
ar
X

iv
:c

s/
05

05
07

5v
2

 [
cs

.D
M

]
 6

 A
pr

 2
00

6

On Searching a Table Consistent with Division Poset

Yongxi Chenga,∗ , Xi Chena , Yiqun Lisa Yinb

a Department of Computer Science, Tsinghua University, Beijing 100084, China

{cyx,xichen00}@mails.tsinghua.edu.cn

b Independent security consultant, Greenwich CT, USA

yiqun@alum.mit.edu

Abstract

Suppose Pn = {1, 2, . . . , n} is a partially ordered set with the partial order defined by divis-
ibility, that is, for any two distinct elements i, j ∈ Pn satisfying i divides j, i <Pn

j. A table
An = {ai|i = 1, 2, . . . , n} of distinct real numbers is said to be consistent with Pn, provided
for any two distinct elements i, j ∈ {1, 2, . . . , n} satisfying i divides j, ai < aj . Given an real
number x, we want to determine whether x ∈ An, by comparing x with as few entries of An as
possible. In this paper we investigate the complexity τ(n), measured in the number of compar-
isons, of the above search problem. We present a 55n

72
+ O(ln2 n) search algorithm for An and

prove a lower bound (3
4
+ 17

2160
)n+O(1) on τ(n) by using an adversary argument.

Keywords: Search algorithm; Complexity; Partially ordered set; Divisibility

1 Introduction

Suppose P = {1, 2, . . . , n} is a partially ordered set (poset), we say a table A = {ai|i = 1, 2, . . . , n}
of n distinct real numbers consistent with P , provided that for any i, j ∈ P satisfying i <P j,
ai < aj . Given a table A of distinct real numbers which is consistent with a known poset P , and
given a real number x, we want to determine whether x ∈ A, by making a series of comparisons
between x and certain elements ai ∈ A. The problem is considered in a model using pairwise
comparisons of the form x : ai (ai ∈ A) as basic operations. These comparisons have ternary
outcomes x < ai, x = ai, or x > ai. Our aim is to make as few comparisons as possible. The
complexity of the problem is defined to be the minimum, over all search algorithms for P , of the
maximum number of comparisons required in the worst case.

In this article we consider the above search problem for the case where the partial order is defined
by divisibility. Let Pn = {1, 2, . . . , n} be a poset with the partial order such that for any two distinct
elements i, j ∈ Pn satisfying i divides j, i <Pn j. Thus we say a table An = {ai|i = 1, 2, . . . , n}
of distinct real numbers consistent with Pn if for any two distinct elements i, j ∈ {1, 2, . . . , n}
satisfying i divides j, ai < aj . Denote by τ(n) the complexity of the problem searching a given real
number x in An. We will investigate both upper bounds (i.e., search algorithms for An) and lower
bounds on τ(n), our main result is the following

∗Corresponding author.

1

http://arxiv.org/abs/cs/0505075v2

Theorem 1.1 For n ≥ 1, c1n+O(1) ≤ τ(n) ≤ c2n+O(ln2 n), where c1 and c2 are constants, and
c1 =

3
4
+ 17

2160
≈ 0.758, c2 =

55
72

≈ 0.764.

Throughout the paper, we denote by ⌈x⌉ (ceiling of x) the least integer that is not less than x,
denote by ⌊x⌋ (floor of x) the largest integer that is not greater than x.

2 Related Work

In [5, 6] Linial and Saks studied the above class of search problems for general finite partially
ordered set P . In [5] some general bounds on the complexity are provided, more precise results
are also presented for the case that P is a product of chains and that P is a rooted forest. In [6]
they proved that, for general finite partially ordered sets, the information theoretic bound for the
complexity is tight up to a multiplicative constant.

There are different perspectives on the problem of searching posets. In [2], the authors studied
the tradeoff between the preprocessing time and the subsequent search time in a partial order. Let
P (n) be the worst-case cost of a preprocessing algorithm which builds some partial orders, and
let S(n) be the maximum number of comparisons required to answer a membership query. They
proved that P (n) + n log2 S(n) ≥ (1 + o(1))n log2 n for any comparison-based algorithm.

A different notion of searching a poset was studied in [1, 3]. They consider searching a given
element x in a poset P , instead of searching a given real number in a table of real numbers consistent
with P . In this case, for each comparison x : pi (pi ∈ P) there are two possible outcomes: ‘yes’
indicates that x is ‘below’ pi (less than or equal to pi); ‘no’ indicates that x is not below pi. The
aim is to find the optimal search strategy. In spite of the similarity in definition, this turns out
to be a quite different model. In [1], the authors gave a polynomial time algorithm for posets
having tree structures. In [3], the authors proved that the problem is NP-hard in general, they also
gave a (1+o(1))-approximation algorithm under the random graph model and a 6.34-approximation
algorithm under the uniform model, both of these run in polynomial time.

3 Easy Bounds on τ(n)

First we give an easy lower bound 3n
4

on τ(n) and a simple asymptotical cn algorithm searching
An, where c ≈ 0.81 is a constant.

3.1 Lower Bounds (3/4)n

It is easy to see that the following simple response strategy for the adversary can guarantee that
at least 3n

4
comparisons of the form x : ai (ai ∈ An) are required to determine whether x ∈ An, for

any search algorithm.

Response Strategy RS1: when the algorithm asks about x : ai, i = 1, 2, . . . , ⌊n
2
⌋, answer

x > ai; when the algorithm asks about x : ai, i = ⌊n
2
⌋+ 1, . . . , n, answer x < ai.

