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Abstract

A visual cryptography scheme encodes a black & white secret image
into n shadow images called shares which are distributed to the n par-
ticipants. Such shares are such that only qualified subsets of participants
can “visually” recover the secret image.

Usually, the reconstructed image will be darker than the background
of the image itself. In this paper we consider visual cryptography schemes
satisfying the model introduced by Tzeng and Hu (Designs, Codes and
Cryptography, Vol. 27, No. 3, pp. 207–227, 2002). In such a model the
recovered secret image can be darker or lighter than the background.

We prove a lower bound on the pixel expansion of the scheme and, for
(2, n)-threshold visual cryptography schemes, we provide schemes achiev-
ing the bound. Our schemes improve on the ones proposed by Tzeng and
Hu.

Keywords: Visual cryptography, Pixel expansion.

1 Introduction

A visual cryptography scheme for a set P of n participants is a method to
encode a secret black and white image SI into n shadow images called shares,
where each participant in P receives one share. Certain qualified subsets of
participants can “visually” recover the secret image, but other, forbidden, sets
of participants have no information (in an information-theoretic sense) on SI.
A “visual” recovery for a set X ⊆ P consists of xeroxing the shares given to the
participants in X onto transparencies, and then stacking them. The participants
in a qualified set X will be able to see the secret image without any knowledge
of cryptography and without performing any cryptographic computation.

1



This cryptographic paradigm was introduced by Naor and Shamir in their
seminal paper [3]. They analyzed the case of (k, n)-threshold visual cryptogra-
phy schemes, in which the secret image is visible if any k or more transparencies
are stacked together. If fewer than k transparencies are stacked together, then
the resulting image will be indistinguishable from random noise. More gener-
ally, any set of k − 1 participants can analyze their collection of shares by any
means, but they will obtain no information about the secret image.

In order to implement a visual cryptography scheme, each pixel of the orig-
inal image is encoded into n version called shares, one for each transparency.
Each share is composed of m black and white subpixels. When we superimpose
two white subpixels we obtain a white subpixel; while, superimposing one black
subpixel to any other subpixel we get a black subpixel. Thus, the grey level of
the combined share obtained by stacking some transparencies is proportional to
the number of black subpixels appearing in it. This grey level is interpreted by
the visual system of the users as black or as white in according with some rule
of contrast.

In the model introduced by Naor and Shamir the grey level of a ”recon-
structed” black pixel will be greater than the grey level of a ”reconstructed”
white one. In other words, the reconstructed image will be darker than the
background of the image itself.

In this paper we consider visual cryptography schemes satisfying the model
introduced by Tzeng and Hu in [4]. In such a model the recovered secret image
can be darker or lighter than the background.

The best way to understand such a new model is by resorting to an example.
We want to realize a (2, 3)-threshold visual cryptography schemes. Hence, there
are three participants, that is P = {1, 2, 3}, and any two of them can recover
the secret image. We want to encode the secret image “TCS”. For this example,
the visual cryptography scheme satisfying the model in [4] is described in (5).
The original image and the three shares generated by are as follows.

Figure 1: The original image and the shares of a (2, 3)-threshold VCS

Three of them look like random patterns and, indeed, no individual share
provides any information, even to an infinitely powerful computer, on the orig-
inal image. If we superimpose the transparencies associated to participants 1
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and 2 and to participants 1 and 3, respectively, we get the following result.

Figure 2: Images reconstructed by participants 1 and 2 and 1 and 3, respectively

In this paper we restrict our attention to (2, n)-threshold visual cryptography
schemes. We prove a lower bound on the pixel expansion of the scheme and
we provide visual cryptography schemes achieving the bound. Our schemes
improve, with respect to the pixel expansion, on the ones presented in [4].

2 Model and Notation

Let P = {1, . . . , n} be a set of elements called participants, and let 2P denote the
set of all subsets of P. Let ΓQual ⊆ 2P and ΓForb ⊆ 2P , where ΓQual ∩ ΓForb = ∅.
We refer to members of ΓQual as qualified sets and we call members of ΓForb

forbidden sets. The pair (ΓQual,ΓForb) is called the access structure of the scheme.
Define Γ0 to consist of all the minimal qualified sets:

Γ0 = {A ∈ ΓQual : A′ 6∈ ΓQual for all A′ ⊂ A}.

A qualified set X that does not belong to Γ0, i.e., X ∈ ΓQual\Γ0, is referred to
as not-minimal qualified set.

A (k, n)-threshold VCS is a visual cryptography scheme for the access struc-
ture with basis Γ0 = {B ⊆ P : |B| = k}.

We assume that the image consists of a collection of black and white pixels.
Each pixel appears in n versions called shares, one for each transparency. Each
share is a collection of m black and white subpixels. The resulting structure
can be described by an n × m Boolean matrix S = [sij ] where sij = 1 iff
the j-th subpixel in the i-th transparency is black. Therefore the grey level
of the combined share, obtained by stacking the transparencies i1, . . . , is, is
proportional to the Hamming weight w(V ) of the m-vector V = OR(ri1 , . . . , ris

)
where ri1 , . . . , ris are the rows of S associated with the transparencies we stack.
This grey level is interpreted by the visual system of the users as black or as
white in according with some rule of contrast. The conventional definition [1]
for visual cryptography schemes is as follows.

Definition 2.1 Let (ΓQual,ΓForb) be an access structure on a set of n partici-
pants. Two collections (multisets) of n×m boolean matrices C0 and C1 constitute
a visual cryptography scheme (ΓQual,ΓForb,m)-VCS if there exist the value α(m)
and the set {(X, tX)}X∈ΓQual

satisfying:

1. Any (qualified) set X = {i1, i2, . . . , ip} ∈ ΓQual can recover the shared
image by stacking their transparencies.
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Formally, for any M ∈ C0, the “or” V of rows i1, i2, . . . , ip satisfies
w(V ) ≤ tX−α(m) ·m; whereas, for any M ∈ C1 it results that w(V ) ≥ tX .

2. Any (forbidden) set X = {i1, i2, . . . , ip} ∈ ΓForb has no information on the
shared image.
Formally, the two collections of p × m matrices Dt, with t ∈ {0, 1}, ob-
tained by restricting each n × m matrix in Ct to rows i1, i2, . . . , ip are
indistinguishable in the sense that they contain the same matrices with
the same frequencies.

The first property is related to the contrast of the image. It states that when
a qualified set of users stack their transparencies they can correctly recover
the shared image (i.e., the revealed image is darker than the background, in
other words, the grey level of a reconstructed black pixel is bigger than the
grey level of a reconstructed withe pixel). The value α(m) is called relative
difference, the number α(m) · m is referred to as the contrast of the image,
the set {(X, tX)}X∈ΓQual

is called the set of thresholds, and tX is the threshold
associated to X ∈ ΓQual. We want the contrast to be as large as possible and at
least one, that is, α(m) ·m ≥ 1. The second property is called security, since it
implies that, even by inspecting all their shares, a forbidden set of participants
cannot gain any information in deciding whether the shared pixel was white or
black.

