene

(

M(n, t)
)

n≥2

of stritly onvex positive real funtions of t ∈ U (see [8, p. 73℄). Therefore,M(∞, t) is also stritly
onvex in (0, 2), and the value M(∞, t∗) at t∗ = 1.065439 . . ., is the unique global minimum of

M(∞, t) on this segment and we are done. A plot of M(∞, t) is given in Fig. 4.
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Figure 4: M(∞, t), t ∈ (0, 2)

In that sense, we answered the question set in Setion 5: on the real domain (0, 2), t∗/n is indeed

the unique optimal probability for an ative proessor to hoose and partiipate in the eletion.

Remark 5.1 For any integer n ≥ 2, M(n, t) is twie di�erentiable for all t ∈ (0, 2). Hene, if

M ′′(n, t) > 0 the funtions M(n, t) are all stritly onvex; but the onverse is not true.

The positive real funtion M(∞, t) is de�ned on the real segment U = (0, 2) as the pointwise

limit of stritly onvex positive real funtions de�ned in U . Suh is a su�ient ondition for

M(∞, t) to be also stritly onvex in U . However the ondition is not neessary.

Furthermore, M(∞, t) is the uniform limit of real funtions on any ompat subset of the segment

(0, 2). This is another way of deriving that sequenes of stritly onvex funtions do remain

stritly onvex in the limit on any ompat subinterval of (0, 2).

6 What happens to M(∞, t) when t ≥ 2?

There remains to investigate how M(∞, t) varies as a funtion of t ≥ 2. In the �rst plae, we

just assume that the real parameter t belongs to the domain (2, 3).

6.1 Variation of M(∞, t) in the domain [2, 3)

Sine t ∈ (2, 3) and 0 ≤ t/n ≤ 1 (by de�nition), the value of the funtion M(n, t) must be

handled separately in the ase when n = 2 (i.e. on a ring with two proessors).

More preisely, two situations may then our, in whih the symmetry annot be broken with the

original algorithm (see [4, p. 1℄:

• if t = 2, M(2, 2) = b(2, 2; 2) = 1. Both ative proessors on the ring deide with probability

1 to beome andidates in eah round, and the protool either perfoms an eletion with

two leaders, or enters an in�nite omputation;
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• if 2 < t < 3, we must also set M(2, t) = 1 for the onsisteny of de�nitions (when t → 3−,
M(2, 3−) = +∞, as is shown below). In suh a ase no termination of the protool an be

ahieved.

Sine M(2, t) = 1 is set for all t ∈ (2, 3), the reurrene equation for the expetation M(n, t) is
expressed in a slightly di�erent form from Eqs. (18) and (22) on the segment [2, 3).

M(n, t) = λ(n, t) + λ(n, t) b(n, 2; t) + λ(n, t)

n−1
∑

k=3

b(n, k; t)M(k, t) and M(2, t) = 1, (24)

where, aording to the notation in Subsetion 5.1.1,

b(n, 2; t) :=

(

n

2

)(

t

n

)2(

1− t

n

)n−2

, and λ(n, t) :=
1

1− (1− t/n)n − (t/n)n
for n ≥ 3.

There remains to prove that M ′(∞, t) > 0 on the segment [2, 3), with M(∞, 3−) = +∞.

First, following Subsetion 5.1.1 (i.e. again by indution on n ≥ 3), M(n, t) in Eq. (24) is

easily shown to be an inreasing sequene of n ≥ 3 for �xed t in [2, 3).
Thus, for all n ≥ 3 and for any t ∈ [2, 3), M(n, t) ≤ M(n, t) ≤ M(∞, t).

Next, by (modi�ed) Eq. (20) with n ≥ 3 and t ∈ [2, 3), upper and lower bounds on M(∞, t)
are derived.

More preisely, after few omputations the following two inequalities hold for all t ∈ [2, 3),

M(∞, t) ≤ 2e−t

t(t+ 2)
+

t

t+ 2
(25)

M(∞, t) ≥ 1

1− e−t

(

1 +
1

2
t2e−t + M(3, t) e−t(et − t2/2− t− 1)

)

, (26)

where M(3, t) =
9− 3t2 − t3

3t(3− t)
.

(Note that sine 2.2797 . . . ≤ M(∞, 2) ≤ 2.34726 . . ., both inequalities (25) and (26) make sense.)

Finally, Eqs. (25) and (26) are used to bound M ′(∞, t) from below, and derive that

M ′(∞, t) > 0 on the segment [2, 3).
Indeed, by (modi�ed) Eq. (21) with t ∈ [2, 3), a few alulations yield a lower bound on M ′(∞, t)
for any t ∈ [2, 3).