Focus on the subset A∗
n = {ai|

n
4
< i ≤ n} of An, if the adversary answers queries in above way,

the algorithm needs the comparison of x with each element ai ∈ A∗
n to determine whether x = ai,

thus needs at least 3n
4

comparisons. In fact, the set P ∗
n = {i ∈ Pn|

n
4
< i ≤ n} is a section (see [5])

of Pn , and there is no ordered chain having length more than two in P ∗
n .

2

3.2 A Simple Search Algorithm

We will give an asymptotical cn algorithm searching An based on binary search, where c =
∑∞

t=0
1

22
t ≈ 0.81 is a constant. Define Bi = {aj ∈ An|j = (2i − 1) × 2k (≤ n), k = 0, 1, . . .},

i = 1, 2, . . . , ⌈n/2⌉. Then B1, B2,. . . ,B⌈n/2⌉ is a partition of An, and each Bi is in linear ordering.
The algorithm runs as follows.

Algorithm 1 (Searching Table An): Binary search B1, B2,. . . ,B⌈n/2⌉ one by one.

Now we analyze the number of comparisons required by Algorithm 1. For each Bi, binary search
needs at most ⌈log2(|Bi|+ 1)⌉ comparisons, i = 1, 2, . . . , ⌈n/2⌉. Since 1 ≤ |Bi| ≤ ⌊log2 n⌋+ 1, and
the number of the sets Bi having exactly k elements is less than n/2k+1 + 1, it follows that the
total number of comparisons required by Algorithm 1 is at most

s1(n) =

⌊log2 n⌋+1
∑

k=1

(
n

2k+1
+ 1)⌈log2(k + 1)⌉

<

∞
∑

k=1

n

2k+1
⌈log2(k + 1)⌉+

⌊log2 n⌋+1
∑

k=1

⌈log2(k + 1)⌉

= n ·

∞
∑

t=0

1

22
t +O(lnn · ln lnn)

4 Upper Bounds 55n
72 +O(ln2 n) on τ(n)

In this section we present a 55n
72

+ O(ln2 n) search algorithm for An, by partitioning An into 2-
dimensional layers and then searching them one by one.

Let In = {i|1 ≤ i ≤ n, i does not have factor 2 or 3}. For each i ∈ In, extend ai to a subset of
An, Li, such that Li = {ai×2k×3s ∈ An|k, s = 0, 1, 2, . . .}. For instance, for n = 15, we have subsets
L1, L5, L7, L11, L13, and

L1 =

a1 a2 a4 a8
a3 a6 a12
a9

 L5 =

[

a5 a10
a15

]

L7 =
[

a7 a14
]

L11 =
[

a11
]

L13 =
[

a13
]

It is easy to see that all these subsets Li (which sometimes will be referred to as layers), i ∈ In,
form a partition of An.

An algorithm searching an real number x in anm×n (m,n ≥ 1)monotone matrix (a matrix with
entries increasing along each row and each column) was described in [5], which repeats comparing x
with the element e at the top right corner of the current matrix, either the first row or the rightmost
column of the current matrix will be eliminated depending on whether x > e or x < e, thus the
algorithm requires at most m+ n− 1 comparisons (see [4, 5] for the lower bounds on the number
of comparisons required for this problem when m = n). Based on this algorithm and notice that a
layer is a “triangular” portion of a monotone matrix, we can apply the above “m+n−1” algorithm
searching a layer. Furthermore, for some of the layers we can do slightly better by exploiting the
properties of the layers.

Lemma 4.1 If a layer L with |L| /∈ {1, 2, 3, 5}, then one can search x in L using at most m+n−2
comparisons, where m and n are the numbers of rows and columns of L, respectively.

3

Proof. See Appendix A.

By Lemma 4.1 we can obtain an improved search algorithm for An.

Algorithm 2 (Searching Table An):

Search all layers Li one by one. If |Li| ∈ {1, 2, 3, 5}, search Li using the “m+ n− 1” algorithm
in [5]; Otherwise, search Li using the “m+ n− 2” algorithm in Lemma 4.1.

Next we analyze the number of comparisons required by Algorithm 2. Define r(Li) and c(Li)
to be the numbers of rows and columns of Li respectively. The total number of comparisons
required by Algorithm 2 is at most

s2(n) =
∑

i∈In, |Li|∈{1,2,3,5}

(r(Li) + c(Li)− 1) +
∑

i∈In, |Li|/∈{1,2,3,5}

(r(Li) + c(Li)− 2)

=
∑

i∈In

r(Li) +
∑

i∈In

c(Li)− 2
∑

i∈In

1 +
∑

i∈In, |Li|∈{1,2,3,5}

1

Clearly, r(Li) ≤ 1 + log3 n for any i ∈ In. The number of layers Li with r(Li) = p is less than
2n

3p+1 + 1, since 3p−1i ≤ n, 3pi > n and i has no factor 2 or 3. Similarly, c(Li) ≤ 1 + log2 n for any
i ∈ In, and the number of layers Li with c(Li) = q is less than n

3×2q
+ 1. It follows that

∑

i∈In

r(Li) <

1+log3 n
∑

p=1

(
2n

3p+1
+ 1)p <

∞
∑

p=1

2np

3p+1
+

1+log3 n
∑

p=1

p =
n

2
+O(ln2 n),

∑

i∈In

c(Li) <

1+log2 n
∑

q=1

(
n

3× 2q
+ 1)q <

∞
∑

q=1

nq

3× 2q
+

1+log2 n
∑

q=1

q =
2n

3
+O(ln2 n).

