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Abstract

We study the relation between the palindromic and factor complexity of infinite
words. We show that for uniformly recurrent words one has P(n) + P(n + 1) <
AC(n) + 2, for all n € N. For a large class of words it is a better estimate of the
palindromic complexity in terms of the factor complexity then the one presented in
[2]. We provide several examples of infinite words for which our estimate reaches its
upper bound. In particular, we derive an explicit prescription for the palindromic
complexity of infinite words coding r-interval exchange transformations. If the per-
mutation 7 connected with the transformation is given by 7(k) = r+1—k for all k,
then there is exactly one palindrome of every even length, and exactly r palindromes
of every odd length.

1 Introduction

Recently, palindromes have become a popular subject of study in the field
of combinatorics on infinite words. Recall that a palindrome is a word which
remains unchanged if read backwards. In natural language it is for example the
word “madam” in English, or “krk” (neck) in Czech. We shall study infinite
words u over a finite alphabet A, i.e. sequences u = (uy,)neny Where u; € A for
alli € N=4{0,1,2,...}. A palindrome of the length n in the infinite word u is
a factor p = w;u;q1 -+ - Ujpn_1 such that w;u; 1 Ujsn_1 = Uipn_1Uitn_2- - Us.

The attractiveness of palindromes increased when Droubay and Pirillo pro-
vided yet another equivalent definition of sturmian words using palindromes.
They have shown in [14] that an infinite word w is sturmian if and only if u
contains exactly one palindrome of every even length and exactly two palin-
dromes of every odd length.
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A strong motivation for the study of palindromes in infinite words appeared al-
ready before, in their application in modeling of solid materials with long-range
order, the so-called quasicrystals. In 1982, Dan Shechtman et al. [22] discov-
ered an aperiodic structure (which was formed by rapidly-quenched aluminum
alloys) that has icosahedral rotational symmetry, but no three-dimensional
translational invariance (see e.g. [7]). The existence of such structures has
been absolutely unexpected. Since then, many other stable and unstable ape-
riodic structures with crystallographically forbidden rotational symmetry were
discovered; they were named quasicrystals.

Since the discovery of quasicrystals there has been an increasing interest in
the study of the spectral properties of non-periodic Schrodinger operators.
One can assign to an infinite word u over an alphabet A, which models a
one-dimensional quasicrystal, a Schrodinger operator H acting on the Hilbert
space (*(Z) as follows

(Ho)(n) =d(n+1) 4+ d(n— 1) + V(ua)o(n),
where V' : A — R is an injection and represents a potential of the operator.

Many nice properties of these operators have been shown, and they are well
understood at least in the one-dimensional case. The survey papers [11], [21]
map the history of this effort. One of the main tasks is to derive the spectral
properties of the Schrédinger operator H from the properties of the sequence
V(u,). The physical motivation behind this study is that the spectral prop-
erties of operators determine the conductivity of the given structure. Very
roughly speaking, if the spectrum is pure point then the structure is behav-
ing like an insulant. In case of absolutely continuous spectrum the material is
becoming a conductor.

Generally, the task of describing the spectral properties of the operator with
potential given by an arbitrary infinite word w is not a simple one. The rel-
evance of the study of palindromes in the infinite words has been proven by
Hof et al. [17] who showed that the operators given by words having arbitrary
large palindromes have purely singular continuous spectrum.

The aim of this article is to find a relation between factor and palindromic
complexity of uniformly recurrent words. Let us first introduce the basic no-
tions which will be used in sequel.

The set of all factors of length n of an infinite word u = uguqus - - - is denoted
by

ﬁn(u) :{wlwn | =) €N> wl"'wn:ui"'ui-i-n—l}‘

The set of all factors of u, including the empty word ¢ is called the language



of u and denoted
L(uw)=J Lnlu).
neN
The variability of local configurations in the word u is characterized by the
factor complexity, the function C : N — N, given by the prescription

C(n):=#L,(u).

It is known that if there is an ng such that C(ng) < ng, then the word wu is
eventually periodic, i.e. there exists k € N such that u;,., = u, for every
n > ng. Any aperiodic (i.e. not eventually periodic) word therefore satisfies
C(n) > n+1 for every n € N. Aperiodic words of minimal complexity C(n) =
n + 1 are called sturmian words. For a survey of different characteristics and
properties of sturmian words see [6].