In the following we recall the definition of visual cryptography scheme pro-
vided in [4]. The main difference between the such definition of VCS and the
“traditional” one is that the property of contrast of the reconstructed image is
changed as the revealed image can be darker or lighter than the background
(i.e., some qualified sets recover the original image, while other qualified sets
recover the “negative” of the image itself). Moreover, as also done in [4], we
assume that only the sets in Γ0 can recover the shared image by stacking their
transparencies. If a set X is a not-minimal qualified (i.e., it belongs to ΓQual\Γ0),
then we assume that the participants in X, stacking their transparencies, can-
not distinguish a white pixel from a black one. This is formalized by the next
definition [4].

Definition 2.2 Let (ΓQual,ΓForb) be an access structure on a set of n partici-
pants. Two collections (multisets) of n×m boolean matrices C0 and C1 constitute
a visual cryptography scheme (ΓQual,ΓForb,m)-VCS if there exist the value α(m)
and the set {(X, tX)}X∈ΓQual

satisfying:

1. Any minimal qualified set X = {i1, i2, . . . , ip} ∈ Γ0 can recover the shared
image by stacking their transparencies.
Formally, for any M ∈ C0, the “or” V of rows i1, i2, . . . , ip satisfies
w(V ) = tX ; whereas, either, for any M ∈ C1, it results that w(V ) ≥
tX + α(m) ·m or, for any M ∈ C1, it results that w(V ) ≤ tX − α(m) ·m.

2. Any (forbidden) set X = {i1, i2, . . . , ip} ∈ ΓForb has no information on the
shared image.
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Formally, the two collections of p × m matrices Dt, with t ∈ {0, 1}, ob-
tained by restricting each n × m matrix in Ct to rows i1, i2, . . . , ip are
indistinguishable in the sense that they contain the same matrices with
the same frequencies.

3. Any not minimal qualified set X = {i1, i2, . . . , ip} ∈ ΓQual\Γ0, by stacking
their transparencies, has no information on the shared image.
Formally, the two collections of 1×m vectors Vt, with t ∈ {0, 1}, obtained
by OR-ing the rows i1, i2, . . . , ip of each matrix in Ct are indistinguishable
in the sense that they contain the same vectors with the same frequencies.

We see that Condition 1 of Definitions 2.1 and 2.2 are different. According
to Definition 2.1 the revealed image is darker than the background; while, ac-
cording to Definition 2.2 the revealed image can be darker or lighter than the
background. Moreover, in this model we rule out the possibility that by stack-
ing all the transparencies of the participants in X ∈ ΓQual\Γ0, some information
about the secret image is revealed. However, notice that, if a set of participants
X is a superset of a minimal qualified set X ′ and they know the form of the
access structure (ΓQual,ΓForb), then, they can recover the shared image by con-
sidering only the shares of the set X ′. Moreover, when the participants in X
do not know the access structure they belong to, they can always recover the
original image. Indeed, by inspecting their transparencies all together they can
distinguish whether the shares come from a matrix in C0 or a matrix in C1.

In view of the above observations we make few considerations about the
structure of ΓQual and ΓForb. It is clear that any subset of a forbidden subset
is forbidden, so ΓForb is necessarily monotone decreasing. Hence, no superset
of a qualified subset is forbidden. Finally, w.l.o.g., we can assume that ΓQual is
monotone increasing that is

ΓQual = {C ⊆ P : B ⊆ C for some B ∈ Γ0},

and we say that ΓQual is the closure of Γ0.
All constructions in this paper are realized using two n × m matrices, S0

and S1, called basis matrices satisfying the following definition.

Definition 2.3 Let (ΓQual,ΓForb) be an access structure on a set of n partici-
pants. A (ΓQual,ΓForb,m)-VCS with relative difference α(m) and set of thresholds
{(X, tX)}X∈ΓQual

is realized using the two n×m basis matrices S0 and S1 if the
following two conditions hold.

1. If X = {i1, i2, . . . , ip} ∈ Γ0 (i.e., if X is a minimal qualified set), then the
“or” V of rows i1, i2, . . . , ip of S0 satisfies w(V ) = tX ; whereas, for S1 it
results that either w(V ) ≥ tX + α(m) ·m or w(V ) ≤ tX − α(m) ·m.

2. If X = {i1, i2, . . . , ip} ∈ ΓForb (i.e., if X is a forbidden set), then the two
p×m matrices obtained by restricting S0 and S1 to rows i1, i2, . . . , ip are
equal up to a columns permutation.
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3. If X = {i1, i2, . . . , ip} ∈ ΓQual\Γ0, (i.e., X is a qualified set which is not
minimal), then the two 1 × m vectors V0 and V1, obtained by OR-ing
the rows i1, i2, . . . , ip of S0 and S1, respectively, have the same Hamming
weight, that is, w(V0) = w(V1).

The collections C0 and C1 are obtained by permuting the columns of the
corresponding basis matrix (S0 for C0, and S1 for C1) in all possible ways.

A visual cryptography scheme (ΓQual,ΓForb,m)-VCS which is optimal with
respect to the pixel expansion m will be referred to as an m-optimal VCS.

3 The Structure of VCS

Before to provide some useful properties of VCS, we need to set up our notation.
Let M be a n × m binary matrix. For X ⊆ {1, . . . , n}, let MX denote the m-
vector obtained by considering the or of the rows corresponding to the indices in
X; whereas M [X] denotes the |X| ×m matrix obtained from M by considering
only the rows corresponding to the indices in X. If X = {r}, then instead of
using M [{r}] to denote the row r of M we will use the shortened notation M [r].
For any binary vector V , with w(V ) we denote the number of zeroes in V (i.e.,
the ”complement” of the Hamming weight). By abusing of notation, given two
matrices A and B having the same number of rows, with A ∩B = ∅ we denote
the fact that the same column does not appear in both matrices. In this case,
the matrices A and B are referred as non-redundant matrices. Finally, with
A||B we denote the matrix obtained by concatenating the matrices A and B.

We restrict our attention to (ΓQual,ΓForb,m)-VCS realized by non-redundant
basis matrices S0 and S1. In this case, if the access structure is not an (n, n)-
threshold access structures, we will prove that Condition 3 of Definition 2.3
reduces to w(S0

X) = w(S1
X) = m, for any X ∈ ΓQual\Γ0. We will also prove

that the matrix S = S0||S1 has to contain some predefined sub-matrices. The
columns of such sub-matrices are referred to as “unavoidable patterns”.

Theorem 3.1 In any (ΓQual,ΓForb,m)-VCS realized by the non-redundant basis
matrices S0 and S1, for any X ∈ ΓQual\Γ0, it holds that

w(S0
X) = w(S1

X) = m.