In addition,
∑

i∈In
1 = |In| =

n
3
+O(1), and

∑

i∈In, |Li|∈{1,2,3,5}

1 =
∑

i∈In,
n
2
<i≤n

1 +
∑

i∈In,
n
3
<i≤n

2

1 +
∑

i∈In,
n
4
<i≤n

3

1 +
∑

i∈In,
n
8
<i≤n

6

1 =
19n

72
+O(1).

Therefore, s2(n) ≤
55n
72

+O(ln2 n).

5 Lower Bounds (34 +
1
432)n+ O(1) on τ(n)

In this section we prove a lower bound (3
4
+ 1

432
)n+O(1) on τ(n), by using an adversary argument.

Thus the previous easy lower bound 3n
4

is not best possible.

5.1 The Main Idea in Constructing Lower Bounds

Recall the response strategy RS1 for the adversary given in Section 3, which guarantees that at
least 3n

4
comparisons are needed to determine whether x ∈ An for any search algorithm. We can

view RS1 in the following way.

4

In Algorithm 2, An is partitioned into layers Li. For each row R in each layer, if R has only one
element, we pick this element and say that it forms a unit ; if R has at least two elements, we pick
the last two elements as a unit. We will call a unit consisting of one or two elements 1-unit or 2-unit,
respectively. In total 3n

4
elements are picked, which form exactly the subset A∗

n = {ai|
n
4
< i ≤ n}

of An. We can now restate response strategy RS1 as follows.

response strategy for the elements in a 1-unit: For n
2

< i ≤ n, i is odd, when the algorithm
asks about x : ai, answer x < ai.

.

{ pai }

response strategy for the elements in a 2-unit: For n
4
< i ≤ n

2
, when the algorithm asks about

x : ai, answer x > ai; when the algorithm asks about x : a2i, answer x < a2i.

.

. . . { aiy , pa2i }

.

response strategy for the elements do not belong to any unit: For 1 ≤ i ≤ n
4
, when the algorithm

asks about x : ai, answer x > ai.
In general, if an algorithm compares x with ai and gets the result x < ai, then all the elements

ak with k divisible by i are known to be larger than x, thus could be eliminated from consideration,
we say that these elements are cut by ai. Similarly, if the algorithm gets the result x > ai, then all
the elements ak with k that divides i are known to be smaller than x and could be eliminated, we
also say that these elements are cut by ai.

It is easy to see that under response strategy RS1, any element that belongs to some unit could
not be cut by any other element. Therefore, if strategy RS1 is adopted by the adversary, for any
search algorithm in order to determine whether x ∈ An, the 3n

4
comparisons of x with all the

elements in all the units are necessary, thus obtaining the lower bound 3n
4
.

Hereafter, in some response strategy, the notation ‘aiy’ means that when queried by any algo-
rithm the comparison x : ai, answer x > ai, and we say that ai cuts to the left up; ‘pai’ means
that when queried the comparison x : ai, answer x < ai, and we say that ai cuts to the right bottom.

A natural thought for constructing better lower bounds could be: if more elements from each
row are picked, can we prove that more than 3n

4
comparisons are required? Picking three elements

from a row makes no difference, since all elements in a row are in linear order, and two comparisons
are sufficient for searching three ordered elements. Therefore, at least four elements should be
chosen from some rows, to guarantee that at least three comparisons are required to search x in
them.

We will pick elements in the following way. If there are less than four elements in a row, we pick
all the elements as a unit; if there are at least four elements in a row, we pick the last four elements
as a unit. However, in general, we could no longer guarantee, as we do under strategy RS1, that
each of the elements picked can not be cut by other elements. Actually we even could not guarantee

5

that an element picked can not be cut by an element in other units. An element that can not be
cut by any element outside its unit, under some response strategy, can guarantee the number of
comparisons required by any search algorithm. We call this kind of elements essential (notice that
an essential element may be cut by other elements in the same unit). Next we will present a more
effective response strategy, in which there are sufficient essential elements to guarantee that more
than 3n

4
comparisons are required, for any search algorithm.

5.2 Units and Special Units

Let us start with some definitions. As described above, there is exactly one unit in each row of
each layer. If in a row there are less than four elements, all these elements form a unit; if in a row
there are at least four elements, the last four elements form a unit. A unit consisting of one, two,
three, or four elements is called 1-unit, 2-unit, 3-unit, or 4-unit respectively. E.g., in the below
layer (1), we have a 1-unit {a9i}, a 3-unit {a3i, a6i, a12i}, and a 4-unit {a2i, a4i, a8i, a16i}.

Next we introduce an important subcollection of the units defined above, called special units,
which is the key to the proof of new lower bounds.

Definition 5.1 special units: A unit u is called a special unit if u is the 4-unit in a layer Li with
|Li| = 9 (i.e., a layer Li with i ∈ Sn, where Sn = {i| n

18
< i ≤ n

16
, i is not divisible by 2 or 3}). We

denote by 4-units a special unit.

Since the form of a layer Li is determined by its number of elements, |Li|, a layer containing
a special unit must have the following form (the marks ‘y’ and ‘p’ indicating the cut directions of
the elements will be explained later in the new response strategy, RS2). Each such layer contains
exactly one special unit, {a2i, a4i, a8i, a16i}, in its first row.

ai , { a2iy , pa4iy , pa8iy , pa16i }

a3iy , pa6i , pa12i

pa9i

(1)

A unit that is not a special unit is called a general unit, thus all 1-units, 2-units, and 3-units
are general units, a subcollection of 4-units are general units.

Special units can help proving better lower bounds because we will prove later that, under
response strategy RS2 described below, all elements in special units are essential, thus each special
unit guarantees at least three necessary comparisons for any search algorithm, which is one more
than the two necessary comparisons guaranteed by the 2-unit in its row under RS1, consequently
the lower bound 3n

4
can be improved by the number of special units, |Sn|.

