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Abstrat

We haraterize all quasiperiodi Sturmian words: a Sturmian word is not quasiperiodi if

and only if it is a Lyndon word. Moreover, we study links between Sturmian morphisms and

quasiperiodiity.
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1 Introdution

The notion of repetition in Strings is entral in a lot of researhes, in partiular in Combinatoris

on Words and in Text Algorithms (see for instane [9℄, [10℄ for reent surveys). In this vein,

Apostolio and Ehrenfeuht introdued the notion of quasiperiodi �nite words [2℄ in the following

way: �a string w is quasiperiodi if there is a seond string u 6= w suh that every position of w

falls within some ourrene of u in w�. The reader an onsult [1℄ for a short survey of studies

onerning quasiperiodiity. In [12℄, Marus extends this notion to right in�nite words and he opens

six questions. Four of them are answered in [7℄.

One of these six questions is: does there exist a non-quasiperiodi Sturmian word? In [7℄, we

provide an example of suh a word, but this positive answer is not ompletely satisfying. Sine a

�rst feeling an be that there exists no (or at most very few) suh word, one an ask for a omplete

haraterization of suh non-quasiperiodi Sturmian words. After some preliminaries in Setions 2,

3 and 4, we provide two answers desribed below.

Sturmian words have been widely studied beause of their many beautiful properties and links

with many �elds (see [9, Chapter 2℄ for a reent survey). One aspet of these words is that they

an be in�nitely deomposed over the four morphisms La, Lb, Ra and Rb (see Setion 3 for more

details). The �rst haraterization of non-quasiperiodi Sturmian words proposed in this paper is

based on suh a deomposition. More preisely, Theorem 5.6 states that a Sturmian word is not

quasiperiodi if and only if it an be deomposed in�nitely over {La, Rb} or in�nitely over {Lb, Ra}.
Our seond haraterization (Theorem 6.5) provides a more semanti answer: a Sturmian word

is not quasiperiodi if and only if it is an in�nite Lyndon word.

The proof of our �rst result uses the fat that some morphisms obtained by ompositions of

the morphisms La, Lb, Ra and Rb map any in�nite words into a quasiperiodi one. We all suh a

morphism strongly quasiperiodi. In Setion 7, we haraterize the Sturmian morphisms whih are
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strongly quasiperiodi. Let us quote that any Sturmian morphism f is quasiperiodi, that is there

exists a non-quasiperiodi word w whose image by f is quasiperiodi.

2 Generalities

We assume the reader is familiar with ombinatoris on words and morphisms (see, e.g., [8, 9℄). We

preise our notations.

Given a set X of words (for instane an alphabet A, that is a non-empty �nite set of letters),

X∗
(resp. Xω

) is the set of all �nite (resp. in�nite) words that an be obtained by onatenating

words of X. The empty word ε belongs to X∗
. The length of a word w is denoted by |w|. By |w|a

we denote the number of ourrenes of the letter a in w. A �nite word u is a fator of a �nite or

in�nite word w if there exist words p and s suh that w = pus. If p = ε (resp. s = ε), u is a pre�x

(resp. su�x ) of w. A word u is a border of a word w if u is both a pre�x and a su�x of w. A fator

u of a word w is said proper if w 6= u.

Given an alphabet A, a(n endo)morphism f on A is an appliation from A∗
to A∗

suh that

f(uv) = f(u)f(v) for any words u, v over A. A morphism on A is entirely de�ned by the images

of letters of A. All morphisms onsidered in this paper will be non-erasing: the image of any non-

empty word is never empty. The image of an in�nite word is thus in�nite and naturally obtained as

the in�nite onatenation of the images of the letters of the word. In what follows, we will denote

the omposition of morphisms by juxtaposition as for onatenation of words. Given a set X of

morphisms, we will also note X∗
the set of all �nite ompositions of morphisms of X and Xω

the

set of all in�nite deompositions of morphisms of X. When a word w is equal to lim
n→∞

f1f2 . . . fn(a),

fi ∈ X, we will say that w an be deomposed (in�nitely) over X.

Given a morphism f , powers of f are de�ned indutively by f0 = Id (the Identity morphism),

f i = ff i−1
for integers i ≥ 1. When for a letter a, f(a) = ax with x 6= ε, the morphism f is said

prolongable on a. In this ase, for all n ≥ 0, fn(a) is a pre�x of fn+1(a). If moreover, for all n ≥ 0,
|fn(a)| < |fn+1(a)|, the limit lim

n→∞
fn(a) is the in�nite word denoted fω(a) having all the fn(a) as

pre�xes. This limit is also a �xed point of f .

3 Sturmian words and morphisms

Sturmian words may be de�ned in many equivalent ways (see [9, hapter 2℄ for instane). They are

in�nite binary words. Here we �rst onsider them as the in�nite balaned non ultimately periodi

words. We reall that a (�nite or in�nite) word w over {a, b} is balaned if for any fators u and v

of same length ||u|a − |v|a| ≤ 1, and that an in�nite word w is ultimately periodi if w = uvω for

some �nite words u and v.

Many studies of Sturmian words use Sturmian morphisms, that is morphisms that map any

Sturmian word into a Sturmian word. Séébold [17℄ proved that the set of these morphisms is

{E,La, Lb, Ra, Rb}
∗
where E,La, Lb, Ra, Rb are the morphisms de�ned by

E :

{

a 7→ b

b 7→ a,
La :

{

a 7→ a

b 7→ ab,
Lb :

{

a 7→ ba

b 7→ b,
Ra :

{

a 7→ a

b 7→ ba,
Rb :

{

a 7→ ab

b 7→ b.

Many relations exist between Sturmian words and Sturmian morphisms. For instane, reently

the following result was proved:
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Theorem 3.1 [5℄ Any Sturmian word w over {a, b} admits a unique representation of the form

w = lim
n→∞

Ld1−c1
a Rc1

a Ld2−c2
b Rc2

b . . . Ld2n−1−c2n−1

a Rc2n−1

a Ld2n−c2n
b Rc2n

b (a)

where dk ≥ ck ≥ 0 for all integer k ≥ 1, dk ≥ 1 for k ≥ 2 and if ck = dk then ck−1 = 0.

