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Abstract

We analyze a new algorithm for probability forecasting of binary obser-
vations on the basis of the available data, without making any assumptions
about the way the observations are generated. The algorithm is shown to
be well calibrated and to have good resolution for long enough sequences
of observations and for a suitable choice of its parameter, a kernel on the
Cartesian product of the forecast space [0, 1] and the data space. Our
main results are non-asymptotic: we establish explicit inequalities, shown
to be tight, for the performance of the algorithm.

1 Introduction

We consider the problem of forecasting a new observation from the available
data, which may include, e.g., all or some of the previous observations and the
values of some explanatory variables. To make the process of forecasting more
vivid, we imagine that the data and observations are chosen by a player called
Reality and the forecasts are made by a player called Forecaster. To establish
properties of forecasting algorithms, the traditional theory of machine learn-
ing makes some assumptions about the way Reality generates the observations;
e.g., statistical learning theory [28] assumes that the data and observations are
generated independently from the same probability distribution. A more recent
approach, prediction with expert advice (see, e.g., [5]), replaces the assump-
tions about Reality by a comparison class of prediction strategies; a typical
result of this theory asserts that Forecaster can perform almost as well as the
best strategies in the comparison class. This paper further explores a third
possibility, suggested in [11], which requires neither assumptions about Reality
nor a comparison class of Forecaster’s strategies. It is shown in [11] that there
exists a forecasting strategy which is automatically well calibrated; this result
has been further developed in, e.g., [14, 20]. Almost all known calibration re-
sults, however, are asymptotic (see [22] and [21] for a critique of the standard
asymptotic notion of calibration); a non-asymptotic result about calibration is
given in [19], Proposition 2, but even this result involves unspecified constants
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and randomization. The main results of this paper (Theorems 1 and 2) estab-
lish simple explicit inequalities characterizing calibration and resolution of our
deterministic forecasting algorithm.

Next we briefly describe the main features of our proof techniques and their
connections with the literature. The proofs rely on the game-theoretic approach
to probability suggested in [24]. The forecasting protocol is complemented by
another player, Skeptic, whose role is to gamble at the odds given by Forecaster’s
probabilities. It can be said that our approach to forecasting is Skeptic-based,
whereas the traditional approach is Reality-based and prediction with expert ad-
vice is Forecaster-based. The two most popular formalizations of gambling are
subsequence selection rules (going back to von Mises’s collectives) and martin-
gales (going back to Ville’s critique [29] of von Mises’s collectives and described
in detail in [24]). The pioneering paper [11] on what we call the Skeptic-based
approach, as well as the numerous papers developing it, used von Mises’s notion
of gambling; [33] appears to be the first paper in this direction to use Ville’s
notion of gambling. Another ingredient of this paper’s approach, considering
Skeptic’s continuous strategies and thus avoiding randomization by Forecaster
(which was the standard feature of the previous work) goes back to [15] and is
also described in [12]; however, I learned it from Akimichi Takemura in June
2004 (whose observation was prompted by Glenn Shafer’s talk at the University
of Tokyo).

It should be noted that, although our approach was inspired by [11] and
papers further developing [11], precise statements of our results and our proof
techniques are completely different: they are more in the spirit of Levin’s [15]
result about the existence of neutral measures (see [32] for details).

This version (version 4) of this technical report differs from the previous
one in that it incorporates the changes made in response to the comments of
the reviewers of its journal version (to be published in Theoretical Computer
Science).

2 The algorithms of large numbers

In this section we describe our learning protocol and the general forecasting
algorithm studied in this paper. The protocol is:

FOR n = 1, 2, . . .:
Reality I announces xn ∈ X.
Forecaster announces pn ∈ [0, 1].
Reality II announces yn ∈ {0, 1}.

END FOR.