Proof. We will prove the theorem by contradiction by showing that if some set
X ∈ ΓQual\Γ0 does not satisfy w(S0

X) = w(S1
X) = m, then S0 ∩S1 6= ∅. We will

consider the sets in ΓQual\Γ0 in non-increasing order by size. Let P = {1, . . . , n}
be the set of n participants the access structure (ΓQual,ΓForb) is realized on. For
1 ≤ i ≤ n, let Q(i) be the family of all qualified sets of size i which are not
minimal, i.e., Q(i) = {X ∈ ΓQual\Γ0 : |X| = i}. Since we are considering ΓQual

monotone increasing, it results that if X ∈ Q(i), then X ∪ {j} ∈ Q(i + 1) for
any j ∈ P\X.
Let X ∈ Q(n) (notice that there is only one set in Q(n) as we do not consider
(n, n)-threshold access structures) and let Σ be a VCS for (ΓQual,ΓForb) such
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that S0 ∩ S1 = ∅ and w(S0
X) = w(S1

X) = mX < m. In this case, there exist
m − mX columns both in S0 and S1 whose entries are all equal to zero. This
implies that S0∩S1 6= ∅ which contradicts the hypothesis. Hence, in the scheme
Σ we have that w(S0

X) = w(S1
X) = m, for X ∈ Q(n).

If Q(n−1) = ∅, then there do not exist qualified sets X ∈ ΓQual\Γ0 of cardinality
n−1. Therefore, there is nothing to prove. IfQ(n−1) 6= ∅, then, consider any set
X ∈ Q(n− 1) and assume that w(S0

X) = w(S1
X) = mX < m. In this case there

exist m−mX columns both in S0[X] and S1[X] whose entries are equal to zero.
For the sake of simplicity assume these are the first m − mX columns of both
S0[X] and S1[X]. Let {i} = P\X. Since for Y = {i}∪X ∈ Q(n) we proved that
w(S0

Y ) = w(S1
Y ) = m, it must be the case that S0[i, 1] = · · · = S0[i,m−mX ] = 1

and that S1[i, 1] = · · · = S1[i,m − mX ] = 1. Therefore, the first m − mX

columns of both S0 and S1 are equal. This implies that S0 ∩ S1 6= ∅ which
contradicts the hypothesis of the theorem. Hence, in the scheme Σ we have that
w(S0

X) = w(S1
X) = m, for any X ∈ Q(n− 1), too.

In general, if for some value q, we have that Q(n − q) 6= ∅ and that w(S0
X) =

w(S1
X) = m for any X ∈ Q(n− q +1), then we can proceed as follows. Consider

any set X ∈ Q(n−q) and assume that w(S0
X) = w(S1

X) = mX < m. In this case
there exist m−mX columns both in S0[X] and S1[X] whose entries are equal
to zero. For the sake of simplicity assume these are the first m −mX columns
of both S0[X] and S1[X]. Since, for any i ∈ P\X, it holds that w(S0

Y ) =
w(S1

Y ) = m, where Y = {i} ∪X ∈ Q(n− q + 1), then S0[i, j] = S1[i, j] = 1, for
1 ≤ j ≤ m−mX and i ∈ P\X. Therefore, the first m−mX columns of both S0

and S1 are equal as they contain a zero in position j ∈ X and a one in position
i ∈ P\X. This implies that S0 ∩ S1 6= ∅ which contradicts the hypothesis of
the theorem. Thus, we can conclude that for any X ∈ ΓQual\Γ0, it holds that
w(S0

X) = w(S1
X) = m and the theorem is proved.

The next corollary is a consequence of the above theorem.

Corollary 3.2 For any (k, n)-threshold VCS realized by the non-redundant ba-
sis matrices S0 and S1, there is no column in S0||S1 of weight less than n− k.

Proof. Let S = S0||S1. According to Theorem 3.1, for any X ∈ ΓQual\Γ0,
it holds that w(SX) = 2m. Suppose by contradiction that there is a column
in S0||S1 of weight t < n − k. This implies that in such a column there are
n− t > k entries, say the first n− t, all equal to zero. Hence, w(SX) = 2m− 1,
where X = {1, . . . , n− t}. This contradicts w(SX) = 2m, for any X ∈ ΓQual\Γ0.
Thus, the corollary holds.

The next lemma states that if there exists a VCS having basis matrices S0

and S1 such that S0 ∩ S1 6= ∅, then we can always construct a new VCS with
non-redundant basis matrices Ŝ0 and Ŝ1.

Lemma 3.3 If Σ is a (ΓQual,ΓForb,m)-VCS having contrast α(m) realized by ba-
sis matrices S0 and S1 such that S0∩S1 6= ∅, then there exists a (ΓQual,ΓForb, m̂)-
VCS having contrast α̂(m̂) = α(m) ·m/m̂ realized by non-redundant basis ma-
trices.
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Proof. Let R = S0 ∩ S1, then the basis matrices S0 and S1 are equal, up to
a column permutation, to the matrices Ŝ0||R and Ŝ1||R, respectively. Assume
that the matrix Ŝb, for b = 0, 1, has dimension n × m̂. We will prove that the
matrices Ŝ0 and Ŝ1 satisfy Definition 2.3.
For any X ∈ Γ0 by Condition 1 of Definition 2.3, we have that w(S0

X) =
w(Ŝ0

X) + w(RX) = tX and either w(S1
X) = w(Ŝ1

X) + w(RX) ≥ tX + α(m) · m
or w(S1

X) = w(Ŝ1
X) + w(RX) ≤ tX − α(m) ·m. Setting t̂X = tX − w(RX) and

α̂(m̂) = α(m)·m/m̂ we have that w(Ŝ0
X) = t̂X and either w(Ŝ1

X) ≥ t̂X +α̂(m̂)·m̂
or w(Ŝ1

X) ≤ t̂X−α̂(m̂) ·m̂. Therefore , the matrices Ŝ0 and Ŝ1 satisfy Condition
1 of Definition 2.3.
For any X ∈ ΓForb, Condition 2 of Definition 2.3 states that S0[X] is equal, up
to a column permutation, to S1[X]. Therefore, the matrices Ŝ0[X] and Ŝ1[X]
are equal, up to a column permutation, too. Hence, the matrices Ŝ0 and Ŝ1

satisfy Condition 2 of Definition 2.3.
Finally, For any X ∈ ΓQual\Γ0, Condition 2 of Definition 2.3 states that w(S0

X) =
w(S1

X). Since w(S0
X) = w(Ŝ0

X) + w(RX) and w(S1
X) = w(Ŝ1

X) + w(RX), we get
that w(Ŝ0

X) = w(Ŝ1
X). Therefore, the matrices Ŝ0 and Ŝ1 satisfy Condition 3 of

Definition 2.3. Thus, the lemma holds.

In the following theorem we will prove that the matrices S0 and S1 have
to contain some predefined patterns which we call unavoidable patterns. More
precisely, for any VCS the matrix S0||S1 has to contain some fixed columns
determined by Γ0.