M ′(∞, t) ≥ 2et

t(t+ 2)
− 2et(2et + t2)

t2(t+ 2)2
+

2(et − t− 1)(9− 3t2 − t3)

3t(t+ 2)(3− t)
. (27)

And, sine M ′(∞, t) > 2.26605840 . . . for all t ∈ [2, 3), M ′(∞, t) > 0 on that segment.

Furthermore, sine all funtions M(n, t) (n ≥ 3) are in C∞([2, 3),R) (see Subsetion 5.1.1),

M(∞, 3−) = +∞ holds for all t ∈ [2, 3).

Hene, M(∞, t) is stritly inreasing on the segment (2, 3) and M(∞, 3−) = +∞.

The urve M(∞, t) is represented in Fig. 5 on the segment [2, 3).
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Figure 5: M(∞, t), t ∈ [2, 3)

6.2 Variation of M(∞, t) in the domains (ξ, ξ + 1), with ξ ≥ 3

Investigating the variation of the funtions M(∞, t) when t ≥ 3 an be arried out along the

same lines as in the previous Subsetion 6.1.

As an be notied (e.g. in Subsetion 5.1.1), the only poles of the funtions M(n, t) are all
the non negative integers 0, 2, 3,. . . (1 exepted) on the real line. Thus, the variation of M(∞, t)
when t ≥ 3 must be onsidered on all suh onseutive real segments (ξ, ξ+1), where the ξ's are
all integers ≥ 3.

Sine t ∈ (ξ, ξ + 1) still meets the ondition 0 ≤ t/n ≤ 1 (by de�nition), eah value M(ξ, t)
must again be handled separately on eah open segment I = (ξ, ξ + 1).

More preisely, whenever n = ξ there are ξ proessors on the ring, and the ondition 0 ≤ t/ξ ≤ 1
must still hold. The situation is similar to the one in Subsetion 6.1: the original algorithm

annot break the symmetry, neither if t = ξ, nor if ξ < t < ξ + 1 (see [4, p. 1℄).

To overome the di�ulty, and for the sake of the onsisteny of the de�nitions, we set

M(ξ, t) := ⌈lg(ξ)⌉ for all t ∈ I, with ξ ≥ 3. For example, M(3, t) := 2 (by de�nition) on the open

segment (3, 4), and the reurrene for the expetation M(n, t) is slightly di�erent from Eq. (24)

if t ∈ (3, 4).
Similarly, eah basi reurrene equation for M(n, t) (Eq. (24)), M ′(n, t) (Eq. (19)), M(∞, t)
(Eq. (20)) and M ′(∞, t) (Eq. (21)) must be adapted to the onditions on eah segment I on-

sidered.

On eah open segment I = (ξ, ξ + 1) (ξ ≥ 3), the variation of the real funtion M(∞, t) is
roughly the same. In partiular, M(∞, t) is monotone inreasing in I, and it admits no minimum

on eah suh segments.
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7 Conlusions

As pointed out in the Introdution, performing the asymptoti analyses of various reurrene

relations brings into play some basi, though powerful, analyti tehniques. This is the reason

why suh methods make it possible to �nd easily all moments of the algorithm asymptoti �ost�

(the numbers of rounds required), espeiallyM(∞) andM (2)(∞) (when n gets su�iently large),

as well as an asymptoti approximation of P (∞, j) (when j → ∞). The latter is derived by om-

puting singular expansions of generating funtions around their smallest singularity. Asymptoti

expansions of all moments an also be mehanially derived. All the numerial results performed

(with Maple) by both tehniques are quite aurate and �t in perfetly.

Generalizing to a probability t/n, where t is a positive real number, shows that there exists one
unique minimum of the funtionM(∞, t) on the real segment (0, 2) : M(∞, t∗) = 2.434810964 . . .
at the point t∗ = 1.065439 . . . Besides, the variation of M(∞, t) whenever t ≥ 2 shows quite the

same behaviour on eah real open interval (ξ, ξ + 1), where the ξ's are all the integers ≥ 2.
In the asymptoti analysis, the major di�ulty arises from the proof of interhanging the

limits and the summations in the reurrenes. Two di�erent methods are given that may be

used in many other similar situations: the Laplae method for sums, whih requires the use of

asymptotis via the Saddle point tehnique, and the Lebesgue's dominated onvergene property.

In onlusion, suh analyti tehniques may serve as basi briks for �nding the asymptoti

omplexity measures of quite a lot of other algorithms, in distributed or sequential settings.
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