On each round, Reality chooses the datum xn, then Forecaster gives his forecast
pn for the next observation, and finally Reality discloses the actual observation
yn ∈ {0, 1}. Reality chooses xn from a data space X and yn from the two-element
set {0, 1}; intuitively, Forecaster’s move pn is the probability he attaches to the
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event yn = 1. Forecasting algorithm is Forecaster’s strategy in this protocol.
For convenience in stating the results of §6, we split Reality into two players,
Reality I and Reality II.

Our learning protocol is a perfect-information protocol; in particular, Re-
ality may take into account the forecast pn when deciding on her move yn.
(This feature is unusual for probability forecasting but it extends the domain of
applicability of our results and we have it for free.)

Next we describe the general forecasting algorithm that we study in this
paper (it was derived informally in [34]). A function K : Z2 → R, where
Z is an arbitrary set and R is the set of real numbers, is a kernel on Z if
it is symmetric (K(z, z′) = K(z′, z) for all z, z′ ∈ Z) and positive definite
(
∑m

i=1

∑m

j=1 λiλjK(zi, zj) ≥ 0 for all (λ1, . . . , λm) ∈ R
m and all (z1, . . . , zm) ∈

Zm). The usual interpretation of a kernel K(z, z′) is as a measure of similarity
between z and z′ (see, e.g., [23], §1.1). Our algorithm has one parameter, which
is a kernel on the Cartesian product [0, 1]×X. The most straightforward way of
constructing such kernels from kernels on [0, 1] and kernels on X is the operation
of tensor product. (See, e.g., [3, 28, 23].) Let us say that a kernel K on [0, 1]×X

is forecast-continuous if the function K((p, x), (p′, x′)), where p, p′ ∈ [0, 1] and
x, x′ ∈ X, is continuous in (p, p′) for any fixed (x, x′) ∈ X2.

K29∗ algorithm

Parameter: forecast-continuous kernel K on [0, 1]×X

FOR n = 1, 2, . . .:
Read xn ∈ X.
Set Sn(p) :=

∑n−1
i=1 K((p, xn), (pi, xi))(yi−pi)+

1
2K((p, xn), (p, xn))(1−2p)

for p ∈ [0, 1].
If signSn(0) = signSn(1) 6= 0, output pn := (1 + signSn(0))/2;

otherwise, output any root p of Sn(p) = 0 as pn.
Read yn ∈ {0, 1}.

END FOR.

(Since the function Sn(p) is continuous, the equation Sn(p) = 0 indeed has
a solution when signSn(0) = signSn(1) 6= 0 does not hold; remember that
signS is 1 for S positive, −1 for S negative, and 0 for S = 0.) The main term

in the expression for Sn(p) is
∑n−1

i=1 K((p, xn), (pi, xi))(yi − pi). Ignoring the
other term for a moment, we can describe the intuition behind this algorithm
by saying that pn is chosen so that pi are unbiased forecasts for yi on the
rounds i = 1, . . . , n − 1 for which (pi, xi) is similar to (pn, xn). The term
1
2K((p, xn), (p, xn))(1− 2p), which can be rewritten as K((p, xn), (p, xn))(0.5−
p), adds an element of regularization, i.e., bias towards the “neutral” value
pn = 0.5.

The K29∗ algorithm requires solving the equation Sn(p) = 0, but this can
be easily done using the bisection method or one of the numerous more sophis-
ticated methods (see, e.g., [18], Chapter 9).

It is well known (see [10], Theorem II.3.1, for a simple proof) that there
exists a function Φ : [0, 1] × X → H (a feature mapping taking values in a
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Hilbert space1 H called the feature space) such that

K(a, b) = 〈Φ(a),Φ(b)〉H , ∀a, b ∈ [0, 1]×X (1)

(〈·, ·〉H standing for the inner product in H). It is known that, for any K and
Φ connected by (1), K is forecast-continuous if and only if Φ is a continuous
function of p for each fixed x ∈ X (see Appendix B).

Now we can state the basic result about K29∗ (proved in Appendix A).