Theorem 3.4 In any (ΓQual,ΓForb,m)-VCS realized by the basis matrices S0

and S1, for any X = {i1, i2, . . . , ip} ∈ Γ0, either S0 or S1 contains at least
α(m) · m columns with a ‘0’ in the rows {i1, i2, . . . , ip} and ‘1’s in the other
rows.

Proof. Assume that the VCS is realized by non-redundant basis matrices S0

and S1. If this is not the case, then, by applying Lemma 3.3, we can con-
struct a new VCS whose basis matrices have empty intersection and whose
pixel expansion m̂ and contrast α̂(m̂) satisfy α̂(m̂) · m̂ = α(m) · m. Consider
any set of participants X = {i1, i2, . . . , ip} ∈ Γ0. From Condition 1 of Defini-
tion 2.2, we have that w(S0

X) = tX and that either w(S1
X) ≥ tX + α(m) · m

or w(S1
X) ≤ tX − α(m) · m. Assuming that w(S1

X) ≥ tX + α(m) · m, we get
w(S1

X)−w(S0
X) ≥ α(m) ·m. Therefore, the matrix S0[X] must contain at least

α(m) ·m columns with all entries equal to zero. Moreover, by Theorem 3.1, we
have that w(S0

Y ) = w(S1
Y ) = m, for any Y such that X ⊂ Y . Therefore, the ma-

trix S0 contains at least α(m) ·m columns with a ‘0’ in the rows {i1, i2, . . . , ip}
and ‘1’s in the other rows. We can apply the same reasoning as above when
w(S1

X) ≤ tX − α(m) ·m proving that the matrix S1 contains at least α(m) ·m
columns with a ‘0’ in the rows {i1, i2, . . . , ip} and ‘1’s in the other rows. Thus,
the theorem is proved.
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From the above theorem one can easily get that in any visual cryptography
scheme realized by non-redundant basis matrices (i.e., S0∩S1 = ∅), the number
of columns of S0||S1 is at least |Γ0| · α(m) · m. Therefore, since α(m) · m ≥ 1
and m has to be an integer value, we can immediately get a bound on the pixel
expansion for any (ΓQual,ΓForb,m)-VCS as stated by the next theorem.

Theorem 3.5 In any (ΓQual,ΓForb,m)-VCS realized by basis matrices, the pixel
expansion satisfies

m ≥ d|Γ0|/2e.

We give the following two examples to illustrate the definition of unavoidable
patterns and the use of Theorem 3.5, when P = {1, 2, 3, 4}.

Example 3.1 Define Γ0 =
{
{1, 2}, {2, 3}, {3, 4}

}
. The unavoidable patterns

are: 
0 1 1
0 0 1
1 0 0
1 1 0


The following basis matrices S0 and S1 realize a VCS for Γ0.

S0 =


0 1 1
0 1 1
1 0 1
1 0 1

 S1 =


1 1 0
1 0 1
1 0 1
0 1 1

 .

The unavoidable patterns 
0 1
0 1
1 0
1 0


belongs to S0; while, the unavoidable pattern

1
0
0
1


belongs to S1. In this scheme, m = 3 and α(m) = 1/3. 4

Example 3.2 Define Γ0 =
{
{1, 2}, {2, 3}, {3, 4}, {1, 4}

}
. The unavoidable pat-

terns are: 
0 1 1 0
0 0 1 1
1 0 0 1
1 1 0 0


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The basis matrices S0 and S1 realizing a VCS for Γ0 are as follows:

S0 =


0 1
0 1
1 0
1 0

 S1 =


1 0
0 1
0 1
1 0

 .

In this scheme, m = 2 and α(m) = 1/2. According to Theorem 3.5 the VCS
realized by S0 and S1 is optimal with respect to the pixel expansion. 4

Recall that a (k, n)-threshold VCS is a visual cryptography scheme for the
access structure with basis Γ0 = {B ⊆ P : |B| = k}. In [3] Naor and Shamir
proved that for any (n, n)-threshold VCS the pixel expansion satisfies m ≥
2n−1. The structure of basis matrices (n, n)-threshold VCS was completely
characterized in [2]. The proof of Theorem 7.1 in [2] can easily be modified in
order to prove that for any (n, n)-threshold VCS satisfying Definition 2.3 the
pixel expansion is lower bounded by 2n−1, too. In the case of (k, n)-threshold
access structures, with k < n, the next corollary provides a bound on m.

Corollary 3.6 In any (k, n)-threshold VCS, with 2 ≤ k < n, realized by basis
matrices, the pixel expansion satisfies

m ≥
⌈(

n

k

)/
2
⌉

.

In the next section we will see that above bound is tight for (2, n)-threshold
VCS when n ≡ 1 mod 4. For the other cases we will provide stronger bounds.

4 Optimal (2, n)-threshold VCS

In this section we will prove a bound on the pixel expansion of (2, n)-threshold
VCS, with n > 2, realized by basis matrices. We will show that such bound is
tight by presenting (2, n)-threshold VCS meeting it.

4.1 The Bound

In this section we prove a lower bound on the pixel expansion stronger than the
one provided by Corollary 3.6 when n is even or n ≡ 3 mod 4.

Theorem 4.1 In any (2, n)-threshold VCS, with n > 2, constructed using basis
matrices the pixel expansion satisfies

m ≥



n2

4 if n ≡ 0 mod 2

n(n−1)
4 if n ≡ 1 mod 4

n2−n+6
4 if n ≡ 3 mod 4

10



Proof. Assume that n is even and let Σ be a (2, n)-threshold VCS constructed
using the basis matrices S0 and S1. Let S be the binary matrix equal to
S = S0||S1. Because of Condition 2 of Definition 2.3 it results that that both
the number of zeroes and the number of ones in any row of S is even. According
to Corollary 3.2 all columns in S have weight at least n − 2. Moreover, from
Theorem 3.4, all the

(
n
2

)
distinct columns of weight n− 2 (i.e., the unavoidable

patterns) have to appear in S. Therefore, S is equal, up to a columns permu-
tation to the matrix A||B, where A is a n ×

(
n
2

)
matrix composed by all the

distinct unavoidable patterns and B is some binary matrix whose columns have
weight at least n− 2.
Notice that, for 1 ≤ r ≤ n, we have that the number of zeroes in A[r] is equal to
n− 1 which is odd. This means that, for 1 ≤ r ≤ n, the matrix B must contain
at least a column whose r-th entry is equal to zero. Since all B’s columns have
weight at least n− 2, to have that in any row of A||B there is an even number
of zeroes, it results that the number of columns in B should be at least n/2.
Therefore, the number of columns in S is at least n(n − 1)/2 + n/2 = n2/2.
Hence,

m ≥ n2

4
.

