
Extracting Constrained 2-Interval Subsets

in 2-Interval Sets �

Guillaume Blin

Université Paris-Est, LABINFO-IGM
UMR CNRS 8049, 5 bd Descartes,

77 454 Marne-la-Vallée Cedex 2, FRANCE

Guillaume Fertin

LINA, FRE CNRS 2729
Université de Nantes, 2 rue de la Houssinière
BP 92208 44322 Nantes Cedex 3 - FRANCE

Stéphane Vialette

Laboratoire de Recherche en Informatique (LRI), UMR CNRS 8623
Université Paris-Sud, 91405 Orsay Cedex - FRANCE

Abstract

2-interval sets were used in [28,29] for establishing a general representation for
macroscopic describers of RNA secondary structures. In this context, we have a
2-interval for each legal local fold in a given RNA sequence, and a constrained
pattern made of disjoint 2-intervals represents a putative RNA secondary structure.
We focus here on the problem of extracting a constrained pattern in a set of 2-
intervals. More precisely, given a set of 2-intervals D and a model R describing if
two disjoint 2-intervals in a solution can be in precedence order (<), be allowed
to nest (�) and/or be allowed to cross (�), we consider the problem of finding a
maximum cardinality subset D′ ⊆ D of disjoint 2-intervals such that any two 2-
intervals in D′ agree with R. The different combinations of restrictions on model
R alter the computational complexity of the problem, and need to be examined
separately.

In this paper, we improve the time complexity of [29] for model R = {�} by giving
an optimal O(n log n) time algorithm, where n is the cardinality of the 2-interval
set D. We also give a graph-like relaxation for model R = {�, �} that is solvable
in O(n2√n) time. Finally, we prove that the considered problem is NP-complete
for model R = {<, �} even for same-length intervals, and give a fixed-parameter
tractability result based on the crossing structure of D.

Key words: 2-intervals, Pattern Matching, Computational complexity

Preprint submitted to Elsevier Science 27 April 2007

Manuscript

1 Introduction

The problem of establishing a general representation of structured patterns,
i.e., macroscopic describers of RNA secondary structures, was considered in
[28,29]. The approach is to set up a geometric description of helices by means
of a natural generalization of intervals, namely a 2-interval. A 2-interval is
the disjoint union of two intervals on the line. The geometric properties of
2-intervals provide a possible guide for understanding the computational com-
plexity of finding structured patterns in RNA sequences. Using a model to
represent non sequential information allows us for varying restrictions on the
complexity of the pattern structure. Indeed, two disjoint 2-intervals, i.e., two
2-intervals that do not intersect in any point, can be in precedence order (<),
be allowed to nest (�) or be allowed to cross (�). Furthermore, the set of
2-intervals and the pattern can have different restrictions, e.g., all intervals
have the same length or all the intervals are disjoint. These different com-
binations of restrictions alter the computational complexity of the problems,
and need to be examined separately. This examination produces efficient algo-
rithms for more restrictive structured patterns, and hardness results for those
less restrictive.

In this paper, we consider the problem of finding a constrained pattern in a
set of 2-intervals. More precisely, given a set of 2-intervals D and a model R
describing if two disjoint 2-intervals in a solution can be in precedence order
(<), be allowed to nest (�) and/or be allowed to cross (�), we consider the
problem of finding a maximum cardinality subset D′ ⊆ D of disjoint 2-intervals
such that any two 2-intervals in D′ agree with R. The problem of finding the
largest 2-interval pattern in a set of 2-intervals D with respect to a given
abstract model, referred hereafter as the 2-Interval Pattern problem, has
been introduced by Vialette [28,29]. Vialette divided the problem in different
classes based on the structure of the model and gave for most of them either
NP-completeness results or polynomial-time algorithms. Dividing the problem
in several classes was later proved to be extremely useful for approximating
the 2-Interval Pattern problem [8].

� An extended abstract of this work appeared in Proceedings of the 15th Annual
Symposium on Combinatorial Pattern Matching (CPM 2004) [5]. This work was
partially supported by the CNRS ACI Masse de Données “NavGraphe” project.

Email addresses: gblin@univ-mlv.fr (Guillaume Blin),
fertin@lina.univ-nantes.fr (Guillaume Fertin), vialette@lri.fr (Stéphane
Vialette).

2

In the present paper, we focus on three special cases of the 2-Interval Pat-
tern problem:

(1) The 2-intervals of the solution subset need to be pairwise nested,
(2) Two 2-intervals in a solution can only be nested or crossing, and all the

intervals involved in the 2-interval set D are disjoint, and
(3) Two 2-intervals in a solution can only be nested or in precedence, and all

the intervals involved in the 2-interval set D have the same length.

We give precise results for these three problems. Those three problems are of
importance since each one is a straightforward extension of the problem of
finding a given 2-interval set in another 2-interval set introduced in [29] and
further studied in [18] and [23], and hence is strongly related, in the context of
molecular biology, to pattern matching over RNA secondary structures. More
precisely, in this paper, we improve the time complexity of the best known
algorithm for R = {�} by giving an optimal O(n logn) time algorithm. Also,
we give a graph-like relaxation for R = {�, �} that is solvable in O(n2

√
n)

time. Finally, we prove that the problem is NP-complete for R = {<, �}, and,
we give a fixed-parameter tractability result based on the crossing structure
of D. Those results almost complete the table proposed by Vialette [29] (see
Table 1) and provide an important step towards a better understanding of the
precise complexity of 2-interval pattern matching problems.

There are basically two main lines of research our results refer to: (i) arc-
annotated sequences and protein topologies, and (ii) t-intervals combinatorics.

• For a sequence S, an arc-annotation of S is a set of unordered pairs of po-
sitions in S. In this context, given two arc-annotated sequences S1 and S2,
the Arc-Preserving Subsequence (APS) problem asks to find an occur-
rence of S1 in S2, and the Longest Arc-Preserving Common Subse-
quence (LAPCS) problems asks to find the longest common arc-annotated
sequence that occurs both in S1 and S2. The APS and LAPCS problems
are useful in representing the structural information of RNA and protein se-
quences [11,21,19,1]. The basic idea is to provide a measure for similarity, not
only on the sequence level, but also on the structural level (an arc-annotated
sequence is viewed as a RNA sequence together with phosphodiester bonds).
Furthermore, a similar problem to compare the three-dimensional structure
of proteins is the Contact Map Overlap problem described in [16].
Viksna and Gilbert described algorithms for pattern matching and pattern
learning in TOPS diagram (formal description of protein topologies) [30].

• Our results are also related to the independent set problem in different
extensions of 2-interval graphs. A graph G is a t-interval graph if there
is an intersection model whose objects consist of collections of t intervals,
t ≥ 1, such that G is the intersection graph of this model [26,20]. From
this definition, it is clear that every interval graph is a 1-interval graph.

3

Of particular interest is the class of 2-interval graphs. For example, line
graphs, trees and circular-arc graphs are 2-interval graphs. However, West
and Shmoys [31] have shown that the recognition problem for t-interval
graphs is NP-complete for every t ≥ 2 (this has to be compared with linear
time recognition of 1-interval graphs). In the context of sequence similar-
ity, [22] contains an application of graphs having interval number at most
two. In [3], the authors considered the problem of scheduling jobs that are
given as groups of non-intersecting segments on the real line. Of particular
importance, they showed that the maximum weighted independent set for
t-interval graphs (t ≥ 2) is APX-hard even for highly restricted instances
Also, they gave a 2t-approximation algorithm for general instances based
on a fractional version of the Local Ratio Technique [2]. Finally, some com-
plexity issues of standard optimization problems for t-interval sets are given
in [6].

The remainder of the paper is organized as follows. In Section 2 we briefly
review the terminology introduced in [29]. In Section 3, we improve the time
complexity of the best known algorithm for model R = {�}. In Section 4, we
give a graph-like relaxation for model {�, �} that is solvable in polynomial-
time. In Section 5, we prove that the 2-interval pattern problem for model
R = {<, �} is NP-complete even when all intervals involved in the input
2-interval set have the same length. Finally, we give in Section 6 a fixed-
parameter tractability result based on the crossing structure of D.

2 Preliminaries

An interval and a 2-interval represent respectively a sequence of contiguous
bases and pairings between two intervals, i.e., stems, in RNA secondary struc-
tures. Thus, 2-intervals can be seen as macroscopic describers of RNA struc-
tures.

Formally, a 2-interval is the disjoint union of two intervals on a line. We
denote it by D = (I1, J1) where I1 and J1 are intervals such that I1 < J1

(here < is the strict precedence order between intervals) ; in that case we
also write Left(D) = I1 and Right(D) = J1. If [x : y] and [x′ : y′] are two
intervals such that [x : y] < [x′ : y′], we will sometimes write D = ([x :
y], [x′ : y′]) to emphasize on the precise definition of the 2-interval D. Let
D1 = (I1, J1) and D2 = (I2, J2) be two 2-intervals. They are called disjoint if
(I1∪J1)∩(I2∪J2) = ∅ (i.e., involved intervals do not intersect). The covering
interval of a 2-interval D, written Cover(D), is the least interval covering both
Left(D) and Right(D).

Of particular interest is the relation between two disjoint 2-intervals D1 =

4

(I1, J1) and D2 = (I2, J2). We will write D1 < D2 if I1 < J1 < I2 < J2,
D1 � D2 if I2 < I1 < J1 < J2 and D1 � D2 if I1 < I2 < J1 < J2. Two
2-intervals D1 and D2 are τ -comparable for some τ ∈ {<,�, �} if D1τD2 or
D2τD1. Let D be a set of 2-intervals and R ⊆ {<,�, �} be non-empty. The
set D is R-comparable if any two distinct 2-intervals of D are τ -comparable for
some τ ∈ R. Throughout the paper, the non-empty subset R is called a model.
Clearly, if a set of 2-intervals D is R-comparable then D is a set of disjoint
2-intervals. The ground set of a set of 2-intervals D, written GS(D), is the set
of all simple intervals involved in D, i.e., GS(D) =

⋃
D∈D(Left(D)∪Right(D)).

The leftmost (resp. rightmost) element of a set of disjoint 2-intervals D is the
2-interval Di ∈ D such that Left(Di) < Left(Dj) (resp. Right(Dj) < Right(Di))
for all Dj ∈ D − Di. Observe that it could be the case that Di is both the
leftmost and rightmost element of D (this is indeed the case if |D| = 1 or if
Dj � Di for all Dj ∈ D −Di).

We define hereafter two additional parameters on D. The depth of D, written
Depth(D), is the size of a maximum cardinality {�}-comparable subset of D
(according to [29], this parameter is polynomial-time computable). The for-
ward crossing number of D, written FCrossing(D), is defined by FCrossing(D) =
maxDi∈D |{Dj : Di � Dj}|. Clearly, FCrossing(D) ≥ Depth(D) − 1 for any set
D of 2-intervals.

Following [11], Vialette proposed in [29], two natural restrictions on the ground
set of D (a third restriction, i.e., balanced 2-intervals, well-suited for investi-
gating RNA secondary structures space was introduced in [8]):

(1) all the intervals of the ground set GS(D) are of the same length,
(2) all the intervals of the ground set GS(D) are disjoint, i.e., if two intervals

I, I ′ ∈ GS(D) overlap, then I = I ′.

Using restrictions on the ground set allows us for varying restrictions on the
complexity of the 2-interval set structure, and hence on the complexity of the
problems. These two restrictions involve three levels of complexity:

• unlimited: no restrictions
• unit: restriction 1
• disjoint: restrictions 1 and 2

Given a set of 2-intervals D, a model R ⊆ {<,�, �} and a positive integer
k, the 2-Interval Pattern problem consists in finding a subset D′ ⊆ D of
cardinality at least k such that D′ is R-comparable. For the sake of brevity, the
2-Interval Pattern problem with respect to a model R over an unlimited
(resp. unit and disjoint) ground set is abbreviated in 2-IP-Unl-R (resp. 2-
IP-Unit-R and 2-IP-Dis-R).