Remark: Let us mention that this representation is not expressed as in [5℄ where it is written

w = T c1Ld1
a T c2Ld2

b T c3Ld3
a T c4Ld4

b . . .

where T is the shift map de�ned, for any in�nite word (an)n≥0 with an letter for any n ≥ 0, by
T (an)n≥0 = (an+1)n≥0. One an verify that for integers c, d suh that d ≥ c ≥ 0 and for any in�nite

word w, T cLd
a(w) = Ld−c

a Rc
a(w) and T cLd

b(w) = Ld−c
b Rc

b(w). This explains the links between the

two representations. The interested reader will also �nd relations between this representation and

the notion of S-adi systems de�ned by Ferenzi [6℄ as minimal dynamial systems generated by a

�nite number of substitutions.

A partiular well-known family of Sturmian words is the set of standard (or harateristi)

Sturmian words. It orresponds to the ase where for eah k ≥ 0, ck = 0. Hene any standard

Sturmian word admits a unique representation on the form:

w = lim
n→∞

Ld1
a Ld2

b Ld3
a Ld4

b . . . Ld2n−1

a Ld2n
b (a)

where d1 ≥ 0 and dk ≥ 1 for all k ≥ 2.

To end this setion, we reall useful relations between Sturmian morphisms.

Theorem 3.2 [9℄ (see also [15℄ for a generalization) The monoid {La, Lb, Ra, Rb, E}∗ of Sturmian

morphisms has the following presentation:

(1) EE = Id,

(2) ELa = LbE and ERa = RbE,

(3) LaL
n
bRa = RaR

n
bLa, for any n ≥ 0.

Note that from (2) and (3), we get: LbL
n
aRb = RbR

n
aLb for any n ≥ 0.

4 Word quasiperiodiity and morphisms

In this paper, we onsider mainly in�nite quasiperiodi words. However we �rst reall the notion of

�nite quasiperiodi words to allow us some omparisons.

We onsider de�nitions from [3℄. A word u overs another word w if for every i ∈ {1, . . . , |w|},
there exists j ∈ {1, . . . , |z|} suh that there is an ourrene of u starting at position i − j + 1 in

the word w. When u 6= w, we say that u is a quasiperiod of w and that w is quasiperiodi. A word

is superprimitive if it is not quasiperiodi (Marus [12℄ alls minimal suh words). One an observe

that any word of length 1 is not quasiperiodi. The word

w = abaababaabaababaaba

has aba, abaaba, abaababaaba as quasiperiods. Only aba is superprimitive. More generally in [3℄, it

is proved that any quasiperiodi �nite word has exatly one superprimitive quasiperiod. This is a

onsequene of the fat that any quasiperiod of a �nite word w is a proper border of w.
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When de�ning in�nite quasiperiodi words, instead of onsidering the starting indies of the

ourrenes of a quasiperiod, for onveniene, we hoose to onsider the words preeding the o-

urrenes of a quasiperiod. An in�nite word w is quasiperiodi if there exist a �nite word u and

words (pn)n≥0 suh that p0 = ε and, for n ≥ 0, 0 < |pn+1| − |pn| ≤ |u| and pnu is a pre�x of w.

We say that u overs w, or that w is u-quasiperiodi. The word u is also alled a quasiperiod and

we say that the sequene (pnu)n≥0 is a overing sequene of pre�xes of the word w. The reader will

�nd several examples of in�nite quasiperiodi words in [11, 7℄. Let us mention for instane that the

well-known Fibonai word, the �xed point of the morphism ϕ: a 7→ ab, b 7→ a is aba-quasiperodi.

It is interesting to note that ϕω(a) has an in�nity of superprimitive quasiperiods (see [7℄ for a

haraterization of all quasiperiods of ϕω(a)). This shows a great di�erene between quasiperiodi

�nite words and quasiperiodi in�nite words. The reader an also note that for any positive integer

n, there exists an in�nite word having exatly n quasiperiods (as for example the word (ab)na(ab)ω)),
or having exatly n superprimitive quasiperiods [7℄.

To end this setion, let us observe that any quasiperiod of a (�nite of in�nite) quasiperiodi word

w is a pre�x of w. Hene w has a unique quasiperiod of smallest length that we all the smallest

quasiperiod of w. When w is �nite, the smallest quasiperiod of w is neessarily its superprimitive

quasiperiod. When w is in�nite, its smallest quasiperiod is also superprimitive, but there an exist

other superprimitive quasiperiods (see above).

Moreover:

Lemma 4.1 If w is an in�nite quasiperiodi word with smallest quasiperiod u, then uu is a fator

of w.

Proof. If uu is not a fator of w then the pre�x v of u of length |u| − 1 is a quasiperiod of w. This

is not possible if u is the smallest quasiperiod.

Let us observe that Lemma 4.1 is not true for �nite words as shown by the aba-quasiperiodi

word ababa.

In the following we will also use the immediate following fat:

Fat 4.2 If w is a (�nite or in�nite) u-quasiperiodi word and f is a non-erasing morphism, then

f(w) is f(u)-quasiperiodi.

5 Sturmian non-quasiperiodi words

In this setion, we prove our main result (Theorem 5.6) whih is a haraterization of all non-

quasiperiodi Sturmian words. Before this, we prove several useful results.

Let w be a Sturmian word. Denoting by n the least number of a between two onseutive b

in w and by i the initial number of a in w, we an dedue from the balane property of w that

w belongs to ai{ban, ban+1}ω. When 0 < i ≤ n, w belongs to {aiban−i, aiban+1−i}ω and w is

aiban−i+1
-quasiperiodi (and aiban−i+1

is the smallest quasiperiod of w). Thus:

Fat 5.1 If w is a non-quasiperiodi Sturmian word, then there exists an integer n suh that w

belongs to an+1b{anb, an+1b}ω ∪ {ban, ban+1}ω.
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Of ourse some Sturmian words in an+1b{anb, an+1b}ω ∪ {ban, ban+1}ω are quasiperiodi: it is

the ase of the image of any quasiperiodi Sturmian word starting with a by the Sturmian morphism

Ln
aRb : a 7→ an+1b, b 7→ anb.

A onsequene of Fat 5.1 is:

Lemma 5.2 For all Sturmian word w and x ∈ {a, b}, LxRx(w) = RxLx(w) is quasiperiodi.