Thus, the theorem is proved for n even.
If n ≡ 1 mod 4, then we can apply directly Corollary 3.6. So we are left

with proving that the last inequality holds.
Consider n ≡ 3 mod 4 and let Σ be a (2, n)-threshold VCS realized by the ba-

sis matrices S0 and S1. By Corollary 3.6, the pixel expansion is lower bounded
by dn(n − 1)/4e = (n2 − n + 2)/4. We will prove that there does not exist a
VCS with pixel expansion equal to (n2 − n + 2)/4. Therefore, m should be at
least (n2 − n + 2)/4 + 1 = (n2 − n + 6)/4 and the theorem is proved.
Assume by contradiction that Σ has pixel expansion equal to m = (n2−n+2)/4.
According to Theorem 3.4, each of the

(
n
2

)
columns of weight n−2 has to appear

either in S0 or in S1. Therefore, since
(
n
2

)
= 2m − 1, one matrix, say S0, will

contain m − 1 = (n2 − n − 2)/4 of such columns; while, S1 will comprise the
others m = (n2 − n + 2)/4.
Let U0 the sub-matrix of S0 composed of only m− 1 distinct unavoidable pat-
terns. Now, we prove that there exists at least an index j, with 1 ≤ j ≤ n, such
that w(U0[j]) ≤ (n− 3)/2. Assume by contradiction that w(U0[i]) ≥ (n− 1)/2
for all i with 1 ≤ i ≤ n. Then, we have that the total number of zeroes in
U0 is at least n(n− 1)/2 which is a contradiction as, by construction, the total
number of zeroes in U0 is 2(m − 1) = (n2 − n − 2)/2. Hence, there exists an
index j, with 1 ≤ j ≤ n, such w(U0[j]) ≤ (n−3)/2. Since any row of U0||S1 (the
matrix of all unavoidable patterns) contains n− 1 zeroes, then, for the index j,
we have that

w(U0[j]) ≤
n− 3

2
and w(S1[j]) ≥ n− 1− n− 3

2
=

n + 1
2

.

Since w(S1[j]) − w(U0[j]) ≥ 2 and the matrix S0 has just one more column
besides the columns in U0, there does not exist a (2, n)-threshold VCS realized
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by the basis matrices S0 and S1 with pixel expansion equal to (n2 − n + 2)/4.
Hence,

m ≥ n2 − n + 6
4

.

Thus, the theorem holds.

4.2 Constructions

In this section we provide some constructions for (2, n)-threshold VCS. Such
constructions are optimal with respect to the pixel expansion as they meet the
bound of Theorem 4.1.

In order to present constructions for (2, n)-threshold VCSs, we need to set
up our notation. If c ∈ {0, 1}n (i.e., c is a binary vector of length n), then by
c(i) we denote the i-th entry of c, where 1 ≤ i ≤ n. Moreover, we denote by
ci,j ∈ {0, 1}n the binary column such that w(ci,j) = n− 2 and c(i) = c(j) = 0.
Let I be set such that I ⊆ {1, . . . , n}2. We denote by M(I) the binary matrix
induced by the set of pairs belonging to I, that is M(I) is formed by the columns
ci,j with (i, j) ∈ I. Since, for our construction, the order in which the pairs in I
are chosen is immaterial, then the matrix M(I) is one of the |I|! matrices that
can be constructed considering, in any order, the pairs belonging to I. Finally,
with UP(2, n) we denote an n ×

(
n
2

)
binary matrix containing all unavoidable

patterns for a (2, n)-threshold VCS (i.e., UP(2, n) contains all the columns of
weight n− 2).

The Case n ≡ 0 mod 4 To define the basis matrices of a (2, n)-threshold
VCS, we will divide the columns of UP(2, n) in two matrices. The first matrix
will contain n2/4 distinct unavoidable patterns. The second matrix will contain
all the n(n− 1)/2−n2/4 remaining patters and the duplication of n/2 of them.
Define the sets I1, I2, and I3 as follows:

I1 = {(i, j) : 1 ≤ i ≤ n/2 and (n + 2)/2 ≤ j ≤ n}
I2 = {(i, j), (i + n/2, j + n/2) : 1 ≤ i < j ≤ n/2}
I3 = {(i, i + 1) : i = 2p− 1 with 1 ≤ p ≤ n/2}

We construct the matrices S0 and S1 as depicted in Figure 3.
We now illustrate the realization of the basis matrices of a (2, n)-threshold

VCS for n ≡ 0 mod 4, by considering an example of the construction depicted
in Figure 3.

Example 4.1 For n = 8, the matrices induced by the sets I1, I2, and I3 are as

12



• The matrix S0 is equal to the matrix M(I1).

• The matrix S1 is formed by concatenating the matrices M(I2) and
M(I3).

Figure 3: Basis Matrices of a (2, n)-threshold VCS for n ≡ 0 mod 4

follows:

M(I1) =



0000111111111111
1111000011111111
1111111100001111
1111111111110000
0111011101110111
1011101110111011
1101110111011101
1110111011101110


M(I2) =



000111111111
011001111111
101010111111
110100111111
111111000111
111111011001
111111101010
111111110100



M(I3) =



0111
0111
1011
1011
1101
1101
1110
1110


.

Therefore, the matrix S0 and S1 generated by the construction depicted in
Figure 3 are:

S0 =



0000111111111111
1111000011111111
1111111100001111
1111111111110000
0111011101110111
1011101110111011
1101110111011101
1110111011101110


S1 =



0001111111110111
0110011111110111
1010101111111011
1101001111111011
1111110001111101
1111110110011101
1111111010101110
1111111101001110


.

In this scheme, m = 16 and α(m) = 1/16. 4

In the next theorem we prove that the matrices S0 and S1 defined by the
scheme in Figure 3 realize a (2, n)-threshold VCS for n ≡ 0 mod 4. According
to Theorem 4.1 the scheme is optimal with respect to the pixel expansion.
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Theorem 4.2 The matrices S0 and S1 defined by the scheme in Figure 3 realize
an m-optimal (2, n)-threshold VCS for n ≡ 0 mod 4.

Proof. It is immediate to see that both matrices S0 and S1 defined by the
scheme in Figure 3 have n rows. The number of columns of S0 is equal to
|I1| = n2/4; while, the number of columns of S1 is equal to |I2|+ |I3| = n(n−
2)/4 + n/2 = n2/4. Hence, S0 and S1 have the same dimensions n and m =
|S0| = |S1|.
To prove that Condition 1 of Definition 2.3 is satisfied, notice that I1 and I2

partition the set {(i, j) : 1 ≤ i ≤ n, 1 ≤ j ≤ n, and i 6= j} and that I3 ⊆ I2.
According to the construction in Figure 3, for any set X = {i, j}, we have that

w(S0
X) =


n2/4− 1 if (i, j) ∈ I1

n2/4 if (i, j) ∈ I2

and

w(S1
X) =


n2/4 if (i, j) ∈ I1

n2/4− 1 if (i, j) ∈ I2\I3

n2/4− 2 if (i, j) ∈ I3.