5.3 New Response Strategy

Now we are ready to describe the new response strategy for the adversary, and show that which
can guarantee that at least (3

4
+ 1

432
)n + O(1) comparisons are required for any search algorithm

to determine whether x ∈ An.

Response Strategy RS2:

6

for the elements not in a unit: For 1 ≤ i ≤ n
16
, when the algorithm asks about x : ai, answer

x > ai.
for the elements in a 1-unit: For n

2
< i ≤ n, i is odd, when the algorithm asks about x : ai,

answer x < ai.

.

{ pai }

 (2)

for the elements in a 2-unit: For n
4
< i ≤ n

2
, i is odd, when the algorithm asks about x : ai,

answer x > ai; when the algorithm asks about x : a2i, answer x < a2i.

.

{ aiy , pa2i }

. . .

(3)

The 3-units are partitioned into two classes according to the number of elements of the next
row below them, which are denoted by 3-unit1’s and 3-unit2’s respectively.

for the elements in a 3-unit1 (the 1st class of 3-units whose next row contains one element):
For n

6
< i ≤ n

4
, i is odd, when the algorithm asks about x : ai, answer x > ai; when the algorithm

asks about x : a2i or x : a4i, answer x < a2i or x < a4i respectively.

.

{ aiy , pa2i , pa4i }

pa3i

(4)

for the elements in a 3-unit2 (the 2nd class of 3-units whose next row contains two elements):
For n

8
< i ≤ n

6
, i is odd, when the algorithm asks about x : ai or x : a2i, answer x > ai or x > a2i

respectively; when the algorithm asks about x : a4i, answer x < a4i.

.

{ aiy , a2iy , pa4i }

a3iy , pa6i

(5)

There are two classes of 4-units, general 4-units and special 4-units, which are denoted by
4-unitg’s and 4-units’s respectively.

for the elements in a 4-unitg (general 4-unit): For n
16

< i ≤ n
8
, i /∈ 2Sn (where 2Sn = {2j|j ∈

Sn}, and see Definition 5.1 for Sn), when the algorithm asks about x : ai or x : a2i, answer x > ai
or x > a2i respectively; when the algorithm asks about x : a4i or x : a8i, answer x < a4i or x < a8i
respectively.

.

. . . { aiy , a2iy , pa4i , pa8i }

.

(6)

7

for the elements in a 4-units (special 4-unit): For i ∈ Sn, {a2i, a4i, a8i, a16i} is a special unit. The
response strategy for elements in a special unit is adaptive, depending on the order of comparisons
with x made by the search algorithm, to guarantee that at least three comparisons are needed to
determine whether x ∈ {a2i, a4i, a8i, a16i}.
– If the algorithm first asks about x : a2i, answer x > a2i. Then a2i will be eliminated, and the
remained three elements will follow the strategy {a4iy, pa8i, pa16i} for possible subsequent compar-
isons with x.
– If the algorithm first asks about x : a4i, answer x > a4i. Then a2i and a4i are known to be smaller
than x and will be eliminated, the remained two elements will follow the strategy {a8iy, pa16i}.
– If the algorithm first asks about x : a8i, answer x < a8i. Then a8i and a16i will be eliminated,
and the remained two elements will follow the strategy {a2iy, pa4i}.
– If the algorithm first asks about x : a16i, answer x < a16i. Then a16i will be eliminated, and the
remained three elements will follow the strategy {a2iy, a4iy, pa8i}.
We denote the response strategy of elements in a special unit by {a2iy, pa4iy, pa8iy, pa16i}, see (1).

5.4 Lower Bounds (3
4
+ 1

432
)n+O(1) on τ(n)

Recall that we call an element ai ∈ An essential under strategy RS2, if ai belongs to some unit u
(i.e., i > n

16
), and any element not in u can not cut ai under RS2.

Define set En={all elements of 1-units} ∪ {all elements of 2-units} ∪ {all the first and second
elements of 3-unit1’s} ∪ {all the second and third elements of 3-unit2’s} ∪ {all the second and
third elements of 4-unitg’s} ∪ {all elements of 4-units’s}. We can prove the following lemma.

Lemma 5.1 Under response strategy RS2, all elements of En are essential.

Proof of Lemma 5.1. See Appendix B.

By Lemma 5.1 and response strategy RS2, each essential element in general units needs one com-
parison with x to determine whether it equals x. For each special unit, at least three comparisons
between x and its elements are needed to determine whether x is in it. By comparing the 1-units
and 2-units picked for RS1 in Section 5.1, we can see that under strategy RS2, each row containing
a general unit contributes the same number of necessary comparisons as it contributes under RS1.
While for each row containing a special unit, it contributes one more necessary comparison than it
does under RS1. Therefore the lower bound 3n

4
could be improved by the number of special units,

|Sn|, which is |{i : n
18

< i ≤ n
16
, i is not divisible by 2 or 3}|=(n

16
− n

18
) × 1

3
+ O(1) = n

432
+ O(1).

Thus we get a new lower bound (3
4
+ 1

432
)n+O(1).

6 Improved Lower Bounds (34 +
17

2160)n+ O(1) on τ(n)

By recognizing more special units, we can extend the above method to obtain a better lower bound
(3
4
+ 17

2160
)n + O(1) on τ(n). The units are defined in the same way as in Section 5.2, and we will

introduce three classes of special units.

Definition 6.1 the 1st class of special units (4-units,1): A unit u is of the 1st class of special units
if u is the 4-unit in a layer Li with |Li| = 9 and i is not divisible by 5.