Proof. Without loss of generality, assume x = a. From Theorem 3.2, LaRa = RaLa. Let us

reall that LaRa(a) = a and LaRa(b) = aba. From Fat 4.2, if w is a quasiperiodi word, then

LaRa(w) is quasiperiodi. Assume now that w is a Sturmian non-quasiperiodi word. By Fat 5.1,

w belongs to an+1b{anb, an+1b}ω ∪ {ban, ban+1}ω for an integer n. Hene LaRa(w) belongs to one

of the sets an+1aba{anaba, an+1aba}ω or {abaan, abaan+1}ω. So LaRa(w) is an+2ba-quasiperiodi

or aban+2
-quasiperiodi.

Let us observe that baω and LaRa(ba
ω) = abaω are not quasiperiodi. This shows that Lemma 5.2

is not true for arbitrary words (even if they are balaned), unlike the next fat whih is a diret

onsequene of the de�nition of LaLb: a 7→ aba, b 7→ ab, and LbLa: a 7→ ba, b 7→ bab.

Fat 5.3 For any in�nite word w, LaLb(w) is aba-quasiperiodi and LbLa(w) is bab-quasiperiodi.

Lemma 5.2 and Fat 5.3 will be useful to prove that our ondition in Theorem 5.6 is neessary. To

show it is su�ient, we now onsider situations where the image of a word by a Sturmian morphism

is not neessarily quasiperiodi.

Lemma 5.4 Let x ∈ {a, b} and let w be a balaned word starting with x. The word Lx(w) is

quasiperiodi if and only if w is quasiperiodi. Moreover in this ase, the smallest quasiperiod of

Lx(w) is the word Lx(v) where v is the smallest quasiperiod of w.

Proof. Without loss of generality, we onsider here that x = a.

From Fat 4.2, if w is quasiperiodi then La(w) is quasiperiodi.
From now on we assume that La(w) is u-quasiperiodi where u is the smallest quasiperiod of

La(w). If w has at most one ourene of b, then w = aω or w = anbaω for an integer n ≥ 0. Sine
La(w) is quasiperiodi, we have w = aω and we verify that the smallest quasiperiod of w and La(w)
is a = La(a). From now on we assume that w ontains at least two ourrenes of the letter b.

Denoting by n the least number of a between two onseutive ourrenes of b in w and by i the

number of a before the �rst b, sine w is balaned, w ∈ ai{ban, ban+1}ω and 0 ≤ i ≤ n+ 1.
If 0 < i ≤ n, then w and La(w) are quasiperiodi with respetive smallest quasiperiod aiban−i+1

and ai+1ban−i+1 = La(a
iban−i+1).

By hypothesis, w starts with a, so we annot have i = 0.
In the ase i = n + 1: w ∈ an+1b{anb, an+1b}ω and La(w) ∈ an+2{ban+1, ban+2}ω. Sine u is a

quasiperiod of La(w), u is a pre�x of La(w) and starts with an+2b. By Lemma 4.1, uu is a fator

of La(w). It follows that u ends with b and u = La(v) for a word v ∈ {anb, an+1b}∗. Now we prove

that v is a quasiperiod of w. Let (pku)k≥0 be a overing sequene of La(w) (p0 = ε and for all

k ≥ 0, pku is a pre�x of La(w) and |pk+1| − |pk| ≤ |u|). Sine u starts with an+2b, for eah k ≥ 0,
there exists a word p′k suh that pk = La(p

′
k). Of ourse, p′0 = ε. Sine v ∈ {anb, an+1b}∗, we an

dedue for eah k ≥ 0 that p′kv is a pre�x of w. If for a k, |p′k+1| − |p′k| > |v|, then p′k+1 = p′kvy for

a word y and onsequently pk+1 = pkuLa(y) whih ontradits the fat that |pk+1| − |pk| ≤ |u|. So
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for eah k ≥ 0, |p′k+1
| − |p′k| ≤ |v|. We have shown that (p′kv)k≥0 is a overing sequene of w, so v

is a quasiperiod of w. Assume w has a quasiperiod v′ stritly smaller than v. Both v and v′ are

pre�xes of w, so v = v′s for a non-empty word s. Then |La(v
′)| = |La(v)| − |La(s)| < |La(v)| and

La(v
′) is a quasiperiod of La(w) stritly smaller than u = La(v). This ontradits the de�nition of

u, so v is the smallest quasiperiod of w.

Lemma 5.5 Let x, y be letters suh that {x, y} = {a, b} and let w be a word starting with x.

The word Ry(w) is quasiperiodi if and only if w is quasiperiodi. Moreover when these words are

quasiperiodi, the smallest quasiperiod of Ry(w) is the word Ry(v) where v is the smallest quasiperiod
of w.

Proof. Without loss of generality, we onsider here that x = a and y = b.

From Fat 4.2, if w is quasiperiodi then Rb(w) is quasiperiodi.
Assume now that Rb(w) is quasiperiodi and let u be its smallest quasiperiod. By hypothesis,

w starts with a, so does u. Sine aa is not a fator of Rb(w) whereas by Lemma 4.1 uu is a fator

of Rb(w), we dedue that u ends with b. Thus there exists a word v suh that u = Rb(v). As done
in the proof of Lemma 5.4 for the ase w ∈ an+1{ban, ban+1}ω, we an show that v is a quasiperiod

of u and more preisely that it is its smallest quasiperiod.

The reader an observe one di�erene between the two previous lemmas: Lemma 5.4 onsiders

only balaned words when Lemma 5.5 works with arbitrary words (starting with x). Note that

Lemma 5.4 beomes false if we do not onsider balaned words. Indeed the word w = abab(aaab)ω

is not quasiperiodi, whereas La(w) = aabaabaa(aabaa)ω is aabaa-quasiperiodi. The two lemmas

beome also false if we onsider Sturmian words starting with y where {x, y} = {a, b}. Indeed, let us
onsider the ase x = a, y = b: it is known [7℄ that the word w = (LbRa)

ω(a) is not quasiperiodi;
this Sturmian word starts with b and the word La(w) (resp. Rb(w)) is aba-quasiperiodi (resp.

bab-quasiperiodi).

We an now establish the announed haraterization of non-quasiperiodi Sturmian words.

Theorem 5.6 A Sturmian word w is not quasiperiodi if and only if it an be in�nitely deomposed

over {La, Rb} or over {Lb, Ra}. In other words a Sturmian word w is not quasiperiodi if and only

if

w = lim
n→∞

Ld1
a Rd2

b Ld3
a Rd4

b . . . Ld2n−1

a Rd2n
b (a)

or

w = lim
n→∞

Ld1
b Rd2

a Ld3
b Rd4

a . . . Ld2n−1

a Rd2n
b (a)

where dk ≥ 1 for all k ≥ 2 and d1 ≥ 0.

