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Abstract

Local (first order) sentences, introduced by Ressayre, enjoy very nice decidability
properties, following from some stretching theorems stating some remarkable links
between the finite and the infinite model theory of these sentences [Res88]. Another
stretching theorem of Finkel and Ressayre implies that one can decide, for a given
local sentence ϕ and an ordinal α < ωω, whether ϕ has a model of order type α.
This result is very similar to Büchi’s one who proved that the monadic second order
theory of the structure (α,<), for a countable ordinal α, is decidable. It is in fact
an extension of that result, as shown in [Fin01] by considering the expressive power
of monadic sentences and of local sentences over languages of words of length α.
The aim of this paper is twofold. We wish first to attract the reader’s attention on
these powerful decidability results proved using methods of model theory and which
should find some applications in computer science and we prove also here several
additional results on local sentences.
The first one is a new decidability result in the case of local sentences whose function
symbols are at most unary: one can decide, for every regular cardinal ωα (the α-th
infinite cardinal), whether a local sentence ϕ has a model of order type ωα.
Secondly we show that this result can not be extended to the general case. Assuming
the consistency of an inaccessible cardinal we prove that the set of local sentences
having a model of order type ω2 is not determined by the axiomatic system ZFC +
GCH, where GCH is the generalized continuum hypothesis.
Next we prove that for all integers n, p ≥ 1, if n < p then the local theory of ωn, i.e.
the set of local sentences having a model of order type ωn, is recursive in the local
theory of ωp and also in the local theory of α where α is any ordinal of cofinality
ωn.
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1 Introduction

A local sentence is a first order sentence which is equivalent to a universal
sentence and satisfies some semantic restrictions: closure in its models takes
a finite number of steps. Ressayre introduced local sentences in [Res88] and
established some remarkable links between the finite and the infinite model
theory of these sentences given by some stretching theorems. Assuming that
a binary relation symbol belongs to the signature of a local sentence ϕ and
is interpreted by a linear order in every model of ϕ, the stretching theorems
state that the existence of some well ordered models of ϕ is equivalent to the
existence of some finite model of ϕ, generated by some particular kind of in-
discernibles, like special, remarkable or monotonic ones. Another stretching
theorem of Finkel and Ressayre establishes the equivalence between the exis-
tence of a model of order type α (where α is an infinite ordinal < ωω) and the
existence of a finite model (of another local sentence ϕα) generated by Nϕα

semi-monotonic indiscernibles (where Nϕα is a positive integer depending on
ϕα) [FR96].
This theorem provides some decision algorithms which show the decidability
of the following problem: (P ) “For a given local sentence ϕ and an ordinal
α < ωω, has ϕ a model of order type α ?”
This last result is very similar to Büchi’s one who proved that the monadic
second order theory of the structure (α,<), for a countable ordinal α, is decid-
able, [Büc62,Tho90,BS73]. Büchi obtained some decision algorithms by prov-
ing firstly that, for α-languages (languages of infinite words of length α) over
a finite alphabet, definability by monadic second order sentences is equivalent
to acceptance by finite automata where a transition relation is added for limit
steps.
We can compare the expressive power of monadic sentences and of local sen-
tences, considering languages defined by these sentences. For each ordinal
α < ωω, an α-language over a finite alphabet Σ is called local in [Res88,FR96]
(or also locally finite in [Fin01,Fin04,Fin02]) iff it is defined by a second
order sentence in the form ∃R1 . . .∃Rkϕ, where ϕ is local in the signature
S(ϕ) = {<,R1, . . .Rk, (Pa)a∈Σ}, R1, . . . Rk are relation or function symbols,
and, for each a ∈ Σ, Pa is a unary predicate symbol.
The class LOCα of local α-languages, for ω ≤ α < ωω, is a strict exten-
sion of the class REGα of regular α-languages, defined by monadic second
order sentences [Fin01]. Moreover this extension is very large. This can be
seen by considering the topological complexity of α-languages and firstly of
ω-languages. It is well known that all regular ω-languages are boolean com-
binations of Σ0

2 Borel sets hence ∆0
3 Borel sets, [Tho90,PP04]. On the other

hand the class LOCω meets all finite levels of the Borel hierarchy, contains
some Borel sets of infinite rank and even some analytic but non Borel sets,
[Fin02].
Thus the decision algorithm for local sentences provides in fact a very large
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extension, for α < ωω, of Büchi’s result about the decidability of the monadic
second order theory of (α,<). Moreover, at least for α = ω, the algorithm for
local sentences is of much lower complexity than the corresponding algorithm
for monadic second order sentences [Fin02].
We think that these powerful decidability results proved using methods of
model theory should find some applications in computer science and that the
study of local sentences could become an interdisciplinary subject for both
model theory and computer science communities.
So the aim of this paper is twofold: firstly to attract the reader’s attention on
these good properties of local sentences and their possible further applications;
secondly to prove several new results on local sentences, described below.
Büchi showed that for every ordinal α < ω2, where ω2 is the second uncount-
able cardinal, the monadic theory of (α,<) is decidable. This result cannot
be extended to ω2. Assuming the existence of a weakly compact cardinal (a
kind of large cardinal) Gurevich, Magidor and Shelah proved that the monadic
theory of (ω2, <) is not determined by the set theory axiomatic system ZFC.
They proved even much more: for any given S ⊆ ω there is a model of ZFC
where the monadic theory of (ω2, <) has the Turing degree of S; in particular
it can be non-recursive [GMS83].
Ressayre asked similarly for which ordinals α it is decidable whether a given
local sentence ϕ has a model of order type α. The question is solved in [FR96]
for α < ωω but for larger ordinals the problem was still open.
We firstly consider local sentences whose function symbols are at most unary.
We show that these sentences satisfy an extension of the stretching theorem
implying new decidability properties. In particular, for each regular cardinal
ωα (hence in particular for each ωn where n is a positive integer), it is decidable
whether a local sentence ϕ has a model of order type ωα. To know that this
restricted class LOCAL(1) of local sentences has more decidability properties
is of interest because it has already a great expressive power.
Sentences in LOCAL(1) can define all regular finitary languages [Res88], and
all the quasirational languages forming a large class of context free languages
containing all linear languages [Fin01].
If we consider their expressive power over infinite words, sentences in LOCAL(1)
can define all regular ω-languages [Fin01], but also some Σ0

n-complete and
some Π0

n-complete Borel sets for every integer n ≥ 1, [Fin02].
Next we show that this decidability result can not be extended to local sen-
tences having n-ary function symbols for n ≥ 2. Assuming the consistency of
an inaccessible cardinal, we prove that the local theory of ω2 (the set of local
sentences having a model of order type ω2) is not determined by the system
ZFC + GCH , where GCH is the generalized continuum hypothesis. This is
also extended to many larger ordinals.
This result is obtained by showing that there is a local sentence which has a
model of order type ω2 if and only if there is a Kurepa tree, i.e. a tree of height
ω1 whose levels are countable and which has more than ω1 branches of length
ω1. Kurepa trees have been much studied in set theory and their existence
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has been shown to be independent of ZFC + GCH , via the consistency of
ZFC + “ there is an inaccessible cardinal”.
It is remarkable that our proof needs only the consistency of an inaccessi-
ble cardinal which is still a large cardinal but a very smaller cardinal than a
weakly compact cardinal. This gives another indication of the great expressive
power of local sentences with regard to that of monadic sentences.
We could still expect, as Shelah did in [She75] about the possible monadic
theories of ω2, that there are only finitely many possible local theories of ω2,
and that each of them is decidable. But it seems more plausible that the sit-
uation is much more complicated, as it is shown to be the case for monadic
theories of ω2 in [GMS83]: there are in fact continuum many possible monadic
theories of ω2 (in different universes of set theory); moreover, for every set of
positive integers S ⊆ ω, there is a monadic theory of ω2, in some world, which
is as complex as S.
We then extend the above results by proving that for all integers n, p ≥ 1, if
n < p then the local theory of ωn is recursive in the local theory of ωp and
also in the local theory of α where α is any ordinal of cofinality ωn.
Some of these new results are seemingly far from problems arising in concrete
applications studied in computer science. However our main result is obtained
by encoding (Kurepa) trees in models of a local sentence and methods used
here for such coding might be very useful for problems arising in computer
science where (finite or infinite) trees are a widely used tool.