8

The definition of 4-units,1 is just Definition 5.1 of 4-units with an extra restriction that i is not
divisible by 5. A layer Li containing a 4-units,1 must have the form (1), each such layer contains
exactly one special unit {a2i, a4i, a8i, a16i} in its first row. The subscripts j = 2i of the first elements
of all 4-units,1’s form a set Sn,1 = {j(= 2i)|n

9
< j ≤ n

8
, j is divisible by 2, but is not divisible by 3,

4 or 5}.

Definition 6.2 the 2nd class of special units (4-units,2): A 4-unit u is of the 2nd class of special
units if it has the following properties:

1. u is the 4-unit in the first row of a layer Lj with j not divisible by 5.

2. The first row of Lj has at least six elements and has two more elements than the second row
of Lj.

The layers containing a 4-units,2 must have the following form (7), where the symbol ‘•’ indicates
that there must exist an element at the position. Each such layer contains exactly one special unit,
{ai, a2i, a4i, a8i}, in its first row. The subscripts i of the first elements of all 4-units,2’s form a set
Sn,2 = {i| n

12
< i ≤ n

8
, i is divisible by 4, but is not divisible by 3 or 5}.

. . . • • { aiy pa2iy pa4iy pa8i}

. . . •y •y pa3i pa6i

.

(7)

Definition 6.3 the 3rd class of special units (4-units,3): A 4-unit u = {ai, a2i, a4i, a8i} is of the
3nd class of special units if it is in a layer Lj with j not divisible by 5, and has the following
properties:

1. The subscript of its first element, i, is divisible by 36 (i.e., in Lj, there are at least two rows
above u, and at least two columns before the first element ai of u).

2. Denote by R the row containing u in Lj . The next row above R has two more elements than
R, and the next row below R has two less elements than R.

A 4-units,3 in a layer must have the following form (8) (see Lemma C.1 in Appendix C), here
we only list the subscripts.

. .

. • • • •

. 4i
3
y

8i
3
y p

16i
3

p
32i
3

. { iy p2iy p4iy p8i}

. . . •y •y p3i p6i

. . . • • p9i

.

(8)

9

The subscripts i of the first elements of all 4-units,3’s form a set Sn,3 = {i| n
12

< i ≤ 3n
32
, i is divisible

by 4 and 9, but is not divisible by 5}.

Based on the above new defined special units, we have the following response strategy.

Response Strategy RS∗
2: In RS∗

2 , the response strategy for the elements in general units,
in special units and not in any units are the same as their strategy in RS2 respectively, with only
a different partition of 4-units into general units and special units.

Similarly define set E∗
n={all elements of 1-units} ∪ {all elements of 2-units} ∪ {all the first

and second elements of 3-unit1’s} ∪ {all the second and third elements of 3-unit2’s} ∪ {all the
second and third elements of 4-unitg’s} ∪ {all elements of special units 4-units,1’s, 4-units,2’s and
4-units,3’s}. We can prove the following lemma.

Lemma 6.1 Under RS∗
2 , all elements of E∗

n are essential.

Proof of Lemma 6.1. See Appendix C.

Using similar arguments as in Section 5.4, the lower bound 3n
4

could be improved by the number
of the new defined special units, |Sn,1|+ |Sn,2|+ |Sn,3|, which is

(
n

8
−

n

9
)×

1

4
×

2

3
×

4

5
+O(1) + (

n

8
−

n

12
)×

1

4
×

2

3
×

4

5
+O(1) + (

3n

32
−

n

12
)×

1

4
×

1

9
×

4

5
+O(1)

=
17n

2160
+O(1).

Therefore, we obtain an improved lower bound (3
4
+ 17

2160
)n+O(1).

7 Concluding Remarks and Open Problems

In this paper we investigate the complexity, τ(n), of the problem searching a table consistent with
division poset. Our main result is the following. For n ≥ 1, c1n + O(1) ≤ τ(n) ≤ c2n + O(ln2 n),
where c1 and c2 are constants, and c1 = 3

4
+ 17

2160
≈ 0.758, c2 = 55

72
≈ 0.764. It may be of interest

to further close the gap.
Notice that under the model in this paper we only allow comparisons of the form x : ai, i.e., all

comparisons must involve x. If we also allow pairwise comparisons among elements of An, then the
techniques used in this paper to prove lower bounds will not apply directly. It may be interesting
to investigate the complexity of the search problem under this new model.

Acknowledgments

The authors are grateful to Andy Yao for introducing this interesting problem and insightful com-
ments, to Xiaoming Sun and Chen Wang for helpful discussions.

10

References

[1] Y. Ben-Asher, E. Farchi, and I. Newman, Optimal search in trees, SIAM Journal on Comput-
ing, 28 (6), 1999, 2090–2102.

[2] A. Borodin, L. J. Guibas, N. A. Lynch, and A. C. Yao, Efficient searching using partial
ordering, Information Processing Letters, 12 (2), 1981, 71–75.

[3] R. Carmo, J. Donadelli, Y. Kohayakawa, and E. Laber, Searching in random partially ordered
sets, Theoretical Computer Science, 321 (1), 2004, 41–57.

[4] R. L. Graham and R. M. Karp, unpublished, Calif., 1968.

[5] N. Linial and M. Saks, Searching Ordered Structures, Journal of Algorithms, 6, 1985, 86–103.

[6] N. Linial and M. Saks, Every Poset Has a Central Element, Journal of Combinatorial Theory,
Series A, 40, 1985, 195–210.