The mirror image, or reversal, of a finite word w = w; ---w, is the word
W = w,---w;p. If the language L£(u) contains with every factor w also its
mirror image w, we say that £(u) is invariant under reversal.

The palindromic complexity of the infinite word u = (u,,)nen is @ function P :
N — N which counts the number of palindromes of a given length. Formally,

Pn) =#{w e L,(u) | w=1w}.

Trivially, one has P(n) < C(n). A non-trivial result is an estimate of P(n)
using C(n) provided in [2].

Theorem 1.1 ([2]) For arbitrary infinite word one has

P(n)ﬁ%C(n—l—L%J), for all neN. (1)

Let us mention that Theorem 1.1 implies the result of [13]: The palindromic
complexity of a fixed point of a primitive morphism is bounded.

In this paper we provide an estimate of P(n) of uniformly recurrent words
using the first difference AC(n) := C(n + 1) — C(n). For words whose factor
complexity is a polynomial of degree < 16, this estimate is better than that
of (1). Let us recall that an infinite word wu is uniformly recurrent, if the gaps
between consecutive occurrences of any factor w € L(u) in the word u are
bounded. Equivalently, if for every n € N there exists R(n) € N such that
in an arbitrary segment of length R(n) in the word u one finds all factors of
L, (u), ie.

L(u) ={uirr - tipn | k<i<k+ R(n)}, for all k,n e N.



Let us mention that sturmian words are example of uniformly recurrent words
with language closed under reversal [14].

In section 2 we show the following theorem.
Theorem 1.2 Let u = (uy)nen be an uniformly recurrent word.

(i) If L(u) is not closed under reversal, then P(n) = 0 for sufficiently large n.
(i) If L(u) is closed under reversal, then

P(n)+Pn+1) <AC(n)+2, for all n € N.

It is interesting that equality in the latter estimate of the palindromic com-
plexity holds for some known classes of infinite words, such as Arnoux-Rauzy
words or fixed points of canonical substitutions associated to numeration sys-
tems with base 3, where 3 is a Parry number [15]. We list some of these
examples in section 2. In section 4 we show that the equality in the estimate
is valid also for infinite words coding r-interval exchange transformation.

2 Proof of Theorem 1.2

First we show that unboundedness of the length of palindromes in an infinite
uniformly recurrent word u implies that the language of u is invariant under
mirror image.

Lemma 2.1 Let u be an infinite word which is uniformly recurrent and such

that limsup,,_,., P(n) > 0. Then L(u) = L(u).

PROOF. Let n € N. Consider R(n) from the definition of uniformly recur-
rent words. Let p be a palindrome of length greater than R(n). It contains all
factors of u of length n. In the same time it contains with every factor w also
its mirror image. Thus £, (u) = £, (u) for all n € N.

The above lemma in fact proves (i) of Theorem 1.2. Crucial tool for the proof
of (ii) is the notion of a Rauzy graph of an infinite word.

Let u = (up)nen be an infinite word, n € N. The Rauzy graph I, of u is an
oriented graph whose set of vertices is £, (u) and the set of edges is £,+1(u).
An edge e € £,,11(u) starts at the vertex x and ends at the vertex y, if x is a
prefix and y is a suffix of e.

If the word w is uniformly recurrent, the graph I',, is strongly connected for
every n € N, i.e. there exists an oriented path from every vertex z to every
vertex y of the graph.



€ = WoW1 ** " Wp_1Wp

°
T = WoWy * - Wp—1 Y=wW1 " Wp—1Wn

Fig. 1. Incidence relation between an edge and vertices in a Rauzy graph.

The outdegree of a vertex x € L, (u) is the number of edges which start in x.
It is denoted by deg, (),

deg () =#{ac A|za € Lyy1(u)}.

Similarly, we define the indegree of x as

deg_(z) =#{a € Al ax € L, 11(u)}.