The paper is organized as follows. In section 2 we review some previous defini-
tions and results about local sentences. In section 3 we prove new decidability
results. Our main result on the local theory of ω2 is proved in section 4. Some
results on the local theories of ωn, n ≥ 1, are stated in section 5.

2 Review of previous results

In this paper the (first order) signatures are finite, always contain one binary
predicate symbol = for equality, and can contain both functional and relational
symbols.

When M is a structure in a signature Λ, |M | is the domain of M .
If f is a function symbol (respectively, R is a relation symbol, a is a constant
symbol) in Λ, then fM (respectively, RM , aM ) is the interpretation in the
structure M of f (respectively, R, a).
Notice that, when the meaning is clear, the superscript M in fM , RM , aM ,
will be sometimes omitted in order to simplify the presentation.

For a structure M in a signature Λ and X ⊆ |M |, we define:
cl1(X,M) = X ∪

⋃

{f n−ary function of Λ } fM(Xn) ∪
⋃

{a constant of Λ } a
M
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cln+1(X,M) = cl1(cln(X,M),M) for an integer n ≥ 1
and cl(X,M) =

⋃

n≥1 cl
n(X,M) is the closure of X in M .

The signature of a first order sentence ϕ, i.e. the set of non logical symbols
appearing in ϕ, is denoted S(ϕ). As usual M |= ϕ means that the sentence ϕ
is satisfied in the structure M , i.e. that M is a model of ϕ.

Definition 2.1 A first order sentence ϕ is local if and only if:

(a) M |= ϕ and X ⊆ |M | imply cl(X,M) |= ϕ
(b) ∃n ∈ N such that ∀M , if M |= ϕ and X ⊆ |M |, then cl(X,M) =

cln(X,M), (closure in models of ϕ takes less than n steps).

For a local sentence ϕ, nϕ is the smallest integer n ≥ 1 satisfying (b) of the
above definition. In this definition, (a) implies that a local sentence ϕ is always
equivalent to a universal sentence, so we may assume that this is always the
case.

Example 2.2 Let ϕ be the sentence in the signature S(ϕ) = {<,P, i, a},
where < is a binary relation symbol, P is a unary relation symbol, i is a
unary function symbol, and a is a constant symbol, which is the conjunction
of:

(1) ∀xyz[(x ≤ y ∨ y ≤ x) ∧ ((x ≤ y ∧ y ≤ x)↔ x = y) ∧ ((x ≤ y ∧ y ≤ z)→
x ≤ z)],

(2) ∀xy[(P (x) ∧ ¬P (y))→ x < y],
(3) ∀xy[(P (x)→ i(x) = x) ∧ (¬P (y)→ P (i(y)))],
(4) ∀xy[(¬P (x) ∧ ¬P (y) ∧ x 6= y)→ i(x) 6= i(y)],
(5) ¬P (a).

We now explain the meaning of the above sentences (1)-(5).
Assume that M is a model of ϕ. The sentence (1) expresses that < is inter-
preted in M by a linear order; (2) expresses that PM is an initial segment of the
model M ; (3) expresses that the function iM is trivially defined by iM(x) = x
on PM and is defined from ¬PM into PM . (4) says that iM is an injection
from ¬PM into PM and (5) ensures that the element aM is in ¬PM .
The sentence ϕ is a conjunction of universal sentences thus it is equivalent to
a universal one, and closure in its models takes at most two steps (one adds
the constant a in one step then takes the closure under the function i). Thus
ϕ is a local sentence.
If we consider only the order types of well ordered models of ϕ, we can easily
see that ϕ has a model of order type α, for every finite ordinal α ≥ 2 and for
every infinite ordinal α which is not a cardinal.

Many more examples of local sentences will be given later in Sections 4 and 5.
The reader may also find many other ones in the papers [Res88,FR96,Fin01]
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[Fin89,Fin02,Fin04].

The set of local sentences is recursively enumerable but not recursive [Fin01].
However there exists a “recursive presentation” up to logical equivalence of
all local sentences.

Theorem 2.3 (Ressayre, see [Fin01]) There exists a recursive set L of lo-
cal sentences and a recursive function F such that:

1) ψ local ←→ ∃ψ′ ∈ L such that ψ ≡ ψ′.
2) ψ′ ∈ L −→ nψ′ = F(ψ′).

The elements of L are the ψ ∧ Cn, where ψ run over the universal formulas
and Cn run over the universal formulas in the signature S(ψ) which express
that closure in a model takes at most n steps.
ψ ∧Cn is local and nψ∧Cn ≤ n. Then we can compute nψ∧Cn , considering only
finite models of cardinal ≤ m, where m is an integer depending on n. And
each local sentence ψ is equivalent to a universal formula θ, hence ψ ≡ θ∧Cnψ .

From now on we shall assume that the signature of local sentences contain
a binary predicate < which is interpreted by a linear ordering in all of their
models.
We recall now the stretching theorem for local sentences. Below, semi-monotonic,
special, and monotonic indiscernibles are particular kinds of indiscernibles
which are precisely defined in [FR96].

Theorem 2.4 ([FR96]) For each local sentence ϕ there exists a positive in-
teger Nϕ such that

(A) ϕ has arbitrarily large finite models if and only if ϕ has an infinite model
if and only if ϕ has a finite model generated by Nϕ indiscernibles.

(B) ϕ has an infinite well ordered model if and only if ϕ has a finite model
generated by Nϕ semi-monotonic indiscernibles.

(C) ϕ has a model of order type ω if and only if ϕ has a finite model generated
by Nϕ special indiscernibles.

(D) ϕ has well ordered models of unbounded order types in the ordinals if and
only if ϕ has a finite model generated by Nϕ monotonic indiscernibles.

To every local sentence ϕ and every ordinal α such that ω ≤ α < ωω one
can associate by an effective procedure a local sentence ϕα, a unary predicate
symbol P being in the signature S(ϕα), such that:

(Cα) ϕ has a well ordered model of order type α if and only if ϕα has a finite
model M generated by Nϕα semi-monotonic indiscernibles into PM .

The integerNϕ can be effectively computed from nϕ and q where ϕ = ∀x1 . . .∀xq
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θ(x1, . . . , xq) and θ is an open formula, i.e. a formula without quantifiers. If
v(ϕ) is the maximum number of variables of terms of complexity ≤ nϕ + 1
(resulting by at most nϕ + 1 applications of function symbols) and v′(ϕ) is
the maximum number of variables of an atomic formula involving terms of
complexity ≤ nϕ + 1 then Nϕ = max{3v(ϕ); v′(ϕ) + v(ϕ); q.v′(ϕ)}.

From Theorem 2.4 we can prove the decidability of several problems about
local sentences. For instance (C) states that a local sentence ϕ has an infinite
well ordered model iff it has a finite model generated by Nϕ semi-monotonic
indiscernibles. Therefore in order to check the existence of an infinite well
ordered model of ϕ one can only consider models whose cardinals are bounded
by an integer depending on nϕ and Nϕ, because closure in models of ϕ takes
at most nϕ steps. This can be done in a finite amount of time.

Notice that the set of local sentences is not recursive so the algorithms given
by the following theorem are applied to local sentences in the recursive set L
given by Proposition 2.3. In particular ϕ is given with the integer nϕ.

Theorem 2.5 ([FR96]) It is decidable, for a given local sentence ϕ, whether

(1) ϕ has arbitrarily large finite models.
(2) ϕ has an infinite model.
(3) ϕ has an infinite well ordered model.
(4) ϕ has well ordered models of unbounded order types in the ordinals.
(5) ϕ has a model of order type α, where α < ωω is a given ordinal.

