Factor versus palindromic complexity of uniformly recurrent infinite words

Peter Baláži, Zuzana Masáková, Edita Pelantová
Department of Mathematics, FNSPE, Czech Technical University
Trojanova 13, 12000 Praha 2, Czech Republic
e-mail: peter_balazi@centrum.cz

Abstract

We study the relation between the palindromic and factor complexity of infinite words. We show that for uniformly recurrent words one has $\mathcal{P}(n)+\mathcal{P}(n+1) \leq$ $\Delta \mathcal{C}(n)+2$, for all $n \in \mathbb{N}$. For a large class of words it is a better estimate of the palindromic complexity in terms of the factor complexity then the one presented in [2]. We provide several examples of infinite words for which our estimate reaches its upper bound. In particular, we derive an explicit prescription for the palindromic complexity of infinite words coding r-interval exchange transformations. If the permutation π connected with the transformation is given by $\pi(k)=r+1-k$ for all k, then there is exactly one palindrome of every even length, and exactly r palindromes of every odd length.

1 Introduction

Recently, palindromes have become a popular subject of study in the field of combinatorics on infinite words. Recall that a palindrome is a word which remains unchanged if read backwards. In natural language it is for example the word "madam" in English, or "krk" (neck) in Czech. We shall study infinite words u over a finite alphabet \mathcal{A}, i.e. sequences $u=\left(u_{n}\right)_{n \in \mathbb{N}}$ where $u_{i} \in \mathcal{A}$ for all $i \in \mathbb{N}=\{0,1,2, \ldots\}$. A palindrome of the length n in the infinite word u is a factor $p=u_{i} u_{i+1} \cdots u_{i+n-1}$ such that $u_{i} u_{i+1} \cdots u_{i+n-1}=u_{i+n-1} u_{i+n-2} \cdots u_{i}$.

The attractiveness of palindromes increased when Droubay and Pirillo provided yet another equivalent definition of sturmian words using palindromes. They have shown in [14] that an infinite word u is sturmian if and only if u contains exactly one palindrome of every even length and exactly two palindromes of every odd length.

A strong motivation for the study of palindromes in infinite words appeared already before, in their application in modeling of solid materials with long-range order, the so-called quasicrystals. In 1982, Dan Shechtman et al. [22] discovered an aperiodic structure (which was formed by rapidly-quenched aluminum alloys) that has icosahedral rotational symmetry, but no three-dimensional translational invariance (see e.g. [7]). The existence of such structures has been absolutely unexpected. Since then, many other stable and unstable aperiodic structures with crystallographically forbidden rotational symmetry were discovered; they were named quasicrystals.

Since the discovery of quasicrystals there has been an increasing interest in the study of the spectral properties of non-periodic Schrödinger operators. One can assign to an infinite word u over an alphabet \mathcal{A}, which models a one-dimensional quasicrystal, a Schrödinger operator H acting on the Hilbert space $\ell^{2}(\mathbb{Z})$ as follows

$$
(H \phi)(n)=\phi(n+1)+\phi(n-1)+V\left(u_{n}\right) \phi(n),
$$

where $V: \mathcal{A} \mapsto \mathbb{R}$ is an injection and represents a potential of the operator.
Many nice properties of these operators have been shown, and they are well understood at least in the one-dimensional case. The survey papers [11], [21] map the history of this effort. One of the main tasks is to derive the spectral properties of the Schrödinger operator H from the properties of the sequence $V\left(u_{n}\right)$. The physical motivation behind this study is that the spectral properties of operators determine the conductivity of the given structure. Very roughly speaking, if the spectrum is pure point then the structure is behaving like an insulant. In case of absolutely continuous spectrum the material is becoming a conductor.

Generally, the task of describing the spectral properties of the operator with potential given by an arbitrary infinite word u is not a simple one. The relevance of the study of palindromes in the infinite words has been proven by Hof et al. [17] who showed that the operators given by words having arbitrary large palindromes have purely singular continuous spectrum.

The aim of this article is to find a relation between factor and palindromic complexity of uniformly recurrent words. Let us first introduce the basic notions which will be used in sequel.

The set of all factors of length n of an infinite word $u=u_{0} u_{1} u_{2} \cdots$ is denoted by

$$
\mathcal{L}_{n}(u)=\left\{w_{1} \cdots w_{n} \mid \exists i \in \mathbb{N}, w_{1} \cdots w_{n}=u_{i} \cdots u_{i+n-1}\right\}
$$

The set of all factors of u, including the empty word ε is called the language
of u and denoted

$$
\mathcal{L}(u)=\bigcup_{n \in \mathbb{N}} \mathcal{L}_{n}(u) .
$$

The variability of local configurations in the word u is characterized by the factor complexity, the function $\mathcal{C}: \mathbb{N} \rightarrow \mathbb{N}$, given by the prescription

$$
\mathcal{C}(n):=\# \mathcal{L}_{n}(u) .
$$

It is known that if there is an n_{0} such that $\mathcal{C}\left(n_{0}\right) \leq n_{0}$, then the word u is eventually periodic, i.e. there exists $k \in \mathbb{N}$ such that $u_{k+n}=u_{n}$ for every $n \geq n_{0}$. Any aperiodic (i.e. not eventually periodic) word therefore satisfies $\mathcal{C}(n) \geq n+1$ for every $n \in \mathbb{N}$. Aperiodic words of minimal complexity $\mathcal{C}(n)=$ $n+1$ are called sturmian words. For a survey of different characteristics and properties of sturmian words see [6].