Vialette proved in [29] that 2-IP-Unit-{<,�, �} and 2-IP-Unit-{�, �} are

5

NP-complete. Moreover, he gave polynomial-time algorithms for the problem
with respect to the models {<}, {�}, {�} and {<,�} (cf. Table 1).

In this article, we answer three open problems and we improve the complexity
of another one, as shown in Table 1. Moreover, we show that 2-IP-Unit-{<
, �} is fixed parameter tractable when parameterized by the forward crossing
number of D.

2-Interval Pattern Problem

Ground Set

Model Unlimited Unit Disjoint

{<, �, �} NP-complete O(n
√

n)[24]

{�, �} NP-complete O(n2
√

n)

{<, �} O(n2)

{<, �} NP-complete
 ?

{<} O(n log n)

{�} O(n log n)
 •
{�} O(n2 log n)

Table 1
2-interval pattern problem complexity where n = |D|. When not specified, the
complexity comes from [29]. � contributions of the present paper. • improvement of
the existing complexity (which was O(n2) in [29]).

3 Improving the complexity of 2-IP-Unl-{�}

The problem of finding the largest {�}-comparable subset in a set of 2-
intervals was considered in [29]. Observing that this problem is equivalent
to finding a largest clique in a comparability graph (a linear time solvable
problem [17]), an O(n2) time algorithm was thus proposed. We improve that
result by giving an optimal O(n logn) time algorithm.

The inefficiency of the algorithm proposed in [29] lies in the effective con-
struction of a comparability graph. We show that this construction can be
avoided by considering trapezoids instead of 2-intervals. Recall that a trape-
zoid graph is the intersection graph of a finite set of trapezoids between two
parallel lines [9] (it is easily seen that trapezoid graphs generalize both interval
graphs and permutation graphs). Analogously to 2-intervals, we will denote
by T = ([x : y], [x′ : y′]) the trapezoid with top interval [x : y] and bottom
interval [x′ : y′].

Proposition 1 2-IP-Unl-{�} is solvable in O(n logn) time.

PROOF. Let D = {D1, D2, . . . , Dn} be a collection of 2-intervals of the real

6

line. Construct a collection of trapezoids T = {T1, T2, . . . , Tn} between two
parallel lines as follows. For each 2-interval Di = ([x : y], [x′ : y′]) ∈ D, we add
the trapezoid Ti = ([x : y], [−y′ : −x′]) to T .

Claim 2 For all 1 ≤ i ≤ j ≤ n, the 2-intervalsDi and Dj are {�}-comparable
if and only if the trapezoids Ti and Tj are non-intersecting.

PROOF. [of Claim] Let Di = ([xi : yi], [x
′
i : y′i]) and Dj = ([xj : yj], [x

′
j : y′j])

be two 2-intervals of D, and Ti = ([xi : yi], [−y′i : −x′i]) and Tj = ([xj :
yj], [−y′j : −x′j]) be the two corresponding trapezoids in T . Suppose that Di

and Dj are {�}-comparable. Without loss of generality, we may assume Dj �
Di. Thus, we have yi < xj and y′j < x′i. It follows immediately that −x′i < −y′j ,
and hence the two trapezoids Ti and Tj are non-intersecting. The proof of the
converse is identical. ✷

Clearly, the collection T can be constructed in O(n) time. Based on a geo-
metric representation of trapezoid graphs by boxes in the plane, Felsner et al.
[12] have designed a O(n logn) algorithm for finding a maximum cardinality
subcollection of non-intersecting trapezoids in a collection of trapezoids, and
the proposition follows. ✷

Based on Fredman’s bound for the number of comparisons needed to com-
pute maximum increasing subsequences in permutation [13], Felsner et al. [12]
argued that their O(n logn) time algorithm for finding a maximum cardinal-
ity subcollection of non-intersecting trapezoids in a collection of trapezoids
is optimal. Then it follows from Proposition 1 that our O(n logn) time algo-
rithm for finding a maximum cardinality {�}-comparable subset in a set of
2-intervals is optimal as well.

4 A polynomial-time algorithm for 2-IP-Dis-{�, �}

In this section, we give an O(n2
√
n) time algorithm for the 2-IP-Dis-{�, �}

problem, where n is the cardinality of the set of 2-intervals D. Recall that
given a set of 2-intervals D over a disjoint ground set, the problem asks to find
the size of a maximum cardinality {�, �}-comparable subset D′ ⊆ D. Observe
that the 2-IP-Dis-{�, �} problem has an interesting formulation in terms of
constrained matchings in general graphs: Given a graph G together with a
linear ordering π of its vertices, the 2-IP-Dis-{�, �} problem is equivalent to
finding a maximum cardinality matching M in G with the property that for

7

any two distinct edges {u, v} and {u′, v′} of M, neither max{π(u), π(v)} <
min{π(u′), π(v′)} nor max{π(u′), π(v′)} < min{π(u), π(v)} occur.

Roughly speaking, our algorithm is a three-step procedure. First, the interval
graph of all the covering intervals of the 2-intervals in D is constructed. Next,
all the maximal cliques of that graph are efficiently computed. Finally, for each
maximal clique we construct a new graph and find a solution using a maximum
cardinality matching algorithm. The size of a best solution found in the third
step is thus returned. Clearly, the efficiency of our algorithm relies upon an
efficient algorithm for finding all the maximal cliques in the intersection of the
covering intervals. We now proceed with the details of our algorithm.

Let D = {Di : 1 ≤ i ≤ n} be a set of 2-intervals. Consider the set CD composed
of all the covering intervals of the 2-intervals in D, i.e., CD = {Cover(D) : D ∈
D}. Now, let Ω(CD) be the interval graph associated with CD. The graph Ω(CD)
has a vertex vi for each interval Cover(Di) in CD and two vertices vi and vj

of Ω(CD) are joined by an edge if the two associated intervals Cover(Di) and
Cover(Dj) intersect. An illustration of CD and Ω(CD) for a given set of 2-
intervals D is given in Figure 1. Most in the interest in the interval graph
Ω(CD) stems from the following lemma.

Fig. 1. Illustration of CD and Ω(CD) for a given set of 2-intervals D on a disjoint
ground set.

Lemma 3 Let D be a set of 2-intervals and D′ be a {�, �}-comparable subset
of D. Then, {vi : Di ∈ D′} induces a complete graph in Ω(CD).

PROOF. Let Di and Dj be two distinct 2-intervals of D′. Since Di and
Dj are {�, �}-comparable then it follows that either intervals Cover(Di) and
Cover(Dj) overlap or one interval is completely contained in the other. In both
cases, intervals Cover(Di) and Cover(Dj) intersect, and hence vertices vi and
vj are joined by an edge in Ω(CD). Therefore {vi : Di ∈ D′} induces a complete
graph in Ω(CD). ✷

Observe that the converse is false since the intersection of two 2-intervals in D
results in an edge in Ω(CD), and hence two 2-intervals associated to two distinct
vertices in a clique may not be {�, �}-comparable. However, thanks to Lemma

8

3 we now only need to focus on maximal cliques of Ω(CD). Several problems
that are NP-complete on general graphs have polynomial-time algorithms for
interval graphs. The problem of finding all the maximal cliques of a graph is
one such example. Indeed, an interval graph G = (V,E) is a chordal graph and
as such has at most |V | maximal cliques [14]. Furthermore, all the maximal
cliques of a chordal graph can be found in O(n+m) time, where n = |V | and
m = |E|, by a modification of Maximum Cardinality Search (MCS) [25,4].

Let C be a maximal clique of Ω(CD). As observed above, any two 2-intervals
associated to two distinct vertices in the maximal clique C may not be {�, �}-
comparable. Let D′ ⊆ D be the set of all 2-intervals associated to vertices in
the maximal clique C. Based on C, consider the graph GC = (VC , EC) defined
by VC = GS(D′) and EC = {{I, J} : D = (I, J) ∈ D′}. In other words, the set
of vertices of GC is the ground set of D′ and the edges of GC is the 2-interval
subset D′ itself viewed as a set of subsets of size 2. Note that the construction
of GC is possible only because D′ has disjoint ground set. The following lemma
is an immediate consequence of the definition of GC and Lemma 3.

Lemma 4 Let C be a clique in Ω(CD) and GC = (VC , EC) be the graph con-
structed as detailed above. Then, {(Ii1, Ji1), (Ii2, Ji2), . . . , (Iik , Jik)} is a {�, �}-
comparable subset if and only if {{Ii1 , Ji1}, {Ii2, Ji2}, . . . , {Iik , Jik}} is a match-
ing in GC.

Proposition 5 The 2-IP-Dis-{�, �} problem is solvable in O(n2
√
n) time,

where n is the number of 2-intervals in D.

PROOF. Consider the algorithm given in Figure 2. Correctness of this algo-
rithm follows from Lemmas 3 and 4. What is left is to prove the time com-
plexity. Clearly, the interval graph Ω(CD) can be constructed in O(n2) time.
All the maximal cliques of Ω(CD) can be found in O(n+m) time, where m is
the number of edges in Ω(CD) [25,4]. Summing up, the first two steps can be
done in O(n2) time since m < n2. We now turn to the time complexity of the
loop (in fact the dominant term of our analysis). For each maximal clique C of
Ω(CD), the graph GC can be constructed in O(n) time since |C| ≤ n. We now
consider the computation of a maximal matching in GC . Micali and Vazirani

[24] (see also [27]) gave an O(
√
|V ||E|) time algorithm for finding a maximal

matching in a graph G = (V,E). But GC has at most n edges (as each edge
corresponds to a 2-interval) and hence has at most 2n vertices. Then it follows
that a maximum matching M in GC can be found in O(n

√
n) time. Since

Ω(CD) is an interval graph with n vertices, it has at most n maximal cliques
[14], we conclude that the algorithm as a whole runs in O(n2

√
n) time. ✷

9

Max {�, �}-Comparable 2-Interval Pattern

Input: A set of 2-intervals D with disjoint ground set
Output: The size of a maximum cardinality {�, �}-comparable subset of
D
1. Construct the interval graph Ω(CD)
2. Compute all maximal cliques in Ω(CD)
3. For each maximal clique C in Ω(CD)
3.1. Construct the graph GC

3.2. Compute a maximal matching M in GC

3.3. Store the cardinality of M in m(C)
4. Return max{m(C) : C is a maximal clique of Ω(CD)}

Fig. 2. Algorithm Max {�, �}-Comparable 2-Interval Pattern.

5 2-IP-Unit-{<, �} is NP-complete

Theorem 6 below completes the analysis of 2-IP-Unit-R and 2-IP-Unl-R
for any model R ⊆ {<,�, �} (see Table 1).

Theorem 6 The 2-IP-Unit-{<, �} problem is NP-complete.

PROOF. First, we will present the two decision problems we will deal with
(Exact 3-CNF-Sat and 2-IP-Unit-{<, �}). Then, we will give several in-
termediate lemmas that will finally be used in Proposition 14 to validate the
proof of the NP-completeness of the 2-IP-Unit-{<, �} problem.

We provide a polynomial-time reduction from the Exact 3-CNF-Sat prob-
lem: Given a set Vn of n variables and a set Cq of q clauses (each composed
of three literals) over Vn, the problem asks to find a truth assignment for Vn

that satisfies all clauses of Cq. It is well-known that the Exact 3-CNF-Sat
problem is NP-complete [15]. For the sake of clarity, we now state formally
the 2-IP-Unit-{<, �} problem: Given a set of 2-intervals D, and a positive
integer k, the problem asks to find a subset D′ ⊆ D of cardinality greater than
or equal to k, such that D′ is {<, �}-comparable.