Proof. We �rst show that the ondition is neessary. Let w be a non-quasiperiodi Sturmian word.

By Theorem 3.1,

w = lim
n→∞

Ld1−c1
a Rc1

a Ld2−c2
b Rc2

b . . . Ld2n−1−c2n−1

a Rc2n−1

a Ld2n−c2n
b Rc2n

b (a)

where dk ≥ ck ≥ 0 for all integer k ≥ 1, dk ≥ 1 for k ≥ 2 and if ck = dk then ck−1 = 0.
By Lemma 5.2, for x ∈ {a, b} and any Sturmian word, LxRx(w) is quasiperiodi. By Fat 4.2,

this implies that for all k ≥ 1, ck = dk or ck = 0.
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Assume that ck = 0 and ck+1 = 0 for an integer k ≥ 1. Then w = fLaLb(w
′) or w = fLbLa(w

′)
for a Sturmian word w′

and a morphism f . By Fat 5.3, w is quasiperiodi. So for eah k ≥ 1,
ck = 0 implies ck+1 = dk+1.

We know that for eah k ≥ 2, ck = dk implies ck−1 = 0. This is equivalent to say that for eah

k ≥ 1, ck 6= 0 implies ck+1 6= dk+1. But there for eah k, ck = dk or ck = 0. Thus ck = dk implies

ck+1 = 0, the ondition is neessary.

Let us now show that any Sturmian word w that an be deomposed in�nitely over {La, Rb} is

not quasiperiodi (ase {Lb, Ra} is similar). Assume by ontradition that it is not the ase. Let S
be the set of all Sturmian words w that an be deomposed over {La, Rb} and that are quasiperiodi.
Let u be a quasiperiod of smallest length among all quasiperiods of words in S, and let w be an

element of S having u as quasiperiod. By de�nition, w = La(w
′) or w = Rb(w

′) for a word w′
in S.

Sine d3 6= 0, w starts with the letter a. By Lemmas 5.4 and 5.5, u = La(v) or u = Rb(v) where v

is the smallest quasiperiod of w′
. Sine aω and bω are not Sturmian words (they are balaned but

not ultimately quasiperiodi), |v|a 6= 0 and |v|b 6= 0. Consequently |v| < |u|. This ontradits the

hoie of u. Hene S is empty.

Given a word w, let us denote X(w) the set of in�nite words having the same set of fators than

w: X(w) is invariant by the shift operator and is alled the subshift assoiated with w. When w is

Sturmian, it is known (see [5℄) that a word w′
belongs to X(w) if and only if it is Sturmian and the

assoiated sequene (dk)k≥0 in its deomposition of Theorem 3.1 is the same as the one involved in

the deomposition of w.

To end this setion, we observe that any standard Sturmian word (that is a Sturmian word

that an be deomposed using only La and Lb) is neessarily quasiperiodi. This gives a new

proof of a result by T. Monteil [13, 14℄: any Sturmian subshift ontains a quasiperiodi word (let us

mention that the resutl of T. Monteil is more preisely: any Sturmian subshift ontains a multisaled

quasiperiodi word, that is a word having an in�nity of quasiperiods). The interested reader will �nd

materials in Setion 7 to show that any standard Sturmian word has an in�nity of quasiperiods (see

Lemma 7.5). Theorem 5.6 also shows that in any Sturmian subshift, there is a non-quasiperiodi

word.

6 A onnetion with Lyndon words

The aim of this short setion is to give another haraterization of non-quasiperiodi Sturmian words

related to Lyndon words (see Theorem 6.5 below).

Let us reall notions on �nite [8℄ and in�nite [18℄ Lyndon words . We all su�x of an in�nite

word w any word w′
suh that w = uw′

for a given word u. When u 6= ε, we say that w′
is a proper

su�x of w. This de�nition allows us to adopt the same de�nition for �nite and in�nite Lyndon

word. Let � be a total order on A (in what follows, {a ≺ b} denotes the alphabet {a, b} with a ≺ b).

This order an be extended into the lexiographi order on words over A. A (�nite or in�nite) word

over (A,�) is a Lyndon word if and only if w is stritly smaller than all its proper su�xes. Any

in�nite Lyndon word has in�nitely many pre�xes that are (�nite) Lyndon words (and so an in�nite

Lyndon word an be viewed as a limit of these pre�xes). The following basi property of �nite

Lyndon words was pointed out by J.P. Duval (see Aknowledgments):

Fat 6.1 Any �nite Lyndon word is unbordered, that is the only borders of a Lyndon word w are ε

and w.
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This allows us to state a relation between in�nite Lyndon words and non-quasiperiodi in�nite

words (f Corollary 6.3).

Fat 6.2 If w is an in�nite u-quasiperiodi word, then any pre�x of w of length at least |u| + 1 is

not unbordered.

Proof. If p is a pre�x of w of length at least |u|+ 1, then p has for su�x a pre�x s of u (of length

at most |u|). Sine u is a pre�x of w, u is also a pre�x of p, and so s is a border of p.

Corollary 6.3 Any Lyndon word is not quasiperiodi.

Our main Theorem 6.5 is a diret onsequene of this orollary and the following haraterization.

Following [16℄ we say that a morphism f preserves (�nite) Lyndon words if for any (�nite) Lyndon

word u, f(u) is also a Lyndon word. We have:

Proposition 6.4 [16℄ A Sturmian morphism f preserves Lyndon words over {a ≺ b} if and only if

f ∈ {La, Rb}
∗
.

Theorem 6.5 A Sturmian word w over {a, b} is non-quasiperiodi if and only if w is an in�nite

Lyndon word over {a ≺ b} or over {b ≺ a}.

Proof. Let w be a Sturmian word. By orollary 6.3, if w is an in�nite Lyndon word then w is not

quasiperiodi.

Assume now that w is not quasiperiodi. By Theorem 5.6, w = lim
n→∞

Ld1
a Rd2

b . . . Ld2n−1

a Rd2n
b (a) or

w = lim
n→∞

Ld1
b Rd2

a . . . L
d2n−1

b Rd2n
a (a) for some integers (dk)k≥1 suh that dk ≥ 1 for all k ≥ 2 and d1 ≥

0. Proposition 6.4 implies that, sine a is a Lyndon word, for eah n ≥ 1, Ld1
a Rd2

b . . . L
d2n−1

a Rd2n
b (a)

is a Lyndon word over a ≺ b and Ld1
b Rd2

a . . . L
d2n−1

b Rd2n
a (a) is a Lyndon word over b ≺ a. Hene w

is an in�nite Lyndon word over a ≺ b or over b ≺ a.