Therefore, Condition 1 of Definition 2.3 is satisfied.
To prove that Condition 2 of Definition 2.3 holds, we will prove that, for any
1 ≤ r ≤ n, it holds that w(S0[r]) = w(S1[r]). It is immediate to see that for any
1 ≤ r ≤ n there are n/2 zeroes in S0[r]. Hence, w(S0[r]) = n/2. The matrix
S1 is equal to M(I2)||M(I3). Hence, w(S1[r]) = w(M(I2)[r]) + w(M(I3)[r]) =
(n/2− 1)+1 = n/2. Thus, for 1 ≤ r ≤ n we have that w(S0[r]) = w(S1[r]) and
Condition 2 of Definition 2.3 is satisfied.
Finally, notice that since all columns of both S0 and S1 have weight n − 2,
then, for any set X of participants of size at least three, it holds that w(S0

X) =
w(S1

X) = m. Hence, Condition 3 of Definition 2.3 is satisfied, too. Thus, the
matrices S0 and S1 defined by the scheme in Figure 3 realize a (2, n)-threshold
VCS with pixel expansion equal to n2/4. According to Theorem 4.1, such pixel
expansion is the smallest achievable and the theorem is proved.

The Case n ≡ 1 mod 4 Notice that, when n ≡ 1 mod 4, the matrix
UP(2, n) has an even number of columns and that the number of zeroes in
any row of UP(2, n) is also even and it is equal to n−1. To define the basis ma-
trices of a (2, n)-threshold VCS, we will partition the columns of UP(2, n) into
two matrices in such a way that such matrices have the same number of columns
and each row has (n− 1)/2 entries equal to zero. Define the sets I1, I2, I3, and
I4 as follows

I1 = {(i, j) : 1 ≤ i < j ≤ n}
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I2 = {(i, j) : 2 ≤ i ≤ (n + 1)/2 and (n + 3)/2 ≤ j ≤ n}
I3 = {(1, j), (1, j + (n− 1)/2) : 2 ≤ j ≤ (n + 3)/4}
I4 = {(i, i + (n− 1)/2) : 2 ≤ i ≤ (n + 3)/4}

Notice that the set M(I1) =UP(2, n). We construct the matrices S0 and S1 as
depicted in Figure 4.

• Let I be the set (I2 ∪ I3)\I4

• The matrix S0 is equal to the matrix M(I).

• The matrix S1 is equal to the matrix M(I1\I).

Figure 4: Basis Matrices of a (2, n)-threshold VCS for n ≡ 1 mod 4

We now illustrate the realization of the basis matrices of a (2, n)-threshold
VCS for n ≡ 1 mod 4, by considering an example of the construction depicted
in Figure 4.

Example 4.2 For n = 9, the matrices induced by the sets I2, I3, and I4 are as
follows:

M(I2) =



1111111111111111
0000111111111111
1111000011111111
1111111100001111
1111111111110000
0111011101110111
1011101110111011
1101110111011101
1110111011101110


M(I3) =



0000
0111
1011
1111
1111
1101
1110
1111
1111


M(I4) =



11
01
10
11
11
01
10
11
11


Therefore, the matrix S0 and S1 generated by the above construction are:

S0 =



111111111111110000
000111111111110111
111000111111111011
111111000011111111
111111111100001111
111011011101111101
011111101110111110
101101110111011111
110110111011101111


S1 =



000011111111111111
111101000111111111
111110011001111111
011111101010111111
101111110100111111
111101111111000111
111110111111011001
110111111111101010
111011111111110100


In this scheme, m = 18 and α(m) = 1/18. 4
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In the following theorem we prove that the matrices S0 and S1 defined by
the scheme in Figure 4 constitute an m-optimal (2, n)-threshold VCS for n ≡ 1
mod 4.

Theorem 4.3 The matrices S0 and S1 defined by the scheme in Figure 4 realize
an m-optimal (2, n)-threshold VCS for n ≡ 1 mod 4.

Proof. It is immediate to see that both matrices S0 and S1 defined by the
scheme in Figure 4 have n rows. The matrices S0 and S1 are a partition of
UP(2, n). Indeed, the matrix S = S0||S1 is equal, up to a columns permutation,
to UP(2, n). Since

I4 ⊆ I2 and I2 ∩ I3 = ∅ (1)

the number of columns of S0 is equal to

|S0| = |I2|+ |I3| − |I4| =
(n− 1)2

4
+

n− 1
2

− n− 1
4

=
n(n− 1)

4
. (2)

As |S1| = |UP(2, n)| − |S0| = n(n− 1)/4, we get that S0 and S1 have the same
dimensions n and m = |S0| = |S1| = n(n− 1)/4.
Since S0 and S1 constitute a partition of UP(2, n), we have that for any set X
of size two the matrix S[X] contains an unique columns with entries equal to
zero. Therefore, either w(S0

X) = m and w(S1
X) = m− 1 or w(S0

X) = m− 1 and
w(S1

X) = m4. Hence, Condition 1 of Definition 2.3 is satisfied.
Notice that, in any row of S there are n − 1 entries equal to zero. Hence, to
prove that Condition 2 of Definition 2.3 is satisfied, it is enough to prove that
w(S0[r]) = (n − 1)/2, for 1 ≤ r ≤ n. According to (1) and the construction
illustrated in Figure 4, one has that

w(S0[r]) = w(M(I2)[r]) + w(M(I3)[r])− w(M(I4)[r]).

For r = 1, we have that

w(M(I2)[r]) = 0, w(M(I3)[r]) =
n− 1

2
, and w(M(I4)[r]) = 0.

Hence,

w(S0[r]) =
n− 1

2
.

For 2 ≤ r ≤ n, we have that

w(M(I2)[r]) =
n− 1

2
, w(M(I3)[r]) = 1, and w(M(I4)[r]) = 1

Hence,

w(S1[r]) =
n− 1

2
.

Therefore, Condition 2 of Definition 2.3 is satisfied.
Finally, notice that since all columns of both S0 and S1 have weight n − 2,
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then, for any set X of participants of size at least three, it holds that w(S0
X) =

w(S1
X) = m. Hence, Condition 3 of Definition 2.3 is satisfied, too. Thus, the

matrices S0 and S1 defined by the scheme in Figure 4 realize a (2, n)-threshold
VCS with pixel expansion equal to n(n− 1)/4. According to Theorem 4.1, such
pixel expansion is the smallest achievable and the theorem is proved.

The Case n ≡ 2 mod 4 The (2, 2)-threshold VCS described by Naor and
Shamir [3] satisfies Definition 2.3 and it is an m-optimal VCS. For completeness,
we report the basis matrices realizing it:

S0 =
[

10
10

]
S1 =

[
01
10

]
.