Theorem 1 Let K be the kernel defined by (1) for a feature mapping Φ : [0, 1]×
X → H continuous in its first argument. The K29 ∗ algorithm with parameter
K ensures

∥

∥

∥

∥

∥

N
∑

n=1

(yn − pn)Φ(pn, xn)

∥

∥

∥

∥

∥

2

H

≤
N
∑

n=1

pn(1 − pn) ‖Φ(pn, xn)‖2H ,

∀N ∈ {1, 2, . . .}. (2)

Let us assume, for simplicity, that

cK := sup
p,x

‖Φ(p, x)‖H < ∞ (3)

(it is often a good idea to use kernels with ‖Φ(p, x)‖H ≡ 1 and, therefore,
cK = 1). Equation (2) then implies

∥

∥

∥

∥

∥

N
∑

n=1

(yn − pn)Φ(pn, xn)

∥

∥

∥

∥

∥

H

≤ cK

2

√
N, ∀N ∈ {1, 2, . . .}. (4)

When Φ is absent (in the sense Φ ≡ 1), this shows that the forecasts pn are
unbiased, in the sense that they are close to yn on average; the presence of Φ
implies, for a suitable kernel, “local unbiasedness”. This is further discussed in
the first part of §5.

In the conference version [31] of this paper we also considered the K29 algo-
rithm, which differs from K29∗ in that Sn(p) is defined as

Sn(p) :=

n−1
∑

i=1

K((p, xn), (pi, xi))(yi − pi)

and that the requirement thatK should be forecast-continuous is slightly relaxed
(the joint continuity in (p, p′) is replaced by the separate continuity in p and
p′). For the K29 algorithm, the inequality (2) continues to hold if pn(1− pn) is
removed; therefore, (4) continues to hold if the denominator 2 is removed. We
will sometimes use “algorithms of large numbers” as generic name for the K29
and K29∗ algorithms; the motivation for these names is that the main properties
of these algorithms are easy corollaries of Kolmogorov’s 1929 proof [13] of the
weak law of large numbers.

1Hilbert spaces in this paper are allowed to be non-separable or finite dimensional; we,

however, always assume that their dimension is at least 1.
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3 Reproducing kernel Hilbert spaces

A reproducing kernel Hilbert space (RKHS) on a set Z is a Hilbert space F of
real-valued functions on Z such that the evaluation functional f ∈ F 7→ f(z) is
continuous for each z ∈ Z. By the Riesz–Fischer theorem, for each z ∈ Z there
exists a function Kz ∈ F such that

f(z) = 〈Kz, f〉F , ∀f ∈ F . (5)

The kernel of RKHS F is

K(z, z′) := 〈Kz,Kz′〉F (6)

(equivalently, we could define K(z, z′) as Kz(z
′) or as Kz′(z)). Since (6) is a

special case of (1), the function K defined by (6) is indeed a kernel on Z, as
defined earlier. On the other hand, for every kernel K on Z there exists a unique
RKHS F on Z such that K is the kernel of F (see, e.g., [2], Theorem 2).

A long list of RKHS and the corresponding kernels is given in [4], §7.4.
Perhaps the most interesting RKHS in our current context are various Sobolev
spaces Wm,p(Ω) ([1] is the standard reference for the latter). We will be in-
terested in the especially simple space W 1,2([0, 1]), to be defined shortly; but
first let us make a brief terminological remark. The term “Sobolev space” is
usually treated as the name for a topological vector space. All these spaces are
normable, but different norms are not considered to lead to different Sobolev
spaces as long as the topology does not change.