The mirror image, or reversal, of a finite word $w=w_{1} \cdots w_{n}$ is the word $\bar{w}=w_{n} \cdots w_{1}$. If the language $\mathcal{L}(u)$ contains with every factor w also its mirror image \bar{w}, we say that $\mathcal{L}(u)$ is invariant under reversal.

The palindromic complexity of the infinite word $u=\left(u_{n}\right)_{n \in \mathbb{N}}$ is a function \mathcal{P} : $\mathbb{N} \rightarrow \mathbb{N}$ which counts the number of palindromes of a given length. Formally,

$$
\mathcal{P}(n):=\#\left\{w \in \mathcal{L}_{n}(u) \mid w=\bar{w}\right\} .
$$

Trivially, one has $\mathcal{P}(n) \leq \mathcal{C}(n)$. A non-trivial result is an estimate of $\mathcal{P}(n)$ using $\mathcal{C}(n)$ provided in [2].

Theorem 1.1 ([2]) For arbitrary infinite word one has

$$
\begin{equation*}
\mathcal{P}(n) \leq \frac{16}{n} \mathcal{C}\left(n+\left\lfloor\frac{n}{4}\right\rfloor\right), \quad \text { for all } n \in \mathbb{N} \tag{1}
\end{equation*}
$$

Let us mention that Theorem 1.1 implies the result of [13]: The palindromic complexity of a fixed point of a primitive morphism is bounded.

In this paper we provide an estimate of $\mathcal{P}(n)$ of uniformly recurrent words using the first difference $\Delta \mathcal{C}(n):=\mathcal{C}(n+1)-\mathcal{C}(n)$. For words whose factor complexity is a polynomial of degree ≤ 16, this estimate is better than that of (1). Let us recall that an infinite word u is uniformly recurrent, if the gaps between consecutive occurrences of any factor $w \in \mathcal{L}(u)$ in the word u are bounded. Equivalently, if for every $n \in \mathbb{N}$ there exists $R(n) \in \mathbb{N}$ such that in an arbitrary segment of length $R(n)$ in the word u one finds all factors of $\mathcal{L}_{n}(u)$, i.e.

$$
\mathcal{L}_{n}(u)=\left\{u_{i} u_{i+1} \cdots u_{i+n-1} \mid k \leq i \leq k+R(n)\right\}, \quad \text { for all } k, n \in \mathbb{N}
$$

Let us mention that sturmian words are example of uniformly recurrent words with language closed under reversal [14].

In section 2 we show the following theorem.
Theorem 1.2 Let $u=\left(u_{n}\right)_{n \in \mathbb{N}}$ be an uniformly recurrent word.
(i) If $\mathcal{L}(u)$ is not closed under reversal, then $\mathcal{P}(n)=0$ for sufficiently large n.
(ii) If $\mathcal{L}(u)$ is closed under reversal, then

$$
\mathcal{P}(n)+\mathcal{P}(n+1) \leq \Delta \mathcal{C}(n)+2, \quad \text { for all } n \in \mathbb{N}
$$

It is interesting that equality in the latter estimate of the palindromic complexity holds for some known classes of infinite words, such as Arnoux-Rauzy words or fixed points of canonical substitutions associated to numeration systems with base β, where β is a Parry number [15]. We list some of these examples in section 2 . In section 4 we show that the equality in the estimate is valid also for infinite words coding r-interval exchange transformation.

2 Proof of Theorem 1.2

First we show that unboundedness of the length of palindromes in an infinite uniformly recurrent word u implies that the language of u is invariant under mirror image.

Lemma 2.1 Let u be an infinite word which is uniformly recurrent and such that $\lim \sup _{n \rightarrow \infty} \mathcal{P}(n)>0$. Then $\overline{\mathcal{L}(u)}=\mathcal{L}(u)$.

PROOF. Let $n \in \mathbb{N}$. Consider $R(n)$ from the definition of uniformly recurrent words. Let p be a palindrome of length greater than $R(n)$. It contains all factors of u of length n. In the same time it contains with every factor w also its mirror image. Thus $\overline{\mathcal{L}_{n}(u)}=\mathcal{L}_{n}(u)$ for all $n \in \mathbb{N}$.

The above lemma in fact proves (i) of Theorem 1.2. Crucial tool for the proof of (ii) is the notion of a Rauzy graph of an infinite word.

Let $u=\left(u_{n}\right)_{n \in \mathbb{N}}$ be an infinite word, $n \in \mathbb{N}$. The Rauzy graph Γ_{n} of u is an oriented graph whose set of vertices is $\mathcal{L}_{n}(u)$ and the set of edges is $\mathcal{L}_{n+1}(u)$. An edge $e \in \mathcal{L}_{n+1}(u)$ starts at the vertex x and ends at the vertex y, if x is a prefix and y is a suffix of e.