Clearly, 2-IP-Unit-{<, �} problem is in NP. We show that given any instance
of Exact 3-CNF-Sat with q clauses on a set of n variables, we can construct
in polynomial-time an instance of the 2-IP-Unit-{<, �} problem with k =
(7n− 2)q such that there exists a satisfying truth assignment for the boolean
formula iff there exists a {<, �}-comparable subset D′ ∈ D of size at least k.
We detail this construction hereafter.

10

Let Vn = {x1, x2, ...xn} be a set of n variables and Cq = {c1, c2, . . . , cq} be a
collection of q clauses. For the sake of clarity, let us define D on the integral
line such that any interval of the ground set is of size four. Let us start with
the precise definition of the representation of a single clause ci of Cq as illus-
trated in Figure 4. The dotted rectangle on the left (resp. right) is part of the
representation of clause ci−1 (resp. ci+1). The precise adjustment of the rep-
resentation of two consecutive clauses is illustrated in Figure 3 and formally
defined afterwards. For convenience, we will split the representation of ci into
seven groups (represented in gray): Ai, Bi, Ci

L, Ci
R, Di, Ei and F i. Each group

in turn is divided into blocks (represented in white). There are 11 + 2n blocks
for each clause: n blocks for Ai; 3 blocks for Bi; 1 block for Ci

L; n blocks for
Ci

R; 2 blocks for Di; 3 blocks for Ei; 2 blocks for F i.

Fig. 3. Junction between the representation of clauses ci−1 and ci

For example, in Figure 4 we use three boolean variables and hence we have
seventeen blocks. For the sake of clarity, in the figures of this section, the
intervals of the ground set might be drawn on different levels.

We now turn to give a precise definition of each group in the representation
of a given clause ci. In the following, we will refer to an interval of the ground
set as a simple interval. Let FP (ci) denote the smallest starting position of
any simple interval of the representation of clause ci. We set, for convenience,
FP (c1) = 0. For any 1 < i ≤ q, we have FP (ci) = FP (ci−1) + 104n −
21. Moreover, let FP (α) denote the smallest starting position of any simple
interval of group α ∈ {Ci

L, A
i, Bi, Ci

R, D
i, Ei, F i|1 ≤ i ≤ q}.

Group Ci
L is composed of one block containing 2n simple intervals (as illus-

trated in Figure 5): {[FP (Ci
L) + 7k, FP (Ci

L) + 7k+ 4]|0 ≤ k ≤ 2n− 1}, where
FP (Ci

L) = FP (ci). The 2n simple intervals of the block of group Ci
L represent

in the left to right order (x1, x1, x2, x2 . . . xn, xn). By definition, the simple in-
terval representing xm in Ci

L is defined by [FP (Ci
L) + 14(m − 1), FP (Ci

L) +
14(m − 1) + 4]. And consequently, the simple interval representing xm in Ci

L

is defined by [FP (Ci
L) + 14(m− 1) + 7, FP (Ci

L) + 14(m− 1) + 11].

11

Fig. 4. Representation of clause ci = (x1 ∨ x2 ∨ x3) where n = 3.

12

Fig. 5. Description of the simple intervals (represented as blocks of four consecutive
squares) of group Ci

L.

GroupDi is composed of two blocks (Di
1 and Di

2), each containing 2n−1 simple
intervals (as illustrated in Figure 6): {[FP (Di) + 5k, FP (Di) + 5k + 4]|0 ≤
k ≤ 4n−3} where FP (Di) = FP (ci) + 34n−10. By construction, block Di

1 is
composed of the following simple intervals: {[FP (Di)+5k, FP (Di)+5k+4]|0 ≤
k ≤ 2n − 2} and block Di

2 is composed of the following simple intervals:
{[FP (Di) + 5k, FP (Di) + 5k + 4]|2n− 1 ≤ k ≤ 4n− 3}.

Fig. 6. Description of the simple intervals of group Di.

Group Ai is composed of n blocks (one block for each boolean variable),
each containing four simple intervals (as illustrated in Figure 7): {[FP (Ai) +
7k, FP (Ai) + 7k + 4], [FP (Ai) + 2 + 14l, FP (Ai) + 6 + 14l], [FP (Ai) + 5 +
14l, FP (Ai) + 9 + 14l]|0 ≤ k ≤ 2n − 1, 0 ≤ l ≤ n − 1} where FP (Ai) =
FP (ci) + 54n − 20. The 4n simple intervals of group Ai represent in the left
to right order (x1, x1, x1, x1, x2, x2, x2, x2, . . . xn, xn, xn, xn). By construction,
in any block of group Ai the second (resp. third) simple interval overlaps
both the first and the third (resp. the second and the fourth) simple intervals.
By definition, the two simple intervals representing xm in Ai are defined by
[FP (Ai)+14(m−1)+7, FP (Ai)+14(m−1)+11] and [FP (Ai)+14(m−1)+
2, FP (Ai)+14(m−1)+6]. Consequently, the two simple intervals representing
xm in Ai are defined by [FP (Ai) + 14(m − 1), FP (Ai) + 14(m − 1) + 4] and
[FP (Ai) + 14(m− 1) + 5, FP (Ai) + 14(m− 1) + 9].

Fig. 7. Description of the simple intervals of group Ai.

Group Bi is composed of three blocks (one for each literal in a clause),
each containing 2n simple intervals (as illustrated in Figure 8): {[FP (Bi

1) +

13

6k, FP (Bi
1)+6k+4], [FP (Bi

2)+6k, FP (Bi
2)+6k+4], [FP (Bi

3)+6k, FP (Bi
3)+

6k + 4]|0 ≤ k ≤ 2n − 1} where FP (Bi
1) = FP (ci) + 68n − 20, FP (Bi

2) =
FP (ci)+80n−20, FP (Bi

3) = FP (ci)+92n−20. The 2n simple intervals of each
block of group Bi represent in the left to right order (x1, x1, x2, x2 . . . xn, xn).
By definition, the simple interval representing xm in Bi

j, with j ∈ {1, 2, 3}, is
defined by [FP (Bi

j) + 12(m− 1), FP (Bi
j) + 12(m− 1) + 4]. And consequently,

the simple interval representing xm in Bi
j, with j ∈ {1, 2, 3}, is defined by

[FP (Bi
j) + 12(m− 1) + 6, FP (Bi

j) + 12(m− 1) + 10].

Fig. 8. Description of the simple intervals of group Bi. Due to space considerations,
the description is divided in three lines. Each line starts with the end part of the
previous line in order to indicate the configuration of the whole description.

Group Ei is composed of three blocks, each containing 2n− 1 simple intervals
(as illustrated in Figure 9): {[FP (Ei

1) + 6k, FP (Ei
1) + 6k + 4], [FP (Ei

2) +
6k, FP (Ei

2) + 6k + 4], [FP (Ei
3) + 6k, FP (Ei

3) + 6k + 4]|0 ≤ k ≤ 2n − 2}
where FP (Ei

1) = FP (ci)+68n−17, FP (Ei
2) = FP (ci)+80n−17, FP (Ei

3) =
FP (ci)+92n−17. Therefore, each simple interval of block Ei

j intersects exactly
two simple intervals of block Bi

j, for 1 ≤ j ≤ 3.

Group Ci
R is composed of n blocks (one block for each boolean variable),

each containing two simple intervals (as illustrated in Figure 10): {[FP (Ci
R)+

14k, FP (Ci
R) + 14k + 4], [FP (Ci

R) + 14k + 3, FP (Ci
R) + 14k + 7]|0 ≤ k ≤

n−1} where FP (Ci
R) = FP (ci) + 104n−19. The 2n simple intervals of group

Ci
R represent in the left to right order (x1, x1, x2, x2 . . . xn, xn). By definition,

the simple interval representing xm in Ci
R is defined by [FP (Ci

R) + 14(m −
1), FP (Ci

R)+14(m−1)+4]. And consequently, the simple interval representing
xm in Ci

R is defined by [FP (Ci
R) + 14(m− 1) + 3, FP (Ci

R) + 14(m− 1) + 7].
Therefore, by construction, in any block of group Ci

R the two simple intervals
composing this block are overlapping.

Finally, group F i is composed of two blocks, each containing 2n − 1 simple
intervals (as illustrated in Figure 11): {[FP (F i) + 5k, FP (F i) + 5k + 4]|0 ≤
k ≤ 4n−3} where FP (F i) = FP (ci)+118n−21. By construction, block F i

1 is

14

Fig. 9. Description of the simple intervals of group Ei. As in Figure 8, due to space
considerations, the description is divided in three lines.

Fig. 10. Description of the simple intervals of group Ci
R.

composed of the following simple intervals: {[FP (F i)+5k, FP (F i)+5k+4]|0 ≤
k ≤ 2n − 2} and block F i

2 is composed of the following simple intervals:
{[FP (F i) + 5k, FP (F i) + 5k + 4]|2n− 1 ≤ k ≤ 4n− 3}.

Fig. 11. Description of the simple intervals of group F i.

The set of simple intervals of the instance of 2-IP-Unit-{<, �} is obtained by
assembling together in order the representation of the clauses c1 to cq. It is
easy to check the following properties (which are represented in Figure 12):

• for any 1 < i ≤ q, the smallest position of any simple interval of group Ci
L is

greater than the biggest position of any simple interval of groups Ei−1 and
Bi−1;

• for any 1 < i ≤ q, the smallest position of any simple interval of group F i−1

is greater than the biggest position of any simple interval of group Ci
L;

• for any 1 < i ≤ q, the biggest position of any simple interval of group F i−1

is less than the smallest position of any simple interval of group Di;

15

• for any 1 ≤ i ≤ q, the smallest position of any simple interval of group Ai

is greater than the biggest position of any simple interval of group Di;
• for any 1 ≤ i ≤ q, the biggest position of any simple interval of group Ai is

less than the smallest position of any simple interval of groups Bi and Ei;
• for any 1 ≤ i ≤ q, the smallest position of any simple interval of group Ci

R

is greater than the biggest position of any simple interval of groups Bi and
Ei;

• for any 1 ≤ i ≤ q, the biggest position of any simple interval of group Ci
R is

less than the smallest position of any simple interval of group F i.

Now that we have defined the ground set of D, let us define formally the
2-intervals of D (partially illustrated in Figure 4).

For each clause ci, D is composed of 2n 2-intervals built with a simple interval
of group Ci

L and a simple interval of group Ai:

• {([FP (Ci
L) + r, FP (Ci

L) + r + 4], [FP (Ai) + s, FP (Ai) + s+ 4]),
• ([FP (Ci

L) + s, FP (Ci
L) + s+ 4], [FP (Ai) + r, FP (Ai) + r + 4])}

with r = 14(k − 1), s = r + 7, 1 ≤ k ≤ n

For each clause ci, D is composed of 4n − 2 2-intervals built with a simple
interval of group Di and a simple interval of group Ei:

• {([FP (Di) + 5k, FP (Di) + 5k + 4], [FP (Ei
1) + 6k′′, FP (Ei

1) + 6k′′ + 4]),
• ([FP (Di) + 5k′, FP (Di) + 5k′ + 4], [FP (Ei

2) + 6k′′, FP (Ei
2) + 6k′′ + 4])}

with 0 ≤ k ≤ 2n− 2, 2n− 1 ≤ k′ ≤ 4n− 3, 0 ≤ k′′ ≤ 2n− 2.

