Learning Intersection-Closed Classes with
Signatures

Andrei Bulatov® Hubie Chen® Victor Dalmau®

aSimon Fraser University, Burnaby, Canada

b Departament de Tecnologia, Universitat Pompeu Fabra, Barcelona, Spain

Abstract

Intersection-closed classes of concepts arise naturally in many contexts and have
been intensively studied in computational learning theory. In this paper, we study
intersection-closed classes that contain the concepts invariant under an operation
satisfying a certain algebraic condition. We give a learning algorithm in the exact
model with equivalence queries for such classes. This algorithm utilizes a novel
encoding scheme which we call signature.

1 Introduction

Intersection-closed classes of concepts arise naturally in many contexts and
have been intensively studied in computational learning theory. Examples of
intersection-closed classes include axis-parallel n-dimensional rectangles, k-
CNF boolean functions, and systems of linear equations; see [4] for more ex-
amples and references. A known method for learning intersection-closed classes
is the closure algorithm [4,18-20,27]. The idea behind the closure algorithm is
to predict according to the intersection of all concepts containing the known
positive examples.

In this paper, we study intersection-closed classes that contain the concepts
invariant under a certain operation. Roughly speaking, a concept is invariant
under an operation f if for any elements of the concept, applying f to the
elements yields another element in the concept. We denote by Inv(f) the set
of all concepts invariant under f.

Email addresses: abulatov@cs.sfu.ca (Andrei Bulatov), hubie.chen@upf .edu
(Hubie Chen), victor.dalmau@upf .edu (Victor Dalmau).

Preprint submitted to Elsevier Science 14 March 2006

Perhaps the concept class that best illustrates this notion is that of affine
systems over a given (finite) field F. This class contains all concepts that
can be expressed as the set of all solutions of a system of linear equations
A-x = b. It is an easy exercise to show that any such concept is invariant
under the operation g(x,y, z) = x — y + z of the field. Indeed, for every three
vectors Xip, Xg, X3 satisfying A - x = b, we have that

A-g(x1,%2,X3) = A- (X3 —Xa+x3) =A-x1—A-x3+A-x3=h.

Another example that fits in this framework is the class of generalized quan-
tified formulas. The complexity of testing satisfiability of generalized quanti-
fied formulas, also called quantified constraint satisfaction problems, has been
studied in recent years; see for example [5,9,11,10]. Its learning complexity is
studied in [15,16].

It has been proved [16] that the closure algorithm efficiently learns Inv(f)
when f is a near-unanimity operation, an operation satisfying the identities

fley,...,y.y) = fly,z,y,...,y,y) = =y.

(Note that these identities state that if all but at most one of the inputs to
f are equal, then the majority input is the output of f.) This result implies
the learnability of quantified 2-CNF formulas [15]. It has also been proved [16]
that the closure algorithm efficiently learns Inv(f) when f is a coset-generating
operation, an operation equal to z-y -z where - and ! are the operations of a
finite group. Note that any coset-generating operation f satisfies the identities

f,y,y) = fly,y,7) = =.

This latter result subsumes the learnability of systems of linear equations over
a finite field.

In this paper, we unify and generalize these two results. We consider classes of
the form Inv(f) when f : A¥ — A is a generalized majority-minority operation
on a set A, that is, an operation such that, for all a,b € A, either

f(xaya"ayay):f(yaxa"ayay):"':f(yaya--ayax):y for aHﬂU,yG {aab}a

or
fx,y, .y, y) = fly,y,..,y,x) =z for all x,y € {a,b}.
As is easily seen, previously studied near-unanimity and coset-generating op-
erations correspond to generalized majority-minority operations, for which
either {a, b} satisfying the second condition never occurs (near-unanimity op-
erations), or the operation is ternary and {a,b} satisfying the first condition
never occurs (coset-generating operations). We prove that the closure algo-
rithm learns such classes in polynomial time, and therefore Inv(f), where f is

a generalized majority-minority operation, is learnable in the exact model with
equivalence queries. However, the encoding produced by the closure algorithm,
a generating set, is not known to be polynomial time evaluable. So we intro-
duce a more sophisticated encoding for concepts invariant under a generalized
majority-minority operation, which we call signature. For this encoding, we
prove polynomial-time evaluability, that is, we can decide in polynomial time
whether or not an example belongs to a concept. We then give an algorithm
that exactly learns, in polynomial time, Inv(f) encoded with signatures.

2 Learning Preliminaires: The Closure Algorithm

In this paper, the model of learning that we use is exact learning with equiv-
alence queries, defined by Angluin [1]. Note that in this model, the learning
algorithm is relatively unpowerful, and so our positive learnability result im-
plies learnability in “more powerful” models such as the PAC model [32], exact
learning with equivalence and membership queries [1], the PAE model [6], and
on-line learning [1,26]; these models are among the most studied in computa-
tional learning theory.

In our setting a concept ¢ from a concept class C' is merely a subset of a
domain space X, paired with an encoding of ¢. Throughout this paper we
shall assume that the domain space X contains all tuples over a given (finite)
domain A, that is X = A*. We shall denote the elements of X with boldface
letters x,y,....