The sum of outdegrees over all vertices is equal to the number of edges in every
oriented graph. Similarly, it holds for indegree. In particular, for the Rauzy
graph we have

> deg, () = #Lun(w) = Y deg (2.

z€Ly (u) €Ly (u)

Since AC(n) = #L,41(u) — #L,(u), we obtain

AC(n) = Y (degi(z)—1)= > (deg_(w)—1). (2)

2E€LR (1) €L (u)

A non-zero contribution to AC(n) is therefore given only by those factors
z € L,(u), for which deg (z) > 2, i.e. such that there exist distinct letters
a,b € A satisfying za,zb € L,.1(u). A factor of u, which has at least two
extensions to the right is called a right special factor of u. Similarly one can
define a left special factor, and the relation (2) can be rewritten as

AC(n)= > (deg+(:c) — 1) = Y (deg_(:c) - 1) :

x€Ln(u), x right special 2E€Ln(u), = left special

PROOF of (ii) of Theorem 1.2. Suppose that the language of the infinite
word u is closed under reversal. Consider the operation r which to every vertex
of the graph associates p(x) = T and to every edge associates p(e) = €.

€ = WpWp—1 - W1Wo
[

T = Wp_1Wp_2 - Wy Y= WpWp_1-" W

Fig. 2. The action of the mapping p on the edge and the vertices of Figure 1.



This operation maps the Rauzy graph I',, onto itself. Obviously,

P(n) = #{z € La(u) | p(2) = 2},
P(n+1) = #{e € Lni(u) | ple) = e}

We shall be interested in the pathes leading between special factors. More
precisely, we shall call a simple path an oriented path w = vgv; ... v, such
that its initial vertex vy, and its final vertex v, are left or right special factors,
and the other vertices are not special factors, i.e. deg, (v;) = deg_(v;) =1
for i = 1,2,...,k — 1. A special factor is considered as a simple path of
length 0. Since the infinite word w is uniformly recurrent, the graph I',, is
strongly connected, and therefore every vertex and every edge belongs to a
simple path.

For an edge e satisfying p(e) = e we find the simple path w which contains
e. Since p(e) = e, the operation 7 must map the path w onto itself. Similarly,
if for a vertex z it holds that p(z) = z, then the simple path containing z is
mapped by p onto itself.

To give an upper bound on P(n) + P(n + 1) therefore consists in finding the
number of simple paths in the Rauzy graph I',, which are mapped by p onto
itself. It therefore suffices to study the so-called reduced Rauzy graph.

The set V' of vertices of the reduced Rauzy graph is formed by all x € £,,(u)
which are either left or right special factors of u. Two vertices z,y € V are
connected by an oriented edge from x to y, if in the original Rauzy graph I,
there exists a simple path from x to y. The operation p maps the reduced
Rauzy graph onto itself.

The set V' of vertices of the reduced Rauzy graph can be divided into disjoint
cycles of the mapping p. Since p?> = Id, the cycles are either of length 1 or
2. The cycles of length 1 are given by special factors invariant under p, i.e.
special factors, which are themselves palindromes. Let us denote their number
by «, and denote the number of cycles of length 2 by 3. Note that the number
of vertices in the reduced Rauzy graph (i.e. left or right special factors in I',)
is a+ 20.

If there is an edge from z to y, where x and y belong to different cycles,
then there is another edge leading from p(y) to p(z). Since the reduced Rauzy
graph is strongly connected, the number of edges, which lead between vertices
of different cycles, is at least 2(av + 8 — 1). These edges correspond in the
original Rauzy graph I'), to the simple paths of non-zero length which are not
mapped by p onto itself.



As we have said, the number of palindromes of length n and n 4+ 1 is bounded
by the number of simple paths in I',,, which are mapped by p onto itself. We
thus have

Pn)+Pn+1)< > degy(z) — 2(a+8-1) + a,

x is left or right special

where the first summand is the number of all simple paths of non-zero length
in I',,, the second summand estimates the number of simple paths of non-zero
length which are not mapped onto itself, and the third one is the number of
simple paths of zero length invariant under p (i.e. palindromic special factors).
We obtain

Pn)+Pn+1)< > degy(z) — (@+28) + 2 =

x is left or right special

= > (deg+(x)—1) + 2 = AC(n) + 2,

x is left or right special

where we have used that o + 26 is the number of left or right special factors
in I',,. This completes the proof.

3 Examples of infinite words with maximal P(n) + P(n + 1)

In this section we present several examples of infinite words which satisfy
limsup,,_, . P(n) > 0 and

P(n) + Pln+1) = AC(n) + 2. (3)

These are in a sense words with maximal number of palindromes.