To end this setion we study the onverse of Corollary 6.3 and Fat 6.2.

The onverse of Corollary 6.3 is not true in general. For instane we an onsider any Sturmian

word w over {a, b} and the word p = ababaaa. Then pw is not quasiperiodi sine p is not balaned

and so not a fator of w. Moreover, sine p starts with the letter a, pw annot be a Lyndon word

if b ≺ a. It is neither a Lyndon word if a ≺ b sine for any pre�x p′ of w, aaap′ ≺ w.

The onverse of Fat 6.2 is also false: let w be an in�nite word and p be an integer, if all pre�xes

of w of length greater than p+1 are unbordered, then w is not neessarily quasiperiodi. To prove

this, it is su�ient to onsider the word w = abaω.

A more omplex but interesting example, pointed out by P. Séébold (see Aknowledgements),

is the well-known Thue-Morse word T, �xed point of the morphism µ suh that µ(a) = ab and

µ(b) = ba. The word T starts with abb and any pre�x of length at least 4 ends with a, ab or abb.

But T is not quasiperiodi: indeed it is well-known that T is overlap-free (a word is overlap-free

if it ontains no fator of the form xuxux where x is a letter, or equivalently it ontains no fator

that an be written both pv and vs with |p| < |v|) and we an observe that:

Fat 6.6 An overlap-free in�nite word is never quasiperiodi.
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Proof. Let w be a u-quasiperiodi in�nite word and let (pnu)n≥0 be a overing sequene of w.

If there exists n ≥ 0 suh that |pn+1| − |pn| < |u|, then pn+1u = pnus for a word s suh that

s = |pn+1| − |pn| < |u|. Hene there exists a word p suh that us = pu, then w is not overlap-free.

If for all n ≥ 0 we have |pn+1| − |pn| = |u|, then w = uω is also not overlap-free.

Finally let us mention that this fat is not valid for �nite words sine there exist some overlap-free

words that are square (see [19℄, f. also [4℄ for a haraterization of suh words).

7 Sturmian morphisms and quasiperiodiity

We say that a morphism f is quasiperiod-free if for any non-quasiperiodi word w, f(w) is also non-
quasiperiodi. A non-quasiperiod-free morphism will just be alled quasiperiodi. Let us observe

that all Sturmian morphisms (exept E and Id) are quasiperiodi. To verify it, it is su�ient to

show that La, Lb, Ra and Rb are quasiperiodi. For La and Ra (ase Lb and Rb are similar) we

have: abaω and abω are non-quasiperiodi although La(aba
ω) = aba(ab)ω and Ra(ab

ω) = a(ba)ω are

aba-quasiperiodi.

In the previous setion, we enounter (Lemma 5.2 and Fat 5.3) two di�erent kinds of Sturmian

morphisms. The morphism LaLb maps any word into a quasiperiodi one, whereas there exists a

non-quasiperiodi word w suh that LaRa(w) is not quasiperiodi. Generalizing these two examples

we observe that the set of quasiperiodi morphisms an be partitioned using the following notions:

1. A morphism f on A is alled strongly quasiperiodi (resp. on a subset X of Aω
) if for eah

non-quasiperiodi in�nite word w (resp. w ∈ X), f(w) is quasiperiodi.

2. A morphism f on A is alled weakly quasiperiodi (resp. on a subset X of Aω
) if there exist

two non-quasiperiodi in�nite words w,w′
(resp. w,w′ ∈ X) suh that f(w) is quasiperiodi,

and f(w′) is non-quasiperiodi.

The aim of this setion is to answer the two following questions:

• Whih are the strongly (resp. weakly) quasiperiodi Sturmian morphisms?

• Whih are the strongly (resp. weakly) quasiperiodi Sturmian morphisms on (the set of)

Sturmian words?

We note that the two questions have di�erent answers. Indeed LaRa as shown by Lemma 5.2 is

strongly quasiperiodi on Sturmian words, but as already said, LaRa(ba
ω) is not quasiperiodi. Of

ourse, any strongly quasiperiodi Sturmian morphism is strongly quasiperiodi on Sturmian words,

or equivalently (sine a Sturmian morphism is quasiperiodi), any weakly quasiperiodi Sturmian

morphism on Sturmian words is weakly quasiperiodi.

7.1 A property of strongly quasiperiodi morphisms

Before going further, we mention the following immediate result:

Lemma 7.1 Let f be a morphism. If there exist morphisms f1, f2, f3 suh that f = f1f2f3 and

suh that f2 is strongly quasiperiodi, then f is strongly quasiperiodi.
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We observe that (quite naturally) Lemma 7.1 beomes false when replaing strongly quasiperi-

odi by weakly quasiperiodi. For instane, taking f1 = Id, f2 = La and f3 = Lb, we have f2
weakly quasiperiodi and f1f2f3 strongly quasiperiodi. There are ases where we an have f2
weakly quasiperiodi and f1f2f3 quasiperiod-free, but this is not possible when f1, f2 and f3 are

Sturmian morphisms sine all Sturmian morphisms are quasiperiodi. To give an example of suh

a ase, we need the following result:

Lemma 7.2 The morphism g de�ned by g(a) = abab and g(b) = aaaa is a quasiperiod-free mor-

phism.

Proof. Let w be an in�nite word suh that g(w) is quasiperiodi. We show that w is also

quasiperiodi. Let u be the smallest quasiperiod of g(w). Sine u is a pre�x of g(w), u = g(v)p for

a proper pre�x p of g(a) = abab or of g(b) = aaaa: p ∈ {ε, a, aa, aaa, ab, aba}. First we observe that
if a or b does not our in w, then w is quasiperiodi. From now on we assume that both a and b

our in w. Consequently |v|a 6= 0 and |v|b 6= 0. It follows that g(v) starts with (ab)2naaaa for an

integer n ≥ 0 and with a4mabab for an integer m ≥ 0: of ourse m = 0 or n = 0. Moreover g(v)
ends with aaaa(ab)2n

′

for an integer n′ ≥ 0 and with ababa4m
′

for an integer m′ ≥ 0: one again

m′ = 0 or n′ = 0. By Lemma 4.1, uu is a fator of g(w). We then dedue that p = ε sine for all the

other potential values, none of the words in {aaaa(ab)2n
′

, ababa4m
′

}p{(ab)2naaaa, a4mabab} ould

be a fator of g(w). Let (plu)l≥0 be a overing sequene of pre�xes of g(w). As done in the proof of

Lemma 5.4, we an �nd a overing sequene (p′lv)l≥0 of pre�xes of w: the word v is a quasiperiod

of w.