If the word u is uniformly recurrent, the graph Γ_{n} is strongly connected for every $n \in \mathbb{N}$, i.e. there exists an oriented path from every vertex x to every vertex y of the graph.

$$
x=w_{0} \stackrel{w}{1}^{\bullet} \frac{e=w_{0} w_{1} \cdots w_{n-1} w_{n}}{y=w_{1}} \bullet \bullet w_{n-1} w_{n}
$$

Fig. 1. Incidence relation between an edge and vertices in a Rauzy graph.
The outdegree of a vertex $x \in \mathcal{L}_{n}(u)$ is the number of edges which start in x. It is denoted by $\operatorname{deg}_{+}(x)$,

$$
\operatorname{deg}_{+}(x):=\#\left\{a \in \mathcal{A} \mid x a \in \mathcal{L}_{n+1}(u)\right\} .
$$

Similarly, we define the indegree of x as

$$
\operatorname{deg}_{-}(x):=\#\left\{a \in \mathcal{A} \mid a x \in \mathcal{L}_{n+1}(u)\right\} .
$$

The sum of outdegrees over all vertices is equal to the number of edges in every oriented graph. Similarly, it holds for indegree. In particular, for the Rauzy graph we have

$$
\sum_{x \in \mathcal{\mathcal { L } _ { n }}(u)} \operatorname{deg}_{+}(x)=\# \mathcal{L}_{n+1}(u)=\sum_{x \in \mathcal{\mathcal { L } _ { n }}(u)} \operatorname{deg}_{-}(x) .
$$

Since $\Delta \mathcal{C}(n)=\# \mathcal{L}_{n+1}(u)-\# \mathcal{L}_{n}(u)$, we obtain

$$
\begin{equation*}
\Delta \mathcal{C}(n)=\sum_{x \in \mathcal{\mathcal { L } _ { n }}(u)}\left(\operatorname{deg}_{+}(x)-1\right)=\sum_{x \in \mathcal{\mathcal { L } _ { n }}(u)}\left(\operatorname{deg}_{-}(x)-1\right) . \tag{2}
\end{equation*}
$$

A non-zero contribution to $\Delta \mathcal{C}(n)$ is therefore given only by those factors $x \in \mathcal{L}_{n}(u)$, for which $\operatorname{deg}_{+}(x) \geq 2$, i.e. such that there exist distinct letters $a, b \in \mathcal{A}$ satisfying $x a, x b \in \mathcal{L}_{n+1}(u)$. A factor of u, which has at least two extensions to the right is called a right special factor of u. Similarly one can define a left special factor, and the relation (2) can be rewritten as

$$
\Delta \mathcal{C}(n)=\sum_{x \in \mathcal{L}_{n}(u),}\left(\operatorname{deg}_{+}(x)-1\right)=\sum_{x \in \mathcal{L}_{n}(u),, x \text { left special special }}\left(\operatorname{deg}_{-}(x)-1\right) .
$$

PROOF of (ii) of Theorem 1.2. Suppose that the language of the infinite word u is closed under reversal. Consider the operation r which to every vertex of the graph associates $\rho(x)=\bar{x}$ and to every edge associates $\rho(e)=\bar{e}$.

$$
\bar{x}=w_{n-1}^{\bullet} \frac{\bar{e}=w_{n} w_{n-1} \cdots w_{1} w_{0}}{\bar{y}=w_{n}}{\stackrel{\bullet}{w_{n-1}}}^{\bullet \cdots w_{0}}
$$

Fig. 2. The action of the mapping ρ on the edge and the vertices of Figure 1.

This operation maps the Rauzy graph Γ_{n} onto itself. Obviously,

$$
\begin{aligned}
\mathcal{P}(n) & =\#\left\{z \in \mathcal{L}_{n}(u) \mid \rho(z)=z\right\} \\
\mathcal{P}(n+1) & =\#\left\{e \in \mathcal{L}_{n+1}(u) \mid \rho(e)=e\right\}
\end{aligned}
$$

We shall be interested in the pathes leading between special factors. More precisely, we shall call a simple path an oriented path $w=v_{0} v_{1} \ldots v_{k}$, such that its initial vertex v_{0}, and its final vertex v_{k} are left or right special factors, and the other vertices are not special factors, i.e. $\operatorname{deg}_{+}\left(v_{i}\right)=\operatorname{deg}_{-}\left(v_{i}\right)=1$ for $i=1,2, \ldots, k-1$. A special factor is considered as a simple path of length 0 . Since the infinite word u is uniformly recurrent, the graph Γ_{n} is strongly connected, and therefore every vertex and every edge belongs to a simple path.

For an edge e satisfying $\rho(e)=e$ we find the simple path w which contains e. Since $\rho(e)=e$, the operation r must map the path w onto itself. Similarly, if for a vertex z it holds that $\rho(z)=z$, then the simple path containing z is mapped by ρ onto itself.

To give an upper bound on $\mathcal{P}(n)+\mathcal{P}(n+1)$ therefore consists in finding the number of simple paths in the Rauzy graph Γ_{n} which are mapped by ρ onto itself. It therefore suffices to study the so-called reduced Rauzy graph.

The set V of vertices of the reduced Rauzy graph is formed by all $x \in \mathcal{L}_{n}(u)$ which are either left or right special factors of u. Two vertices $x, y \in V$ are connected by an oriented edge from x to y, if in the original Rauzy graph Γ_{n} there exists a simple path from x to y. The operation ρ maps the reduced Rauzy graph onto itself.

The set V of vertices of the reduced Rauzy graph can be divided into disjoint cycles of the mapping ρ. Since $\rho^{2}=\mathrm{Id}$, the cycles are either of length 1 or 2. The cycles of length 1 are given by special factors invariant under ρ, i.e. special factors, which are themselves palindromes. Let us denote their number by α, and denote the number of cycles of length 2 by β. Note that the number of vertices in the reduced Rauzy graph (i.e. left or right special factors in Γ_{n}) is $\alpha+2 \beta$.