1. Arnoux-Rauzy sequences. Arnoux-Rauzy sequences are generaliza-
tions of sturmian words for an alphabet with more than 2 letters. An infinite
word u over an r-letter alphabet is called Arnoux-Rauzy of order r, if for every
n € N there exists exactly one left special factor, say wy, and exactly one right
special factor, say wg, of length n, and they satisfy deg, (wg) = deg_(wy) = r.
Note that Arnoux-Rauzy sequences of order 2 are precisely the sturmian
words. Directly from the definition one can deduce that the factor complexity
is C(n) = (r — 1)n+ 1 for all n € N. In [12] it was shown that

r, if n is odd,
P(n) =

1, if nis even.



Since AC(n) = r — 1, we obtain
Pn)+Pn+1)=r+1=AC(n)+2,

and thus the Arnoux-Rauzy words satisfy (3).

2. Complementation-symmetric sequences. In [2] it was shown that
complementation-symmetric sequences, with factor complexity C(n) = 2n for
all n € N, satisfy P(n) = 2 for all n > 1. Recall that a complementation-
symmetric sequence on a two-letter alphabet, say A = {a, b}, is a sequence
such that for any factor occurring in it, the word obtained by changing a’s
into b’s and vice versa, is also a factor. Since AC(n) = 2, we have again

Pn)+Pn+1)=4=AC(n)+2.

3. Words associated with S-integers. In [3] one studies palindromes in
words associated with [-integers, i.e. positive real numbers which have vanish-
ing fractional part in the numeration system with base /. For the description
of the words ug we introduce the Rényi expansion of 1.

Let /8 be a fixed real number, 5 > 1. Denote by T3 the mapping Tj : [0,1] —
[0,1), given by the prescription

Ts(z) = P — |Bz].
The sequence
ds(1) = tatats---,  where t;:= T4 '(1)], i=1,2,3,...

is called the Rényi expansion of 1. If dg(1) is eventually periodic, then 5 is
called a Parry number.

The infinite word wug, which codes the distances between [-integers, is the
fixed point of a morphism over a finite alphabet. The morphisms are of two
types, according to the type of the Parry number /.

o If ds(l) =ty ---t,0¢, with ¢, # 0, then S is called a simple Parry number.
In this case ug is the fixed point of the substitution ¢ = ¢z over the alphabet



A=1{0,1,--- ,m — 1}, given by

©(0) = 0™ 1,
(p(l) = (O 2,

o If dg(l) = t1 - tim(tms1 - - tmsp)”, Where m, p are minimal indices which
allow such notation, then ug is the fixed point of the substitution ¢ = ¢z
over the alphabet A ={0,1,---,m +p— 1}, given by

©(0) = 0™ 1,
p(1) = 0% 2,

e(m—1) = 0 m,

p(m+p—2) = 0=t (m+p—1),
e(m+p—1) = 0fmtr m,

For infinite word us one can easily show that are uniformly recurrent. The
condition of invariance of the language of uz under reversal is described in [15]
for the case of simple Parry number, i.e. dg(1) =t - - -¢,,0“. It is shown that
L(ug) is closed under reversal if and only if t; = - - - = t,,,_1 > t,,,. For the case
ds(1) = t1 - tm(tms1 - - - tmgp)” it is shown in [5] that the language of ug is
closed under reversal if and only if m = p = 1. Papers [15] and [4] show that
if ug has the language invariant under reversal, then

P(n+2)—P(n) = A%C(n) =C(n+1)—C(n),
which allows one to derive the validity of (3).

While in examples 1 and 2 the second difference A?C(n) = 0, for the words
ug it holds that A?C(n) € {—1,0,1} and all three values are reached infinitely
many times.

4. Words coding r-interval exchange transformation. Another pos-
sible generalization of sturmian words are words coding a bijective transfor-
mation of the interval [0, 1) onto itself, known under the name r-interval ex-



change. Let us recall the definition of an interval exchange map. It can be
found together with some properties in [14], [19].