The Fermi–Sobolev norm ‖f‖FS of a smooth function f : [0, 1] → R is defined
by

‖f‖2FS :=

(
∫ 1

0

f(t) dt

)2

+

∫ 1

0

(f ′(t))
2
dt. (7)

The Fermi–Sobolev space on [0, 1] is the completion of the set of smooth f :
[0, 1] → R satisfying ‖f‖FS < ∞ with respect to the norm ‖·‖FS. It is easy
to see that it is in fact an RKHS (indeed, if ‖f‖FS = c < ∞, the mean of f

is bounded by c in absolute value and |f(b)− f(a)| ≤
∫ b

a
|f ′(t)| dt ≤ c for all

0 ≤ a < b ≤ 1). As a topological vector space, it coincides with the Sobolev
space W 1,2([0, 1]). The Fermi–Sobolev space on [0, 1]k is the tensor product of
k copies of the Fermi–Sobolev space on [0, 1].

The kernel of the Fermi–Sobolev space on [0, 1] was found in [6] (see also
[35], §10.2); it is given by

K(t, t′) = k0(t)k0(t
′) + k1(t)k1(t

′) + k2(|t− t′|)

= 1 +

(

t− 1

2

)(

t′ − 1

2

)

+
1

2

(

|t− t′|2 − |t− t′|+ 1

6

)

=
1

2
min2(t, t′) +

1

2
min2(1− t, 1− t′) +

5

6
, (8)

where kl := Bl/l! are scaled Bernoulli polynomials Bl. We will derive the final
expression for K(t, t′) in (8) in Appendix C. For the Fermi–Sobolev space on
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[0, 1]k we have

K ((t1, . . . , tk), (t
′
1, . . . , t

′
k)) =

k
∏

i=1

(

1

2
min2(ti, t

′
i) +

1

2
min2(1 − ti, 1− t′i) +

5

6

)

(9)
and, therefore,

c2
K

= max
t∈[0,1]

(

1

2
t2 +

1

2
(1− t)2 +

5

6

)k

=

(

4

3

)k

. (10)

For further information about the Fermi–Sobolev spaces, see [31].

4 The K29∗ algorithm in RKHS

We can now deduce the following corollary from Theorem 1.

Theorem 2 Let F be an RKHS on [0, 1]×X with a forecast-continuous kernel
K. The K29 ∗ algorithm with parameter K ensures

∣

∣

∣

∣

∣

N
∑

n=1

(yn − pn)f(pn, xn)

∣

∣

∣

∣

∣

≤ ‖f‖F

√

√

√

√

N
∑

n=1

pn(1− pn)K((pn, xn), (pn, xn)) (11)

for all N and all f ∈ F .

Proof Applying K29∗ to the feature mapping (p, x) ∈ [0, 1]×X 7→ Kp,x ∈ F
and using (2), we obtain, for any f ∈ F :

∣

∣

∣

∣

∣

N
∑

n=1

(yn − pn)f(pn, xn)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

N
∑

n=1

(yn − pn) 〈Kpn,xn
, f〉F

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

〈

N
∑

n=1

(yn − pn)Kpn,xn
, f

〉

F

∣

∣

∣

∣

∣

≤
∥

∥

∥

∥

∥

N
∑

n=1

(yn − pn)Kpn,xn

∥

∥

∥

∥

∥

F

‖f‖F

≤ ‖f‖F

√

√

√

√

N
∑

n=1

pn(1− pn)K((pn, xn), (pn, xn)).

When cK in (3) is finite, (11) implies

∣

∣

∣

∣

∣

N
∑

n=1

(yn − pn)f(pn, xn)

∣

∣

∣

∣

∣

≤ cK

2
‖f‖F

√
N. (12)
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5 Informal discussion

In this section we explain why the inequalities in Theorems 1 and 2 can be
interpreted as results about calibration and resolution, and then briefly discuss
a puzzling aspect of the algorithms of large numbers. For concreteness, we
usually talk about the K29∗ algorithm, but all we say can also be applied, with
obvious modifications, to K29.