Appendices

A Proof of Lemma 4.1

It is easy to see that the form of L is determined by its cardinality |L|. First we prove two lemmas
that will be useful later.

Lemma A.1 In any layer, the difference of the lengths of any two consecutive rows must be 1 or
2.

Proof of Lemma A.1. We prove the lemma by contradiction. Otherwise, at least one of the
following two situations exists.

[

. . . ai

. . . a3i

] [

. . . ai a2i a4i a8i . . .

. . . a3i

]

However, according to the definition of layers, the left one can not happen because the element a2i
should be in the layer, and the right one can not happen because the element a6i should be in the
layer. Thus the lemma holds.

Lemma A.2 In any layer, there can not be three consecutive rows with lengths each increased by
one.

Proof of Lemma A.2. Otherwise, it must be the following situation.

. . . ai a2i a4i

. . . a3i a6i

. . . a9i

However it can not happen since the element a8i should be in the layer. The lemma holds.

11

Now we are ready to prove Lemma 4.1. By Lemma A.1, we have the following two cases.

Case 1. The first row of L has two more elements than the second row. Since |L| ≥ 4, L must have
the following form

. . . ai a2i a4i

. . . a3i

. . .

First compare x with a2i.
If x < a2i, then a2i and a4i are known to be greater than x, and will be eliminated from

L, leaving a portion of an m × (n − 2) monotone matrix, which can be searched using at most
m+ (n− 2)− 1 comparisons. In total, at most m+ n− 2 comparisons are needed.

If x > a2i, then all elements in the first row except a4i are known to be smaller than x, and will
be eliminated. Then we compare x with a4i and eliminate it, leaving a portion of an (m−1)×(n−2)
monotone matrix, which can be searched using at most (m−1)+(n−2)−1 comparisons. In total,
at most m+ n− 2 comparisons are needed.

Case 2. The first row of L has one more element than the second row. We can assume |L| ≥ 8,
since for |L| = 4, 6, or 7 it is easy to verify that the first row of L has two more elements than the
second row, which belong to Case 1. When |L| ≥ 8, by Lemma A.2 and A.1 the second row of L
has two more elements than the third row, thus L must have the following form

. . . ai a2i a4i a8i

. . . a3i a6i a12i

. . . a9i

. . .

First compare x with a4i.
If x < a4i then the two rightmost columns are known to be greater than x and will be eliminated,

leaving a portion of an m × (n − 2) monotone matrix, which can be searched using at most m +
(n− 2)− 1 comparisons. In total, at most m+ n− 2 comparisons are needed.

If x > a4i then all elements in the first row except a8i are known to be smaller than x and will
be eliminated. Then compare x with a8i and eliminate it, leaving a portion of an (m− 1)× (n− 1)
monotone matrix whose first row has two more elements than the second row. Thus it reduces to
the situation of Case 1, which needs at most (m− 1) + (n− 1)− 2 comparisons. In total, at most
m+ n− 2 comparisons are needed.

Therefore, in either case m+ n− 2 comparisons suffice.

B Proof of Lemma 5.1

We prove the lemma by contradiction. Suppose that, under RS2, aj ∈ En is not essential, i.e.,
there exists an element ai ∈ An that cuts aj, and ai is not in the unit containing aj . We have the
following two cases.

Case 1. ai and aj are in one layer. If ai does not belong to any unit, then i ≤ n/16 and ai
always cuts to the left up. If ai cuts an element aj , then 2j ≤ i, 32j ≤ 16i ≤ n, which implying

12

that a2j , a4j , a8j , a16j all exist in the row containing aj , thus aj can not be in a unit. Therefore,
ai can not cut any element in a unit. If ai belongs to a special unit, 4-units, notice the form and
the response strategy of special units, (1), it is easy to see that ai can not cut any element aj ∈ En

in a different unit in the same layer. If ai belongs to a general unit, we have the following eight
subcases.

1. ai is the last element of a unit. Then ai always cuts to the right bottom, {. . . , pai}, and
2i > n. If ai cuts an element aj, then j ≥ 2i > n, which contradicts with j ≤ n. Thus ai can
not cut any element.

2. ai is the second last (first) element of a 2-unit, then it cuts to the left up, {aiy, a2i}. If ai cuts
aj ∈ En in the same layer, then aj must be the first element of a row above ai. In addition,
aj must be in the next row R above ai (since by Lemma A.2 the rows above R have at least
5 elements, if aj is in a unit in those rows then aj can not be the first element of that row).
By Lemma A.1, R has 3 or 4 elements. If R has 3 elements, then it is a 3-unit2 and its first
element does not belong to En. If R has 4 elements, then it is a 4-unitg and its first element
does not belong to En.

3. ai is the second last (second) element of a 3-unit1, then it cuts to the right bottom, {ai/2, pai, a2i}.
Notice the form of 3-unit1, (4), ai can not cut any element in a different unit in the same
layer.

4. ai is the second last (second) element of a 3-unit2, then it cuts to the left up, {ai/2, aiy, a2i}.
Since the row below ai has two elements, by Lemma A.1 and Lemma A.2, the next row above
ai, R, has 5 elements. Thus, if ai cuts aj ∈ En in the same layer, aj must be in R, and is the
first element of the 4-unit U of R. Notice the form of special units, (1), in which the bottom
row has one element. Therefore, U is not a special unit and its first element does not belong
to En.