A learning algorithm Alg has the goal of identifying a target concept ¢. It
may make any number of queries or requests to a teacher or oracle, who is
commited to answer according to ¢, although not necessarily in a collaborative
way. In the exact model with equivalence queries [1] the learner supplies the
oracle with a hypothesis h and the oracle either says “equivalent”, or returns
a counterexample x € h At (here, A denotes the symmetric difference). If the
provided hypothesis h does not belong to the concept class C' then we speak
of improper equivalence queries. We say that Alg learns a concept class C' if for
every target concept ¢, Alg halts with an output concept v equivalent to c. Alg
runs in polynomial time if its running time is bounded by a polynomial on the
size of the encoding of ¢ and the size of the largest counterexample. We shall
say that a concept class C' is polynomially learnable with equivalence queries
if there exists a learning algorithm that learns C' and runs in polynomial time.
We also say that a concept class C' is polynomially evaluable if there exists
an algorithm that, given a concept ¢ € C' and an example x € X, decides
whether or not x € ¢ and runs in polynomial time.

Definition 1 A concept class C on domain X is intersection closed if for all

two concepts ¢y, co C X in C, its intersection c¢; N ¢y also belongs to C'.

Examples of intersection-closed concept classes include axis-parallel n-dimen-
sional rectangles, k-CNF boolean functions, subspaces of a linear space, and
integer lattices.

There is a canonical algorithm for learning intersection-closed classes with
equivalence queries, which has been called the closure algorithm: the hypoth-
esis supplied by the algorithm is always the smallest concept ¢ containing the
set ¢’ of all the counterexamples seen so far. This concept, which we denote
as (c'), can be defined as Njec,vcqd. Due to the way in which the algorithm
is defined, at any point of execution, the concept of the learner is a subset of
the target concept. Thus, any conterexample provided by the oracle must be
positive, that is, any counterexample belongs to the target concept.

3 Relations invariant under an operation

We shall focus on a particular type of intersection-closed classes.

We need to introduce some notation. Let A be a finite set. A k-ary relation
(with k£ > 0 an integer) on A is a subset of A* where k is called the arity of the
relation. The set {1,...,k} is referred to as the set of indices or coordinates
of R.

Definition 2 Let A be a finite set, let f: A" — A be an n-ary operation on
A and let R € A™ be an m-ary relation on A. We say that f preserves R
(or f is a polymorphism of R, or R is invariant under f) if, for any a; =
(@115 s A1)y y@n = (Qiny - -, Qup) € R, the tuple f(ayg,...,a,) defined as
(f(art, -y a1n)s -y f(@miy -y Qmn)) belongs to R.

We emphasize that, when speaking of a function f preserving a relation R C
A™, the function f is defined on the set A and not on A™, although we extend
the action of f to A™ (for all m > 1) by applying it coordinate-wise (as
described in the definition).

Example 1 Let R, be the binary relation over the boolean domain A = {0,1}
that is given by

R, = {(07 1)7 (17 0)7 (17 1)}
That is, Ry (z,y) is equivalent to x V y.

Let m : {0,1}3 — {0,1} be the ternary operation on {0,1} that returns the

majority of its arguments. That is,

rifr=y
m(z,y,z) =

z otherwise

It is not difficult to verify that m is a polymorphism of Ry. We only need to
check that for every three (not necessarily different) tuples in Ry, for ezample
(0,1),(1,0),(1,1), the tuple obtained by applying m component-wise, which in
our example is (m(0,1,1),m(1,0,1)) = (1,1), belongs to Ry.

Indeed, it is easy to see that m is also a polymorphism of Ry and R3 where
Ry(xz,y) =TV y and R3(x,y) =TV 7.

We are now in a position to define the family of concept classes that we are
studying in this paper.

Definition 3 Let A be a finite set, and let f : A¥ — A be any function on A.
We denote by Inv(f) the set containing all relations invariant under f.

We shall slightly abuse the notation and we shall speak of Inv(f) as a concept
class. Properly speaking, in order for Inv(f) to define a concept class it is
necessary to associate an encoding to each relation in Inv(f). The particular
encoding used might change from application to application.

In the closure algorithm relations are encoded by means of generating sets. For
a set R’ of n-tuples, (R') ; denotes the smallest relation R such that R' C R and
R is invariant under f. This relation can also be represented as the intersection
of all n-ary relations containing R’ and invariant under f. We refer to this
relation as the relation generated by R', and R’ is said to be a generating set
of R. Then, a relation R is encoded by a generating set. In the algorithm
presented in this paper we shall use a different encoding called signatures.

Observe that the domain space of Inv(f) is precisely the set of all tuples
with elements of A. Furthermore every concept in Inv(f) is bound to have
examples (tuples) of the same length. It is easy to prove that Inv(f) is indeed
intersection-closed. In the following we shall present some concept classes that
fit into this framework.

3.1 Affine systems

Let F' be an arbitrary finite field. Every system of linear equations over F'
with variables say, xy,...,x,, encodes a concept which is constituted by all
solutions of the system. We view every solution as an n-ary tuple, so the
solution space is an n-ary relation R.

As mentioned in the introduction, the operation g(x,y,z) =z —y+ z is a
polymorphism of R. In fact, the converse can also be shown: if R is invariant
under ¢ then it is the solution space of a certain system of linear equations.

The operation x — y + z is called an affine operation. A similar operation
x+-y -z where - and ~! are operations of a group is called a coset-generating
operation. Note that every affine operation is a coset-generating operation
arising from an Abelian group.

In [16] it is shown that Inv(g) is polynomially exactly learnable with equiva-
lence queries by the closure algorithm.

3.2 Generalized Quantified Formulas

We use [n] to denote the set containing the first n positive integers, that is,
{1,...,n}. Let V. = {x,29,...} be a countably infinite set of variables and
let A be a finite set.

Definition 4 [16] Let A be any finite set and let I' = { Ry, Ry, ...} be any set
of relations over A, where each R; has arity k;. (The notation R; is used for
both the relation and its symbol.)