Now let us onsider the morphisms f1 = Id, f2 = La, and f3 de�ned by f3(a) = bb, f3(b) = aaaa.

By the previous lemma f1f2f3 = g is quasiperiod-free whereas f2 is weakly quasiperiodi.

To end this setion, we let the reader verify that f3 is quasiperiod-free and more generally that

any morphism h de�ned by h(a) = ai, h(b) = bj with i ≥ 1 and j ≥ 1 is quasiperiod-free.

7.2 Weakly and strongly quasiperiodi Sturmian morphisms

In this setion, we haraterize weakly quasiperiodi Sturmian morphisms. (Equivalently this har-

aterizes strongly quasiperiodi Sturmian morphisms sine any Sturmian morphism is weakly or

strongly quasiperiodi.)

Proposition 7.3 A Sturmian morphism is weakly quasiperiodi if and only if it belongs to the set

{E, Id}{La, Rb}
∗{La, Ra}

∗ ∪ {E, Id}{Lb, Ra}
∗{Lb, Rb}

∗.

The proof, given at the end of the setion, is a onsequene of the next lemmas.

Lemma 7.4 Let f be a morphism in {La, Lb, Ra, Rb}
∗
di�erent from the identity. The morphism

f belongs to {La, Rb}
∗{La, Ra}

∗ ∪ {Lb, Ra}
∗{Lb, Rb}

∗
if and only if f annot be written f = f1f2f3

with f1, f3 ∈ {La, Lb, Ra, Rb}
∗
and f2 verifying one of the four following properties:

1. f2 ∈ La{La, Lb, Ra, Rb}
∗Lb ∪ Lb{La, Lb, Ra, Rb}

∗La, or

2. f2 = RagLa with g 6∈ {Ra, La}
∗
or f2 = RbgLb with g 6∈ {Rb, Lb}

∗
, or

3. f2 ∈ RaR
+

b Ra or f2 ∈ RbR
+
a Rb, or
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4. f2 ∈ R+
a L

+
a Rb = L+

a R
+
a Rb or f2 ∈ R+

b L
+

b Ra = L+

b R
+

b Ra.

Proof. First we let the reader verify using Theorem 3.2 that if f belongs to {La, Rb}
∗{La, Ra}

∗ ∪
{Lb, Ra}

∗{Lb, Rb}
∗
then it annot be written f = f1f2f3 with f1, f2, f3 as in the lemma.

From now on assume that f annot be written f = f1f2f3 with f1, f2, f3 as in the lemma. Let

g1, . . . , gn (n ≥ 1 sine f is not the identity) in {La, Lb, Ra, Rb} suh that f = g1 . . . gn.

We �rst onsider the ase where g1 = La. By Impossibility 1 for f2, for eah i > 1, gi 6= Lb. If

there exists an integer i > 1 suh that gi = Ra, then g1 . . . gi = hLaR
l
a or g1 . . . gi = hRbR

l
a for a

morphism h and an integer l ≥ 1. In the �rst ase by Impossibility 4 for f2, for all integer j > i,

fj 6= Rb. In the seond ase by Impossibilities 3 and 4 for f2, for all integer j > i, we also have

fj 6= Rb. Thus f ∈ La{Rb, La}
∗{La, Ra}

∗
.

Assume now the more general ase (than g1 = La) where there exists an integer i ≥ 1 suh that

gi = La and gj 6= La for 1 ≤ j < i (the �rst ourrene of La appears at the position i). Samely as

above, we show that g = gi . . . gn ∈ La{Rb, La}
∗{La, Ra}

∗
. By Impossibility 1 for f2, for eah integer

j, 1 ≤ j < i, gj 6= Lb. Thus gj ∈ {Ra, Rb} for eah 1 ≤ j < i. We have three ases: If f ∈ R∗
ag,

then by Impossibility 4 for f2, we have f ∈ La{Rb, La}
∗{La, Ra}

∗ ∪ {Ra, La}
∗
. If f ∈ hR+

b R
∗
ag for

a morphism h ∈ {Ra, Rb}
∗
, then by Impossibility 2 for f2, h ∈ R∗

b and so f ∈ R+

b R
∗
ag; then by

Impossibilities 3 and 4 for f2 we have f ∈ {La, Rb}
∗{La, Ra}

∗
. If f ∈ R∗

bg, f ∈ {La, Rb}
∗{La, Ra}

∗
.

So when there exists an integer i ≥ 1 suh that gi = La, f ∈ {La, Rb}
∗{La, Ra}

∗
.

The ase where there exists an integer i ≥ 1 suh that gi = Lb leads similarly to f ∈
{Lb, Ra}

∗{Lb, Rb}
∗
.

Now we have to onsider the ase where for all i, 1 ≤ i ≤ n, gi 6∈ {La, Lb}. Then by Impossibility

3 for f2, neessarily, f ∈ R∗
aR

∗
b ∪R∗

bR
∗
a.

Lemma 7.5 Every morphism f in La{La, Lb, Ra, Rb}
∗Lb ∪ Lb{La, Lb, Ra, Rb}

∗La is strongly

quasiperiodi.

Proof. We only prove the result for f in La{La, Lb, Ra, Rb}
∗Lb (the other ase is similar exhanging

the roles of the letters a and b). Let f = Laf1f2 . . . fnLb with n ≥ 0 and fi in {La, Lb, Ra, Rb} for all
1 ≤ i ≤ n. We prove by indution on n that there exist morphisms g and h suh that f = gLaLbh

(and so from Lemma 7.1 and Fat 5.3, f is strongly quasiperiodi). The property is immediate

for n = 0. Assume now n ≥ 1. If there exists i between 1 and n suh that fi = La or fi = Lb,

we an apply the indution hypothesis and Lemma 7.1 to onlude. Now suppose that for all i,

fi 6∈ {La, Lb}. Three ases are possible:

• if f1 = Ra, sine LaRa = RaLa from Theorem 3.2, f = RaLaf1 . . . fnLb and we onlude by

the indution hypothesis.