5. ai is the second last (third) element of a 4-unitg, then it cuts to the right bottom, {ai/4, ai/2, pai, a2i}.
Denote by U the 4-unitg which ai is in. Notice the form of general units, (6), aj must be the
last element of R, where R is the next row below ai and has one less element than the row
containing ai. If R has at least four elements, then aj must be the last element of a 4-unitg,
thus aj /∈ En. Otherwise R must have exactly three elements, then aj must be the third
element of R. Since R has one less element than the next row above it, by Lemma A.1 and
Lemma A.2, the next row below R has one element, it follows that R is a 3-unit1, thus its
third element aj /∈ En.

6. ai is the third last (first) element of a 3-unit (3-unit1 or 3-unit2), then it cuts to the left up,
{aiy, a2i, a4i}. If ai cuts aj ∈ En in the same layer, aj must be the first element of R, where
R is the next row above ai. In addition, R must contain exactly four elements. Notice the
form of special units, (1), R is not a 4-units, thus its first element aj /∈ En.

7. ai is the third last (second) element of a 4-unitg, then it cuts to the left up, {ai/2, aiy, a2i, a4i}.
In this case aj must be in the next row above ai, R. In addition, R has one more element
than the row containing ai, and aj is the first element of the 4-unit U in R. Notice the form
of special units, (1), U is not a 4-units, thus its first element aj /∈ En.

13

8. ai is the fourth last (first) element of a 4-unitg, then it cuts to the left up, {aiy, a2i, a4i, a8i}.
If ai cuts an element aj , then 2j ≤ i, 16j ≤ 8i ≤ n, which implying that a2j, a4j, a8j , a16j
all exist in the row containing aj , thus aj can not be in a unit. Therefore, ai can not cut any
element in a unit.

Case 2. ai and aj are in different layers. We first prove the following lemma that will be useful
later.

Lemma B.1 For any aj1 , aj2 ∈ An in different layers, if j1 divides j2, then the quotient is at least
5.

Proof of Lemma B.1. Suppose that aj1 ∈ Li1 with j1 = i1 × 2k1 × 3s1 , aj2 ∈ Li2 with j2 =
i2 × 2k2 × 3s2 , where Li1 and Li2 are different layers (i.e., i1 6= i2) and j1 divides j2. Since i1, i2
have no factor 2 or 3, we have k1 ≤ k2 and s1 ≤ s2, and i1 divides i2 with quotient at least 5. It
follows that j1 divides j2 with quotient at least 5.

There are seven subcases in Case 2.

1. ai does not belong to any unit. Then i ≤ n
16

and ai always cuts to the left up, by using the
same argument at the beginning of Case 1, ai can not cut any element in a unit.

2. ai is the last element of a unit. Then ai always cuts to the right bottom, {. . . , pai}, and
2i > n. By using the same argument in subcase 1 of Case 1, ai can not cut any element.

3. ai is the second last element of a unit and cuts to the left up, {. . . , aiy, a2i}. By Lemma B.1,
if ai cuts aj ∈ En in a different layer then 5j ≤ i, 10j ≤ 2i ≤ n, thus a2j , a4j , a8j all exist
in the row containing aj . If aj ∈ En, aj can only be the first element of some special unit,
it follows that j/2 ∈ Sn = {k ∈ In|

n
18

< k ≤ n
16
} (see Definition 5.1), thus 9j > n, which

contradicts with 10j ≤ n.

4. ai is the second last element of a unit and cuts to the right bottom, {. . . , pai, a2i}. Thus
4i > n. By Lemma B.1, if ai cuts aj ∈ En in a different layer, then j ≥ 5i > n, which
contradicts with j ≤ n.

5. ai is the third last element of a unit and cuts to the left up, {. . . , aiy, a2i, a4i}. By Lemma
B.1, if ai cuts aj ∈ En in a different layer then 5j ≤ i, thus 20j ≤ 4i ≤ n. It follows that a2j ,
a4j , a8j , a16j all exist in the row containing aj, thus aj can not be in a unit, which contradicts
with aj ∈ En.

6. ai is the third last element of a unit and cuts to the right bottom. In this case, ai must be the
second element of a special unit, {ai/2, pai, a2i, a4i}. It follows that i/4 ∈ Sn = {k ∈ In|

n
18

<

k ≤ n
16
}, thus i > 2n

9
. However, by Lemma B.1, if ai cuts aj ∈ En in a different layer then

j ≥ 5i > 9i
2
> n, which contradicts with j ≤ n.

7. ai is the fourth last element of a unit, i.e., the first element of a 4-unit, {aiy, a2i, a4i, a8i}.
Then ai always cuts to the left up, and by using the same argument in subcase 8 of Case 1,
ai can not cut any element in a unit.

14

C Proof of Lemma 6.1

We prove the lemma by contradiction. Suppose that, under RS∗
2 , aj ∈ E∗

n is not essential, i.e.,
there exists an element ai ∈ An that cuts aj, and ai is not in the unit containing aj . We have the
following two cases.

Case 1. ai and aj are in one layer. If ai does not belong to any unit, then ai always cuts to
the left up, by using the same argument at the beginning of Case 1 in the proof of Lemma 5.1, ai
can not cut any element in a unit. If ai belongs to a special unit of the first or the second class,
i.e., a 4-units,1 or 4-units,2, notice the forms of these special units, (1) and (7), it is easy to see
that ai can not cut any element aj ∈ E∗

n in a different unit in the same layer (for the case where
ai is in a 4-units,2, notice that the second row of any layer can not contain a special unit). For the
case where ai belongs to a special unit of the third class, i.e. a 4-units,3, we first give two lemmas
that will be useful. Similarly as Lemma A.2, we have the following

Lemma C.1 In any layer, there can not be four consecutive rows with lengths each increased by
2.

The correctness of Lemma C.1 can be easily seen by noticing that in the third, fourth, fifth and
sixth row in (8), 9i exists in the layer since 9i < 32i

3
.