The set of quantified generalized formulas over the basis I', which is denoted
by V3-Form(T'), is the smallest set of first-order formulas such that:

For oll R € T of arity k, R(yi,...,yr) € YI-Form(T") where y; € V for
1<i<k.

For all ®,¥ € V3-Form(T"), ® A ¥ € V3-Form(T').

For all ® € V3-Form(T") and for all x € V, 3x® € V3-Form(T').

For all ® € V3-Form(T") and for all x € V, Ya® € V3-Form(T').

Each formula ® defines a relation Rg if we apply the usual semantics of first-
order logic, and the variables are taken in lexicographical order. More formally,
let ® be a formula over the free variables x;,, z;,, ..., z;,, wherei; <iy <--- <
I ; we define

Re = {(ay,a2,...,an) : v;; — a; satisfies @}
Example 2 Consider the problem of learning quantified 3-CNFs, which are
formulas formed by a quantified conjunction of clauses with three literals per

clause.

FEvery such formula can be expressed as a formula in ¥Y3-Form(T") with the set

of logical relations T' = { Ry, Ry, Ry, R3}, defined by:

Ro(x,y,2) =xVyVz,
Ri(x,y,2) =TVyV z,
Ry(x,y,2) =TVTYV 2,
R3(x,y,2) =TVyVz

As an example, let ® be following formula:

3$1E|1‘2V1‘3E|1‘4V1‘5R1 (.’L’g, Ty, IL'5) A\ R1 (.’L’Q, ZT9, IL'Q) A\ R1 (1'6, T5, IL'4)
/\R2(x67 X, xl) A R3(ZU2, xsg, ZU4) A Rg(l'l, Xy, xl)

® 15 a formula in V3-Form I over the free variables xg, x7, and xg. Re contains
exactly all the assignments over these variables satisfying ®:

Ry ={(0,0,0),(0,1,0),(1,0,0)}

In what follows we shall see that quantified generalized formulas fit in this
framework. First, recall that an operation f on a set A is said to be idempotent
if f(a,...,a) =afor all a € A.

Lemma 1 Let A be a finite set, let f be any idempotent operation on A and
let T' C Inv(f) be any set of relations invariant under f. Then every relation
represented by a formula from V3-Form(T') is also invariant under f.

Proof. We shall prove that for every formula ¥ in V3-Form(I'), Ry is invari-
ant under f. It is proven by structural induction on W (see also [16,5]). Cases
U =P APy and ¥ = Jx® are well-known, see e.g. [17]. Thus the only case to
consider is when W is obtained by means of universal quantification ¥ = Vx®.
In this case we use the fact that W is equivalent to

(Fx DA ()N ATz ®Aal(z)),

where {ai, ..., a,} are the elements of A and a} is the singleton relation {(a;)},
for 1 < < r. Observe that, as we introduce singleton relations, they must be
invariant under f. This is provided by the idempotency of f. O

3.3 Near-Unanimity and Coset-Generating Operations

Let A be a finite set. An operation f : A¥ — A with k¥ > 3 is called a
near-unanimity operation if

f(xayaay)::f(yaayax):y

for all x,y € A. In this paper, it will be convenient for us to call such an
operation generalized majority.

Recall that a ternary operation m is called coset generating if m(z,y,z) =
x-y~'- 2, where - and ~! are the operations of a certain finite group.

The complexity of learning Inv(f) (encoded with generating sets) is addressed
in [16].

Theorem 1 ([16]) Let f be a near-unanimity or a coset generating operation.
Then the closure algorithm learns exactly Inv(f) (encoded with generating sets)
in polynomial time.

It is worth remarking that if f is a near-unanimity or a coset-generating op-
eration then every relation in Inv(f) has a generating set of size polynomial
in the arity n of the relation.

Consequently, the learning algorithm in [16] learns Inv(f) with a running
time that is polynomial in n. Hence, the same algorithm can be used to learn
efficiently Inv(f) under any other encoding. In particular we have:

Corollary 1 The class of systems of linear equations over a finite field F' are
polynomially ezactly learnable with (improper) equivalence queries.

Corollary 2 Let ' be a set of relations on a finite set A. If T' C Inv(f) where
[is either a near-unanimity or coset generating operation, then ¥3-Form(T")
is polynomially exactly learnable with (improper) equivalence queries.

Example 3 A quantified 2-CNF formula is a Y3-Form({ Ry, R, R3}) formula
where Ry, Ry, R3 are as defined in Example 1. Furthermore it is easy to ob-
serve that the operation m defined also in Fxample 1 is a near-unanimity
operation. Consequently, we can infer that V3-Form({ Ry, Ry, R3}), and hence
the family of quantified 2-CNFs, is polynomially exactly learnable with equiv-
alence queries. Note that in this case the arity of the target concept is just the
number of variables in a CNF.

4 Results

In this section we introduce generalized majority-minority operations and sig-
natures, and state the main results.

4.1 Generalized Majority-Minority Operatons

We start with the main definition.

Definition 5 Let A be a finite set. An operation f : A¥ — A with k > 3 is a
generalized majority-minority (GMM) operation if for all a,b € A, either

f(xayaay):f(yaxaay)::f(yaayax):y forx,ye{a,b} (1)

or fy,...,u0) = fWy,...,y,x) = for x,y € {a,b}. (2)

Let us fix a GMM operation on a set A. A pair a,b € A is said to be a majority
pair if f on a, b satisfies (1). It is said to be a minority pair if f satisfies (2).

Observe that a GMM operation that contains only majority pairs is a near-
unanimity operation and that, indeed, every near-unanimity operation can
be seen as such. Also, every coset-generating operation is a ternary GMM
operation with only minority pairs.