Given r positive numbers ay, o, ..., a, such that >/, a; = 1. They define a
partition of the interval I = [0,1) into r intervals

k—1 k
]k:lZOéi,ZOKZ), ]{7:1,2,...,7’.
i=1 i=1

Let m denote a permutation of the set {1,2,...,r}. The interval exchange
transformation associated with «q,..., @, and 7 is defined as the map T :
I — I which exchanges the intervals [ according to the permutation 7,

T)=z+4+ Y apig— >, o5, forzel.

j<m(k) i<k

For xy € I, the sequence (1" (z))nez is called the orbit of xy under T'. The
infinite bidirectional word (u,),ez over the alphabet A = {1,..., r} associated
to the orbit (7" (x¢))nez is defined as

u,=keAd < Tn(l'Q)EIk

The complexity of the word corresponding to any r-interval exchange trans-
formation satisfies C(n) < n(r — 1) 4+ 1, for all n € N. Here we focus on the
non-degenerated case, i.e. on mappings 1" for which the complexity of the word
associated to the orbit of arbitrary o € I satisfies C(n) = (r — 1)n+ 1, for all
n € N. This property is ensured by additional conditions (denoted by ) on
the parameters of the map 7.

1. aq,...,q, are linearly independent over Q,

(B)
2. m{l,...,k} #{1,...,k} foreach k =1,2,...,r — 1.

If the conditions (%) are fulfilled, then the set {T™(z)}nez is dense in [ for
each xg € I and the dynamical system associated to the transformation T
is minimal. It implies that the infinite word corresponding to the sequence
(T™(x0))nez is uniformly recurrent.

Another important consequence of () is that the language of the word (u,,)nez
corresponding to (T™(zg))nez does not depend on the position of the starting
point xg, but only on the transformation 7'. Therefore the notation L£(7T),
which we adopt here, is justified. We know that £(77) = L£(T3) only if 7} and
T5 coincide.

If » = 2, the permutation satisfying B is w(1) = 2, m(2) = 1 and the corre-

sponding word is sturmian. On the other hand, every sturmian word can be
obtain as a coding of a 2-interval exchange transformation.
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If r = 3, then the condition 2. of B is satisfied by three permutations. One
can easily see that only the permutation w(1) = 3, m(2) = 2, 7(3) = 1 gives
an infinite word with language invariant under reversal. Such words can be
geometrically represented by cut-and-project sequences [16].

For general r, the language of the infinite word u closed under reversal if and
only if

r)=r, n2)=r—-1, ..., w(r)=1. (4)
Only for such permutation the infinite word u coding the corresponding inter-
val exchange transformation one may have limsup,,_,.. P(n) > 0.

The palindromic complexity in words coding 3-interval exchange map was
described in [12]. In section 4 we generalize their result for any . We show that
for words coding an r-interval exchange transformation with permutation (4)
the equality (3) holds.

4 Words Coding Interval Exchange Transformation

In this section we will be dealing only with such transformations 7" of r-
intervals for which the permutation 7 satisfies (4). In this case the transfor-
mation has the form of

Tx)=z+Y aj— Y «a; forzel. (5)

>k j<k
It is known that there exists an interval I, C I, for every word w =
wowy ... wy_1 € L(T) such that the sequence of points x, T'(x), ..., T" *(z) is

coded by the same word w for each x € I,,. Note that the boundaries of the
interval I, belong to the set Zlay, ..., ] = {> ki | ki € Z}.

Let us denote the decomposition of the interval I = [0,1) by the transforma-
tion T~! by I, I, ..., I, and analogously I,, for an arbitrary w € £(T1).

Clearly, I.-1;y = T(I;) for each j € {1,...,r}. Since 7 is of the form (4),
it follows that I; = [a,b) implies I.-1(;) = T'(I;) = [1 — b,1 — a). The same
relation is therefore valid for any factor w € L(T),

L, = [CL, b) - [ﬂ—l(w) = [1 —b,1— a). (6)
Now we have everything prepared for determination of the palindromic com-
plexity.

Theorem 4.1 Let aq,...,q, be positive real numbers, linearly independent

11



over Q and 7 a permutation satisfying (4). Then

1 for each n even ,
P(n) =
r for each n odd .
PROOF. Consider the palindrome of even length in the form of
Wp—1Wp—9 « . WoWq - . . Wy_oWy,_1 € L(T).
It means that there exists « € [0, 1) such that
r€ly,, T(x)e€ly, ..., T"Yz)el,, ,,

T z) €y, T*x) €Ly, ..., Tx)EI,, .

Hence = € I,,, where w = wy, ... w,_1 and on the other side

r € T(ly)
T7'(x) € T(Ly,)

]Wfl(wo)a

]7r*1(w1)7

T_n+1(l') € T([wn71): 7 (wp_1)-

It follows that x € fﬂ71(wowl...w%1). Thus = has to belong to the intersection
of both intervals, i.e. x € I, N Iz-1(y). If I,, = [a, b), then according to (6)

z€la,b)N[l—=b1—a).