If there is an edge from x to y, where x and y belong to different cycles, then there is another edge leading from $\rho(y)$ to $\rho(x)$. Since the reduced Rauzy graph is strongly connected, the number of edges, which lead between vertices of different cycles, is at least $2(\alpha+\beta-1)$. These edges correspond in the original Rauzy graph Γ_{n} to the simple paths of non-zero length which are not mapped by ρ onto itself.

As we have said, the number of palindromes of length n and $n+1$ is bounded by the number of simple paths in Γ_{n}, which are mapped by ρ onto itself. We thus have

$$
\mathcal{P}(n)+\mathcal{P}(n+1) \leq \sum_{x \text { is left or right special }} \operatorname{deg}_{+}(x)-2(\alpha+\beta-1)+\alpha
$$

where the first summand is the number of all simple paths of non-zero length in Γ_{n}, the second summand estimates the number of simple paths of non-zero length which are not mapped onto itself, and the third one is the number of simple paths of zero length invariant under ρ (i.e. palindromic special factors). We obtain

$$
\begin{aligned}
\mathcal{P}(n)+\mathcal{P}(n+1) & \leq \sum_{x \text { is left or right special }} \operatorname{deg}_{+}(x)-(\alpha+2 \beta)+2= \\
& =\sum_{x \text { is left or right special }}\left(\operatorname{deg}_{+}(x)-1\right)+2=\Delta \mathcal{C}(n)+2,
\end{aligned}
$$

where we have used that $\alpha+2 \beta$ is the number of left or right special factors in Γ_{n}. This completes the proof.

3 Examples of infinite words with maximal $\mathcal{P}(n)+\mathcal{P}(n+1)$

In this section we present several examples of infinite words which satisfy $\limsup _{n \rightarrow \infty} \mathcal{P}(n)>0$ and

$$
\begin{equation*}
\mathcal{P}(n)+\mathcal{P}(n+1)=\Delta \mathcal{C}(n)+2 \tag{3}
\end{equation*}
$$

These are in a sense words with maximal number of palindromes.

1. Arnoux-Rauzy sequences. Arnoux-Rauzy sequences are generalizations of sturmian words for an alphabet with more than 2 letters. An infinite word u over an r-letter alphabet is called Arnoux-Rauzy of order r, if for every $n \in \mathbb{N}$ there exists exactly one left special factor, say w_{L}, and exactly one right special factor, say w_{R}, of length n, and they satisfy $\operatorname{deg}_{+}\left(w_{R}\right)=\operatorname{deg}_{-}\left(w_{L}\right)=r$. Note that Arnoux-Rauzy sequences of order 2 are precisely the sturmian words. Directly from the definition one can deduce that the factor complexity is $\mathcal{C}(n)=(r-1) n+1$ for all $n \in \mathbb{N}$. In [12] it was shown that

$$
\mathcal{P}(n)= \begin{cases}r, & \text { if } n \text { is odd } \\ 1, & \text { if } n \text { is even }\end{cases}
$$

Since $\Delta \mathcal{C}(n)=r-1$, we obtain

$$
\mathcal{P}(n)+\mathcal{P}(n+1)=r+1=\Delta \mathcal{C}(n)+2
$$

and thus the Arnoux-Rauzy words satisfy (3).
2. Complementation-symmetric sequences. In [2] it was shown that complementation-symmetric sequences, with factor complexity $\mathcal{C}(n)=2 n$ for all $n \in \mathbb{N}$, satisfy $\mathcal{P}(n)=2$ for all $n \geq 1$. Recall that a complementationsymmetric sequence on a two-letter alphabet, say $\mathcal{A}=\{a, b\}$, is a sequence such that for any factor occurring in it, the word obtained by changing a 's into b 's and vice versa, is also a factor. Since $\Delta \mathcal{C}(n)=2$, we have again

$$
\mathcal{P}(n)+\mathcal{P}(n+1)=4=\Delta \mathcal{C}(n)+2 .
$$

3. Words associated with β-integers. In [3] one studies palindromes in words associated with β-integers, i.e. positive real numbers which have vanishing fractional part in the numeration system with base β. For the description of the words u_{β} we introduce the Rényi expansion of 1 .

Let β be a fixed real number, $\beta>1$. Denote by T_{β} the mapping $T_{\beta}:[0,1] \rightarrow$ $[0,1)$, given by the prescription

$$
T_{\beta}(x):=\beta x-\lfloor\beta x\rfloor .
$$

The sequence

$$
d_{\beta}(1)=t_{1} t_{2} t_{3} \cdots, \quad \text { where } \quad t_{i}:=\left\lfloor T_{\beta}^{i-1}(1)\right\rfloor, \quad i=1,2,3, \ldots
$$

is called the Rényi expansion of 1 . If $d_{\beta}(1)$ is eventually periodic, then β is called a Parry number.

The infinite word u_{β}, which codes the distances between β-integers, is the fixed point of a morphism over a finite alphabet. The morphisms are of two types, according to the type of the Parry number β.