Example 4 [t is easy to see that the ternary operation f defined as follows
is a GMM operation. Let A = {a,b,c}, and let f be an operation on A such
that

z, if y =z,
F(2,9,2) = _
2z otherwise,
if x,y, z € {a,b},
Z? Zf y - Z’
f(x,y,2) =

x otherwise,

if ©,y,2 € {a,c} or x,y,z € {b,c}, and f(x,y,2) = x if {x,y,2z} = A. Pair
{a,b} is minority with respect to f, and {a,c},{b,c} are majority pairs.

4.2 Signatures

We study the learning complexity of Inv(f) when f is a generalized majority-
minority operation. Observe that in order to formulate the question precisely
we have to associate to Inv(f) some representation scheme. A natural choice
is to use generating sets. That is, we could represent a relation R in ' by
means of a subrelation R’ of R that generates it. Indeed, we are able to prove,
see Section 5.1, that the closure algorithm polynomially exactly learns Inv(f)
encoded with generating sets. However, we hit a problem: it is still not known
if a generating set can be used to predict new examples efficiently. Formally,
it is not known whether it is possible to decide in polynomial time whether

a given tuple belongs to the relation generated by a given set of tuples (with
respect to f). In order to overcome this difficulty we introduce a new encoding
scheme for Inv(f), called signatures.

Before defining signatures we need to introduce a little bit of notation. Let A
be a finite set and f be a GMM operation of arity k. Let also R be an n-ary

relation on a finite set A. For a set I = {iy,...,in} C[n],1 < <--- <
im < n, we define the projection of a tuple a = (ay,...,a,) over I to be the
tuple prya = (a;,,...,a;,), and the projection of R over I to be the relation

pr; R={pr;alac R}.

In the following definition we exploit the two properties of a k-ary GMM
operation f on a set A. Let us consider first two extreme cases. Suppose that
all pairs from A are majority. Then f satisfies the identities f(x,y,...,y,y) =
fly,z,...,uy,y) == f(y,y,...,y,x) =y for all z,y € A, and therefore is
a near-unanimity operation. It is well-known [22] that if n-ary relations R and
S are invariant under a near-unanimity operation and, for any I C [n] with
|I| = k — 1, we have pr; R = pr; S, then R = S. Thus a relation invariant
under f is uniquely determined by the collection of its k — 1-ary projections.

Now suppose that all pairs from A are minority, and hence f satisfies the
identities f(z,y,...,y,y) = f(y,y,...,y,x) = x for all z,y € A. In this
case for any relation R invariant under f the following property of rect-
angularity holds: for any i € [n] and any a,b,aq,...a;_1,b1,...,b;_1 € A
if a = (al, Ce ,ai_l,a),b = (al, ceey ai_l,b), C = (bl, ce ey bi—l; CL) S prm R,
then d = (by,...,b;_1,b) € pry R. Indeed, it is not hard to see that d =
f(c,a,...,a,b). Therefore, R is uniquely determined by the collection of such
rectangularity pairs a, b for each ¢, which have a common extension onto coor-
dinates 1,...,i—1. (We actually also need to know at least one such extension
for every rectangularity pair.)

As in the general case both majority and minority pairs may occur, we need
a mixture of these two types of representations.

A signature of arity n is a triple (Pro, Rec, Wit) where

(A1) Pro is a collection of pairs (I,a) where I is a subset of [n] of cardinality at

most £ — 1 and a is a tuple on A whose arity matches the cardinality of I.

(A2) Rec is a collection of triples (i,a,b) where 1 < i < n and a,b € A is a

minority pair.

(A3) Wit is a collection of n-ary tuples on A.

Furthermore Pro, Rec and Wit must satisfy the following conditions:

(B1) For every (I,a) € Pro, Wit contains some tuple x such that pr; x = a.
(B2) For every (i,a,b) € Rec, Wit contains some tuples a,b € R such that

10

(B3

pr;_ja=pr;_y b, pr;a=a, and pr;b =0.
) |Wit| < |Pro| + 2|Rec].

In the notation (Pro,Rec, Wit), Pro stands for ‘projections’, Rec for ‘rectan-
gularities’, and Wit for ‘witnesses’. We shall denote by Sig, the set of all
signatures of arity n and by Sig the set U,,>(Sig,.

Let R be an n-ary relation and let (Pro, Rec, Wit) be a signature of arity n.
We say that (Pro, Rec, Wit) represents R (or (Pro, Rec, Wit) is a signature of
R) if the three following conditions are satisfied:

(C1) For every k' € [k — 1], for every I C [n] such that |I| = k' and for every

k'-ary tuple a on A, (I,a) € Pro if and only if a € pr; R.

(C2) For every i € [n] and for every minority pair a,b € A, (i,a,b) € Rec if

and only if there are a,b € R such that pr;_jja = pr;,_;;b, pr;a = a, and

pr;b =b.

(C3) Wit is contained in R.