Calibration, resolution, and calibration-cum-resolution

We start from the intuitive notion of calibration (for further details, see [9]
and [11]). The forecasts pn, n = 1, . . . , N , are said to be “well calibrated” (or
“unbiased in the small”, or “reliable”, or “valid”) if, for any p∗ ∈ [0, 1],

∑

n=1,...,N :pn≈p∗ yn
∑

n=1,...,N :pn≈p∗ 1
≈ p∗ (13)

provided
∑

n=1,...,N :pn≈p∗ 1 is not too small. The interpretation of (13) is that
the forecasts should be in agreement with the observed frequencies. It will be
convenient to rewrite (13) as

∑

n=1,...,N :pn≈p∗(yn − pn)
∑

n=1,...,N :pn≈p∗ 1
≈ 0. (14)

The fact that good calibration is only a necessary condition for good fore-
casting performance can be seen from the following standard example [9, 11]:
if

(y1, y2, y3, y4, . . .) = (1, 0, 1, 0, . . .),

the forecasts pn = 1/2, n = 1, 2, . . ., are well calibrated but rather poor; it would
be better to forecast with

(p1, p2, p3, p4, . . .) = (1, 0, 1, 0, . . .).

Assuming that each datum xn contains the information about the parity of
n (which can always be added to xn), we can see that the problem with the
forecasting strategy pn ≡ 1/2 is its lack of resolution: it does not distinguish
between the data with odd and even n. In general, we would like each forecast
pn to be as specific as possible to the current datum xn; the resolution of a
forecasting algorithm is the degree to which it achieves this goal (taking it for
granted that xn contains all relevant information).

Analogously to (14), the forecasts pn, n = 1, . . . , N , may be said to have
good resolution if, for any x∗ ∈ X,

∑

n=1,...,N :xn≈x∗(yn − pn)
∑

n=1,...,N :xn≈x∗ 1
≈ 0

7



provided the denominator is not too small. We can also require that the fore-
casts pn, n = 1, . . . , N , should have good “calibration-cum-resolution”: for any
(p∗, x∗) ∈ [0, 1]×X,

∑

n=1,...,N :(pn,xn)≈(p∗,x∗)(yn − pn)
∑

n=1,...,N :(pn,xn)≈(p∗,x∗) 1
≈ 0

provided the denominator is not too small. Notice that even if forecasts have
both good calibration and good resolution, they can still have poor calibration-
cum-resolution.

It is easy to see that (4) implies good calibration-cum-resolution for a suitable
Φ and large N : indeed, (4) shows that the forecasts pn are unbiased in the
neighborhood of each (p∗, x∗) for functions Φ that map distant (p, x) and (p′, x′)
to almost orthogonal elements of the feature space (such as Φ corresponding to
the Gaussian kernel

K ((p, x), (p′, x′)) := exp

(

(p− p′)2 + ‖x− x′‖2
2σ2

)

(15)

for a small “kernel width” σ > 0).
In general, to make sense of the ≈ in the numerator and denominator of,

say, (14), we replace each “crisp” point p∗ by a “fuzzy point” Ip∗ : [0, 1] → [0, 1];
Ip∗ is required to be continuous, and we might also want to have Ip∗(p∗) = 1
and Ip∗(p) = 0 for all p outside a small neighborhood of p∗. The alternative
of choosing Ip∗ := I[p−,p+], where [p−, p+] is a short interval containing p∗ and
I[p−,p+] is its indicator function, does not work because of Oakes’s and Dawid’s
examples [17, 8]; Ip∗ can, however, be arbitrarily close to I[p−,p+].

Consider, e.g., the following approximation to the indicator function of a
short interval [p−, p+] containing p∗:

f(p) :=



















1 if p− + ǫ ≤ p ≤ p+ − ǫ

0 if p ≤ p− − ǫ or p ≥ p+ + ǫ
1
2 + 1

2ǫ (p− p−) if p− − ǫ ≤ p ≤ p− + ǫ
1
2 + 1

2ǫ (p+ − p) if p+ − ǫ ≤ p ≤ p+ + ǫ;

(16)

we assume that ǫ > 0 satisfies

0 < p− − ǫ < p− + ǫ < p+ − ǫ < p+ + ǫ < 1.