Now we use a simple fact that for every interval [a, b) it holds that

[@,b)N[s—bs—a)£0 < %e[a,b). (7)
Therefore 1
3 el,N fw—l(w). (8)

We have shown that every palindrome of even length arises from the coding
of
—n (1 -1(1 1 1 n—1 (1
(), T (3) AT ()T ()

The fact that {T"(z)},ez is dense in [0, 1) implies that the previous sequence
occurs in (T™(z))nez, for each z. Thus the coding of (T™(z)),ez includes ex-
actly one palindrome of even length for each n.

12



Consider now the palindrome of odd length in the form of
Wy W3+« . WIWWT - . . Wy oWy 1 € L(T).
Again, it means that there exist z,y € [0,1) such that
v €1y, T()€lLy, ..., T" Y z) €L, ,,
yEly, TN y) €luy, ..y T7y) €Ly, , -

The first sequence is the coding of the word w = wow; ... w,_1, i.e. © € I,
and the following is true for the second one

T y) € T(lw,.,)

I—1(wn_1)-

Thus y € iﬂ-fl(w). If there exists a palindrome of odd length with the central
letter wy then it has to be y = T'(z) =  + S4,, where s,, # 0 is a shift of
r € Iy, by the mapping 7. Using (5) we have sy, = >jsuy 0 — 2 jcwg Q-
In other words we have x € [, and = € j;rfl(w) — Swy- If I, = [c,d) then
L) = [1 — d,1 — ¢) and therefore z € [c,d) N [1 — d — Sup, 1 — € — Sy)-
According to (7)

- s, .
Loy ‘= % - Iw N (Iﬂfl(w) — Swo).

We have shown that the palindrome w,,_qw,_s ... wjwows . ..w,_sw,_1 can be
obtained by coding of following sequences

T (@) sy T (@) s Ty T (Tawg) 5+ s T () - (9)
One may rewrite

r o r ) wo—1 wo—1

1 —swy 2 Y1 & T 22 o > o+ o
xwo - - o a] 2 )
J=1

2 2

It means that the point z,,, which correspond to central letter wy in the
palindrome of odd length, is laying in the middle of interval I,,, associated to
the central letter.

On the other hand, if z,,, is the center of one of the intervals Iy,..., I, the
sequence (9) corresponds to a palindrome. Therefore P(2n + 1) = r.

13



Note that according to the previous theorem the interval exchange transfor-
mation with a permutation satisfying (4) has the same palindromic complexity
and also factor complexity as Arnoux-Rauzy words over r letters [12], [18].

5 Conclusions

The main result of this paper is the estimate of the palindromic complexity
of infinite words in terms of their factor complexity. We have shown in The-
orem 1.2 that uniformly recurrent words with infinitely many palindromes
satisfy the following relation

P(n)+Pn+1) <AC(n)+2, for all n e N.

It is interesting to mention that the first difference of factor complexity was
already useful for estimation of the frequencies of factors. In [9] it is shown
that the frequencies of factors of length n in a recurrent word take at most
3AC(n) values.

The second part of the paper is devoted to infinite words for which P(n) +
P(n+ 1) in Theorem 1.2 reaches the upper bound. We cite several examples
of such infinite words among the words for which the palindromic and factor
complexity was known. As a new result, we derive the palindromic complexity
for infinite words coding r-interval exchange transformation and prove that
for this class of infinite words the equality in the estimate hold, too.

According to our knowledge all known examples of infinite words which satisfy
the equality P(n) + P(n + 1) = AC(n) + 2 for n € N have sublinear factor
complexity. A known example of an infinite word with higher factor complexity
are the billiard sequences on three letters, for which C(n) = n* +n + 1. As
shown in [8], they satisfy P(n) +P(n+ 1) = 4, and thus billiard sequences do
not reach the upper bound in Theorem 1.2.

The proof of Theorem 1.2 is based on the study of properties of the Rauzy
graph and its behaviour with respect to the operation of mirror image on the
language of the infinite word. It turns out that the Rauzy graphs of words
reaching the upper bound in our estimate of palindromic complexity must
have a very special form.
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