These decidable problems (1) − (4) and (5) (at least for α = ω) are in the
class NTIME(2O(n.log(n))), (and even probably of lower complexity):
Using non determinism a Turing machine may guess a finite structure M of
signature S(ϕ) generated by Nϕ elements y1, . . . yNϕ in at most nϕ steps. Then,
assuming ϕ = ∀x1 . . .∀xqθ(x1, . . . , xq) where θ is an open formula, the Turing
machine checks that θ(x1, . . . , xq) holds for all x1 . . . xq in M , and that the
elements y1, . . . yNϕ are indiscernibles (respectively, semi-monotonic, special,
monotonic, indiscernibles) in M .
On the other hand Büchi’s procedure to decide whether a monadic second
order formula of size n of S1S is true in the structure (ω,<) might run in

time 22.
.2
n

︸ ︷︷ ︸

O(n)

, [Büc62,Saf89]. Moreover Meyer proved that one cannot essentially

improve this result: the monadic second order theory of (ω,<) is not elemen-
tary recursive, [Mey75].
We know that the expressive power of local sentences is much greater than
that of monadic second order sentences hence this is a remarkable fact that
decision algorithms for local sentences given by Theorem 2.5 are of much lower
complexity than the algorithm for decidability of the monadic second order
theory S1S of one successor over the integers.
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Notice however that the nonemptiness problem for Büchi automata is known
to be logspace-complete for the complexity class NLOGSPACE which is
included in the class DTIME(Pol) of problems which can be solved in de-
terministic polynomial time [VW94,BGG97]. Moreover there is a linear time
algorithm for deciding the nonemptiness problem for Büchi automata which
is nowadays very useful for many applications in the domain of specification
and verification of non terminating systems, see for example [BV98].

3 More decidability results

We assume in this section that the function symbols of a local sentence ϕ
are at most unary. We shall prove in this case some more decidability results
which rely on an extension of the stretching Theorem 2.4.

The cardinal of a set X will be denoted by card(X).
We recall that the infinite cardinals are usually denoted by ℵ0,ℵ1,ℵ2, . . . ,ℵα, . . .
The cardinal ℵα is also denoted by ωα, as usual when it is considered as an
ordinal.

We recall now the notions of cofinality of an ordinal and of regular cardinal
which may be found for instance in [Dev84,Jec02].
Let α be a limit ordinal, the cofinality of α, denoted cof(α), is the least ordinal
β such that there exists a strictly increasing sequence of ordinals (αi)i<β, of
length β, such that

∀i < β αi < α and

sup
i<β

αi = α

This definition is usually extended to 0 and to the successor ordinals:

cof(0) = 0 and cof(α+ 1) = 1 for every ordinal α.

The cofinality of a limit ordinal is always a limit ordinal satisfying:

ω ≤ cof(α) ≤ α

cof(α) is in fact a cardinal. A cardinal k is said to be regular iff cof(k) = k.
Otherwise cof(k) < k and the cardinal k is said to be singular.

We recall now the notion of special indiscernibles, [FR96], in that particular
case where all function symbols hence all terms of S(ϕ) are unary.
A set X included in a structure M , having a linear ordering < in its signature,
is a set of indiscernibles iff whenever x̄ and ȳ are order isomorphic sequences
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from X they satisfy in M the same atomic sentences. The indiscernibles of X
are special iff they satisfy (i) and (ii):

(i) for all x < y in X and all terms t: t(x) < y.

(ii) for all x < y in X and all terms t: t(y) < x→ t(y) = t(z) for all elements
z > x of X (i.e. t is constant on {z ∈ X | z > x}).

Theorem 3.1 For each local sentence ϕ whose function symbols are at most
unary, there is a positive integer Nϕ such that, for each regular cardinal ωα,
the following statements are equivalent:

(a) ϕ has an ω-model.
(b) ϕ has a finite model generated by Nϕ special indiscernibles.
(c) ϕ has a β-model, for all limit ordinals β.
(d) ϕ has an ωα-model.

Proof. It is proved in [FR96] that for each local sentence ϕ there is a positive
integer Nϕ such that (a) is equivalent to (b).
To prove (a) → (c) assume that ϕ has an ω-model M . Then it is proved in
[FR96] that there exists an infinite set X of special indiscernibles in M . Recall
that every linear order Y can be extended to a model M(Y ) of ϕ, called the
stretching of M along Y , so that:

(1) M(X) is the submodel of M generated by the set X.

(2) Y ⊆ Z implies M(Y ) ⊆M(Z).

(3) Every order embedding f : Y → Z has an extension M(f) which is an
embedding of M(Y ) into M(Z).

Let then β be a limit ordinal and M(β) be the stretching of M along β. We are
going to show that M(β) is of order type β. The model M(β) is generated by
the set β in a finite number of steps so there is a finite set Tϕ of (unary) terms
of the signature S(ϕ) such that the domain of M(β) is β ∪ ∪t∈Tϕ ∪γ<β t(γ).
The indiscernibles are special thus for each term t ∈ Tϕ, either t is constant
on β or for all indiscernibles x < y < z in β we have x < t(y) < z. It is then
easy to see that M(β) is of order type β.
(c)→ (d) is trivial so it remains to prove (d)→ (a).
We assume that α is an ordinal and that M is a model of ϕ of order type ωα
where ωα is a regular cardinal. We are going to show that there exists in M
an infinite set of special indiscernibles. These indiscernibles have to satisfy (i)
and (ii) only for terms of complexity ≤ nϕ because for each term t of com-
plexity greater than nϕ there will be another term t′ of complexity ≤ nϕ such
that t(x) = t′(x) for all indiscernibles x. This finite set of terms of complexity
≤ nϕ will be denoted by T = {t1, t2, . . . , tN}.
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Using the fact that ωα is a regular cardinal, we can firstly construct by in-
duction a strictly increasing sequence (xδ)δ<ωα of elements of M such that for
each ordinal δ < ωα and each term t ∈ T it holds that t(xδ) < xδ+1. We denote
X0 = {xδ | δ < ωα}; this set has cardinal ℵα.
We consider now the three following cases:

First case. The set {xδ ∈ X0−{x0} | t1(xδ) = x0} has cardinal ℵα. Then we
denote this set by X1

0 .
Second case. The set {xδ ∈ X0 − {x0} | t1(xδ) < x0} has cardinal ℵα and
the first case does not hold. The initial segment {x ∈ M | x < x0} of M has
cardinal smaller than ℵα thus there is a subset of {xδ ∈ X0−{x0} | t1(xδ) < x0}
which has cardinal ℵα and on which t1 is constant. Then we denote this set
by X1

0 .
Third case. The set {xδ ∈ X0 − {x0} | t1(xδ) > x0} has cardinal ℵα and the
two first cases do not hold. Then we call this set X1

0 .

We can repeat now this process, replacing X0 by X1
0 and the term t1 by the

term t2, so we obtain a new set X2
0 ⊆ X1

0 having still cardinal ℵα. Next we
repeat the process replacing X1

0 by X2
0 and the term t2 by the term t3, so we

obtain a new set X3
0 ⊆ X2

0 having still cardinal ℵα.
After having considered all terms t1, t2, . . . , tN we have got a set XN

0 ⊆
XN−1

0 ⊆ . . . ⊆ X0. We denote X1 = XN
0 .

Let xδ1 be the first element ofX1. We can repeat all the above process replacing
X0 by X1 and x0 by xδ1 . This way, considering successively each of the terms
t1, t2, . . . , tN , we construct new sets XN

1 ⊆ XN−1
1 ⊆ . . . ⊆ X1

1 ⊆ X1, each of
them having cardinal ℵα, and we set X2 = XN

1 .
Assume now that we have applied this processK times for some integerK ≥ 2.
Then we have constructed successively some sets X1, X2, . . . , XK of cardinal
ℵα. Let now xδK be the first element of XK . We can repeat the above process
replacing X0 by XK and x0 by xδK . This way we construct a new set XK+1 =
XN
K of cardinal ℵα.

Then we can construct by induction the sets XK for all integers K ≥ 1. We
set X = {xδi | 0 ≤ i < ω} where for all i, xδi is the first element of Xi.