It is clear that this approximation belongs to the Fermi–Sobolev space. An easy
computation shows that (12) and (10) imply

∣

∣

∣

∣

∣

N
∑

n=1

(yn − pn)f(pn)

∣

∣

∣

∣

∣

≤ 1√
3

√

(

1

ǫ
+ (p+ − p−)2

)

N (17)

for all N . We can see that (14), in the form
∑

n=1,...,N f(pn)(yn − pn)
∑

n=1,...,N f(pn)
≈ 0,

8



will hold if
N
∑

n=1

f(pn) ≫
√
N

(roughly, if significantly more than
√
N forecasts fall in the neighborhood

[p−, p+] of p∗).
It is clear that inequalities analogous to (17) can also be proved for “soft

neighborhoods” of points (p∗, x∗) in [0, 1] × X (at least when X is a domain
in a Euclidean space), and so Theorem 2 also implies good calibration-cum-
resolution for large N . Convenient neighborhoods in [0, 1] × [0, 1]K can be
constructed as tensor products of neighborhoods (16).

Inequality (17) and analogous inequalities expressing resolution and
calibration-cum-resolution are explicit in the sense that they do not involve
limits, o, O, unspecified constants, etc. The price to pay is their relative com-
plexity; therefore, we also state a simple asymptotic result about calibration-
cum-resolution.

Corollary 1 If X is a compact metric space, some forecasting algorithm guar-
antees

lim
N→∞

1

N

N
∑

n=1

(yn − pn)f(pn, xn) = 0 (18)

for all continuous functions f : [0, 1]×X → R.

Calibration corresponds to the case where f(p, x) = Ip∗(p) does not depend
on x and resolution to the case where f(p, x) = Ix∗(x) does not depend on p.
This result was proved in [12] in the case of calibration (there are no xn) and
Lipschitz functions f .

Proof of Corollary 1 Let F be an RKHS on [0, 1]×X which is universal, i.e.,
dense in the space C([0, 1]×X), and whose kernel K is continuous and satisfies
cK < ∞. The notion of universality is introduced in [25], Definition 4, and the
existence of such an F is shown in [26], Theorem 2. For any continuous function
f : [0, 1]×X → R there is a g ∈ F that is ǫ-close to f in the metric C([0, 1]×X),
and so, by (12),

lim sup
N→∞

∣

∣

∣

∣

∣

1

N

N
∑

n=1

(yn − pn)f(pn, xn)

∣

∣

∣

∣

∣

≤ lim sup
N→∞

∣

∣

∣

∣

∣

1

N

N
∑

n=1

(yn − pn)g(pn, xn)

∣

∣

∣

∣

∣

+ ǫ

≤ lim sup
N→∞

1

N

cK

2
‖g‖F

√
N + ǫ = ǫ;

since this holds for any ǫ > 0, (18) also holds.

One of the algorithms achieving (18) for X = [0, 1]k is K29∗ applied to the
Fermi–Sobolev kernel (9). It is interesting, and somewhat counterintuitive, that
K29∗ applied to the Gaussian kernel (15) (with any σ > 0) also achieves (18);
the universality of the Gaussian kernels is proved in [25] (Example 1).
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Our discussion of calibration and resolution in this subsection has been some-
what speculative, and the reader might ask whether these two properties are
really useful. This question is answered, to some degree, in [30, 32], which show
that probability forecasts satisfying these properties lead to good decisions (at
least in the simple decision protocols considered in those papers).