- If $d_{\beta}(1)=t_{1} \cdots t_{m} 0^{\omega}$, with $t_{m} \neq 0$, then β is called a simple Parry number. In this case u_{β} is the fixed point of the substitution $\varphi=\varphi_{\beta}$ over the alphabet
$\mathcal{A}=\{0,1, \cdots, m-1\}$, given by

$$
\begin{aligned}
\varphi(0) & =0^{t_{1}} 1, \\
\varphi(1) & =0^{t_{2}} 2, \\
& \vdots \\
\varphi(m-2) & =0^{t_{m-1}}(m-1), \\
\varphi(m-1) & =0^{t_{m}} .
\end{aligned}
$$

- If $d_{\beta}(1)=t_{1} \cdots t_{m}\left(t_{m+1} \cdots t_{m+p}\right)^{\omega}$, where m, p are minimal indices which allow such notation, then u_{β} is the fixed point of the substitution $\varphi=\varphi_{\beta}$ over the alphabet $\mathcal{A}=\{0,1, \cdots, m+p-1\}$, given by

$$
\begin{aligned}
\varphi(0) & =0^{t_{1}} 1 \\
\varphi(1) & =0^{t_{2}} 2 \\
& \vdots \\
\varphi(m-1) & =0^{t_{m}} m \\
& \vdots \\
\varphi(m+p-2) & =0^{t_{m+p-1}}(m+p-1), \\
\varphi(m+p-1) & =0^{t_{m+p}} m
\end{aligned}
$$

For infinite word u_{β} one can easily show that are uniformly recurrent. The condition of invariance of the language of u_{β} under reversal is described in [15] for the case of simple Parry number, i.e. $d_{\beta}(1)=t_{1} \cdots t_{m} 0^{\omega}$. It is shown that $\mathcal{L}\left(u_{\beta}\right)$ is closed under reversal if and only if $t_{1}=\cdots=t_{m-1} \geq t_{m}$. For the case $d_{\beta}(1)=t_{1} \cdots t_{m}\left(t_{m+1} \cdots t_{m+p}\right)^{\omega}$ it is shown in [5] that the language of u_{β} is closed under reversal if and only if $m=p=1$. Papers [15] and [4] show that if u_{β} has the language invariant under reversal, then

$$
\mathcal{P}(n+2)-\mathcal{P}(n)=\Delta^{2} \mathcal{C}(n)=\mathcal{C}(n+1)-\mathcal{C}(n),
$$

which allows one to derive the validity of (3).
While in examples 1 and 2 the second difference $\Delta^{2} \mathcal{C}(n) \equiv 0$, for the words u_{β} it holds that $\Delta^{2} \mathcal{C}(n) \in\{-1,0,1\}$ and all three values are reached infinitely many times.
4. Words coding r-interval exchange transformation. Another possible generalization of sturmian words are words coding a bijective transformation of the interval $[0,1)$ onto itself, known under the name r-interval ex-
change. Let us recall the definition of an interval exchange map. It can be found together with some properties in [14], [19].

Given r positive numbers $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{r}$ such that $\sum_{i=1}^{r} \alpha_{i}=1$. They define a partition of the interval $I=[0,1)$ into r intervals

$$
I_{k}=\left[\sum_{i=1}^{k-1} \alpha_{i}, \sum_{i=1}^{k} \alpha_{i}\right), \quad k=1,2, \ldots, r .
$$

Let π denote a permutation of the set $\{1,2, \ldots, r\}$. The interval exchange transformation associated with $\alpha_{1}, \ldots, \alpha_{r}$ and π is defined as the map T : $I \rightarrow I$ which exchanges the intervals I_{k} according to the permutation π,

$$
T(x)=x+\sum_{j<\pi(k)} \alpha_{\pi^{-1}(j)}-\sum_{j<k} \alpha_{j}, \quad \text { for } x \in I_{k}
$$

For $x_{0} \in I$, the sequence $\left(T^{n}\left(x_{0}\right)\right)_{n \in \mathbb{Z}}$ is called the orbit of x_{0} under T. The infinite bidirectional word $\left(u_{n}\right)_{n \in \mathbb{Z}}$ over the alphabet $\mathcal{A}=\{1, \ldots, r\}$ associated to the orbit $\left(T^{n}\left(x_{0}\right)\right)_{n \in \mathbb{Z}}$ is defined as

$$
u_{n}=k \in \mathcal{A} \quad \Leftrightarrow \quad T^{n}\left(x_{0}\right) \in I_{k} .
$$

The complexity of the word corresponding to any r-interval exchange transformation satisfies $\mathcal{C}(n) \leq n(r-1)+1$, for all $n \in \mathbb{N}$. Here we focus on the non-degenerated case, i.e. on mappings T for which the complexity of the word associated to the orbit of arbitrary $x_{0} \in I$ satisfies $\mathcal{C}(n)=(r-1) n+1$, for all $n \in \mathbb{N}$. This property is ensured by additional conditions (denoted by \mathfrak{P}) on the parameters of the map T.

1. $\alpha_{1}, \ldots, \alpha_{r}$ are linearly independent over \mathbb{Q},

$$
\begin{equation*}
\text { 2. } \pi\{1, \ldots, k\} \neq\{1, \ldots, k\} \text { for each } k=1,2, \ldots, r-1 \text {. } \tag{P}
\end{equation*}
$$

If the conditions (\mathfrak{P}) are fulfilled, then the set $\left\{T^{n}\left(x_{0}\right)\right\}_{n \in \mathbb{Z}}$ is dense in I for each $x_{0} \in I$ and the dynamical system associated to the transformation T is minimal. It implies that the infinite word corresponding to the sequence $\left(T^{n}\left(x_{0}\right)\right)_{n \in \mathbb{Z}}$ is uniformly recurrent.

Another important consequence of (\mathfrak{P}) is that the language of the word $\left(u_{n}\right)_{n \in \mathbb{Z}}$ corresponding to $\left(T^{n}\left(x_{0}\right)\right)_{n \in \mathbb{Z}}$ does not depend on the position of the starting point x_{0}, but only on the transformation T. Therefore the notation $\mathcal{L}(T)$, which we adopt here, is justified. We know that $\mathcal{L}\left(T_{1}\right)=\mathcal{L}\left(T_{2}\right)$ only if T_{1} and T_{2} coincide.