For each clause ci, D is composed of 6n 2-intervals built with a simple interval
of group Bi and a simple interval of group Ci

R:

• {([FP (Bi
j) + r, FP (Bi

j) + r + 4], [FP (Ci
R) + s, FP (Ci

R) + s+ 4]),
• ([FP (Bi

j) + r + 6, FP (Bi
j) + r + 10], [FP (Ci

R) + s+ 3, FP (Ci
R) + s+ 7])}

with r = 12(k − 1), s = 14(k − 1), j ∈ {1, 2, 3}, 1 ≤ k ≤ n.

For each clause ci, D is composed of 4n − 2 2-intervals built with a simple
interval of group Ei and a simple interval of group F i:

• {([FP (Ei
2) + 6k′, FP (Ei

2) + 6k′ + 4], [FP (F i) + 5k, FP (F i) + 5k + 4]),
• ([FP (Ei

3) + 6k′, FP (Ei
3) + 6k′ + 4], [FP (F i) + 5k′′, FP (F i) + 5k′′ + 4])}

with 2n− 2 ≤ k ≤ 4n− 3, 0 ≤ k′ ≤ 2n− 2, 4n− 2 ≤ k′′ ≤ 6n− 4}.

For each clause ci, D is composed of 6n 2-intervals built with a simple interval
of group Ai and a simple interval of group Bi:

• {([FP (Ai) + r + 2, FP (Ai) + r + 6], [FP (Bi
j) + s, FP (Bi

j) + s+ 4]),
• ([FP (Ai) + r + 5, FP (Ai) + r + 9], [FP (Bi

j) + s+ 6, FP (Bi
j) + s+ 10])}

16

Fig. 12. Schematic representation of the distances between groups of a clause ci

17

with r = 14(k − 1), s = 12(k − 1), j ∈ {1, 2, 3}, 1 ≤ k ≤ n.

For each clause ci, in order to represent the clause ci, we delete from D the
2-interval ([FP (Ai) + r + 2, FP (Ai) + r + 6], [FP (Bi

j) + s, FP (Bi
j) + s + 4])

with r = 14(m− 1), s = 12(m− 1) if xm is the value of the jth literal of ci. In
a similar way, if xm is the value of the jth literal of ci, we delete from D the
2-interval ([FP (Ai)+r+5, FP (Ai)+r+9], [FP (Bi

j)+s+6, FP (Bi
j)+s+10])

with r = 14(m− 1), s = 12(m− 1).

Clearly, this construction can be carried out in polynomial-time. We now give
an intuitive description of the different elements of the set of 2-intervals that
we have built. Block Bi

1 (resp. Bi
2 and Bi

3) represents the value of the first
(resp. second and third) literal, say xm (or xm), of the clause ci; for this, the
2-interval between the simple interval of the mth block of group Ai and the
simple interval of Bi

1 (resp. Bi
2 and Bi

3) corresponding to xm (or xm) is not in
D (still the simple intervals are in GS(D)). For instance, in Figure 13, the fact
that there is no 2-interval between the simple interval corresponding to x1 in
Bi

1 and a simple interval of group Ai indicates that the first literal of clause ci
is x1. Similarly, the fact that there is no 2-interval between the simple interval
corresponding to x2 (resp. x3) in Bi

2 (resp. Bi
3) and a simple interval of group

Ai indicates that the second (resp. third) literal of clause ci is x2 (resp. x3).

Fig. 13. Zoom on group Bi of the representation of a clause ci = (x1 ∨ x2 ∨ x3)

The sequence of blocks (Ci−1
R , Ci

L, Ai, Bi, Ci
R) corresponds to a mechanism

which propagates the value of each variable of Vn. Blocks (Di, Ei, F i) corre-
spond to a literal selecting mechanism that indicates, for each clause ci, the
literal (i.e., the first, second or third) which satisfies ci. Notice that the two
previous intuitive notions will be detailed and clarified afterwards.

We start the proof by giving some properties (Lemmas 8 to 13) about the
maximal cardinality of a set of {<, �}-comparable 2-intervals in D in our
construction. Then, these results will be used in Proposition 14 to prove the
validity of the reduction. In the rest of this paper, we will use the following
notations:

• a 2-interval between blocks X and Y represents a 2-interval D = (I, J)

18

where I is a simple interval belonging to block X and J is a simple interval
belonging to block Y ;

• for any 1 ≤ i ≤ q and any set of groups α ⊆ {Ci
L, A

i, Bi, Ci
R, D

i, Ei, F i},
D(α) denotes a set of {<, �}-comparable 2-intervals between blocks of groups
belonging to α (for example, D(Di, Ei, F i) denotes a set of {<, �}-comparable
2-intervals between blocks Di

1, D
i
2, E

i
1, E

i
2, E

i
3, F

i
1 and F i

2);
• for any 1 ≤ i ≤ q, D(ci) denotes a set of {<, �}-comparable 2-intervals in

the representation of clause ci.

Lemma 7 For any set of groups α and β, |D(α)| + |D(β)| ≥ |D(α
⋃
β)|.

PROOF. The union of the sets α and β could result in one of the following
cases:

(a) D(α) and D(β) have at least a 2-interval in common;
(b) at least a 2-interval of D(α) and a 2-interval of D(β) are not disjoint;
(c) at least a 2-interval of D(α) and a 2-interval of D(β) are not {<, �}-

comparable.

In case (a) it is clear that the duplicated 2-interval will not be counted more
than once in |D(α

⋃
β)|. In case (b), only one of the two 2-intervals which

are not disjoint can be in D(α
⋃
β). In case (c), only one of the two 2-

intervals which are not {<, �}-comparable can be in D(α
⋃
β). If none of

those three cases occur then, D(α)
⋃D(β) is {<, �}-comparable, and thus,

|D(α)| + |D(β)| = |D(α
⋃
β)|. Therefore, |D(α)| + |D(β)| ≥ |D(α

⋃
β)|. ✷

By construction, a 2-interval can only exist between two blocks that correspond
to a single clause (cf. Figure 4). Thus, the maximum cardinality of a set of
{<, �}-comparable 2-intervals of D (i.e., the full representation of the boolean
formula) can be deduced from the maximum cardinality of D(ci) where ci is
a clause of Cq, for any 1 ≤ i ≤ q. Precisely, the maximum cardinality of a set
of {<, �}-comparable 2-intervals in the representation of all the clauses is less
than or equal to q ·maxi∈[1,q] |D(ci)|.

We first compute the maximum cardinality of a set D(ci) of {<, �}-comparable
2-intervals between blocks corresponding to a single clause ci.

Lemma 8 |D(α)| ≤ 3n for α = {Ci
L, A

i, Bi, Ci
R}.

PROOF. By the disjunction constraint, at most one simple interval per block
of Ai can be involved in a 2-interval between blocks ofAi and Bi. As there are n
blocks in Ai, we have |D(Ai, Bi)| ≤ n. Similarly, by the disjunction constraint,
at most one simple interval per block of Ci

R can be involved in a 2-interval

19

between blocks of Bi and Ci
R. As there are n blocks in Ci

R, |D(Bi, Ci
R)| ≤ n.

Thus, according to Lemma 7, |D(Ai, Bi, Ci
R)| ≤ |D(Ai, Bi)| + |D(Bi, Ci

R)| ≤
2n.
Moreover, at most one simple interval per block of Ai can be involved in a
2-interval between blocks of Ai and Ci

L since the two 2-intervals between a
given block of Ai and Ci

L are {�}-comparable. As there are n blocks in Ai,
|D(Ci

L, A
i)| ≤ n. Thus, by Lemma 7, |D(Ci

L, A
i, Bi, Ci

R)| ≤ |D(Ai, Bi, Ci
R)| +

|D(Ci
L, A

i)| ≤ 3n. ✷

In the following, θ(i, j) will denote the set of all the simple intervals in Bi
j and

Ei
j , with 1 ≤ j ≤ 3. The set δ(i, j) ⊆ θ(i, j) will denote a set of disjoint simple

intervals and k(E, i, j) (resp. k(B, i, j)) will be the number of simple intervals
of block Ei

j (resp. Bi
j) which are in δ(i, j). By construction, each simple interval

in block Ei
j intersects two simple intervals of block Bi

j (cf. Figure 14 and page
14).

Observation 1 (a) If k(E, i, j) > 0 then at least k(E, i, j)+1 simple intervals
of block Bi

j cannot belong to δ(i, j). Thus, k(B, i, j) ≤ 2n − (k(E, i, j) + 1).
Hence, |δ(i, j)| ≤ k(B, i, j) + k(E, i, j) ≤ 2n − (k(E, i, j) + 1) + k(E, i, j) ≤
2n− 1.

(b) If k(E, i, j) = 0 then all the simple intervals (i.e., 2n) of block Bi
j can belong

to δ(i, j). Thus, k(B, i, j) ≤ 2n. Hence, |δ(i, j)| ≤ k(B, i, j) + k(E, i, j) ≤ 2n.

Fig. 14. If two simple intervals of block Ei
j are part of δ(i, j) then at least three

simple intervals of block Bi
j cannot belong to δ(i, j), and thus |δ(i, j)| ≤ 2n − 1.

Lemma 9 If |D(Di, Ei, F i)| > 4n− 2 then |D(ci)| < 7n− 2.

PROOF. Assume that |D(Di, Ei, F i)| = 4n−2+γ with γ > 0. As each block
of group Ei (i.e., Ei

1, E
i
2, E

i
3) is composed of 2n − 1 simple intervals, there is

at least one simple interval in each block of group Ei involved in a 2-interval
of D(Di, Ei, F i).
Thus, considering only the simple intervals in groups Bi and Ei, there are at
most 6n− 3 (i.e., 3 · (2n− 1) by Observation 1 (a)) disjoint simple intervals.
By construction, any 2-interval of D(Ai, Bi, Ci

R, D
i, Ei, F i) is composed of a

simple interval of either group Bi or Ei. Thus, as there are at most 6n − 3
disjoint simple intervals in groups Bi and Ei, there are at most 6n − 3 2-
intervals in D(Ai, Bi, Ci

R, D
i, Ei, F i). As |D(Ci

L, A
i)| ≤ n (cf. proof of Lemma

8), by Lemma 7, we can conclude that |D(Ci
L, A

i, Bi, Ci
R, D

i, Ei, F i)| ≤ 7n−

20

3 < 7n − 2. Thus, since |D(ci)| cannot exceed |D(Ci
L, A

i, Bi, Ci
R, D

i, Ei, F i)|,
if |D(Di, Ei, F i)| > 4n− 2 then |D(ci)| < 7n− 2. ✷

Lemma 10 |D(ci)| ≤ 7n − 2. Moreover, if |D(ci)| = 7n − 2 then |D(α′)| =
4n− 2 for α′ = {Di, Ei, F i} and |D(α)| = 3n for α = {Ci

L, A
i, Bi, Ci

R}.

PROOF. Suppose, aiming to a contradiction, that |D(ci)| > 7n − 2. By
Lemma 7, |D(ci)| ≤ |D(Di, Ei, F i)|+|D(Ci

L, A
i, Bi, Ci

R)|. Thus, |D(Di, Ei, F i)|+
|D(Ci

L, A
i, Bi, Ci

R)| > 7n − 2. As, by Lemma 8, |D(Ci
L, A

i, Bi, Ci
R)| ≤ 3n, we

have |D(Di, Ei, F i)| > 4n − 2. But, by Lemma 9, if |D(Di, Ei, F i)| > 4n − 2
then |D(ci)| < 7n− 2, a contradiction. Therefore, we have |D(ci)| ≤ 7n− 2.