Let now X [n] be the set of strictly increasing n-sequences of elements of X. Let
∼ be the equivalence relation defined on X [v′(ϕ)] by: x ∼ y if and only if x and
y satisfy in M the same atomic formulas of complexity ≤ nϕ + 1 (i.e. whose
terms are of complexity ≤ nϕ + 1). Applying the Infinite Ramsey Theorem,
we can now get an infinite set Y ⊆ X such that Y [v′(ϕ)] is contained in a single
equivalence class of ∼.
Y is a set of indiscernibles in M because if z and z′ are two elements of Y [n]

for n ≥ v′(ϕ), then they satisfy in M the same atomic sentences of complexity
≤ nϕ + 1 hence of any complexity by Fact 1 of [FR96, page 568].
By the above construction of the set X, the indiscernibles of Y are special.
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Thus the submodel M(Y ) of M generated by Y is a model of ϕ of order type
ω. �

Notice that one cannot omit the hypothesis of the regularity of the cardinal ωα
in the above theorem. This is due to the fact that there exists a local sentence
whose function symbols are at most unary and which has some well ordered
models of order type α, for every ordinal α which is not a regular cardinal.
Such an example is given in [FR96]. We are going to recall it now because
some steps of its construction will be also useful later.

We recall first the operation ϕ → ϕ⋆ over local sentences which was first
defined by Ressayre in [Res88] in order to prove that the class of local languages
is closed under star operation.
For each local sentence ϕ, the signature of the first order sentence S(ϕ⋆) is
S(ϕ) to which is added a unary function symbol I and in which every constant
symbol e is replaced by a unary function symbol e(x).
ϕ⋆ is the sentence defined by the conjunction of:

(1) ( < is a linear order ),
(2) ∀yz[I(y) ≤ y and (y ≤ z → I(y) ≤ I(z)) and (I(y) ≤ z ≤ y → I(z) =

I(y))],
(3) ∀xy[I(x) = I(y) → e(x) = e(y)], for each constant e of the signature S(ϕ)

of ϕ,
(4) ∀x1 . . . xn[(

∨

i,j≤n I(xi) 6= I(xj)) → f(x1 . . . xn) = min(x1 . . . xn)] , for each
n-ary function f of S(ϕ),

(5) ∀x1 . . . xn[(
∧

i,j≤n I(xi) = I(xj)) → I(f(x1 . . . xn)) = I(x1)], for each n-ary
function f of S(ϕ),

(6) ∀xϕx, where ϕx is the local sentence ϕ in which every constant e is replaced
by the term e(x) and each quantifier is relativized to the set {y | I(y) =
I(x)}.

We now explain the meaning of sentences (1)-(6). Sentence (2) is used to
divide a model M of ϕ⋆ into successive segments. The function IM is constant
on each of these segments and the image IM(x) of an element x is the first
element of the segment containing x. Sentence (3) expresses that each unary
function eM obtained from a constant symbol e ∈ S(ϕ) is constant on every
segment of the model. (4) and (5) express that, for each function symbol f ∈
S(ϕ), each segment of the model is closed under the function fM and that fM

is trivially defined by fM(x1 . . . xn) = min(x1 . . . xn) when at least two of the
elements xi belong to different segments. Finally sentence (6) expresses that
each structure which is obtained by restricting some segment of the model
to the signature of ϕ is a model of ϕ. This implies that models of ϕ⋆ are
essentially direct sums of models of ϕ.
It is easy to see that nϕ⋆ = nϕ + 1. Closure in models of ϕ⋆ takes at most
nϕ+1 steps: one takes the closure under the function I then the closure under
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functions of S(ϕ) in nϕ steps.

We recall now the operation (ϕ, ψ) → ϕ⋆ψ over local sentences which is an
extension of the operation ϕ→ ϕ⋆ and is defined in [FR96].

We assume that S(ϕ⋆)∩ S(ψ)={<}. Then S(ϕ⋆ψ)=S(ϕ⋆) ∪ S(ψ) ∪ {P}, where
P is a new unary predicate symbol not in S(ϕ) ∪ S(ψ).
ϕ(⋆ψ) is the conjunction of :

(1) ϕ⋆,
(2) ∀x[P (x)↔ I(x) = x],
(3) ∀x1 . . . xk[(

∧k
i=1 P (xi))→ P (t(x1 . . . xk))], for each k-ary function t of S(ψ),

(4) P (a), for each constant a of S(ψ),
(5) ∀x1 . . . xn[(

∨n
i=1 ¬P (xi)) → t(x1 . . . xn) = min(x1 . . . xn)], for each n-ary

function t in S(ψ).
(6) ∀x1 . . . xk[Q(x1 . . . xk)→ P (x1)∧ . . .∧P (xk)], for each k-ary predicate sym-

bol Q of S(ψ)
(7) ∀x1 . . . xn[(

∧n
i=1 P (xi)) → ψ1(x1 . . . xn)], where ψ = ∀x1 . . . xnψ1(x1 . . . xn)

and ψ1 is an open formula,

We now explain the meaning of (1)-(7). Sentence (1) is ϕ⋆ so it expresses that
a model M is essentially a direct sum of models of ϕ . (2) says that in such a
model M , PM is the set of first elements of the segments of M defined with the
function IM . (3)-(5) are used to ensure that PM is closed under functions of
S(ψ) and that these functions are trivially defined elsewhere. (6) says that for
every k-ary predicate Q in S(ψ) the set QM is included into (PM)k. Sentence
(7) expresses that the restriction of M to the set PM and to the signature of
ψ is a model of ψ.
It is easy to see that nϕ(⋆ψ) = nϕ+nψ+1; to take closure of a set X in a model

of ϕ(⋆ψ) one takes the closure under the function I, then under the functions
of S(ψ) in nψ steps, then under the functions of S(ϕ) in nϕ steps.
The models of ϕ(⋆ψ) essentially are direct sums of models of ϕ , these models
being ordered by the order type of a model of ψ.

We are mainly interested in this paper by well ordered models of local sen-
tences, so we now recall the notion of spectrum of a local sentence ϕ. As usual
the class of all ordinals is denoted by On.

Definition 3.2 Let ϕ be a local sentence; the spectrum of ϕ is

Sp(ϕ) = {α ∈ On | ϕ has a model of order type α}

and the infinite spectrum of ϕ is

Sp∞(ϕ) = {α ∈ On | α ≥ ω and ϕ has a model of order type α}
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The spectrum of ϕ(⋆ψ) depends on the spectra of the local sentences ϕ and ψ
ans is given by the following proposition.

Proposition 3.3 Let ϕ and ψ be some local sentences, then ϕ(⋆ψ) is a local
sentence and its spectrum is

Sp(ϕ(⋆ψ)) = {
∑

α<ν

aα | ν ∈ Sp(ψ) and ∀α < ν aα ∈ Sp(ϕ)}

We can now construct a local sentence which has models of order type α for
every infinite ordinal α which is not a regular cardinal [FR96].
Let θ be a local sentence in the signature S(θ)={<, a} which just expresses
that the constant symbol a is interpreted by the last element of a model. Then
the spectrum of θ is the class of successor ordinals.
And let β be a local sentence in the signature S(β)={<,P, s} where P is a
unary predicate symbol and s is a unary function symbol, which expresses
that in a model M , the set PM is an initial segment of the model and that sM

is a strictly non decreasing involution from PM onto ¬PM . Then the spectrum
of β is the class of ordinals of the form α.2 for some ordinal α.
It holds by construction that there are not in the signature of θ⋆β any function
symbols of arity greater than 1 and we can verify that Sp∞(θ⋆β) = {α ≥ ω |
α is not a regular cardinal }. In particular the sentence θ⋆β has a model of
order type ωα for every singular cardinal ωα but it has no model of order
type ω. So the hypothesis of the regularity of the cardinal ωα was necessary
in Theorem 3.1.

Return now to decision algorithms given by stretching theorems. By Theorem
2.5 it is decidable whether a local sentence ϕ has an ω-model so Theorem 3.1
implies also the following decidability result.