Puzzle of the iterated logarithm

Theorems 1 and 2 imply that the forecasts produced by the K29∗ algorithm are
even closer to the actual observations on average than in the case of “genuine
randomness”, where Reality produces the data and observations from a proba-
bility distribution on (X × {0, 1})∞ and each pn is the conditional probability
that yn = 1 given x1, . . . , xn, y1, . . . , yn−1, and whatever further information
may be available at this point. Indeed, let us take, for simplicity, Φ ≡ 1 (and
H := R) in Theorem 1. According to the martingale law of the iterated loga-
rithm (see, e.g., [27] or Chapter 5 of [24]), we would expect

lim sup
N→∞

∣

∣

∣

∑N

n=1(yn − pn)
∣

∣

∣

√
2AN ln lnAN

= 1, (19)

where AN :=
∑N

n=1 pn(1 − pn) is assumed to tend to ∞ as N → ∞, and so
expect, contrary to (4),

sup
N∈{1,2,...}

∥

∥

∥

∑N

n=1(yn − pn)Φ(pn, xn)
∥

∥

∥

H√
N

to be infinite for pn not consistently very close to 0 or 1. Actually, in this case
(Φ ≡ 1) Forecaster can even make sure that

∥

∥

∥

∥

∥

N
∑

n=1

(yn − pn)Φ(pn, xn)

∥

∥

∥

∥

∥

H

=
1

2
, ∀N ∈ {1, 2, . . .}

(choosing p1 := 1/2 and pn := yn−1, n = 2, 3, . . .).
For a general Φ, we can also expect that the probabilities pn contrived by

the algorithms of large numbers (K29 or K29∗) will have better calibration and
resolution than the true probabilities. There is, however, little doubt that the
true probabilities are more useful than any probabilities we are able to come
up with. The true probabilities are not as good at calibration and resolution,
so they must be better in some other equally important respects. It remains
unclear what these other respects may be, and this is what we call the puzzle
of the iterated logarithm.

6 Optimality of the K29∗ algorithm

In this section we establish that the inequalities in Theorems 1 and 2 are tight,
in a natural sense.
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Equation (2) says that the differences yn − pn are small on average, even
when scattered in a Hilbert space by multiplying by Φ(pn, xn). The next result
says that it is the best Forecaster can do.

Theorem 3 Let Φ : [0, 1] × X → H, where H is a Hilbert space. There is a
strategy for Reality II which guarantees that

∥

∥

∥

∥

∥

N
∑

n=1

(yn − pn)Φ(pn, xn)

∥

∥

∥

∥

∥

2

H

≥
N
∑

n=1

pn(1− pn) ‖Φ(pn, xn)‖2H (20)

always holds for all N = 1, 2, . . ., regardless of what the other players do.

Proof Set

RN :=

∥

∥

∥

∥

∥

N
∑

n=1

(yn − pn)Φ(pn, xn)

∥

∥

∥

∥

∥

H

, N = 1, 2, . . . ;

it is sufficient to show that on the Nth round, N = 1, 2, . . ., Reality II can
ensure that

R2
N −R2

N−1 ≥ pN (1− pN )Φ2
N , (21)

where
ΦN := ‖Φ(pN , xN )‖H .

Fix an N . Define points A,C,D ∈ H as

C :=

N−1
∑

n=1

(yn − pn)Φ(pn, xn),

A :=
N−1
∑

n=1

(yn − pn)Φ(pn, xn) + (1− pN )Φ(pN , xN ),

D :=

N−1
∑

n=1

(yn − pn)Φ(pn, xn) + (−pN)Φ(pN , xN );

it is up to Reality II whether make RN equal to |OA| or |OD|, where O is
the origin. Assuming, without loss of generality, that RN = max(|OA|, |OD|),
we reduce our task to showing that the maximal value of RN−1 for fixed RN ,
ΦN , and pN satisfies (21). It is geometrically obvious (see the last paragraph of
this proof for a rigorous argument) that RN−1 attains its maximal value when
|OA| = |OD|; this is illustrated in Figure 1 (remember that all four points, O,
A, C, and D, lie in the same plane). Let B be the base of the perpendicular
dropped from O onto the interval AD and h := |OB|. Since the triangles OBD
and OBC are right-angled,

R2
N = h2 +

(

1

2
ΦN

)2

,

R2
N−1 = h2 +

(

1

2
ΦN − pNΦN

)2

.