Now, if |D(ci)| = 7n − 2 then, by Lemma 9, |D(Di, Ei, F i)| ≤ 4n − 2. Thus,
|D(Ci

L, A
i, Bi, Ci

R)| ≥ 3n. But, by Lemma 8, |D(Ci
L, A

i, Bi, Ci
R)| ≤ 3n. There-

fore, |D(Ci
L, A

i, Bi, Ci
R)| = 3n and thus |D(Di, Ei, F i)| = 4n− 2. ✷

Lemma 11 If |D(ci)| = 7n−2 then the set D(Di, Ei, F i) contains 2-intervals
built with all the simple intervals from exactly two blocks of group Ei (i.e.,
(Ei

1, E
i
2), (Ei

1, E
i
3) or (Ei

2, E
i
3)).

PROOF. Since |D(ci)| = 7n− 2, by Lemma 10, we know that |D(Ci
L, A

i, Bi,
Ci

R)| = 3n. Moreover, |D(Ci
L, A

i)| ≤ n (cf. proof of Lemma 8). Thus, by
Lemma 7, we must have |D(Ai, Bi, Ci

R)| ≥ 2n. As |D(Ai, Bi, Ci
R)| ≤ 2n (cf.

proof of Lemma 8), |D(Ai, Bi, Ci
R)| = 2n.

Since |D(ci)| = 7n − 2, by Lemma 10, we have |D(Di, Ei, F i)| = 4n − 2.
Moreover, by construction, each 2-interval of D(Di, Ei, F i) is built with a
simple interval of Ei. Thus,

∑3
j=1(k(E, i, j)) = 4n− 2.

Suppose, for the sake of contradiction, that k(E, i, j) > 0 for all 1 ≤ j ≤ 3. By
Observation 1, we then have k(B, i, j) ≤ 2n− (k(E, i, j) + 1) for all 1 ≤ j ≤ 3.
Thus,

∑3
j=1 k(B, i, j) ≤ ∑3

j=1 2n−(k(E, i, j)+1) ≤ 6n−3−∑3
j=1 k(E, i, j). As∑3

j=1 k(E, i, j) = 4n− 2, we conclude that
∑3

j=1 k(B, i, j) ≤ 2n− 1. Moreover,
by construction, each 2-interval of D(Ai, Bi, Ci

R) is built with a simple interval
of Bi. Therefore, |D(Ai, Bi, Ci

R)| ≤ 2n− 1, a contradiction.

Therefore at least one of k(E, i, 1), k(E, i, 2) or k(E, i, 3) is equal to 0. Hence,
D(Di, Ei, F i) contains 2-intervals built with all the simple intervals from ex-
actly two blocks of the group Ei (i.e., (Ei

1, E
i
2), (Ei

1, E
i
3) or (Ei

2, E
i
3)). ✷

Corollary 12 If |D(ci)| = 7n− 2 then the set D(Ai, Bi, Ci
R) contains all the

simple intervals of a unique block of group Bi (i.e., Bi
1, B

i
2 or Bi

3).

21

PROOF. By Lemma 10, if |D(ci)| = 7n − 2 then |D(Ci
L, A

i, Bi, Ci
R)| = 3n.

Moreover, by construction, each 2-interval of D(Ai, Bi, Ci
R) is built with a

simple interval of Bi. As |D(Ai, Bi, Ci
R)| = 2n (cf. proof of Lemma 11),∑3

j=1(k(B, i, j)) = 2n. By Lemma 11, if |D(ci)| = 7n − 2 then D(Di, Ei, F i)
contains 2-intervals built with all the simple intervals from exactly two blocks
Ei

s and Ei
t of group Ei, for 1 ≤ s, t ≤ 3. By Observation 1, D(Ai, Bi, Ci

R)
contains 2-intervals built with all the simple intervals from exactly one block
Bi

u of group Bi with 1 ≤ u ≤ 3, u �= s and u �= t. ✷

Lemma 13 If |D(ci)| = 7n− 2 then:
(a) if j = 1 then D(Di, Ei, F i) is the set of all the 2-intervals between blocks
Ei

2, E
i
3, F

i
1 and F i

2.
(b) if j = 2 then D(Di, Ei, F i) is the set of all the 2-intervals between blocks
Ei

1, E
i
3, D

i
1 and F i

2.
(c) if j = 3 then D(Di, Ei, F i) is the set of all the 2-intervals between blocks
Ei

1, E
i
2, D

i
1 and Di

2.

PROOF. (a) By Lemma 10, if |D(ci)| = 7n−2 then |D(Di, Ei, F i)| = 4n−2.
By Corollary 12, Lemma 11 and the disjunction constraint, if the 2n 2-intervals
of D(Ai, Bi, Ci

R) contain 2-intervals built with all the simple intervals from Bi
1,

then D(Di, Ei, F i) contains 2-intervals built with all the simple intervals from
Ei

2 and Ei
3. Thus, D(Di, Ei, F i) is composed of the 2n− 1 2-intervals between

blocks Ei
3 and F i

2. Moreover, any 2-interval between blocks Ei
2 and Di

2 is {�}-
comparable to any 2-interval between blocks Ai and Bi

1. Therefore, the set
D(Di, Ei, F i) of 4n − 2 2-intervals is also composed of the 2n − 1 2-intervals
between blocks Ei

2 and F i
1.

(b) Similarly to (a), if the 2n 2-intervals of D(Ai, Bi, Ci
R) contain 2-intervals

built with all the simple intervals from Bi
2, then D(Di, Ei, F i) contains 2-

intervals built with all the simple intervals fromEi
1 and Ei

3. Thus, D(Di, Ei, F i)
is composed of the 2n−1 2-intervals between blocks Ei

1 and Di
1 and the 2n−1

2-intervals between blocks Ei
3 and F i

2.

(c) Similarly to (a) and (b), if the 2n 2-intervals of D(Ai, Bi, Ci
R) contain

2-intervals built with all the simple intervals from Bi
3, then D(Di, Ei, F i) con-

tains 2-intervals built with all the simple intervals from Ei
1 and Ei

2. Thus,
D(Di, Ei, F i) is composed of the 2n − 1 2-intervals between blocks Ei

1 and
Di

1. Moreover, any 2-interval between blocks Ei
2 and F i

1 is {�}-comparable
to any 2-interval between blocks Bi

3 and Ci
R. Therefore, D(Di, Ei, F i) is also

composed of the 2n− 1 2-intervals between blocks Ei
2 and Di

2. ✷

In the following, we denote by xm(U, V) (resp. xm(U, V)), for 1 ≤ m ≤ n, the
2-interval composed of the two simple intervals representing xm (resp. xm) in

22

blocks U and V .

Observation 2 Suppose |D(ci)| = 7n− 2.

• If, for a given 1 ≤ j ≤ 3, xm(Ci
L, A

i) ∈ D(ci) then xm(Ai, Bi
j) ∈ D(ci).

• If, for a given 1 ≤ j ≤ 3, xm(Ci
L, A

i) ∈ D(ci) then xm(Ai, Bi
j) ∈ D(ci).

Fig. 15. xm(Ci
L, Ai) ∈ D(ci) implies xm(Ai, Bi

j) ∈ D(ci).

PROOF. An illustration of Observation 2 is given in Figure 15. Indeed,
|D(ci)| = 7n − 2, thus by Lemma 10 |D(Ci

L, A
i, Bi, Ci

R)| = 3n. We have
proved (cf. proof of Lemma 8) that |D(Ai, Bi)| ≤ n, |D(Bi, Ci

R)| ≤ n, and
|D(Ci

L, A
i)| ≤ n. By Lemma 7, |D(Ai, Bi)| + |D(Bi, Ci

R)| + |D(Ci
L, A

i)| ≥
|D(Ci

L, A
i, Bi, Ci

R)|. Thus, |D(Ai, Bi)| = |D(Bi, Ci
R)| = |D(Ci

L, A
i)| = n.

Moreover, we proved that |D(Ci
L, A

i)| = n implies that one simple interval
per block of Ai is involved in a 2-interval between Ci

L and Ai (cf . proof of
Lemma 8). Consider themth block ofAi. Therefore, by the {<, �}-comparability
constraint, either xm(Ci

L, A
i) ∈ D(ci) or xm(Ci

L, A
i) ∈ D(ci).

Similarly, we proved that |D(Ai, Bi)| = n implies that one simple interval per
block of Ai is involved in a 2-interval between Ai and Bi (cf . proof of Lemma
8). Consider the mth block of Ai. We mentioned that, by construction, the
simple intervals of this block represent in order (xm, xm, xm, xm).Therefore,
either xm(Ai, Bi

j) ∈ D(ci) or xm(Ai, Bi
j) ∈ D(ci).

Moreover, by the disjunction constraint and the adjustment of the simple
intervals of each block of Ai, if xm(Ci

L, A
i) ∈ D(ci) then xm(Ai, Bi

j) ∈ D(ci).
Similarly, if xm(Ci

L, A
i) ∈ D(ci) then xm(Ai, Bi

j) ∈ D(ci). ✷

Observation 3 Suppose |D(ci)| = 7n− 2.

• If, for a given 1 ≤ j ≤ 3, xm(Ai, Bi
j) ∈ D(ci) then xm(Bi

j, C
i
R) ∈ D(ci).

• If, for a given 1 ≤ j ≤ 3, xm(Ai, Bi
j) ∈ D(ci) then xm(Bi

j, C
i
R) ∈ D(ci).

PROOF. An illustration of Observation 3 is given in Figure 16. Suppose
xm(Ai, Bi

j0
) ∈ D(ci) for a given 1 ≤ j0 ≤ 3. By Corollary 12, as |D(ci)| = 7n−2,

the set D(Ai, Bi, Ci
R) contains all the simple intervals of a unique block Bi

j of
group Bi. Thus, by the supposition we made, the set D(Ai, Bi, Ci

R) contains all
the simple intervals of block Bi

j0
. We proved (cf. proof of Observation 2) that

23

Fig. 16. xm(Ai, Bi
j) ∈ D(ci) implies xm(Bi

j , C
i
R) ∈ D(ci).

either xm(Ai, Bi
j0) ∈ D(ci) or xm(Ai, Bi

j0) ∈ D(ci) for some 1 ≤ j0 ≤ 3. By the
disjunction constraint, as xm(Ai, Bi

j0
) ∈ D(ci) we have xm(Bi

j0
, Ci

R) �∈ D(ci).
Moreover, as the set D(Ai, Bi, Ci

R) contains all the simple intervals of block
Bi

j0, xm(Bi
j0, C

i
R) ∈ D(ci). Similarly, if xm(Ai, Bi

j0) ∈ D(ci) then xm(Bi
j0, C

i
R) ∈

D(ci) for any 1 ≤ j0 ≤ 3. ✷

Observation 4 Suppose |D(ci)| = |D(ci+1)| = 7n− 2.

• If, for a given 1 ≤ j ≤ 3, xm(Bi
j , C

i
R) ∈ D(ci) then xm(Ci+1

L , Ai+1) ∈
D(ci+1).

• If, for a given 1 ≤ j ≤ 3, xm(Bi
j , C

i
R) ∈ D(ci) then xm(Ci+1

L , Ai+1) ∈
D(ci+1).

Fig. 17. xm(Bi
j , C

i
R) ∈ D(ci) implies xm(Ci+1

L , Ai+1) ∈ D(ci+1)

PROOF. An illustration of Observation 4 is given in Figure 17. If |D(ci+1)| =
7n− 2, then |D(Ci+1

L , Ai+1)| = n (cf. proof of Observation 2). By the {<, �}-
comparability constraint, either xm(Ci+1

L , Ai+1) ∈ D(ci+1) or xm(Ci+1
L , Ai+1) ∈

D(ci+1) (cf. proof of Observation 2). By the adjustment of blocks Ci
R and Ci+1

L ,
if |D(ci)| = |D(ci+1)| = 7n−2 and xm(Bi

j , C
i
R) ∈ D(ci), then xm(Ci+1

L , Ai+1) ∈
D(ci+1). Similarly, if |D(ci)| = |D(ci+1)| = 7n − 2 and xm(Bi

j, C
i
R) ∈ D(ci)

then xm(Ci+1
L , Ai+1) ∈ D(ci+1). ✷

Lemmas 8 to 13 together with Observations 2 to 4 provide us all the necessary
intermediate results to show that the reduction of Exact 3-CNF-Sat to the
2-IP-Unit-{<, �} problem is valid.