• If fn = Rb we an proeed similarly.

• Assume now f1 = Rb and fn = Ra (this implies n ≥ 2). Let j be the greatest integer

(1 ≤ j ≤ n) suh that fj = Rb. Then f = Laf1 . . . fj−1RbR
n−j
a Lb, and by Theorem 3.2

f = Laf1 . . . fj−1LbL
n−j
a Rb. We onlude by the indution hypothesis.

Remark: we ould have used another approah observing that LaRb(w) (LaRb(a) = aab,

LaRb(b) = ab) is aba-quasiperiodi for every in�nite word w starting with b, and deduing that

every morphism of the form LaRbfLb with f ∈ {La, Ra, Rb}
∗
is strongly quasiperiodi.
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Lemma 7.6 Every morphism f = RagLa with g 6∈ {Ra, La}
∗
or f = RbgLb with g 6∈ {Rb, Lb}

∗
is

strongly quasiperiodi.

Proof. We only prove the �rst ase, the other one is similar. Let g = g1 . . . gn (neessarily n ≥ 1)
suh that g 6∈ {Ra, La}

∗
and for eah i between 1 and n, gi ∈ {La, Lb, Ra, Rb}. If there exists an

integer i suh that gi = Lb then the result is immediate from Lemma 7.5. Consequently we onsider

that g ∈ ({La, Ra}
∗Rb)

+{La, Ra}
∗
. Thus the morphism f an be deomposed f = f1hf2 with h ∈

RaL
∗
aR

+

b R
∗
aLa. If i, j ≥ 0, k ≥ 1 are the integers suh that h = Li

aRaR
k
bLaR

j
a, Theorem 3.2 shows

that h = Li
aLaL

k
bRaR

j
a. Consequently Lemmas 7.1 and 7.5 imply that h is strongly quasiperiodi.

Remark: here again we ould have used another approah observing that RaRb(w) (RaRb(a) =
aba, RaRb(b) = ba) is aba-quasiperiodi for every in�nite word w starting with a, and deduing that

every morphism of the form RaRbfLa with f ∈ {La, Ra, Rb}
∗
is strongly quasiperiodi.

This approah is used to prove:

Lemma 7.7 Any morphism f in RaR
+

b Ra ∪RbR
+
a Rb is strongly quasiperiodi.

Proof. Let j ≥ 1 be an integer suh that f = RaR
j
bRa. Let w be a word. If w starts with b,

RbRa(w) is bab-quasiperiodi, and so f(w) is quasiperiodi. If w starts with a, R
j−1

b Ra(w) also

starts with a. Then RaR
j
bRa(a) is aba-quasiperiodi.

Lemma 7.8 Every morphism f in R+
a L

+
a Rb = L+

a R
+
a Rb or in R+

b L
+

b Ra = L+

b R
+

b Ra is strongly

quasiperiodi.

Proof. Theorem 3.2 implies R+
a L

+
a Rb = L+

a R
+
a Rb and R+

b L
+

b Ra = L+

b R
+

b Ra.

We prove only the �rst ase, the other one is similar. Let n ≥ 1. It is easy to see that RaL
n
aRb(w)

(RaL
n
aRb(a) = aanba, RaL

n
aRb(b) = anba) is an+1ba-quasiperiodi if w starts with a, and is anbaa-

quasiperiodi if w starts with b. By Lemma 7.1, any morphism in R+
a L

+
a Rb is quasiperiodi.

Proof of Proposition 7.3.

From Theorem 3.2, ELa = LbE and ERa = RbE, so any Sturmian morphism an be written fg

with f ∈ {Id,E} and g ∈ {La, Lb, Ra, Rb}
∗
. Thus Proposition 7.3 is a onsequene of the following

one: a morphism f in {La, Lb, Ra, Rb}
∗
is weakly quasiperiodi if and only if f belongs to the set

X = {La, Rb}
∗{La, Ra}

∗ ∪ {Lb, Ra}
∗{Lb, Rb}

∗
.

To prove this, assume �rst that f ∈ {La, Lb, Ra, Rb}
∗
is weakly quasiperiodi. By Lemma 7.1,

this morphism annot be written f = f1f2f3 with f2 a strongly quasiperiodi morphism. Hene by

Lemmas 7.4, 7.5, 7.6, 7.7 and 7.8, f belongs to X.

Assume now that f ∈ X. Sine f is Sturmian, it is quasiperiodi and so we just have to prove

the existene of one word suh that f(w) is not quasiperiodi. So we just have to prove the existene
of one word w suh that f(w) is not quasiperiodi. We do it for f ∈ {La, Rb}

∗{La, Ra}
∗
(the other

ase is similar). There exist morphisms g ∈ {La, Rb}
∗
and h ∈ {La, Ra}

∗
suh that f = gh. We an

verify that h(abaω) = anbaω for an integer n ≥ 1, and so is a balaned word. By Lemmas 5.4 and

5.5, we thus dedue that (g(h(abaω)) = f(abaω) is not quasiperiodi.
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7.3 Weakly Sturmian morphisms on Sturmian words

Proposition 7.3 and Lemma 5.2 show that some morphisms, as for instane LaRa, are weakly

quasiperiodi whereas they are strongly quasiperiodi on Sturmian words. This setion allows us

to haraterize all these morphisms. Let us reall that sine a Sturmian morphism is quasiperiodi,

any Sturmian morphism is weakly or strongly quasiperiodi on Sturmian words.

Proposition 7.9 A Sturmian morphism di�erent from E and Id is weakly quasiperiodi on Stur-

mian words if and only if it belongs to {E, Id}{La, Rb}
∗ ∪ {E, Id}{Lb, Ra}

∗
.

Proof.

Let us make a preliminary remark: for any morphism f , f is weakly quasiperiodi on Sturmian

words if and only if Ef is weakly quasiperiodi on Sturmian words (sine for any word w, w is

quasiperiodi if and only if E(w) is quasiperiodi).
Assume �rst f ∈ {E, Id}{La, Rb}

∗∪{E, Id}{Lb, Ra}
∗
. Without loss of generality, we an assume

f ∈ {La, Rb}
∗ ∪ {Lb, Ra}

∗
. If f belongs to {La, Rb}

∗
(resp. to {Lb, Ra}

∗
), using Theorem 5.6 we

observe that f((LaRb)
ω) (resp. f((LbRa)

ω)) is not quasiperiodi. Sine any Sturmian morphism is

quasiperiodi, f is weakly quasiperiodi on Sturmian words.