Theorem 3.4 It is decidable, for a given local sentence ϕ whose function
symbols are at most unary, and a given regular cardinal ωα, whether:

(1) ϕ has an ωα-model
(2) ϕ has a β-model for all limit ordinals β.

So in particular one can decide, for a given local sentence ϕ whose function
symbols are at most unary, whether ϕ has a model of order type ω1, (respec-
tively, ω2, ωn where n is a positive integer).

As mentioned in the introduction it is interesting to know that the class
LOCAL(1) of local sentences with at most unary function symbols has more
decidability properties because it has already a great expressive power.
In particular LOCAL(1) can define all regular ω-languages [Fin01], but also
some Σ0

n-complete and some Π0
n-complete Borel sets for every integer n ≥ 1,

[Fin02].

13



Moreover it is easy to see that local ω-languages satisfy an extension of Büchi’s
lemma. Recall that this lemma states that a regular ω-language is non-empty
if and only if it contains an ultimately periodic ω-word, i.e. an ω-word in the
form u.vω for some finite words u and v.
On the other hand by the proof of the Stretching Theorem 2.4 (C) we know
that a local ω-language L(ϕ) ⊆ Σω is non-empty if and only if it contains an
ω-word which is the reduction to the signature ΛΣ = {<, (Pa)a∈Σ} (of words
over Σ) of an ω-model of ϕ generated by special indiscernibles.
If the function symbols of the local sentence ϕ are at most unary then it is
easy to see that such a reduction of an ω-model of ϕ generated by special
indiscernibles is always an ultimately periodic ω-word.

4 The local theory of ω2

It was proved in [FR96] that there exists a local sentence ψ (whose signature
contains binary function symbols) having well ordered models of order type
α for every ordinal α in the segment [ω; 2ℵ0] but not any well ordered model
of order type α for card(α) > 2ℵ0. On the other hand it is well known that
the continuum hypothesis CH is independent of the axiomatic system ZFC.
This means that there are some models of ZFC in which 2ℵ0 = ℵ1 and some
others in which 2ℵ0 ≥ ℵ2. Therefore the statement “ψ has a model of order
type ω2” is independent of ZFC.
However if we assume the continuum hypothesis and even the generalized
continuum hypothesis GCH saying that, for every cardinal ℵα, 2ℵα = ℵα+1,
then the above result of [FR96] does not imply a similar independence result.

Nevertheless we are going to prove the existence of a local sentence Φ such
that “Φ has a model of order type ω2” is independent of ZFC +GCH .
For that purpose we shall use results about Kurepa trees which we now recall.

A partially ordered set (T,≺T ) is called a tree if for every t ∈ T the set
{s ∈ T | s ≺T t} is well ordered under ≺T . Then the order type of the set
{s ∈ T | s ≺T t} is called the height of t in T and is denoted by ht(t). We
shall not distinguish a tree from its base set.
For every ordinal α the α-th level of T is Tα = {t ∈ T | ht(t) = α}.
The height of T , denoted by ht(T ), is the smallest ordinal α such that Tα = ∅.
A branch of T will be a linearly ordered subset of T intersecting every non-
empty level of T . The set of all branches of T will be denoted B(T ).
A tree T is called an ω1-tree if card(T ) = ℵ1 and ht(T ) = ω1. An ω1-tree
T is called a Kurepa tree if card(B(T )) > ℵ1 and for every ordinal α < ω1,
card(Tα) < ℵ1.

Recall now the well known results about Kurepa trees, [Dev84]:
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Theorem 4.1

(1) If ZF is consistent so too is the theory: ZFC+GCH+“ there is a Kurepa tree ”.
(2) If the theory ZFC + “ there is an inaccessible cardinal ” is consistent so

too is the theory ZFC +GCH + “ there are no Kurepa trees ”.
(3) If the theory ZFC + “ there are no Kurepa trees ” is consistent so too is

the theory ZFC + “ there is an inaccessible cardinal ”.

In order to use the above result in the context of local sentences we state now
the main technical result of this section.

Theorem 4.2 There exists a local sentence Φ such that:

[Φ has an ω2-model ] ←→ [ there is a Kurepa tree ].

To prove this theorem we shall firstly state the two following lemmas.

Lemma 4.3 There exists a local sentence ϕ0 such that ϕ0 has a well ordered
model of order type ω but has no well ordered model of order type > ω.

Proof. Such a sentence is given in [FR96] in the signature S(ϕ0) = {<
,P, f, p1, p2}, where P is a unary predicate, f is a binary function, and p1, p2

are unary functions. �

Lemma 4.4 There exists a local sentence ϕ1 such that ϕ1 has well ordered
models of order type α, for every ordinal α ∈ [ω, ω1], but has no well ordered
model of order type > ω1.

Proof. We give below the sentence ϕ1 in the signature S(ϕ1) = S(ϕ0) ∪
{Q, g} = {<,P, f, p1, p2, Q, g}, where Q is a unary predicate and g is a bi-
nary function. ϕ1 is the conjunction of the following sentences (1)-(10) whose
meaning is explained below:

(1) ∀xyz[(x ≤ y ∨ y ≤ x) ∧ ((x ≤ y ∧ y ≤ x)↔ x = y) ∧ ((x ≤ y ∧ y ≤ z)→
x ≤ z)],

(2) ∀xy[(Q(x) ∧ ¬Q(y))→ x < y],
(3) ∀xy[(Q(x) ∧Q(y))→ f(x, y) ∈ Q],
(4) ∀x[Q(x)→ Q(pi(x))], for each i ∈ [1, 2],
(5) ∀xy[(¬Q(x) ∨ ¬Q(y))→ f(x, y) = x],
(6) ∀x[¬Q(x) → pi(x) = x], for each i ∈ [1, 2],
(7) ∀x1 . . . xj ∈ Q[ϕ′

0(x1, . . . , xj)], where ϕ0 = ∀x1 . . . xjϕ
′
0(x1, . . . , xj) with

ϕ′
0 an open formula,

(8) ∀xy[(¬Q(x) ∧ ¬Q(y) ∧ y < x)→ Q(g(x, y))],
(9) ∀xyz[(¬Q(x) ∧ ¬Q(y) ∧ ¬Q(z) ∧ y < z < x)→ g(x, y) 6= g(x, z)],

(10) ∀xy[(Q(x) ∨Q(y) ∨ ¬(y < x))→ g(x, y) = x].
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We now explain the meaning of the above sentences (1)-(10).
Assume that M is a model of ϕ1. The sentence (1) expresses that < is inter-
preted in M by a linear order; (2) expresses that QM is an initial segment
of the model M ; (3) and (4) state that QM is closed under the functions of
S(ϕ0) while (5) and (6) state that these functions are trivially defined else-
where; (7) means that the restriction of the model M to the domain QM and
to the signature of S(ϕ0) is a model of ϕ0; Finally (8) and (9) ensure that,
for each x ∈ ¬Q, the binary function g realizes an injection from the segment
{y ∈ ¬Q | y < x} into Q and (10) states that the function g is trivially defined
where it is not useful for that purpose.
The sentence ϕ1 is a conjunction of universal sentences thus it is equivalent
to a universal one, and closure in its models takes at most nϕ + 1 steps: one
applies first the function g and then the functions of S(ϕ0). Thus the sentence
ϕ1 is local.
Consider now a well ordered model M of ϕ1. The restriction of M to the do-
main QM and to the signature of S(ϕ0) is a well ordered model of ϕ0 hence it
is of order type ≤ ω. But the function g defines an injection from each initial
segment of ¬Q into Q thus each initial segment of ¬Q is countable and this
implies that the order type of ¬QM is smaller than or equal to ω1. Finally we
have proved that the order type of M is ≤ ω1.
Conversely it is easy to see that every ordinal α ∈ [ω, ω1] is the order type of
some model of ϕ1. �

Return now to the construction of the sentence Φ given by Theorem 4.2. We
are going to explain this construction by several successive steps.