Proposition 14 Given an instance of the problem Exact 3-CNF-Sat with
n variables and q clauses, there exists a satisfying true assignment iff there is

24

a subset D′ ⊆ D such that |D′| ≥ (7n− 2)q and D′ is {<, �}-comparable.

PROOF. (⇒)
Suppose we have an assignment AS of the n variables that satisfies the boolean
formula. By definition, for each clause there is at least one literal that satisfies
it. We look for a set of {<, �}-comparable 2-intervals D′ in the representation
of the boolean formula such that the cardinality of D′ is greater than or equal
to (7n− 2)q. By Lemma 10, for any clause ci, |D(ci)| ≤ 7n− 2. Thus, |D′| ≤
(7n − 2)q. Therefore, the only solution to our problem is a set D′ such that
|D′| = (7n−2)q. As the boolean formula is composed of q clauses, each subset
D′(ci) of D′ for each clause ci, 1 ≤ i ≤ q, must satisfy |D′(ci)| = 7n− 2.

Hereafter, ji will define the smallest index of the literal of ci (i.e., 1, 2 or 3)
which, by its assignment, satisfies ci. For any 1 ≤ i ≤ q, we define D′(ci) as
follows. For each variable xm with 1 ≤ m ≤ n:

(a) If xm = True then xm(Ci
L, A

i), xm(Ai, Bi
ji

) and xm(Bi
ji
, Ci

R) are in D′(ci);
(b) If xm = False then xm(Ci

L, A
i), xm(Ai, Bi

ji
) and xm(Bi

ji
, Ci

R) are in D′(ci).

Moreover, for any given 1 ≤ ji ≤ 3:

(c) If ji = 1 then D′(ci) is also composed of the set of all the 2-intervals
between blocks Ei

2, Ei
3, F i

1 and F i
2;

(d) If ji = 2 then D′(ci) is also composed of the set of all the 2-intervals
between blocks Ei

1, Ei
3, Di

1 and F i
2;

(e) If ji = 3 then D′(ci) is also composed of the set of all the 2-intervals
between blocks Ei

1, Ei
2, Di

1 and Di
2.

An example of subset D′(ci) where ci = (x1∨x2∨x3) and such that x1 = x2 =
x3 = True is illustrated in Figure 18.

In the following, we will first prove that, for any 1 ≤ i ≤ q, D′(ci) is a set of
{<, �}-comparable 2-intervals. Then we will prove that D′ =

⋃q
1 D′(ci) is a set

of {<, �}-comparable 2-intervals such that |D′| = (7n− 2)q.

By the way we defined D′(ci), it is easy to see that |D′(ci)| = 7n− 2. Indeed,
by (a) or (b), three 2-intervals have been added to D′(ci) for each variable
xm with 1 ≤ m ≤ n. Moreover, by (c), (d) or (e), for any given 1 ≤ ji ≤ 3, a
set of 4n− 2 2-intervals has been added to D′(ci).

For any 1 ≤ i ≤ q, D′(ci) is a set of {<, �}-comparable 2-intervals iff there is no
inclusion or disjunction in D′(ci). First, we will prove that given a 1 ≤ ji ≤ 3,
D′(Ci

L, A
i, Bi

ji
, Ci

R) is a set of {<, �}-comparable 2-intervals. Then, we will
prove that given a 1 ≤ ji ≤ 3, D′(Di, Ei, F i) is a set of {<, �}-comparable
2-intervals. Finally, we will prove that D′(ci), which is the union of those two

25

Fig. 18. D′(ci) where ci = (x1 ∨ x2 ∨ x3) and x1 = x2 = x3 = True

26

sets, is a set of {<, �}-comparable 2-intervals.

Considering only the 2-intervals of D′(Ci
L, A

i, Bi
ji
, Ci

R), by construction an in-
clusion can only occur between two 2-intervals built with simple intervals of
exactly two groups. For any 1 ≤ ji ≤ 3, by construction, any pair of 2-intervals
between Ai and Bi

ji
(resp. Bi

ji
and Ci

R) are crossing. Thus, an inclusion can
only occur when two simple intervals of the same block of Ai are both involved
in a 2-interval between Ci

L and Ai in D′(Ci
L, A

i, Bi
ji
, Ci

R).

Clearly, either xm(Ci
L, A

i) ∈ D′(ci) or xm(Ci
L, A

i) ∈ D′(ci) for each vari-
able xm. Thus, only one simple interval per block of Ai is involved in a
2-interval between Ci

L and Ai. Therefore, there cannot be an inclusion in
D′(Ci

L, A
i, Bi

ji
, Ci

R).

By the way we defined D′(ci) and the construction of the representation of
a clause, it is easy to see that there cannot be non disjoint 2-intervals in
D′(Ci

L, A
i, Bi

ji
, Ci

R) (see for instance Figure 18). Thus, D′(Ci
L, A

i, Bi
ji
, Ci

R) is a
set of 3n {<, �}-comparable 2-intervals.

Considering only the 2-intervals of D′(Di, Ei, F i), by construction, there can-
not be a problem of inclusion in D′(Di, Ei, F i). Moreover, a problem of dis-
junction can only occur when a simple interval of block Ei

2 is involved in two
2-intervals in D′(Di, Ei, F i). By the way we defined D′(ci), this situation never
appears. Thus, D′(Di, Ei, F i) is a set of 4n− 2 {<, �}-comparable 2-intervals.

Now we consider the 2-intervals of D′(ci). We proved upwards that for any
1 ≤ ji ≤ 3, both D′(Ci

L, A
i, Bi

ji
, Ci

R) and D′(Di, Ei, F i) are sets of {<, �}-
comparable 2-intervals. Thus, we have to check that assembling those two sets
does not create inclusion or disjunction problems. To prove that D′(ci) is a set
of {<, �}-comparable 2-intervals, we will examine the three following cases:

(1) ji = 1. D′(ci) contains n 2-intervals between Ci
L and Ai, n 2-intervals

between Ai and Bi
1, n 2-intervals between Bi

1 and Ci
R, 2n− 1 2-intervals

between Ei
2 and F i

1 and 2n− 1 2-intervals between Ei
3 and F i

2.
By construction, all the 2-intervals are disjoint. Moreover, any 2-interval

between Ei
2 and F i

1 (resp. Ei
3 and F i

2) is crossing any 2-interval between
Bi

1 and Ci
R (see Figure 19). Thus, there is no inclusion problem in D′(ci).

Thus, D′(ci) is a set of 7n−2 {<, �}-comparable 2-intervals in this case.
(2) ji = 2. D′(ci) contains n 2-intervals between Ci

L and Ai, n 2-intervals
between Ai and Bi

2, n 2-intervals between Bi
2 and Ci

R, 2n− 1 2-intervals
between Di

1 and Ei
1 and 2n− 1 2-intervals between Ei

3 and F i
2.

By construction, all the 2-intervals are disjoint. Moreover, any 2-interval
between Di

1 and Ei
1 is crossing any 2-interval between Ci

L and Ai (resp.
Ai and Bi

2). Moreover, any 2-interval between Ei
3 and F i

2 is crossing any
2-interval between Bi

2 and Ci
R (see Figure 20). Thus, D′(ci) is a set of

7n− 2 {<, �}-comparable 2-intervals in this case.

27

Fig. 19. Illustration of case (1). Bold lines represents sets of 2-intervals between
groups.

Fig. 20. Illustration of case (2). Bold lines represents sets of 2-intervals between
groups.

(3) ji = 3. D′(ci) contains n 2-intervals between Ci
L and Ai, n 2-intervals

between Ai and Bi
3, n 2-intervals between Bi

3 and Ci
R, 2n− 1 2-intervals

between Di
1 and Ei

1 and 2n− 1 2-intervals between Di
2 and Ei

2.
By construction, all the 2-intervals are disjoint. Moreover, any 2-interval

between Di
1 and Ei

1 (resp. Di
2 and Ei

2) is crossing any 2-interval between
Ci

L and Ai. Similarly, any 2-interval between Di
1 and Ei

1 (resp. Di
2 and

Ei
2) is crossing any 2-interval between Ai and Bi

3 (see Figure 21). Thus,
D′(ci) is a set of 7n− 2 {<, �}-comparable 2-intervals in this case.

Fig. 21. Illustration of case (3). Bold lines represents sets of 2-intervals between
groups.

We just proved that we can find a {<, �}-comparable subset D(ci) of D′ for
each clause ci such that |D(ci)| = 7n− 2. Finally, we have to verify that D′ =⋃q

1 D′(ci) is {<, �}-comparable. By construction, there cannot be inclusion
problems between two 2-intervals of different clauses. What is left is to prove
that the adjustment of blocks Ci

R and Ci+1
L for a any 1 ≤ i < q does not imply

non disjoint 2-intervals (see Figure 3).

By the adjustment of blocks Ci+1
L and Ci

R, a disjunction problem can only
occur between the simple interval representing xm (resp. xm) in Ci

R and the

28

simple interval representing xm (resp. xm) in Ci+1
L for some 1 ≤ m ≤ n.

By the way we defined D′(ci), if xm = True then for any 1 ≤ i ≤ q, xm(Ci
L, A

i)
and xm(Bi

ji
, Ci

R) are in D′(ci). Thus, if xm = True then xm(Bi
ji
, Ci

R) ∈ D′(ci)
and xm(Ci+1

L , Ai+1) ∈ D′(ci+1). However, we know that, for any 1 ≤ ji ≤ 3,
xm(Bi

ji
, Ci

R) and xm(Ci+1
L , Ai+1) are disjoint (see Figure 3).

By the way we defined D′(ci), if xm = False then for any 1 ≤ i ≤ q, xm(Ci
L, A

i)
and xm(Bi

ji
, Ci

R) are in D′(ci). Thus, if xm = False then xm(Bi
ji
, Ci

R) ∈ D′(ci)
and xm(Ci+1

L , Ai+1) ∈ D′(ci+1). However, we know that, for any 1 ≤ ji ≤ 3,
xm(Bi

ji
, Ci

R) and xm(Ci+1
L , Ai+1) are disjoint (see Figure 3).

Thus, a disjunction problem due to the adjustment of blocks Ci+1
L and Ci

R

for a given 1 ≤ i < q in D′ cannot exist. Therefore, there is a set of {<, �}-
comparable 2-intervals in the representation of the boolean formula of cardi-
nality (7n− 2)q.

(⇐)
Suppose we have a {<, �}-comparable subset D′ ⊆ D of cardinality (7n− 2)q.
By Lemma 10, D′ is composed of a subset D′(ci) of at most 7n − 2 {<, �}-
comparable 2-intervals for each clause ci with 1 ≤ i ≤ q. Thus, for each
1 ≤ i ≤ q, |D′(ci)| = 7n− 2. We define the assignment AS of the n variables
as follows. For any 1 ≤ m ≤ n:

• If xm(C1
L, A

1) ∈ D′ then the value of variable xm is True;
• If xm(C1

L, A
1) ∈ D′ then the value of variable xm is False.

We proved (cf. proof of Observation 2) that for any 1 ≤ i ≤ q if |D(ci)| = 7n−2
then |D(Ci

L, A
i)| = n. Thus, as |D′(c1)| = 7n − 2, D′(c1) is composed of n 2-

intervals between blocks of C1
L and A1. Moreover, we proved (cf. proof of

Observation 2) that, for any 1 ≤ i ≤ q, if |D(ci)| = 7n − 2 then either
xm(Ci

L, A
i) ∈ D(ci) or xm(Ci

L, A
i) ∈ D(ci). Thus, either xm(C1

L, A
1) ∈ D′(c1)

or xm(C1
L, A

1) ∈ D′(c1). Therefore, AS is an assignment of n variables such
that each variable have a unique value.