Lemma C.2 If R is the next row above or below a 4-units,3 in the same layer, then R does not
contain a special unit.

Lemma C.2 is true since by the definition of 4-units,3, R is not the first row of its layer thus
can not contain a 4-units,1 or a 4-units,2; and by Lemma C.1, R either has one less element than
the next row above R or has one more element than the next row below R, thus can not contain a
4-units,3.

By Lemma C.2, if ai belongs to a 4-units,3, ai can not cut any element aj ∈ E∗
n in a different

unit in the same layer.

If ai belongs to a general unit, similarly as Case 1 in the proof of Lemma 5.1, we have the eight
subcases. For all these subcases we can show that, using the same arguments in Lemma 5.1 cor-
respondingly (sometimes when comes to special units, we only need to replace them with the new
defined special units 4-units,1, 4-units,2 and 4-units,3), ai can not cut aj ∈ E∗

n.

Case 2. ai and aj are in different layers. We first give the following two lemmas that will be
useful later.

Lemma C.3 For any aj1 , aj2 ∈ An in different layers, if j1 divides j2, and j2 is not divisible by 5,
then the quotient is at least 7.

Lemma C.4 If i is the subscript of a first element in a special unit 4-units,1, 4-units,2 or 4-units,3,
then 12i > n.

Lemma C.3 can be proved in a similar way as for Lemma B.1, and Lemma C.4 is true since by
the definitions of 4-units,1’s, 4-units,2’s and 4-units,3’s, the row containing a special unit always
has two more elements than the next row below it.

15

Similarly as Case 2 in the proof of Lemma 5.1, we have the following seven subcases. Except
subcase 3 and subcase 6, we can apply the same arguments in Lemma 5.1 to all the following
subcases correspondingly.

1. ai does not belong to any unit. By using the same argument at the beginning of Case 1 in
the proof of Lemma 5.1, ai can not cut aj ∈ E∗

n.

2. ai is the last element of a unit. Then ai always cuts to the right bottom, {. . . , pai}. By using
the same argument in subcase 1 of Case 1 in the proof of Lemma 5.1, ai can not cut aj ∈ E∗

n.

3. ai is the second last element of a unit and cuts to the left up, {. . . , aiy, a2i}. By Lemma B.1,
if ai cuts aj ∈ E∗

n in a different layer, we have 5j ≤ i, 10j ≤ 2i ≤ n, thus a2j , a4j , a8j all exist
in the row containing aj. If aj ∈ E∗

n, aj can only be the first element of a special unit. We
have two possibilities about ai.

(a) ai is the first element of a 2-unit or the second element of a 3-unit2. In this case aj
must be the first element of a 4-units,1, since otherwise in the row containing aj, there
will be at least two elements before aj, thus ai can not cut aj. However, by the form of
4-units,1, (1), if aj is the first element of a 4-units,1, then 9j > n, this contradicts with
10j ≤ n. Thus this possibility is eliminated.

(b) ai is the third element of a special unit. By the definitions of the new defined special
units, i is not divisible by 5. Thus by Lemma C.3, 7j ≤ i, 14j ≤ 2i ≤ n. However, by
Lemma C.4, if aj is the first element of a special unit, then 12j > n, which contradicts
with 14j ≤ n.

4. ai is the second last element of a unit and cuts to the right bottom, {. . . , pai, a2i}. By using
the same argument in subcase 4 of Case 2 in the proof of Lemma 5.1, ai can not cut aj ∈ E∗

n.

5. ai is the third last element of a unit and cuts to the left up, {. . . , aiy, a2i, a4i}. By using the
same argument in subcase 5 of Case 2 in the proof of Lemma 5.1, ai can not cut aj ∈ E∗

n.

6. ai is the third last element of a unit and cuts to the right bottom. In this case, ai must
be the second element of a special unit, {ai/2, pai, a2i, a4i}. By the form of 4-units,1, (1), ai
can not be in a 4-units,1, since otherwise we have 9 × i/2 > n, it follows that j ≥ 5i > n.
Therefore, ai can only be the second element of a 4-units,2 or 4-units,3, thus i is divisible by
8. By Lemma C.4, 12 × i/2 > n, thus 6i > n, since j ≥ 5i it must be the case that j = 5i.
Thus 2j = 10i > 6i > n, aj must be the last element of a unit. Since i is divisible by 8,
j = 5i is also divisible by 8, thus aj/2, aj/4, aj/8 all exist in the row containing aj , it follows
that aj is the last element of a 4-unit. Therefore, if aj ∈ E∗

n, aj must be the last element of a
special unit. By the definitions of the new defined special units, j is not divisible by 5, which
contradicts with j = 5i.

7. ai is the fourth last element of a unit, i.e., the first element of a 4-unit, {aiy, a2i, a4i, a8i}. By
using the same argument in subcase 8 of Case 1 in the proof of Lemma 5.1, ai can not cut
aj ∈ E∗

n.

16

	Introduction
	Related Work
	Easy Bounds on (n)
	Lower Bounds (3/4)n
	A Simple Search Algorithm

	Upper Bounds 55n72+O(ln2 n) on (n)
	Lower Bounds (34+1432)n+O(1) on (n)
	The Main Idea in Constructing Lower Bounds
	Units and Special Units
	New Response Strategy
	Lower Bounds (34+1432)n+O(1) on (n)

	Improved Lower Bounds (34+172160)n+O(1) on (n)
	Concluding Remarks and Open Problems
	Proof of Lemma ??
	Proof of Lemma ??
	Proof of Lemma ??