Now assume f is weakly quasiperiodi on Sturmian words. Observe that from Theorem 3.2(2),

f ∈ {E, Id}{La, Lb, Ra, Rb}
∗
. Without loss of generality, from the preliminary remark, we an

assume that f belongs to {La, Lb, Ra, Rb}
∗
and prove that f ∈ {La, Rb}

∗ ∪ {Lb, Ra}
∗
. By Propo-

sition 7.3, f belongs to {La, Rb}
∗{La, Ra}

∗ ∪ {Lb, Ra}
∗{Lb, Rb}

∗
. Assume by ontradition that

f 6∈ {La, Rb}
∗ ∪ {Lb, Ra}

∗
. One of the following four ases holds:

1. f = gLaRa with g ∈ {La, Rb}
∗{La, Ra}

∗
;

2. f = gRbR
i
a with g ∈ {La, Rb}

∗
, i ≥ 1;

3. f = gLbRb with g ∈ {Lb, Ra}
∗{Lb, Rb}

∗
;

4. f = gRaR
i
b with g ∈ {Lb, Ra}

∗
, i ≥ 1.

Case 1: Assume f = gLaRa and let w be a non-quasiperiodi Sturmian word. By Lemma 5.2,

f(w) is quasiperiodi.
Case 2: Assume f = gRbR

i
a and let w be a non-quasiperiodi Sturmian word. By The-

orem 5.6, w an be deomposed over {La, Rb} or over {Lb, Ra}. So f(w) = gRbR
i
aLa(w

′) or

f(w) = gRbR
i
aRb(w

′) or f(w) = gRbR
i+j
a Lb(w

′) for a (non-quasiperiodi) Sturmian word w′
and

an integer j ≥ 0. Thus by Lemma 5.2, Lemma 7.7 and Lemma 7.6, f(w) is quasiperiodi.
Cases 3 and 4 are respetively similar to ases 1 and 2. In all ases, f(w) is quasiperiodi for

any non-quasiperiodi Sturmian word w, and so for any Sturmian word (by Fat 4.2). Thus f is

strongly quasiperiodi on Sturmian words. This is a ontradition, so f ∈ {La, Rb}
∗ ∪ {Lb, Ra}

∗
.

Aknowledgements

Fats 6.2 and 6.6 were respetively observed by J.P. Duval and P. Séébold during a talk given by

the seond author at the "Premières Journées Marseille-Rouen en ombinatoire des mots" taking

plae in Rouen in June 2005. Many thanks to them and to J. Cassaigne, C. Mauduit and J.Néraud,

the organizers of these "Journées" .

13/15



Referenes

[1℄ A. Apostolio and M. Crohemore. String pattern mathing for a deluge survival kit. In

J. Abello, P.M. Pardalos, and M.G.C. Resende, editors, Handbook of Massive Data Sets. Kluwer

Aademi Publishers, 2001.

[2℄ A. Apostolio and A. Ehrenfeuht. E�ient detetion of quasiperiodiities in strings. Theoret-

ial Computer Siene, 119:247�265, 1993.

[3℄ A. Apostolio, M. Farah, and C. S. Iliopoulos. Optimal superprimitivity testing for strings.

Information Proessing Letters, 39(1):17�20, 1991.

[4℄ J. Berstel. Axel Thue's work on repetitions in words. Publiations du LaCIM, 11:65�80, 1992.

[5℄ V. Berthé, C. Holton, and L. Q. Zamboni. Initial powers of Sturmian sequenes. Ata Mathe-

matia, To appear.

[6℄ S Ferenzi. Complexity of sequenes and dynamial systems. Disrete Math., 206:145�154,

1999.

[7℄ F. Levé and G. Rihomme. Quasiperiodi in�nite words: some answers. Bulletin of the European

Assoiation for Theoretial Computer Siene, 84:128�138, 2004.

[8℄ M. Lothaire. Combinatoris on Words, volume 17 of Enylopedia of Mathematis and its

Appliations. Addison-Wesley, 1983.

[9℄ M. Lothaire. Algebrai Combinatoris on Words, volume 90 of Enylopedia of Mathematis

and its Appliations. Cambridge Univ. Press, 2002.

[10℄ M. Lothaire. Applied Combinatoris on Words, volume 105 of Enylopedia of Mathematis

and its Appliations. Cambridge Univ. Press, 2005.

[11℄ S. Marus. Bridging two hierarhies of in�nite words. Journal of Universal Computer Siene,

8:292�296, 2002.

[12℄ S. Marus. Quasiperiodi in�nite words. Bulletin of the European Assoiation for Theoretial

Computer Siene, 82:170�174, 2004.

[13℄ T. Monteil. Ph.D thesis: Illumination dans les billards polygonaux et dynamique symbolique

- in preparation.

[14℄ T. Monteil. Quasiperiodi words: the multisaled ase and dynamial properties - in prepara-

tion.

[15℄ G. Rihomme. Conjugay and episturmian morphisms. Theoretial Computer Siene, 302:1�

34, 2003.

[16℄ G. Rihomme. Lyndon morphisms. Bull. Belg. Math. So., 10:761�785, 2003.

[17℄ P. Séébold. Fibonai morphisms and Sturmian words. Theor. Comput. Si., 88(2):365�384,

1991.

14/15



[18℄ R. Siromoney, L. Mathew, V.R. Dare, and K.G. Subramanian. In�nite Lyndon words. Inf.

Proess. Lett., 50(2):101�104, 1994.

[19℄ A. Thue. Über die gegenseitige Lage gleiher Teile gewisser Zeihenreihen. Norske vid. Selsk.

Skr. I Mat-Nat. Kl. Christiana, 1:1�67, 1912.

15/15


	Introduction
	Generalities
	Sturmian words and morphisms
	Word quasiperiodicity and morphisms 
	Sturmian non-quasiperiodic words
	A connection with Lyndon words
	Sturmian morphisms and quasiperiodicity
	A property of strongly quasiperiodic morphisms
	Weakly and strongly quasiperiodic Sturmian morphisms
	Weakly Sturmian morphisms on Sturmian words