Now, we have to verify that AS satisfies the boolean formula corresponding
to D (i.e., each clause ci with 1 ≤ i ≤ q must be satisfied). First, note that
a direct consequence of Observations 2 to 4 is that, for any 1 ≤ m ≤ n,
if xm(Ci

L, A
i) ∈ D(ci), then xm(Ci+1

L , Ai+1) ∈ D(ci+1) for any 1 ≤ i < q.
Similarly, for any 1 ≤ m ≤ n, if xm(Ci

L, A
i) ∈ D(ci), then xm(Ci+1

L , Ai+1) ∈
D(ci+1) for any 1 ≤ i < q.

Thus, for any 1 ≤ m ≤ n if xm(C1
L, A

1) ∈ D′(c1) then xm(Ci
L, A

i) ∈ D′(ci)
for any 2 ≤ i ≤ q. Similarly, for any 1 ≤ m ≤ n if xm(C1

L, A
1) ∈ D′(c1) then

xm(Ci
L, A

i) ∈ D′(ci) for any 2 ≤ i ≤ q.

29

By Corollary 12, as |D′(ci)| = 7n − 2, the set D′(ci) contains all the simple
intervals of a unique block Bi

ji
of group Bi, for a given 1 ≤ ji ≤ 3. Moreover,

as |D′(ci)| = 7n−2, D′(ci) is composed of n 2-intervals between blocks Ai and
Bi

ji
(cf. proof of Observation 2). More precisely, for any 1 ≤ m ≤ n, either

xm(Ai, Bi
ji

) or xm(Ai, Bi
ji

) is in D′(ci).

Suppose xp is the literal of clause ci at position ji, with 1 ≤ ji ≤ 3. Then by
construction, xp(Ai, Bi

ji
) does not exist. This implies that xp(Ai, Bi

ji
) ∈ D′(ci).

Moreover, by Observations 2 and 3, if xp(Ai, Bi
ji

) ∈ D′(ci) then xp(Bi
ji
, Ci

R) ∈
D′(ci) and xp(Ci+1

L , Ai+1) ∈ D′(ci+1). Therefore, according to AS, if xp(Ci+1
L ,

Ai+1) ∈ D′(ci+1) then the value of variable xp is True. Thus, as xp is the literal
of clause ci at position ji, we conclude that ci is satisfied.

Suppose xp is the literal of clause ci at position ji, with 1 ≤ ji ≤ 3. By a
similar reasoning, we can verify that clause ci is satisfied due to the literal xp

at position ji.

This reasoning can be applied to any clause ci of the boolean formula. Thus,
AS satisfies each clause ci, 1 ≤ i ≤ q. Thus, from the {<, �}-comparable
subset D′ ⊆ D of cardinality equal to (7n− 2)q, we can find a satisfying true
assignment AS. ✷

6 A fixed-parameter algorithm for 2-IP-Unit-{<, �}

According to Theorem 6, finding the largest {<, �}-comparable subset in a
set of 2-intervals on a unit ground set is an NP-complete problem. In this
section, we give an exact algorithm for that problem with strong emphasis
on the crossing structure of the set of 2-intervals. More precisely, we consider
the time complexity of the problem with respect to the forward crossing num-
ber of the input. Indeed, in the context of 2-intervals, one may reasonably
expect the forward crossing number to be small compared to the number of 2-
intervals, and hence, a natural direction seems to be the question for the fixed-
parameter tractability with respect to parameter FCrossing(D). In response to
that question, we show that the problem can be solved for any ground set by
means of dynamic programming in O(n2 · FCrossing(D) · 2FCrossing(D)(log(n) +
FCrossing(D))) time where n is the number of 2-intervals in D, and hence is
fixed-parameter tractable with respect to parameter FCrossing(D).

For any Di ∈ D, let T (Di) denote the size of the largest {<, �}-comparable
subset D′ ⊆ D of which the 2-interval Di is the rightmost element. Further-
more, for any Di, Dj ∈ D such that Dj � Di, let T (Dj | Di) denotes the size
of the largest {<, �}-comparable subset D′ ⊆ D such that (1) the 2-interval

30

Dj is the rightmost element of D′ and (2) the 2-interval Di is not part of the
subset D′ but can safely be added to D′ to obtain a new {<, �}-comparable
subset of size |D′| + 1.

Clearly, a maximum cardinality {<, �}-comparable subset D′ ⊆ D of which
the 2-interval Di is the rightmost element can be obtained either (1) by adding
Di to a maximum cardinality {<, �}-comparable subset D′′ ⊆ D whose right-
most 2-interval Dj precedes the 2-interval Di, i.e., Dj < Di, or (2) by adding
Di to a maximum cardinality {<, �}-comparable subset D′′ ⊆ D whose right-
most 2-interval Dj crosses the 2-interval Di, i.e., Dj � Di, and such that Di

crosses or precedes any 2-interval of D′′. Here is another way of stating these
observations:

∀Di ∈ D, T (Di) = 1 + max




max{T (Dj) : Dj < Di}
max{T (Dj | Di) : Dj � Di}

(1)

What is left is thus to compute T (Dj | Di). To this aim, we extend the notation
T (Dj | Di) as follows: for any {�}-comparable subset {Di1, Di2 , . . . , Dik} ⊆ D,
k ≥ 1, satisfying Right(Di1) < Right(Di2) < . . . < Right(Dik), we let T (Di1 |
Di2 , . . . , Dik) stand for the size of a largest {<, �}-comparable subset D′ ⊆ D
such that (1) the 2-interval Di1 is the rightmost element of D′ and (2) the
2-intervals {Di2 , Di3, . . . , Dik} are not part of the subset D′ but can safely
be added to D′ to obtain a new {<, �}-comparable subset of size T (Di1 |
Di2 , . . . , Dik) +k−1. A straightforward extension of the calculation (1) yields
the following recurrence relation for computing the entry T (Di1 | Di2 , . . . , Dik)
of the dynamic programming table:

T (Di1 | Di2, . . . , Dik) = 1+

max




max {T (Dj) | Dj satisfies condition (1)}
max {T (Dj | Di1) | Dj satisfies condition (2)}
max {T (Dj | Di1, Di2) | Dj satisfies condition (3)}

...

max {T (Dj | Di1, Di2 , . . . , Dik) | Dj satisfies condition (k + 1)}
(2)

where condition (i), 1 ≤ i ≤ k + 1, is defined as follows:

condition (i)



Dj � Dir for all 0 < r < i (crossing conditions)

Dj < Dis for all i ≤ s < k + 1 (precedence conditions)

An illustration of the different conditions of this recurrence relation is given
in Figure 22. It follows from the above recurrence relation that entries of the

31

form T (Di | ∗) depend only on entries of the form T (Dj | ∗) where Dj < Di or
Dj � Di. From a computational point of view, this implies that the calculation
of entries of the form T (Di | ∗) depends only on the calculation of entries of
the form T (Dj | ∗) where Right(Dj) < Right(Di). The following easy lemma
gives an upper-bound on the size of the dynamic programming table T with
respect to the forward crossing number of D.

Lemma 15 The number of distinct entries of the dynamic programming table
T is upper-bounded by |D| · 2FCrossing(D).

PROOF. For any 2-interval Di ∈ D, the number of distinct {�}-comparable
subsets of which Di is the leftmost element is upper-bounded by 2FCrossing(D),
and hence there exist at most 2FCrossing(D) distinct entries of the form T (Di | ∗)
in the dynamic programming table T . ✷

The overall algorithm for finding the size of the largest {<, �}-comparable
subset in a set of 2-intervals is given in Figure 23. Using a suitable data
structure for efficiently searching 2-intervals, we have the following result.

Proposition 16 Algorithm Max {<, �}-Comparable 2-Interval Pattern returns
the size of a maximum cardinality {<, �}-comparable subset of a set of 2-
intervals D in O(n2 · FCrossing(D) · 2FCrossing(D)(log(n) + FCrossing(D))) time,
where n is the number of 2-intervals in D.

Our approach is based on the following theorem.

Theorem 17 ([10]) Let I be a finite collection of n intervals on the real
line. A data structure storing I using O(n logn) space can be constructed in
O(n logn) time. By querying this data structure one can report those intervals
in I that are completely contained in a given interval in O(n logn + k) time
where k is the number of reported 2-intervals.

Lemma 18 Let D be a finite collection of n 2-intervals. After a preprocessing
stage which takes O(n logn) time and uses O(n logn) space, one can report

(1) those 2-intervals in D that lie entirely to the left of a given 2-interval, or
(2) those 2-intervals in D whose left and right intervals are completely con-

tained in two given intervals

in O(n logn + k) time where k is the number of reported 2-intervals.

PROOF. We use a data structure composed of two separate data structures
as defined in Theorem 17.

32

Fig. 22. Illustration of the different conditions of recurrence relation (2).

(1) We associate to each 2-interval D ∈ D its least covering interval Cover(D)
and store all these covering intervals in the data structure of Theorem 17.
Reporting those 2-intervals in D that lie entirely to the left of a given 2-
interval D is equivalent to reporting those covering intervals that are
completely contained in the left preceding interval of D. The time com-

33

Max {<, �}-Comparable 2-Interval Pattern

Input: A finite set D of n 2-intervals.
Output: The maximum size of a {<, �}-comparable pattern in D.
1. Sort the set D according to their right interval. For the sake of clarity,

let us assume that the ordered 2-intervals set is now given by D =
{D1, D2, . . . , Dn}, i.e., Right(Di) < Right(Dj) implies i < j. All ordered
subsets considered in the following of the algorithm are to be understood
as ordered with respect to that order.

2. For i from 1 to n
2.1. Fill the entry T (Di).
2.2. For any ordered non-empty set {Di1 , Di2, . . . , Diq} ⊆ D such that

{Di} ∪ {Di1, Di2 , . . . , Diq} is an ordered subset of {�}-comparable 2-
intervals with Right(Di) < Right(Di1) < . . . < Right(Diq), fill the entry
T (Di | Di1 , Di2, . . . , Diq) according to the recurrence relation (2).

3. Return the largest entry T (Di)

Fig. 23. Algorithm Max {<, �}-Comparable 2-Interval Pattern.

plexity follows from Theorem 17.
(2) We store the left interval of each 2-interval in the data structure of The-

orem 17. Reporting is now a two step procedure. First, we find those
2-intervals whose left interval is completely contained in the first query
interval. Second, we report those 2-intervals of step one whose right in-
terval is completely contained in the second query interval. Clearly, the
first step takes O(n logn+k) time and the second step runs in O(k) time.

✷

Lemma 19 Let Dj ∈ D be such that all entries of the dynamic programming
table of the form T (Dk|∗) with Right(Dk) ≤ Right(Dj) have already been com-
puted in a previous run. Then, for any {�}-comparable subset {Di1, Di2 , . . . ,
Dik} ⊆ D, k ≥ 1, satisfying Right(Dj) < Right(Di1) < Right(Di2) < . . . <
Right(Dik), one can compute the entry of the dynamic programming table
T (Di1 | Di2 , . . .Dik) according to recurrence relation (2) in O(n ·FCrossing(D)
(log(n) + FCrossing(D))) time.