Example 5 Let us reconsider the operation f from Example 4. It is a trivial
(although requiring substantial time) exercise to show that the relation

cccceceba
R=|aabbabce

ababccce

1s tnvariant under f; the columns of the matrixz represent the tuples from R.
In order to construct a signature of this relation we, first, have to list all
unary and binary projections of its tuples. Thus Pro = {({1}, (a)), ({1}, (b)),
({1}, (c), ({2}, (a)), ({2}, (b)), ({2}, (c)), ({3}, (a)), ({3}, (b)), ({3}, (0)),
({1,2}, (c,a)), ({1,2}, (¢, 0)), ({1, 2}, (a, ¢)), ({1, 2}, (b, 0)), ({1, 3}, (¢, @),
({1,3}, (¢,0)), ({1,3}, (a,¢)), ({1, 3}, (b, ¢)), ({1, 3}, (¢, ¢)), ({2, 3}, (a, @),
({2,3}, (a,0)), (12,3}, (b,), ({2, 3}, (b, 1)), ({2, 3}, (¢,), ({2, 3}, (@, ¢)),
({2,3}, (b, 0))}-

Witnesses for the members of Pro can easily be chosen. For example, (c,b, a)
witnesses ({1,3}, (¢,a)); note that it also witnesses ({1}, (c)),

({2}, (0)), ({3}, (@), ({1, 2}, (¢, b)), and ({2,3}, (b,).

Set Rec is much smaller, Rec = {(2,a,b), (3,a,b)}. Pairs of witnesses for them
can be chosen to be (c,a,a),(c,b,a) and (c,b,a), (¢, b,b), respectively.

4.8 Two theorems

We prove that signatures are both polynomially evaluable and polynomially
exactly learnable with equivalence queries. Thus the main results of this paper
are the following two theorems.

Theorem 2 Let R be an n-ary relation invariant under f. There exists an
algorithm that, given a signature of R and a tuple a = (aq,...,a,) € A",
decides whether a € R with running time polynomial in n.

Theorem 3 Let A be a finite set and let f be a GMM operation on A. Then,
there exists an algorithm that exactly learns Inv(f), encoded with signatures,
with equivalence queries and runs in time polynomial in the arity of the target
relation.

By Lemma 1, if T is a subset of Inv(f) for some operation f, then so is
V3-Form(T"). Therefore we deduce the following

Corollary 3 Let A be a finite set, let f be a GMM operation on A and let
[be a set of relations in Inv(f). Then Y3-Form(T') is polynomially exactly
learnable with (improper) equivalence queries.

5 Proofs

In this section, we prove Theorems 2 and 3. Throughout the rest of the paper
A will denote a finite set and f will be a GMM operation of arity k.

This section contains three subsections. In the first subsection we prove several
simple properties of signatures. Then, in the second subsection we prove Theo-
rem 2, and in the third subsection we present a learning algorithm for concept
classes invariant under a GMM operation, thereby proving Theorem 3.

5.1 Properties of Signatures

We will need two simple properties of majority and minority pairs.
Lemma 2 Let R be an n-ary relation invariant under f, and assume that
(Pro, Rec, Wit) is a signature that represents R.

(1) Let ay,...,a,,b1,...,b, be elements in A. If for every j € [n] the tuple
a; = (ar,...,aj_1,bj,a;41,...,a,) belongs to R and the pair a,, b, is majority,
then a = (ay,...,a,) belongs to R.

12

(2) (Rectangularity) If a,b € A constitute a minority pair, (n,a,b) € Rec, and
b= (ai,...,a,_1,b) € R, then a = (ay,...,a,_1,0) € R.

Proof. (1) If for some j the pair a;, b; is minority, then a = f(a;, ..., a;, a,).
If {a;,b;} is majority for all j, then a = f(ay,...,a5_1,a,).

(2) Since (n,a,b) € Rec, there exist elements ¢y,...,¢,_1 € A such that ¢ =
(C1y..vyCn1,0), d=(c1,...,¢,1,b) € R. It is straightforward to check that

To check this, one can compute on every coordinate position, considering two
cases depending on whether a;, ¢; is a minority or majority pair. O

Lemma 3 Let R be an n-ary relation on A invariant under f and assume
that (Pro, Rec, Wit) is a signature of R. Then (Wit); = R.

Proof. Let S be (Wit);. Since Wit C R we can conclude that S C R. We
shall show that R C S. In particular, we shall show by induction on 7 that
pry R C pry;S. Take ¢ < n. If i <k —1 then the required inclusion easily
follows from condition (C1) of the definition of signature. So let i > k, R’ =
pry R, S' = pr; S, and a = (ay,...,a;) € R'. By the induction hypothesis,
for some b;, the tuple (ay,...,a;_1,b;) = a' belongs to S’.

We consider two cases.
Case 1. {a;,b;} is majority.

In this case we show that, for every I C [i — 1], pry gy a € pryygy S'- We show
it by induction on the cardinality m of I. The result is true for m < k — 2
again by (C1). Thus let I = {ji,...,Jm} be any set of indices 1 < j; <
Jo < -+ < jm < i with m > k. By induction hypothesis, for any ¢ € [m],

there is b, such that (aj,,...,a;_,,be,a5,,,...,0a;,) € pryy; S Recall also
that pry gy a’ = (aj,. .., a,,b) also belongs to pryy; S'. By Lemma 2(1),
Priugiy @ = (ajys---» a5, a;) € Prrugiy S'.

Case 2. {a;,b;} is minority.

Since a' € S" and S C R, we have a’ € R'. Furthermore, since a € R’, we can
conclude that (i, a;, b;) belongs to Rec. By Lemma 2(2), a € S’. O

Corollary 4 Let R and S be n-ary relations on A invariant under f with sig-
natures (Prog, Recg, Witg) and (Prog, Recs, Wits). If the signatures are iden-
tical then R = S.

13

From Corollary 4, it is clear that a signature represents at most one rela-
tion invariant under f. However, it is possible that a given signature does
not represent any relation invariant under f. A simple example is as follows.
Consider the GMM operation f defined by f(x,y,z) =2 —y+ z over Z3. Let
(Pro, Rec, Wit) be a signature of arity one with Pro = {({1}, (0)), ({1}, (1))},
Rec = {(1,0,1)}, and Wit = {(0),(1)}. Any relation R containing Wit and
closed under f must also contain f(0,1,0) = 2, that is, R = {(0), (1), (2)}.
But, a signature for such a relation R must have ({1},2) € Pro and it must
also have (1,0,2),(1,1,2) € Rec.