If $r=2$, the permutation satisfying \mathfrak{P} is $\pi(1)=2, \pi(2)=1$ and the corresponding word is sturmian. On the other hand, every sturmian word can be obtain as a coding of a 2-interval exchange transformation.

If $r=3$, then the condition 2 . of \mathfrak{P} is satisfied by three permutations. One can easily see that only the permutation $\pi(1)=3, \pi(2)=2, \pi(3)=1$ gives an infinite word with language invariant under reversal. Such words can be geometrically represented by cut-and-project sequences [16].

For general r, the language of the infinite word u closed under reversal if and only if

$$
\begin{equation*}
\pi(1)=r, \quad \pi(2)=r-1, \quad \ldots, \quad \pi(r)=1 \tag{4}
\end{equation*}
$$

Only for such permutation the infinite word u coding the corresponding interval exchange transformation one may have $\lim \sup _{n \rightarrow \infty} \mathcal{P}(n)>0$.

The palindromic complexity in words coding 3 -interval exchange map was described in [12]. In section 4 we generalize their result for any r. We show that for words coding an r-interval exchange transformation with permutation (4) the equality (3) holds.

4 Words Coding Interval Exchange Transformation

In this section we will be dealing only with such transformations T of r intervals for which the permutation π satisfies (4). In this case the transformation has the form of

$$
\begin{equation*}
T(x)=x+\sum_{j>k} \alpha_{j}-\sum_{j<k} \alpha_{j} \quad \text { for } x \in I_{k} \tag{5}
\end{equation*}
$$

It is known that there exists an interval $I_{w} \subset I_{w_{0}}$ for every word $w=$ $w_{0} w_{1} \ldots w_{n-1} \in \mathcal{L}(T)$ such that the sequence of points $x, T(x), \ldots, T^{n-1}(x)$ is coded by the same word w for each $x \in I_{w}$. Note that the boundaries of the interval I_{w} belong to the set $\mathbb{Z}\left[\alpha_{1}, \ldots, \alpha_{r}\right]=\left\{\sum k_{i} \alpha_{i} \mid k_{i} \in \mathbb{Z}\right\}$.

Let us denote the decomposition of the interval $I=[0,1)$ by the transformation T^{-1} by $\tilde{I}_{1}, \tilde{I}_{2}, \ldots, \tilde{I}_{r}$ and analogously \tilde{I}_{w} for an arbitrary $w \in \mathcal{L}\left(T^{-1}\right)$.

Clearly, $\tilde{I}_{\pi^{-1}(j)}=T\left(I_{j}\right)$ for each $j \in\{1, \ldots, r\}$. Since π is of the form (4), it follows that $I_{j}=[a, b)$ implies $\tilde{I}_{\pi^{-1}(j)}=T\left(I_{j}\right)=[1-b, 1-a)$. The same relation is therefore valid for any factor $w \in \mathcal{L}(T)$,

$$
\begin{equation*}
I_{w}=[a, b) \quad \Longrightarrow \quad \tilde{I}_{\pi^{-1}(w)}=[1-b, 1-a) \tag{6}
\end{equation*}
$$

Now we have everything prepared for determination of the palindromic complexity.

Theorem 4.1 Let $\alpha_{1}, \ldots, \alpha_{r}$ be positive real numbers, linearly independent
over \mathbb{Q} and π a permutation satisfying (4). Then

$$
\mathcal{P}(n)= \begin{cases}1 & \text { for each } n \text { even } \\ r & \text { for each } n \text { odd }\end{cases}
$$

PROOF. Consider the palindrome of even length in the form of

$$
w_{n-1} w_{n-2} \ldots w_{0} w_{0} \ldots w_{n-2} w_{n-1} \in \mathcal{L}(T)
$$

It means that there exists $x \in[0,1)$ such that

$$
\begin{aligned}
x & \in I_{w_{0}}, \quad T(x) \in I_{w_{1}}, \ldots, \quad T^{n-1}(x) \in I_{w_{n-1}}, \\
T^{-1}(x) & \in I_{w_{0}}, \quad T^{-2}(x) \in I_{w_{1}}, \ldots, \quad T^{-n}(x) \in I_{w_{n-1}} .
\end{aligned}
$$

Hence $x \in I_{w}$, where $w=w_{0}, \ldots w_{n-1}$ and on the other side

$$
\begin{aligned}
x & \in T\left(I_{w_{0}}\right)=\tilde{I}_{\pi^{-1}\left(w_{0}\right)} \\
T^{-1}(x) & \in T\left(I_{w_{1}}\right)=\tilde{I}_{\pi^{-1}\left(w_{1}\right)} \\
& \vdots \\
T^{-n+1}(x) & \in T\left(I_{w_{n-1}}\right)=\tilde{I}_{\pi^{-1}\left(w_{n-1}\right)} .
\end{aligned}
$$

It follows that $x \in \tilde{I}_{\pi^{-1}\left(w_{0} w_{1} \ldots w_{n-1}\right)}$. Thus x has to belong to the intersection of both intervals, i.e. $x \in I_{w} \cap \tilde{I}_{\pi^{-1}(w)}$. If $I_{w}=[a, b)$, then according to (6)

$$
x \in[a, b) \cap[1-b, 1-a) .
$$

Now we use a simple fact that for every interval $[a, b)$ it holds that

$$
\begin{equation*}
[a, b) \cap[s-b, s-a) \neq \emptyset \quad \Longleftrightarrow \quad \frac{s}{2} \in[a, b) \tag{7}
\end{equation*}
$$