PROOF. We first need an injective mapping that associates to any {�}-
comparable subset {Di1 , Di2, . . . , Dik} ⊆ D, k ≥ 1, satisfying Right(Di1) <
Right(Di2) < . . . < Right(Dik), its index in the dynamic programming table
T . Let π be a numbering of D such that the 2-intervals are numbered accord-
ing to their right interval, i.e., Right(Di) < Right(Dj) implies π(Di) < π(Dj)
for all Di, Dj ∈ D. Let D� be the set of ordered subsequences of {1, 2, . . . , n}
defined as follows: for any {�}-comparable subset {Di1, Di2 , . . . , Dik} ⊆ D,
k ≥ 1, satisfying Right(Di1) < Right(Di2) < . . . < Right(Dik), the set D�

34

contains the ordered sequence (π(Di1), π(Di2), . . . , π(Dik)). Clearly, one can
compare two sequences of D�, for example according to lexicographic or-
der, in O(FCrossing(D)) time ; this follows from the fact that sequences of
D� are of length at most Depth(D) ≤ FCrossing(D) + 1. Therefore, using
any classical data structure for searching and inserting that guarantees log-
arithmic time [7], one can insert or search for a given sequence of D� in
O(FCrossing(D)(log(n) + FCrossing(D))) time. We now turn to the compu-
tation of T (Di1 | Di2 , . . .Dik). For each condition (i) of the recurrence re-
lation (2), one has to find those 2-intervals Dj satisfying Dj � {Dir : 0 ≤
r < i} and Dj < {Dis : i ≤ s < k + 1}. According to Lemma 18, this
can be done in O(logn + pi) where pi is the number of 2-intervals satis-
fying condition (i). Then it follows that one can find the maximum value
of condition (i) in O(pi · FCrossing(D)(log(n) + FCrossing(D))) time. Sum-
ming up over all conditions (i) and observing that

∑
1≤i≤k+1 pi ≤ n, we ob-

tain an O(n · FCrossing(D)(log(n) + FCrossing(D)) time algorithm for com-
puting the entry of the dynamic programming table T (Di1 | Di2 , . . .Dik). It
remains to insert the ordered sequence (π(Di1), π(Di2), . . . , π(Dik)) into the
data structure for upcoming queries. According to the above, this can be done
in O(FCrossing(D)(log(n) + FCrossing(D))) time. ✷

PROOF. [of Proposition 16] Correctness of the algorithm follows from re-
currence relation (2). What is left is to prove the time complexity. Sorting the
set of 2-intervals D according to their right interval can be done in O(n logn)
time. According to Lemma 19, each entry of the form T (Di | ∗) can be com-
puted in O(n · FCrossing(D)(log(n) + FCrossing(D))) time. Since the number
of distinct entries of the dynamic programming table T is upper-bounded by
n · 2FCrossing(D) (Lemma 15), it follows that the algorithm as a whole runs in
O(n2 · FCrossing(D) · 2FCrossing(D)(log(n) + FCrossing(D))) time. ✷

Corollary 20 The 2-IP-Unit-{�, �} problem is fixed-parameter tractable with
respect to parameter FCrossing(D).

It remains open, however, whether the 2-IP-Unit-{�, �} problem is fixed-
parameter tractable with respect to parameter Depth(D) (recall indeed that
FCrossing(D) ≥ Depth(D)).

7 Conclusion

In the context of structured pattern matching, we considered the problem of
finding an occurrence of a given structured pattern in a set of 2-intervals and
solved three open problems of [29]. We gave an optimal O(n logn) algorithm
for model R = {�} thereby improving the complexity of the best known

35

algorithm. Also, we described a O(n2
√
n) time algorithm for model R = {�, �}

over a disjoint ground set. Finally, we proved that the problem is NP-complete
for model R = {<, �} over a unit ground set, and in addition to that, we gave
a fixed parameter-tractability result based on the crossing structure of the set
of 2-intervals. These results almost complete the table of complexity classes
for the 2-interval pattern problem proposed by Vialette [29] (see Table 1).

An interesting question would be to answer the last remaining open problem
in that area, that is to determine whether there exists a polynomial time algo-
rithm for 2-IP-Dis-{<, �}, i.e., finding the largest {<, �}-comparable subset
of a set of 2-intervals over a disjoint ground set. Note that the 2-IP-Dis-{<, �}
problem has an immediate formulation in terms of constrained matchings in
general graphs: Given a graph G together with a linear ordering π of the ver-
tices of G, the 2-IP-Dis-{<, �} problem is equivalent to finding a maximum
cardinality matching M in G with the property that for any two distinct
edges {u, v} and {u′, v′} of M neither max{π(u), π(v)} < min{π(u′), π(v′)}
nor max{π(u′), π(v′)} < min{π(u), π(v)} occur. We note that a related result,
determining whether a given {<, �}-structured pattern occurs in a general lin-
ear graph, has been studied in [18,23]. Gramm [18] gave a polynomial-time
algorithm for this problem. Recently, Li and Li [23] proved that this algo-
rithm was incorrect and showed the problem was in fact NP-complete. In the
light of Table 1, we however conjecture the 2-IP-Dis-{<, �} problem to be
polynomial-time solvable.

References

[1] J. Alber, J. Gramm, J. Guo, and R. Niedermeier. Towards optimally solving the
longest common subsequence problem for sequences with nested arc annotations
in linear time. In Proceedings of the 13th Annual Symposium on Combinatorial
Pattern Matching (CPM 2002), volume 2373 of Lecture Notes in Computer
Science, pages 99–114. Springer-Verlag, 2002.

[2] R. Bar-Yehuda, K. Bendel, A. Freund, and D. Rawitz. Local ratio: A unified
framework for approxmation algorithms. J ACM Comput. Surv., 36(4):422–463,
2004.

[3] R. Bar-Yehuda, M.M. Halldorsson, J. Naor, H. Shachnai, and I. Shapira.
Scheduling split intervals. In Proceedings of the 13th Annual ACM-SIAM
Symposium on Discrete Algorithms, pages 732–741, 2002.

[4] J.R.S. Blair and B. Peyton. An introduction to chordal graphs and clique trees.
Graph Theory and Sparse Matrix Computation, 56:1–29, 1993.

[5] G. Blin, G. Fertin, and S. Vialette. New results for the 2-interval pattern
problem. In In Proc. 15th Annual Symposium on Combinatorial Pattern

36

Matching (CPM 2004), volume 3109 of Lecture Notes in Computer Science,
pages 311–322. Springer-Verlag, 2004.

[6] A. Butman, D. Hermelin, M. Lewenstein, and D. Rawitz. Optimization
problems in multiple-interval graphs. In Proc. ACM-SIAM Symposium on
Discrete Algorithms (SODA), 2007. To appear.

[7] T.H. Cormen, C.E. Leiserson, and R.L. Rivest. Introduction to algorithms. MIT
Press and McGraw Hill, Cambridge, 1992.

[8] M. Crochemore, D. Hermelin, G. Landau, D. Rawitz, and S. Vialette.
Approximating the 2-interval pattern problem. Theoretical Computer Science
(special issue for Alberto Apostolico), 2006. To appear.

[9] I. Dagan, M.C. Golumbic, and R.Y. Pinter. Trapezoid graphs and their coloring.
Discrete Applied Mathematics, 21:35–46, 1988.

[10] M. de Berg, M.van Kreveld, M. Overmars, and O. Schwarzkopf. Computational
Geometry: Algorithms and Applications. Springer-Verlag, 2nd edition, 2000.

[11] P. Evans. Finding common subsequences with arcs and pseudoknots. In
Proceedings of the 10th Annual Symposium Combinatorial Pattern Matching
(CPM 1999), volume 1645 of Lecture Notes in Computer Science, pages 270–
280. Springer-Verlag, 1999.

[12] S. Felsner, R. Müller, and L. Wernisch. Trapezoid graphs and generalizations:
Geometry and algorithms. Discrete Applied Math., 74:13–32, 1997.

[13] M.L. Fredman. On computing the length of longest increasing subsequences.
Disrete Mathematics, 11:29–35, 1975.

[14] D.R. Fulkerson and O.A. Gross. Incidence matrices and interval graphs. Pacific
Journal of Math., 15:835–855, 1965.

[15] M.R. Garey and D.S. Johnson. Computers and Intractability: a guide to the
theory of NP-completeness. W.H. Freeman, San Franciso, 1979.

[16] D. Goldman, S. Istrail, and C.H. Papadimitriou. Algorithmic aspects of
protein structure similarity. In Proceedings of the 40th Annual Symposium of
Foundations of Computer Science (FOCS99), pages 512–522, 1999.

[17] M.C. Golumbic. Algorithmic Graph Theory and Perfect Graphs. Academic
Press, New York, 1980.

[18] Jens Gramm. A polynomial-time algorithm for the matching of crossing
contact-map patterns. In Proceedings of the 4th Workshop on Algorithms in
Bioinformatics (WABI 2004), pages 38–49, 2004.

[19] J. Gramm, J. Guo, and R. Niedermeier. Pattern matching for arc-annotated
sequences. In Proceedings of the the 22nd Conference on Foundations
of Software Technology and Theoretical Computer Science (FSTTCS 2002),
volume 2556 of Lecture Notes in Computer Science, pages 182–193, 2002.

37

[20] J.R. Griggs and D.B. West. Extremal values of the interval number of a graph,
I. SIAM J. Alg. Discrete Methods, 1:1–7, 1979.

[21] T. Jiang, G.-H. Lin, B. Ma, and K. Zhang. The longest common subsequence
problem for arc-annotated sequences. In In Proc. 11th Annual Symposium on
Combinatorial Pattern Matching (CPM 2000), volume 1848 of Lecture Notes in
Computer Science, pages 154–165. Springer-Verlag, 2000.

[22] D. Joseph, J. Meidanis, and P. Tiwari. Determining DNA sequence similarity
using maximum independent set algorithms for interval graphs. In Proceedings
of the Third Scandinavian Workshop on Algorithm Theory (SWAT 92), Lecture
Notes in Computer Science, pages 326–337. Springer-Verlag, 1992.

[23] S.C. Li and M. Li. On the complexity of the crossing contact map
pattern matching problem. In Proc. of the 6th Workshop on Algorithms in
BioInformatics (WABI), LNBI, 2006. To appear.

[24] S. Micali and V.V. Vazirani. An O(
√

|V ||E|) algorithm for finding maximum
matching in general graphs. In Proceedings of the 21st Annual Symposium on
Foundation of Computer Science, pages 17–27. IEEE, 1980.

[25] R.E. Tarjan and M Yannakakis. Simple linear-time algorithms to test
chordality of graphs, test acyclicity of hypergraphs, and selectively reduce
acyclic hypergraphs. SIAM J. Comput., 13:566–579, 1984.

[26] W.T. Trotter and F. Harary. On double and multiple interval graphs. J. Graph
Theory, 3:205–211, 1979.

[27] V.V. Vazirani. A theory of alternating paths and blossoms for proving
correctness of the O(

√
|V ||E|) maximum matching algorithm. Combinatorica,

14(1):71–109, 1994.

[28] S. Vialette. Pattern matching over 2-intervals sets. In In Proc. 13th Annual
Symposium Combinatorial Pattern Matching (CPM 2002), volume 2373 of
Lecture Notes in Computer Science, pages 53–63. Springer-Verlag, 2002.

[29] S. Vialette. On the computational complexity of 2-interval pattern matching.
Theoretical Computer Science, 312(2-3):223–249, 2004.

[30] J. Viksna and D.Gilbert. Pattern matching and pattern discovery algorithms
for protein topologies. In O. Gascuel and B.M.E. Moret, editors, Proceedings of
the 1st Workshop on Algorithms in Bioinformatics (WABI 2001), volume 2149
of Lecture Notes in Computer Science, pages 98–111. Springer, 2001.

[31] D.B. West and D.B. Shmoys. Recognizing graphs with fixed interval number is
NP-complete. Discrete Applied Mathematics, 8:295–305, 1984.

38