Before embarking on the study of signatures we shall derive some easy facts
from Theorem 3 which allow us to shed some light on the closure algorithm.
Let R be any arbitrary relation in Inv(f) and let x;,...,Xy be the sequence
of counterexamples provided to the closure algorithm when it is executed with
target concept R. For every i € {0, ..., m} let us denote by R; the relation gen-
erated by X1, ...,x;. Fix, foreach i € {1,...,m}, a signature (Pro;, Rec;, Wit;)
of R;. Since, R;_; is a subset of R; then we must have Pro,_; C Pro; and
Rec; 1 C Rec;. Furthermore, Pro;, | # Pro; or Rec; ; # Rec; since otherwise
(Pro; 1, Rec; 1, Wit; 1) would be a signature of R; in contradiction with the
fact that R; ; # R;. Consequently, at each iteration ¢ of the closure algo-
rithm, the size of Pro; or Rec; increases. Hence the total number of iterations
is bounded by the value of |Pro| + |Rec| where (Pro, Rec, Wit) is a signature of
R.

Notice that, as the number of at most (k — 1)-element subsets of an n-element
set is bounded by n*~!, and the number of (k — 1)-tuples of elements of A
is |A|F~1 the size of Pro is bounded by n*~! . |A|*"!. Similarly, the maximal
number of elements that Rec may contain is n - |A|%. Since f and hence k and
A are fixed, the size of Pro and Rec (and hence of Wit) is always bounded by
a polynomial in n. We state this as a lemma, for future use.

Lemma 4 Let f be a GMM operation of arity k. The is a constant o such
that, for any signature (Pro, Rec, Wit) with respect to f of arity n, we have
|Pro|, |Rec|, |Wit| < an®~!.

This line of reasoning shows that the closure algorithm always stops in a
polynomial number of steps and that every relation in Inv(f) has a generating
set with size polynomial in n. This would be the end of the story if generating
sets were polynomially evaluable. However, we do not know how to decide in
polynomial time whether a given tuple belongs to the relation generated by
its generating set.

To overcome this difficulty, we investigate the learnability of signatures.

14

5.2 Proof of Theorem 2

We have to find an algorithm that decides in polynomial time, given a tuple
a and a signature s, whether the tuple a belongs to the relation represented
by the signature s.

Let R be an n-ary relation invariant under f, let s = (Pro, Rec, Wit) be a
signature of R, and let aq,...,a, € A, m < n. By R,,, ., We denote the
relation

{(bl,...,bn) eR | pr[m}(bl,...,bn) = (al,...,am)}

A signature sq, g, Of Rq,, .4, can be efficiently computed as the following
lemma shows.
Lemma 5 Let R be an n-ary relation invariant under f and ay, ..., a, € A.

There exists an algorithm that, given a signature s = (Pro,Rec, Wit) of R
computes a signature Sq, . q,, Of Ra, .. a, With running time polynomial in n.

Proof. Let d be any element in the universe A. We shall show an algorithm
that constructs a signature s; = (Prog, Recy, Wity) of R,. First, we note two
properties of signature s,.

(1) For any I C [n] with cardinality ¥’ < k, and any a € A¥ we have
(1,a) € Proy if and only if there exists some b in pr; ¢y /2 such that pr;b = a
and pr; b =d.

(2) For any i € [n] and a minority pair {a, b}, we have (i,a,b) € Recy if and
only if (7,a,b) € Rec and ({i}, (a)) € Prog.

Our algorithm uses properties (1) and (2) to produce s4. By (1), to compute
Pro; and the elements of Wit; witnessing the tuples from Prog, it suffices to
compute S = (pr; Wit); for every J = I U {1}, for all subsets I of [n| with
cardinality & < k, and choose from S those tuples which have d as the first
component. Since S is a relation of arity at most £ (fixed) and the maximum
possible total number of tuples in S is |A|¥, S can be computed efficiently by a
brute-force algorithm. This algorithm applies f, firstly, to tuples from pr; Wit
and then to newly generated tuples, and keeps a record on the sequence of
applications of operation f that ends up with some tuple a. Such a record
can later be used to produce a tuple b € R with pr; b = a, which witnesses
(I,prya) in Witg,.

Property (2) is used to generate Recy. Since Proy is already known, for any
triple (4,a,b) € Rec, it is easy to check whether or not ({i}, (a)) belongs to
Prog. Moreover, if ({i}, (a)) € Pros then Wit, contains a tuple b such that
pryb = d and pr;b = a; also, since (i,a,b) € Rec there are c,d € Wit
with pr;_j;¢ = pry_;jd and pr;c = a,pr;d = b. Applying the same trick

15

as in the proof of Lemma 2(2) we obtain a such that pr; ;;a = pr; b,
pr;b = pryb = d, and pr;a = b. Thus b,a can be included into Wity to
witness (i, a, b).

Finally, we prove properties (1) and (2). First, (I,a) € Prog, a = (ay,...,ax),
if and only if there is a tuple ¢ € R such that pr;c = a and pr, c = d. We
only need to set b to pr;c to complete the proof.

To prove (2) we observe that if (i,a,b) & Rec or ({i}, (a)) & Prog then (i, a,b)
is not in Recy, since no pair of tuples from R, witnesses it. Otherwise such a
pair exists as shown above.