Therefore

$$
\begin{equation*}
\frac{1}{2} \in I_{w} \cap \tilde{I}_{\pi^{-1}(w)} \tag{8}
\end{equation*}
$$

We have shown that every palindrome of even length arises from the coding of

$$
T^{-n}\left(\frac{1}{2}\right), \ldots, T^{-1}\left(\frac{1}{2}\right), \frac{1}{2}, T\left(\frac{1}{2}\right), \ldots, T^{n-1}\left(\frac{1}{2}\right) .
$$

The fact that $\left\{T^{n}(x)\right\}_{n \in \mathbb{Z}}$ is dense in $[0,1)$ implies that the previous sequence occurs in $\left(T^{n}(x)\right)_{n \in \mathbb{Z}}$, for each x. Thus the coding of $\left(T^{n}(x)\right)_{n \in \mathbb{Z}}$ includes exactly one palindrome of even length for each n.

Consider now the palindrome of odd length in the form of

$$
w_{n-1} w_{n-2} \ldots w_{1} w_{0} w_{1} \ldots w_{n-2} w_{n-1} \in \mathcal{L}(T)
$$

Again, it means that there exist $x, y \in[0,1)$ such that

$$
\begin{aligned}
& x \in I_{w_{0}}, \quad T(x) \in I_{w_{1}}, \ldots, \quad T^{n-1}(x) \in I_{w_{n-1}} \\
& y \in I_{w_{1}}, T^{-1}(y) \in I_{w_{0}}, \ldots, T^{-n}(y) \in I_{w_{n-1}}
\end{aligned}
$$

The first sequence is the coding of the word $w=w_{0} w_{1} \ldots w_{n-1}$, i.e. $x \in I_{w}$, and the following is true for the second one

$$
\begin{aligned}
y & \in T\left(I_{w_{0}}\right)=\tilde{I}_{\pi^{-1}\left(w_{0}\right)} \\
T^{-1}(y) & \in T\left(I_{w_{1}}\right)=\tilde{I}_{\pi^{-1}\left(w_{1}\right)}, \\
& \vdots \\
T^{-n+1}(y) & \in T\left(I_{w_{n-1}}\right)=\tilde{I}_{\pi^{-1}\left(w_{n-1}\right)} .
\end{aligned}
$$

Thus $y \in \tilde{I}_{\pi^{-1}(w)}$. If there exists a palindrome of odd length with the central letter w_{0} then it has to be $y=T(x)=x+s_{w_{0}}$, where $s_{w_{0}} \neq 0$ is a shift of $x \in I_{w_{0}}$ by the mapping T. Using (5) we have $s_{w_{0}}=\sum_{j>w_{0}} \alpha_{j}-\sum_{j<w_{0}} \alpha_{j}$. In other words we have $x \in I_{w}$ and $x \in \tilde{I}_{\pi^{-1}(w)}-s_{w_{0}}$. If $I_{w}=[c, d)$ then $\tilde{I}_{\pi^{-1}(w)}=[1-d, 1-c)$ and therefore $x \in[c, d) \cap\left[1-d-s_{w_{0}}, 1-c-s_{w_{0}}\right)$. According to (7)

$$
x_{w_{0}}:=\frac{1-s_{w_{0}}}{2} \in I_{w} \cap\left(\tilde{I}_{\pi^{-1}(w)}-s_{w_{0}}\right) .
$$

We have shown that the palindrome $w_{n-1} w_{n-2} \ldots w_{1} w_{0} w_{1} \ldots w_{n-2} w_{n-1}$ can be obtained by coding of following sequences

$$
\begin{equation*}
T^{-n+1}\left(x_{w_{0}}\right), \ldots, T^{-1}\left(x_{w_{0}}\right), x_{w_{0}}, T\left(x_{w_{0}}\right), \ldots, T^{n-1}\left(x_{w_{0}}\right) \tag{9}
\end{equation*}
$$

One may rewrite

$$
x_{w_{0}}=\frac{1-s_{w_{0}}}{2}=\frac{\sum_{j=1}^{r} \alpha_{j}-\sum_{j=w_{0}+1}^{r} \alpha_{j}+\sum_{j=1}^{w_{0}-1} \alpha_{j}}{2}=\sum_{j=1}^{w_{0}-1} \alpha_{j}+\frac{\alpha_{w_{0}}}{2} .
$$

It means that the point $x_{w_{0}}$, which correspond to central letter w_{0} in the palindrome of odd length, is laying in the middle of interval $I_{w_{0}}$ associated to the central letter.

On the other hand, if $x_{w_{0}}$ is the center of one of the intervals I_{1}, \ldots, I_{r}, the sequence (9) corresponds to a palindrome. Therefore $\mathcal{P}(2 n+1)=r$.

Note that according to the previous theorem the interval exchange transformation with a permutation satisfying (4) has the same palindromic complexity and also factor complexity as Arnoux-Rauzy words over r letters [12], [18].

5 Conclusions

The main result of this paper is the estimate of the palindromic complexity of infinite words in terms of their factor complexity. We have shown in Theorem 1.2 that uniformly recurrent words with infinitely many palindromes satisfy the following relation

$$
\mathcal{P}(n)+\mathcal{P}(n+1) \leq \Delta \mathcal{C}(n)+2, \quad \text { for all } n \in \mathbb{N}
$$

It is interesting to mention that the first difference of factor complexity was already useful for estimation of the frequencies of factors. In [9] it is shown that the frequencies of factors of length n in a recurrent word take at most $3 \Delta \mathcal{C}(n)$ values.