A model M of Φ will be totally ordered by < and will be the disjoint union
of four successive segments. This will be expressed by the following sentence
Φ1 in the signature S(Φ1) = {P0, P1, P2, P3}, where P0, P1, P2, P3, are unary
predicate symbols. Φ1 is the conjunction of:

(1) ∀xyz[(x ≤ y ∨ y ≤ x) ∧ ((x ≤ y ∧ y ≤ x) ↔ x = y) ∧ ((x ≤ y ∧ y ≤ z) →
x ≤ z)],

(2) ∀xy
∧

0≤i<j≤3[(Pi(x) ∧ Pj(y))→ x < y].

We want now to ensure that, if M is a well ordered model of Φ, then PM
0 is of

order type ≤ ω and PM
1 is of order type ≤ ω1. For that purpose, the signature

of Φ will contain the signature S(ϕ1) = S(ϕ0)∪{Q, g} = {<,P, f, p1, p2, Q, g}
and Φ will express that ifM is a model of Φ, then PM

0 = QM and the restriction
of the model M to (PM

0 ∪ P
M
1 ) and to the signature of ϕ1 is a model of ϕ1.

This is expressed by the following sentence Φ2 which is the conjunction of:

(1) ∀x[Q(x)↔ P0(x)],
(2) ∀xy[(x ∈ P0 ∪ P1 ∧ y ∈ P0 ∪ P1)→ f(x, y) ∈ P0 ∪ P1],
(3) ∀xy[(x ∈ P0 ∪ P1 ∧ y ∈ P0 ∪ P1)→ g(x, y) ∈ P0 ∪ P1],
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(4) ∀x[(x ∈ P0 ∪ P1)→ pi(x) ∈ P0 ∪ P1], for each i ∈ [1, 2],
(5) ∀xy[(x /∈ P0 ∪ P1 ∨ y /∈ P0 ∪ P1)→ f(x, y) = x],
(6) ∀xy[(x /∈ P0 ∪ P1 ∨ y /∈ P0 ∪ P1)→ g(x, y) = x],
(7) ∀x[x /∈ P0 ∪ P1 → pi(x) = x], for each i ∈ [1, 2],
(8) ∀x1 . . . xk ∈ (P0 ∪ P1)[ϕ

′
1(x1, . . . , xk)], where ϕ1 = ∀x1 . . . xkϕ

′
1(x1, . . . , xk)

with ϕ′
1 an open formula.

Above sentences (2)-(4) state that in a model M the set (P0 ∪ P1)
M is closed

under the functions of S(ϕ1) while (5)-(7) state that these functions are triv-
ially defined elsewhere; (8) means that the restriction of the model M to the
domain (P0 ∪ P1)

M and to the signature of S(ϕ1) is a model of ϕ1.

We want now that, in a model M of Φ, the set PM
2 represents the base set of

a tree (T,≺). We shall use a binary relation symbol ≺. The following sentence
Φ3 is the conjunction of:

(1) ∀xy[x ≺ y → P2(x) ∧ P2(y)],
(2) ∀xyz[((x 4 y ∧ y 4 x)↔ x = y) ∧ ((x ≺ y ∧ y ≺ z)→ x ≺ z)].
(3) ∀xy[x ≺ y → x < y].

Above sentences (1)-(2) express that≺ is a partial order on P2 and the sentence
(3) ensures that, in a well ordered (for < ) model M of Φ3, for every t ∈ P2,
the set {s ∈ P2 | s ≺ t} is well ordered under ≺ because M itself is well
ordered under <.

Moreover we want now that in an ω2-model M of Φ, the set PM
2 represents

the base set of an ω1-tree T whose levels are countable.
We have firstly to distinguish the different levels of the tree T . We shall use
for that purpose unary functions I and p and the following sentence Φ4 con-
junction of:

(1) ∀xy ∈ P2[(I(y) ≤ y) ∧ (y ≤ x → I(y) ≤ I(x)) ∧ (I(y) ≤ x ≤ y → I(x) =
I(y))].

(2) ∀xy ∈ P2[x ≺ y → I(x) < I(y)],
(3) ∀xyz ∈ P2[(x ≺ y ∧ z ≺ y ∧ I(x) = I(z))→ x = z],
(4) ∀xy ∈ P2[I(x) < I(y)→ (I(p(I(x), y) = I(x) ∧ p(I(x), y) ≺ y)],
(5) ∀xy[(¬P2(x) ∨ ¬P2(y) ∨ I(x) 6= x ∨ I(x) ≥ I(y))→ p(x, y) = x],
(6) ∀x[¬P2(x)→ I(x) = x].

Above the sentence (1) is used to divide the segment P2 of a model of Φ4

into successive segments. The function I is constant on each of these segments
and the image I(x) of an element x ∈ P2 is the first element of the segment
containing x.
Sentences (2)-(3) ensure that if y ∈ P2 then every element x ∈ P2 such that
x ≺ y belongs to some segment Iz = {w ∈ P2 | I(w) = I(z)} for some
z < I(y). Moreover for each z < I(y), the segment Iz contains at most one
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element of {x ∈ P2 | x ≺ y}.
The function p is used to ensure that, for each z < I(y), the segment Iz
contains in fact exactly one element x ∈ P2 such that x ≺ y: the element
p(I(z), y). This is implied by the sentence (4).
Thus Φ4 will imply that each segment Iz is really a level of the tree T .
If y ∈ P2 is at level α of the tree T and if x ∈ P2 and Ix represents the β-th
level Tβ of the tree T for some β < α (so I(x) < I(y)), then the element
p(I(x), y) is the unique element t ∈ Tβ such that t ≺ y.
Finally sentences (5)-(6) are used to trivially define the functions p and I
where they are not useful as explained above.

The following sentence Φ5 will imply that all levels of the tree T are countable
and that ht(T ) ≤ ω1 hence also card(T ) ≤ ℵ1. The signature of Φ5 is {<
,P0, P1, P2, I, i, j}, where i and j are two new unary function symbols, and Φ5

is the conjunction of:

(1) ∀x[P2(x)→ P0(i(x))],
(2) ∀xy[(P2(x) ∧ P2(y) ∧ I(x) = I(y) ∧ x 6= y)→ i(x) 6= i(y)],
(3) ∀x[P2(x)→ P1(j(x))],
(4) ∀xy[(P2(x) ∧ P2(y) ∧ x < y)→ j(x) < j(y)],
(5) ∀x[¬P2(x)→ i(x) = x],
(6) ∀x[¬P2(x)→ j(x) = x].

Above sentences (1)-(2) say that the function i is defined from P2 into P0 and
that it is an injection from any level of the tree T into P0. We have seen that
in a well ordered model M of Φ the set PM

0 will be of order type ≤ ω thus
each level of the tree will be countable.
Sentences (3)-(4) say that the function j is strictly increasing from P2 into P1

thus in a well ordered model M of Φ the set PM
1 hence also PM

2 will be of
order type ≤ ω1. So we shall have ht(T ) ≤ ω1 and card(T ) ≤ ℵ1.
Finally sentences (5)-(6) are used to trivially define the functions i and j on
¬P2 = P0 ∪ P1 ∪ P3.

In a well ordered model M of Φ of order type ω2, the set PM
2 will be the base

set of an ω1-tree T and the set PM
3 will be identified to a set of branches of T .

For that purpose we use two new binary function symbols h and k and the
following sentence Φ6, conjunction of:

(1) ∀xy[(P2(x) ∧ P3(y))→ (P2(h(I(x), y)) ∧ I(h(I(x), y)) = I(x))],
(2) ∀xyz[(P2(x) ∧ P2(y) ∧ P3(z) ∧ I(x) < I(y))→ h(I(x), z) ≺ h(I(y), z)],
(3) ∀xy[(¬P2(x) ∨ ¬P3(y) ∨ x 6= I(x))→ h(x, y) = x],
(4) ∀xy[(P3(x) ∧ P3(y) ∧ x 6= y)→ (I(k(x, y)) = k(x, y) ∧ P2(k(x, y)))],
(5) ∀xy[(P3(x) ∧ P3(y) ∧ x 6= y)→ h(k(x, y), x) 6= h(k(x, y), y))],
(6) ∀xy[(¬P3(x) ∨ ¬P3(y) ∨ x = y)→ k(x, y) = x].