By iterating the process we can obtain, for any given a,, ..., q; € A, a signature
of Ray,ay = (- (Ray)as)...)a- 1t is easy to see that the running time of the
algorithm is polynomial in n. O

Now we are ready to prove Theorem 2

Proof. To check if a given tuple (ay,...,a,) belongs to R, it suffices to check
whether the set Wit(R,, . ,,) is non-empty. We assume by convention that
there exists one tuple of arity 0. O

We have seen above that there are signatures that do not necessarily repre-
sent any relation in Inv(f). We are interested in associating to each of them
a relation (which is not necessarily in Inv(f)). The reason for this is that our
learning algorithm might produce, as an intermediate hypothesis, some sig-
nature that does not necessarily represent a relation. In order to deal with
this issue we define the concept encoded by a signature (Pro, Rec, Wit) as the
relation containing all those tuples a accepted by the evaluation algorithm.
In the case that a signature (Pro,Rec, Wit) indeed represents a relation in
Inv(f), the concept encoded by (Pro,Rec, Wit) and the concept represented
by (Pro, Rec, Wit) coincide.

Notice that if we run the algorithm over signatures that do not represent a
relation invariant under f then the output of the algorithm cannot be com-
pletely predicted. However, by a mere inspection of the proof one thing can
be said: when given as input a tuple a and a signature (Pro, Rec, Wit), if the
evaluation algorithm outputs “yes”, then a belongs to (Wit) ;. Let us state this
as a fact for future reference.

Fact 1 The concept encoded by a signature (Pro, Rec, Wit) is always a subset
Of <Wlt>f

16

5.8 Proof of Theorem 3

An algorithm that learns signatures with equivalence queries is presented in
Figure 1.

The target concept of the algorithm is an n-ary relation invariant under f.
Recall that f, k and A are fixed. At any stage of the execution of the algorithm
Wit contains only elements of R. Hence, by Fact 1, the relation represented
by (Pro, Rec, Wit) is a subset of (Wit); C R. This ensures that the algorithm
is monotonic, that is, only receives positive counterexamples. Furthermore at
every round of the algorithm, either Pro or Rec increases its size. Since Pro
and Rec can have at most a polynomial number of elements we can ensure
that the algorithm ends in a number of steps polynomial in n.

Step 1. set Pro, Rec, Wit := ()
Step 2. while FQ((Pro, Rec, Wit))= 'no’ do
let a = (ay,...,a,) be the counterexample produced by EQ
Step 2.1 if for some [= {7:1, R ,ik/_l}, < < v < lpr_q, k< k,
the pair (I,pr;a) ¢ Pro then
Step 2.1.1 set Pro := ProU (I,pr;a) and Wit := Wit U {a}
Step 2.2 else
For each 0 < ¢ < n compute (Prog, 4, Reca,, a;s Wita, . a;)-
Let ¢ be the smallest integer such that Wit,, ., = 1]
(such i must exist if a does not belong
to the relation represented by (Pro, Rec, Wit))
Step 2.2.1 pick an element b = (ay,...,a;_1,b;,...,b,) € Wity 4, ,
Step 2.2.2 set Rec := Rec U {(i,a;, b;)} and Wit := WitU {a, b}
endwhile
Step 3. return Pro, Rec, Wit

Fig. 1. Algorithm learning signatures with equivalence queries. F() indicates an
equivalence query.

Let us study correctness of this algorithm. The algorithm increases Pro when-
ever possible (Step 2.1.1). Otherwise some triple has to be added to Rec
(Step 2.2). There is only one thing that requires some proof: we have to show
that at Step 2.2.2, Rec is increased correctly, that is, it is the case that a;, b;
is a minority pair and that (7, a;, b;) is not previously in Rec.

Suppose that a;,b; is a majority pair. We prove by induction that pr; ;;;a €
pr 7y (Wit) s for any J C [i — 1] obtaining a contradiction with Wit,, . ., =

For the base case of induction we note that this inclusion holds for any J
with |J| < k, because otherwise Step 2.1.1 would be performed. Suppose
that the inclusion is true for any J with |J| < ¢, and take J = {iy,..., 4}
where 1 < 4; < ... < iy < 4. Denoting J,, = J \ {i}, by induction hy-
pothesis, pr; ,uya € pry i (Wit)y for any m < . This means that there

17

are by, ..., by such that the tuples a,, = (ai,,...,qi, s 0ms Gipprys - -5 iy Q)
belong to pr;;, (Wit) ;. By Lemma 2(1), pr; ;@ € pry;,(Wit)s, a contra-
diction.

Next we show that (i,a;,b;) ¢ Rec. Let us suppose for contradiction that
(1,a;,b;) € Rec. Then for some elements ¢;,...c;_; we have that the tu-
ples (ci1,...¢i1,a;) and (c1,...ci1,b;) are in pr;(Wit);. By Lemma 2(2), as
(C'll,‘. .. a;1,b;) € pri(Wit)s, we have (ai,...a; 1,a;) € pri;(Wit)s, a contra-
diction.

This completes the proof of the correctness of the algorithm.

We have just proved that there exists an algorithm that exactly learns Inv(f),
encoded with signatures, with equivalence queries in polynomial time.

Finally, Theorem 3 is obtained by combining this result with the fact that the
size of a signature is bounded by a polynomial in the arity of the relation it
encodes (Lemma 4).

Acknowledgements. The first author was supported by an NSERC Discov-
ery Grant. The second and third authors were supported by grant TIC 2002-
04470-C03 and the EU PASCAL Network of Excellence IST-2002-506778. The
third author was also supported by the MEC under the program ”Ramon
y Cajal”, grant TIC 2002-04019-C03, and MODNET Marie Curie Research
Training Network MRTN-CT-2004-512234.