For n ≡ 2 mod 4, n > 2, our construction is based on the technique used to
realize the (2, n)-threshold VCS for n ≡ 0 mod 4. To define the basis matrices
of a (2, n)-threshold VCS, we will divide the columns of UP(2, n) in two ma-
trices. The first matrix will contain n2/4 distinct unavoidable patterns. The
second matrix will contain all the n(n− 1)/2− n2/4 remaining patters and the
duplication of n/2 of them. For n ≡ 2 mod 4 and n > 2, define the set I1, I2,
I3, I4, and I5 as follows:

I1 = {(i, j) : 1 ≤ i ≤ n/2 and (n + 2)/2 ≤ j ≤ n}
I2 = {(i, j), (i + n/2, j + n/2) : 1 ≤ i < j ≤ n/2}
I3 = {(i, i + n/2) : 1 ≤ i ≤ n/2}
I4 = {(i, i + n/2 + 1) : 1 ≤ i ≤ n/2− 1} ∪ {(n/2, n/2 + 1)}
I5 = {(i, i + 1), (i + n/2, i + 1 + n/2) : 1 ≤ i ≤ n/2− 1} ∪

{(1, n/2), (n/2 + 1, n)}

Setting I6 = I3, we can construct the matrices S0 and S1 as depicted in Figure 5.

• The matrix S0 is formed by the columns ci,j , where (i, j) ∈ (I1 ∪
I5)\(I3 ∪ I4).

• The matrix S1 is formed by concatenating the matrix M(I6) and
the matrix formed by the columns ci,j , where (i, j) ∈ (I3 ∪ I4) ∪
(I2\I5).

Figure 5: Basis matrices of a (2, n)-threshold VCS for n ≡ 2 mod 4, n > 2

We now illustrate the realization of the basis matrices of a (2, n)-threshold
VCS for n ≡ 2 mod 4 and n > 2, by considering an example of the construction
depicted in Figure 5.
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Example 4.3 For n = 6, the matrices induced by the sets I1, . . . , I6 are as
follows:

M(I1) =


000111111
111000111
111111000
011011011
101101101
110110110

 M(I2) =


001111
010111
100111
111001
111010
111100

 M(I3) =


011
101
110
011
101
110



M(I4) =


011
101
110
110
011
101

 M(I5) =


001111
100111
010111
111001
111100
111010

 M(I6) =


011
101
110
011
101
110

 .

Therefore, the matrix S0 and S1 generated by the above construction are:

S0 =


011001111
101100111
110010111
101111001
110111100
011111010

 S1 =


011011011
101101101
110110110
011011110
101101011
110110101

 .

In this scheme, m = 9 and α(m) = 1/9. 4

In the following theorem we prove that the matrices S0 and S1 described in
Figure 5 realize an m-optimal (2, n)-threshold VCS for n ≡ 2 mod 4 and n > 2.

Theorem 4.4 The matrices S0 and S1 defined by the scheme in Figure 5 realize
an m-optimal (2, n)-threshold VCS for n ≡ 2 mod 4 and n > 2.

Proof. It is immediate to see that both matrices S0 and S1 defined by the
scheme in Figure 5 have n rows. Notice that

I3 ∪ I4 ⊆ I1, I1 ∩ I5 = ∅, and I3 ∩ I4 = ∅. (3)

Hence, the number of columns of S0 is equal to

|S0| = |I1|+ |I5| − |I3| − |I4| =
n2

4
+ n− n

2
− n

2
=

n2

4
.

Moreover, notice that

I2 ∩ I3 = ∅, I3 ∩ I4 = ∅, I4 ∩ I2 = ∅, and I5 ⊆ I2. (4)
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Hence, the number of columns of S1 is equal to

|S1| = |I6|+ |I3|+ |I4|+ |I2| − |I5| =
n

2
+

n

2
+

n

2
+

n(n− 2)
4

− n =
n2

4
.

Therefore, S0 and S1 have the same dimensions n and m = |S0| = |S1|.
To prove that Condition 1 of Definition 2.3 is satisfied notice that, from (3) and
(4) we have

[(I1 ∪ I5)\(I3 ∪ I4)] ∪ [(I3 ∪ I4) ∪ (I2\I5)] = (I1 ∪ I5) ∪ (I2\I5) = I1 ∪ I2.

Hence, since I3 = I6, the matrix S = S0||S1 is equal, up to a columns permu-
tation, to the matrix M(I1)||M(I2)||M(I3).
Let X = {i, j} with (i, j) 6∈ I3. Since the matrix UP(2, n) is equal, up to
a columns permutation, to the matrix M(I1)||M(I2), then, the column c(i, j)
appears once in the matrix S. Thus, either w(S0

X) = m and w(S1
X) = m− 1 or

w(S0
X) = m− 1 and w(S1

X) = m.
If X = {i, j} with (i, j) ∈ I3, then the column c(i, j) appears twice in the matrix
S1. Hence, w(S0

X) = m and w(S1
X) = m−2. Thus, Condition 1 of Definition 2.3

is satisfied.
To prove that Condition 2 of Definition 2.3 holds, we will prove that, for any
1 ≤ r ≤ n, the number of zeroes in S0[r] is equal to the number of zeroes in
S1[r] (i.e., w(S0[r]) = w(S1[r])). For 1 ≤ r ≤ n, we have that

w(S[r]) = w(UP(2, n)[r]) + w(M(I3)[r]) = (n− 1) + 1 = n.

For 1 ≤ r ≤ n, from (3), we have that

w(S0[r]) = w(M(I1)[r]) + w(M(I5)[r])− w(M(I4)[r])− w(M(I4)[r])
= n/2 + 2− 1− 1
= n/2.

Therefore, since w(S1[r]) = w(S[r]) − w(S0[r]) = n/2, for 1 ≤ r ≤ n, we get
that w(S0[r]) = w(S1[r]) and Condition 2 of Definition 2.3 holds.
Finally, notice that since all columns of both S0 and S1 have weight n − 2,
then, for any set X of participants of size at least three, it holds that w(S0

X) =
w(S1

X) = m. Hence, Condition 3 of Definition 2.3 is satisfied, too. Thus,
the matrices S0 and S1 defined by the scheme in Figure 5 realize, for n ≡ 2
mod 4 and n > 2, a (2, n)-threshold VCS with pixel expansion equal to n2/4.
According to Theorem 4.1, such pixel expansion is the smallest achievable and
the theorem is proved.

The Case n ≡ 3 mod 4 An m-optimal (2, 3)-threshold VCS is described by
the following basis matrices.

S0 =

 110
100
101

 S1 =

 110
001
110

 . (5)
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To define the basis matrices of a (2, n)-threshold VCS for n ≡ 3 mod 4 and
n > 3, we will use the matrices induced by the following sets.

I1 = {(i, j) : 1 ≤ i < j ≤ n}
I2 = {(i, j) : 2 ≤ i ≤ (n + 1)/2 and (n + 3)/2 ≤ j ≤ n}
I3 = {(i, i + (n− 1)/2) : 2 ≤ i ≤ (n + 1)/4}
I4 = {(1, 2), (1, (n + 3)/2)}
I5 = {(2, (n + 3)/2)}
I6 = {(1, i), (1, i + (n− 1)/2) : 2 ≤ i ≤ (n + 1)/4}.