Above sentences (1)-(2) are used to associate a branch b(z) of T to an element
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z ∈ P3. For each level Tα of the tree which is represented by the segment of P2

whose first element is I(x), the sentence (1) says that h(I(x), z) is an element
at the same level Tα and (2) says that the elements h(I(x), z), for x ∈ P2, are
linearly ordered for ≺ hence they form a branch b(z) of the tree T .
The function k is used to associate to two different elements x and y of P3

a level of the tree T , which is represented by the element k(x, y): the first
element of the segment of P2 representing this level. This is expressed by the
sentence (4).
The sentence (5) says that, for two distinct elements x and y of P3, the branches
b(x) and b(y) differ at the level represented by k(x, y).
Finally sentences (3) and (6) are used to trivially define the functions h and
k in other cases.

We have seen that in a well ordered model M of Φ, PM
1 and PM

2 will be of
order type ≤ ω1. The following sentence Φ7 will then imply that PM

3 is of
order type ≤ ω2. Its signature is {<,P1, P3, l}, where l is a binary function
symbol, and Φ7 is the conjunction of:

(1) ∀xy[(P3(x) ∧ P3(y) ∧ y < x)→ P2(l(x, y))],
(2) ∀xyz[(P3(x) ∧ P3(y) ∧ P3(z) ∧ y < z < x)→ l(x, y) 6= l(x, z)],
(3) ∀xy[(¬P3(x) ∨ ¬P3(y) ∨ ¬(y < x))→ l(x, y) = x].

Above sentences (1)-(3) are in fact very similar to sentences (8)-(10) used in
the construction of the sentence ϕ1.
(1) and (2) ensure that, for each x ∈ P3, the binary function l realizes an
injection from the segment {y ∈ P3 | y < x} into P2 and (3) states that the
function l is trivially defined where it is not useful for that purpose.

We can now define the sentence

Φ =
∧

1≤i≤7

Φi

in the signature

S(Φ) =
∧

1≤i≤7

S(Φi) = {<,P0, P1, P2, P3, Q, p1, p2, f, g,≺, p, I, i, j, h, k, l}.

Φ is a conjunction of universal sentences thus it is equivalent to a universal
sentence and closure in its models takes at most 7 steps: one takes firstly
closure under the function l then under the functions I and k, then under the
functions h and p, then under i and j, then under the function g, then under
the functions p1 and p2, and finally under the function f . Notice that the two
last steps are due to the construction of ϕ0 and the fact that nϕ0 = 2 (see
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[FR96]).
Assume now that M is a well ordered model of Φ. By construction PM

0 is of
order type ≤ ω, PM

1 and PM
2 are of order types ≤ ω1, and PM

2 is the base set
of a tree T whose levels are countable. Moreover every strict initial segment
of PM

3 is of cardinal ≤ ℵ1, so PM
3 is of order type ≤ ω2. Finally we have got

that M itself is of order type ≤ ω2.
Suppose now that M is of order type ω2. Then PM

3 also is of order type ω2

and for every strict initial segment J of PM
3 there is an injection from J into

PM
2 thus PM

2 is of cardinal ℵ1. But its order type is ≤ ω1, hence it is in fact
equal to ω1.
The tree T is then really an ω1-tree and all its levels are countable. Moreover
the set PM

3 can be identified to a set of branches of T thus card(B(T )) > ℵ1

and T is a Kurepa tree.
Conversely if there exists a Kurepa tree, we can easily see that Φ has an
ω2-model. �

We can now infer from Theorems 4.1 and 4.2 the following result which shows
that the local theory of ω2 is not determined by the axiomatic system ZFC+
GCH .

Theorem 4.5 If the theory ZFC + “ there is an inaccessible cardinal ” is
consistent then “ Φ has an ω2-model ” is independent of ZFC +GCH.

Notice that this result can be extended easily to ordinals larger than ω2. For
instance reasoning as in the construction of the local sentence ϕ1 from the local
sentence ϕ0 (see Lemma 4.4 above), we can construct by induction, for each
integer n ≥ 2, a local sentence Ψn such that: for all ordinals α ∈]ωn, ωn+1],
( Ψn has an α-model ) iff ( Φ has an ω2-model ) iff ( there is a Kurepa tree ).
This implies the following extension of Theorem 4.5.

Theorem 4.6 If the theory ZFC + “ there is an inaccessible cardinal ” is
consistent then for each integer n ≥ 2 and each ordinal α ∈]ωn, ωn+1], “ Ψn

has an α-model ” is independent of ZFC +GCH.

A similar result can be obtained for larger ordinals of cofinality ωn, for an
integer n ≥ 2.
We can first construct the local sentence Θ2 = θ⋆Φ, from the local sentence θ
given in section 3 whose spectrum is the class of successor ordinals, and the
local sentence Φ we have constructed above.
It is then easy to see that Θ2 has not any well ordered model whose order
type is an ordinal α having a cofinality greater than ω2. Moerover if α is an
ordinal of cofinality ω2 then the local sentence Θ2 has a model of order type
α if and only if Φ has an ω2-model.
In the same way, for each integer n ≥ 2, we can construct the local sentence
Θn+1 = θ⋆Ψn , from θ and the local sentence Ψn cited in the above theorem.
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It is then easy to see that Θn+1 has not any well ordered model whose order
type is an ordinal having a cofinality greater than ωn+1 because by construction
the local sentence Ψn has no well ordered model of order type greater than
ωn+1. Moreover if α is an ordinal of cofinality ωn+1 then the local sentence
Θn+1 has a model of order type α iff Ψn has an ωn+1-model iff Φ has an ω2-
model iff there is a Kurepa tree.
So we have got the following extension of Theorem 4.6.

Theorem 4.7 If the theory ZFC + “ there is an inaccessible cardinal ” is
consistent then for each integer n ≥ 2 and each ordinal α of cofinality ωn,
“ Θn has an α-model ” is independent of ZFC +GCH.

5 The local theories of ωn, n ≥ 1

We have already mentioned in the introduction that it would be still possible
that there are only finitely many possible local theories of ω2 and that each
of them is decidable, but that it is more plausible that the situation is much
more complicated.

On the other hand the above method cannot be applied to study the local
theory of ω1. We are going to prove in this section that the local theory of ω1

is recursive in the local theory of ω2, and more generally that, for all integers
n, p, 1 ≤ n < p, the local theory of ωn is recursive in the local theory of ωp.

Lemma 5.1 For each integer n ≥ 0, there exists a local sentence ϕn such that
Sp∞(ϕn) = [ω, ωn].

Proof. We have already proved this result in the cases n = 0 and n = 1
by proving Lemmas 4.3 and 4.4. We can now construct by induction on the
integer n a local sentence ϕn such that Sp∞(ϕn) = [ω, ωn]. The local sentence
ϕn is constructed from the local sentence ϕn−1 in a similar manner as in the
construction of the local sentence ϕ1 from the local sentence ϕ0 (see the proof
of Lemma 4.4). Details are here left to the reader. �

Lemma 5.2 For every integer n ≥ 1, there exists a recursive function Sn
defined on the set of first order sentences (whose signatures contain the binary
symbol <) such that, for a first order sentence ϕ, [ϕ is local ] if and only if
[Sn(ϕ) is local ] and [ϕ has an ωn-model ] if and only if [Sn(ϕ) has an ωn+1-
model ].

Proof. Let n be an integer ≥ 1 and ϕ be a first order sentence in a signature
S(ϕ). We are going to explain informally the construction of the sentence
Sn(ϕ) from the sentence ϕ using similar methods as in the preceding section.
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We can assume that S(ϕ)∩ S(ϕn)={<}. The signature of Sn(ϕ) is equal to
S(ϕn) ∪ S(ϕ) ∪ {s, t, R1, R2, R3}, where s is a new unary function symbol, t
is a new binary function symbol, and R1, R2, R3 are three unary predicate
symbols not in S(ϕn) ∪ S(ϕ).