References

[1] D. Angluin. Queries and Concept Learning. Machine Learning, 2:319-342,
1988.

[2] D. Angluin, M. Frazier, and L. Pitt. Learning Conjunctions of Horn Clauses.
Machine Learning, 9:147-164, 1992.

3] D. Angluin and M. Kharitonov. When won’t Membership Queries help. Journal
of Computer and System Sciences, 50:336—-355, 1995.

[4] P. Auer and N. Cesa-Bianchi. On-Line Learning with Malicious Noise and the
Closure Algorithm Ann. Math. Artif. Intell., 23(1-2):83-99.

[5] F. Borner, A.A. Bulatov, P.G. Jeavons, and A.A. Krokhin. Quantified
constraints and surjective polymorphisms. In Proceedings of 17th International
Workshop Computer Science Logic, CSL’03, volume 2803 of Lecture Notes in
Computer Science, pages 58-70. Springer-Verlag, 2003.

18

[6] N. Bshouty, J. Jackson, and C. Tamon. Exploiring Learnability between Exact
and PAC. In 15th Annual ACM Conference on Computational Learning Theory,
COLT’02, pages 244-254, 2002.

[7] N.H. Bshouty. Exact Learning Boolean Functions via the Monotone Theory.
Information and Computation, pages 146-153, November 1995.

8] A.A. Bulatov. Tractable conservative constraint satisfaction problems. In
Proceedings of the 18th Annual IEEE Simposium on Logic in Computer Science,
pages 321-330, Ottawa, Canada, June 2003. IEEE Computer Society.

[9] H. Chen. The Computational Complexity of Quantified Constraint Satisfaction.
PhD Thesis, Cornell University, 2004.

[10] H. Chen and V. Dalmau. From Pebble Games to Tractability: An Ambidextrous
Consistency Algorithm for Quantified Constraint Satisfaction. Computer
Science Logic (CSL), 2005.

[11] H Chen. Quantified Constraint Satisfaction, Maximal Constraint Languages,
and Symmetric Polymorphisms. 22nd International Symposium on Theoretical
Aspects of Computer Science (STACS), 2005.

[12] N. Creignou. A Dichotomy Theorem for Maximum Generalized Satisfiability
Problems. Journal of Computer and System Sciences, 51(3):511-522, 1995.

[13] N. Creignou and M. Hermann. Complexity of Generalized Satisfiability
Counting Problems. Information and Computation, 125:1-12, 1996.

[14] N. Creignou, S. Khanna, and M. Sudan. Complexity Classification of
Boolean Constraint Satisfaction Problems, volume 7 of Monographs on Discrete
Mathematics and Applications. STAM, 2001.

[15] V. Dalmau. A Dichotomy Theorem for Learning Quantified Boolean Formulas.
Machine Learning, 35(3):207-224, 1999.

[16] V. Dalmau and P. Jeavons. Learnability of Quantified Formulas. Theoretical
Computer Science, (306):485-511, 2003.

[17] K. Denecke, M. Erne, and S.L. Wismath. Galois Connections and Applications.
Kluwer Academic Publishers, 2003.

[18] D. Haussler, N. Littlestone, and M. Warmuth. Predicting {0, 1}-functions on
randomly drawn points. Information and Computation, 115(2):248-292.

[19] D. Hembold, R. Sloan, and M. Warmuth. Learning Nested Differences of
Intersection-Closed Concept Classes . Machine Learning, 5:165—196.

[20] D. Hembold, R. Sloan, and M. Warmuth. Learning Integer Lattices . STAM .J.
Computing, 21(2):240-266.

[21] Jeffrey C. Jackson. An Efficient Membership-query Algorithm for Learning
DNF with respect to the Uniform Distribution. Journal of Computer and
System Sciences, 55(3):414-440, December 1997.

19

[22] P. Jeavons, D. Cohen, and M.C. Cooper. Constraints, Consistency and Closure.
Artificial Intelligence, 101:251-265, 1998.

[23] Michael Kearns and Leslie Valiant. Cryptographic limitations on learning
Boolean formulae and finite automata. Journal of the ACM, 41(1):67-95,
January 1994.

[24] S. Khanna, M. Sudan, and L. Trevisan. Constraint Satisfaction: The
Approximability of Minimization Problems. In 12th IEEE Conference on
Computational Complexity, 1997.

[25] S. Khanna, M. Sudan, and P.D. Williamson. A Complete Classification of the
Approximability of Maximation Problems Derived from Boolean Constraint
Satisfaction. In 29th Annual ACM Symposium on Theory of Computing, 1997.

[26] N. Littlestone. Learning Quickly when Irrelevant Atributes Abound: A New
Linear Threshold Algorithm. Machine Learning

[27] B. K. Natarajan. On learning Boolean functions. In Proceedings of the
Nineteenth Annual ACM Symposium on Theory of Computing, 1987.

[28] N. Pippenger. Theories of Computability. Cambridge University Press, 1997.

[29] E.L. Post. The Two-Valued Iterative Systems of Mathematical Logic, volume 5
of Annals of Mathematics Studies. Princeton, N.J, 1941.

[30] T.J. Schaefer. The Complexity of Satisfiability Problems. In 10th Annual ACM
Symposium on Theory of Computing, pages 216-226, 1978.

[31] A. Szendrei. Clones in Universal Algebra, volume 99 of Seminaires de
Mathématiques Supéreiores. University of Montreal, 1986.

[32] L. Valiant. A Theory of the Learnable. Comm. ACM, 27(11):1134-1142, 1984.

20