We construct the basis matrices S0 and S1 of a (2, n)-threshold VCS for
n ≡ 3 mod 4 and n > 3 as depicted in Figure 6.

• Let I be the set I2\I3.

• The matrix S0 is formed by concatenating the matrix M(I6) and
the matrix formed by the columns ci,j , where (i, j) ∈ I ∪ I4.

• The matrix S1 is formed by concatenating the matrix M(I5) and
the matrix formed by the columns ci,j , where (i, j) ∈ I1\(I ∪ I6).

Figure 6: Basis matrices of a (2, n)-threshold VCS for n ≡ 3 mod 4, n > 3

We now illustrate the realization of the basis matrices of a (2, n)-threshold
VCS for n ≡ 2 mod 4 and n > 3, by considering an example of the construction
depicted in Figure 6.

Example 4.4 For n = 7, the matrix induced by the set I1 is UP(2, n); while,
the matrices induced by the sets I2, . . . , I6 are as follows:

M(I2) =



111111111
000111111
111000111
111111000
011011011
101101101
110110110


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M(I3) =



1
0
1
1
0
1
1


M(I4) =



00
01
11
11
10
11
11


M(I5) =



1
0
1
1
0
1
1


M(I6) =



00
01
11
11
10
11
11


.

Therefore, the matrix S0 and S1 generated by the above construction are:

S0 =



001111111100
010011111101
111100011111
111111100011
101101101110
110110110111
111011011011


S1 =



100001111111
011110011110
101110101111
110111001111
011111110010
111011110101
111101111001


.

In this scheme, m = 12 and α(m) = 1/12. 4

In the next theorem we prove that the matrices S0 and S1 defined by the
scheme in Figure 6 realize a (2, n)-threshold VCS for n ≡ 3 mod 4 and n >
3. According to Theorem 4.1 the scheme is optimal with respect to the pixel
expansion.

Theorem 4.5 The matrices S0 and S1 defined by the scheme in Figure 6 realize
an m-optimal (2, n)-threshold VCS for n ≡ 3 mod 4 and n > 3.

Proof. It is immediate to see that both matrices S0 and S1 defined by the
scheme in Figure 6 have n rows. Notice that

I3 ⊂ I2 and I4 ∩ I2 = ∅. (6)

Hence, the number of columns of S0 is equal to

|S0| = |I6|+ |I2| − |I3|+ |I4| =
n− 3

2
+

(n− 1)2

4
− n− 3

4
+ 2 =

n2 − n + 6
4

.

Moreover, notice that

I ∪ I6 ⊆ I1, I6 ∩ I2 = ∅, and I3 ⊆ I2. (7)

Hence, the number of columns of S1 is equal to

|S1| = |I5|+ |I1| − (|I2| − |I3|+ |I6|)

= 1 +
n(n− 1)

2
− (n− 1)2

4
+

n− 3
4

− n− 3
2

=
n2 − n + 6

4
.
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Therefore, S0 and S1 have the same dimensions n and m = |S0| = |S1|.
To prove that Condition 1 of Definition 2.3 is satisfied, notice that, from (6)
and (4) we have

[I ∪ I4] ∪ [I1\(I ∪ I6)] = (I1\I6) ∪ I4

and the matrix S = S0||S1 is equal, up to a columns permutation, to the matrix
M(I1)||M(I4)||M(I5).
Let X = {i, j} with (i, j) ∈ I1\(I4∪I5). Since I4∩I5 = ∅ and I4∪I5 ⊆ I1, then,
the column c(i, j) appears once in the matrix S. Hence, either w(S0

X) = m and
w(S1

X) = m− 1 or w(S0
X) = m− 1 and w(S1

X) = m.
Consider now the set X = {i, j} with (i, j) ∈ I4. Since I4 ⊆ I1, then the column
c(i, j) appears twice in the matrix S0. Hence, w(S0

X) = m− 2 and w(S1
X) = m.

Finally, consider the set X = {i, j} with (i, j) ∈ I5. The column c(i, j) appears
twice in the matrix S1. Hence, w(S0

X) = m and w(S1
X) = m − 2. Thus,

Condition 1 of Definition 2.3 is satisfied.
To prove that Condition 2 of Definition 2.3 holds, we will prove that, for any
1 ≤ r ≤ n, the number of zeroes in S0[r] is equal to the number of zeroes in
S1[r] (i.e, w(S0[r]) = w(S1[r])). For 1 ≤ r ≤ n, one has that

w(S[r]) = w(M(I1)[r]) + w(M(I4)[r]) + w(M(I5)[r]).

Hence,

w(S[r]) =


n + 1 if i = 1, 2, (n + 3)/2

n− 1 otherwise.

Since I3 ⊆ I2 and I4 ∩ I2 = ∅, one has that

w(S0[r]) = w(M(I6)[r]) + w(M(I2)[r])− w(M(I3)[r]) + w(M(I4)[r]).

Hence, for 1 ≤ r ≤ n, we get that

w(S0[r]) =



n−3
2 + 0− 0 + 2 if r = 1

1 + n−1
2 − 1 + 1 if r = 2, (n + 3)/2

1 + n−1
2 − 1 + 0 if 3 ≤ r ≤ (n + 1)/4 or (n + 5)/2 ≤ r ≤ (3n− 1)/4

0 + n−1
2 − 0 + 0 otherwise.

Thus,

w(S0[r]) =


n+1

2 if r = 1, 2, (n + 3)/2

n−1
2 otherwise.

Therefore, since w(S1[r]) = w(S[r]) − w(S0[r]) = w(S[r])/2, for 1 ≤ r ≤ n, we
get that w(S0[r]) = w(S1[r]) and Condition 2 of Definition 2.3 is satisfied.
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Finally, notice that since all columns of both S0 and S1 have weight n−2, then,
for any set X of participants of size at least three, it holds that w(S0

X) = m.
Hence, Condition 3 of Definition 2.3 is satisfied, too. Therefore, the matrices S0

and S1 described in Figure 6 are the basis matrices of a (2, n)-threshold VCS
for n ≡ 3 mod 4 and n > 3. According to Theorem 4.1, such pixel expansion is
the smallest achievable and the theorem is proved.

Comparison We have seen that, in order to implement a visual cryptography
scheme, each pixel of the secret image is subdivided into m subpixels. Hence,
there is a loss of resolution proportional to m. Therefore, schemes with smaller
pixel expansion are better. In [4] the authors described a (2, n)-threshold visual
cryptography scheme having pixel expansion m such that

m =


(n−1)(n+3)

4 if n is odd

n(n+2)
4 if n is even

It is immediate to see that the pixel expansion of the schemes presented in this
paper is smaller. Hence, our schemes are better.

Another important measure to measure the goodness of a visual cryptogra-
phy scheme is the relative difference. Schemes with higher relative difference are
better. Since, the relative difference of our schemes and of the ones proposed in
[4] is equal to 1/m, then our schemes improves on the relative difference, too.
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