The sentence Sn(ϕ) expresses that a model M is linearly ordered by the binary
relation <M , and that RM

1 , RM
2 , and RM

3 are three successive segments of M .
Then Sn(ϕ) expresses that the restriction of RM

1 to the signature of ϕn is a
model of ϕn and the restriction of RM

2 to the signature of ϕ is a model of ϕ
(a k-ary function of S(ϕn) is trivially defined out of R1 by f(x1, . . . , xk) = x1

and similarly functions of S(ϕ) are trivially defined out of R2).
The function s is a strictly non decreasing function from RM

2 into RM
1 and is

trivially defined by s(x) = x elsewhere.
The function t is used to realize, for every element a ∈ RM

3 , an injection from
{x ∈ R3 | x < a} into R2 (as in the proof of Lemma 4.4) and it is trivially
defined where it is not useful for that purpose.

The function Sn is clearly recursive and it is easy to see that ϕ is local iff
Sn(ϕ) is local.
In that case it holds that nSn(ϕ) = nϕ + nϕn + 2. Indeed to take the closure
of a set X in a model M of Sn(ϕ) one takes the closure under the function t,
then under the functions of S(ϕ) in nϕ steps, then under the function s, then
under the functions of S(ϕn) in nϕn steps.

Assume now that Sn(ϕ) has an ωn+1-model M . In this model (RM
1 , <

M) and
(RM

2 , <
M) have order types smaller than or equal to ωn because Sp∞(ϕn) =

[ω, ωn] and there is a strictly non decreasing function sM from RM
2 into RM

1 .
Thus (RM

3 , <
M) must have order type ωn+1. Every strict initial segment of RM

3

is injected in RM
2 so RM

2 has cardinality ℵn and its order type is exactly ωn.
This implies that the restriction of the model M to RM

2 and to the signature
of ϕ is an ωn-model of ϕ.
Conversely it is easy to see that by construction if there is an ωn-model of ϕ
then there is an ωn+1-model of Sn(ϕ). �

We can now state the following result. Recall that the local theory of an
ordinal α is the set of local sentences having a model of order type α; it will
be denoted by LT (α).

Theorem 5.3 For all integers n, p ≥ 1, if n < p then the local theory of ωn
is recursive in the local theory of ωp.

Proof. It follows directly from Lemma 5.2 that for each integer n ≥ 1 the
local theory of ωn is recursive in the local theory of ωn+1 because

LT (ωn) = S−1
n (LT (ωn+1))
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where Sn is a recursive function. We can now infer, by induction on the integer
p > n, that if n < p then the local theory of ωn is recursive in the local theory
of ωp. �

Remark 5.4 We have called here local theory of α the set of all local sen-
tences having a model of order type α. We could have restricted this set to
local sentences in the recursive set L given by Proposition 2.3.
We can get a similar result in that case, defining firstly the recursive function
Sn only on this set L with values in L. This is possible because we have seen
that for a local sentence ϕ it holds that nSn(ϕ) = nϕ + nϕn + 2. Thus we can
compute nSn(ϕ) from nϕ.

Theorem 5.3 states that if n < p then the local theory of ωn is less “compli-
cated” than the local theory of ωp because there is a recursive reduction of
the first one to the second one.
We are going to prove the following similar result.

Theorem 5.5 For all integers n ≥ 1, if α is an ordinal of cofinality ωn then
the local theory of ωn is recursive in the local theory of α.

We shall proceed by successive lemmas.

Lemma 5.6 Let ψ be a local sentence and n be an integer ≥ 1, then there
exists another local sentence ψ′

n such that Sp∞(ψ′
n) ⊆ [ω, ωn] and the following

equivalence holds: [ψ has a model of order type ωn] iff [ψ′
n has a model of order

type ωn].

Proof. Let ψ be a local sentence (with <∈ S(ψ)) and n be an integer n ≥ 1.
We now explain informally the construction of a local sentence ψ′

n such that
Sp∞(ψ′

n) ⊆ [ω, ωn] and [ψ has a model of order type ωn] iff [ψ′
n has a model

of order type ωn].

The signature of ψ′
n is S(ψ′

n)=S(ϕn−1) ∪ S(ψ) ∪{R, t} where R is a new unary
predicate symbol and t is a new binary function symbol not in S(ϕn−1) ∪
S(ψ). The sentence ψ′

n expresses that in a model M , RM is an initial segment
of the model which is closed under functions of S(ϕn−1); and the restriction
of M to RM and to the signature S(ϕn−1) is a model of ϕn−1. In the same
way the restriction of M to ¬RM and to the signature S(ψ) is a model of ψ.
The function t is used to realize, for every element a ∈ ¬R, an injection from
{x ∈ ¬R | x < a} into R (as in the proof of Lemma 4.4) and it is trivially
defined where it is not useful for that purpose.
We know that the sentence ϕn−1 given by Lemma 5.1 has infinite spectrum
Sp∞(ϕn−1) = [ω, ωn−1] so in a well ordered model M of ψ′

n the initial segment
RM will have order type ≤ ωn−1. Moreover every strict initial segment of ¬RM

will be of cardinal ≤ ℵn−1 because it is injected into RM , so ¬RM will be of
order type ≤ ωn thus M will be also of order type ≤ ωn. We have then proved
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that Sp∞(ψ′
n) ⊆ [ω, ωn].

It is now easy to see that if ψ′
n has a model M of order type ωn, then the

restriction of M to ¬RM and to the signature S(ψ) is a model of ψ whose
order type is ωn; conversely if ψ has an ωn-model then there is an ωn-model
of ψ′

n.

The sentence ψ′
n is equivalent to a universal sentence and closure in its models

takes at most nψ′

n
= nψ +1+nϕn−1 . One takes closure under functions of S(ψ)

in nψ steps, then closure under the function t in one step, then closure under
functions of S(ϕn−1) in nϕn−1 steps. Thus ψ′

n is a local sentence. �

Lemma 5.7 For every integer n ≥ 1, there exists a recursive function Tn,
defined on the set of first order sentences ψ with <∈ S(ψ), such that, for every
first order sentence ψ, [ψ is local ] if and only if [Tn(ψ) is local ] and, for every
local sentence ψ, [ψ has an ωn-model ] if and only if [Tn(ψ) has an α-model ]
where α is any ordinal of cofinality ωn.

Proof. Let n be an integer ≥ 1 and ψ be a first order sentence in a signature
S(ψ). We define Tn(ψ) = θ⋆ψ

′

n where θ is the local sentence whose spectrum is
the class of successor ordinals, and ψ′

n is the first order sentence constructed
as above from the sentence ψ.
Notice that in preceding lemma the sentence ψ′

n is constructed from a local
sentence ψ but we can easily extend the construction to all first order sentences
ψ. Then it holds that ψ is local iff ψ′

n is local.
The sentence θ⋆ψ

′

n can also be defined even if ψ′
n is not local, with slight

modifications, in such a way that models of θ⋆ψ
′

n are still essentially direct
sums of models of θ, these models being ordered by the order type of a model
of ψ′

n. Moreover it holds also that [ θ⋆ψ
′

n is local ] iff [ ψ′
n is local ]. Thus [ ψ

is local ] iff [ Tn(ψ)=θ⋆ψ
′

n is local ].
Consider now a local sentence ψ and an ordinal α having cofinality ωn. Then
by Lemma 5.6 the sentence ψ has an ωn-model iff ψ′

n has an ωn-model and
Sp∞(ψ′

n) ⊆ [ω, ωn]. This implies that [ψ has an ωn-model ] iff [θ⋆ψ
′

n has an α-
model ] because α has cofinality ωn. �

We can now end the proof of Theorem 5.5. It follows from Lemma 5.7 that
for each integer n ≥ 1 the local theory of ωn is recursive in the local theory of
α, where α is an ordinal having cofinality ωn. Indeed

LT (ωn) = T −1
n (LT (α))

where Tn is a recursive function. �
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