The second part of the paper is devoted to infinite words for which $\mathcal{P}(n)+$ $\mathcal{P}(n+1)$ in Theorem 1.2 reaches the upper bound. We cite several examples of such infinite words among the words for which the palindromic and factor complexity was known. As a new result, we derive the palindromic complexity for infinite words coding r-interval exchange transformation and prove that for this class of infinite words the equality in the estimate hold, too.

According to our knowledge all known examples of infinite words which satisfy the equality $\mathcal{P}(n)+\mathcal{P}(n+1)=\Delta \mathcal{C}(n)+2$ for $n \in \mathbb{N}$ have sublinear factor complexity. A known example of an infinite word with higher factor complexity are the billiard sequences on three letters, for which $\mathcal{C}(n)=n^{2}+n+1$. As shown in [8], they satisfy $\mathcal{P}(n)+\mathcal{P}(n+1)=4$, and thus billiard sequences do not reach the upper bound in Theorem 1.2.

The proof of Theorem 1.2 is based on the study of properties of the Rauzy graph and its behaviour with respect to the operation of mirror image on the language of the infinite word. It turns out that the Rauzy graphs of words reaching the upper bound in our estimate of palindromic complexity must have a very special form.

6 Acknowledgment

The authors acknowledge the financial support of Czech Science Foundation GAČR 201/05/0169 and the Ministry of Education of the Czech Republic LC00602.

References

[1] B. Adamczewski, D. Damanik, Linearly recurrent circle map subshifts and an application to Schrödinger operators, Ann. Henri Poincaré, 3 (2002), 1019-1047.
[2] J.-P. Allouche, M. Baake, J. Cassaigne, D. Damanik, Palindrome complexity, Theoret. Comput. Sci. 292 (2003), 9-31.
[3] P. Ambrož, C. Frougny, Z. Masáková, E. Pelantová, Palindromic complexity of infinite words associated with simple Parry numbers, to be published in Ann. Inst. Fourier (2006), 25 pp .
[4] L. Balková, Factor and palindromic complexity for infninite words associated with quadratic non-simple Parry numbers, preprint CTU Prague (2006)
[5] J. Bernat, Computation of L_{\oplus} for several cubic Pisot numbers, to appear in J. Automata, Languages and Combinatorics (2005).
[6] J. Berstel, Recent results on extensions of Sturmian words, Internat. J. Algebra Comput. 12 (2002), 371-385.
[7] E. Bombieri, J. E. Taylor, Which distributions of matter diffract? An initial investigation, J. Phys. 14 (1986), Colloque C3, 19-28.
[8] J. P. Borel, Complexity and palindromic complexity of biliard words, Proceedings of WORDS2005 Ed. S. Brlek, C. Reutenauer, (2005), 175-183.
[9] M. Boshernitzan, A condition for unique ergodicity of minimal symbolic flows, Ergodic Theory Dynam. Systems 12 (1992), 425-428.
[10] M. Boshernitzan, C.R. Carroll, An extension of Lagrange's theorem to interval exchange transformations over quadratic fields, J. Anal. Math., 72 (1997), 2144.
[11] D. Damanik, Gordon-type arguments in the spectral theory of one-dimensional quasicrystals, Directions in Mathematical Quasicrystals, M. Baake, R. V. Moody, eds., CRM Monograph Series 13, AMS, Providence, RI (2000), 277305.
[12] D. Damanik, L.Q. Zamboni, Combinatorial properties of Arnoux-Rauzy subshifts and applications to Schödinger operators, Rev. Math. Phys. 15 (2003), 745-763.
[13] D. Damanik, D. Zare, Palindrome complexity bounds for primitive substitution sequences, Disc. Math. 222 (2000), 259-267.
[14] X. Droubay, G. Pirillo, Palindromes and Sturmian words, Theoret. Comput. Sci. 223 (1999), 73-85.
[15] Ch. Frougny, Z. Masáková, E. Pelantová, Complexity of infinite words associated with beta-expansions, RAIRO Theor. Inform. Appl. 38 (2004), 163185
[16] L.S. Guimond, Z. Masáková, E. Pelantová, Combinatorial properties of infinite words associated with cut-and-project sequences, J. Théor. Nombres Bordeaux, 15 (2003), 697-725.
[17] A. Hof, O. Knill, B. Simon, Singular continuous spectrum for palindromic Schödinger operators, Commun. Math. Phys. 174 (1995), 149-159.
[18] J. Justin, G. Pirillo, Episturmian words and episturmian morphisms, Theoret. Comput. Sci. 276 (2002), 281-313.
[19] M.S. Keane, Interval exchange transformations, Math. Zeit. 141 (1975), 25-31.
[20] G. Rauzy, Échanges d'intervalles et transformations induites, Acta Arith., 34 (1979), 315-328.
[21] A. Sütö, Schrödinger difference equation with deterministic ergodic potentionals, Beyond Quasicrystals (Les Houches, 1994), F. Alex, D. Gratias, eds. Springer, Berlin (1995), 481-549.
[22] D. Shechtman, L. Blech, D. Gratias, J. V. Cahn, Metallic phase with long-range orientational order and no translational symmetry, Phys. Rev. Let. 53 (1984), 1951-1953.