11



DCBA

O

Figure 1: The worst case for Reality II; |OA| = |OD| = RN , |OC| = RN−1,
|AC| = (1− pN )ΦN , |CD| = pNΦN , |OB| = h.

Subtracting the second equality from the first, we obtain

R2
N −R2

N−1 =

(

1

2
ΦN

)2

−
(

1

2
ΦN − pNΦN

)2

= pN (1− pN )Φ2
N .

In conclusion, let us see that the maximum of RN−1 is indeed attained when
|OA| = |OD|. Assume that |OA| = RN , with |OD| now allowed to be less than
RN . Because of the compactness of the disk in Figure 1 (we are only interested
in two-dimensional subspaces of H, which are isometrically isomorphic to R

2),
the maximum of |OC| is attained at some point C. Supposing |OD| < RN , it
is, however, easy to check that no C will be a point of local maximum for |OC|;
the least trivial case is perhaps where O lies on the line AD and C is between
O and D.

The next result establishes the tightness of the bound in Theorem 2.

Theorem 4 Let F be an RKHS on [0, 1] × X with kernel K. Reality II has
a strategy which ensures, regardless of what the other players do, that for each
N = 1, 2, . . . there exists a non-zero f ∈ F such that

N
∑

n=1

(yn − pn)f(pn, xn) ≥ ‖f‖F

√

√

√

√

N
∑

n=1

pn(1− pn)K((pn, xn), (pn, xn)). (22)

Proof By Theorem 3 there exists a strategy for Reality II which ensures

∥

∥

∥

∥

∥

N
∑

n=1

(yn − pn)Kpn,xn

∥

∥

∥

∥

∥

F

≥

√

√

√

√

N
∑

n=1

pn(1− pn)K((pn, xn), (pn, xn)). (23)

Taking

f :=
N
∑

n=1

(yn − pn)Kpn,xn
,

12



we obtain:

N
∑

n=1

(yn − pn)f(pn, xn) =

N
∑

n=1

(yn − pn) 〈Kpn,xn
, f〉F

=

〈

N
∑

n=1

(yn − pn)Kpn,xn
, f

〉

F

=

∥

∥

∥

∥

∥

N
∑

n=1

(yn − pn)Kpn,xn

∥

∥

∥

∥

∥

F

‖f‖F

≥ ‖f‖F

√

√

√

√

N
∑

n=1

pn(1− pn)K((pn, xn), (pn, xn)).

If f 6= 0, our task is accomplished. Otherwise, the right-hand side of (23) will
also be zero, and we can take any f 6= 0.
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A Proof of Theorem 1

The proof of Theorem 1 is based on the game-theoretic approach to the foun-
dations of probability proposed in [24]. A new player, called Skeptic, is added
to the learning protocol of §2; the idea is that Skeptic is allowed to bet at the
odds defined by Forecaster’s probabilities. In this proof there is no need to
distinguish between Reality I and Reality II.

Binary Forecasting Game I

Players: Reality, Forecaster, Skeptic
Protocol:

K0 := C.
FOR n = 1, 2, . . .:

Reality announces xn ∈ X.
Forecaster announces pn ∈ [0, 1].
Skeptic announces sn ∈ R.
Reality announces yn ∈ {0, 1}.
Kn := Kn−1 + sn(yn − pn).

END FOR.

The protocol describes not only the players’ moves but also the changes in
Skeptic’s capital Kn; its initial value is an arbitrary constant C.

The crucial (albeit very simple) observation [34] is that for any continuous
strategy for Skeptic there exists a strategy for Forecaster that does not allow
Skeptic’s capital to grow, regardless of what Reality is doing (similar observa-
tions were made in [15] and [12]). To state this observation in its strongest form,
we will make Skeptic announce his strategy for each round before Forecaster’s
move on that round rather than announce his full strategy at the beginning of
the game. Therefore, we consider the following perfect-information game:

Binary Forecasting Game II

Players: Reality, Forecaster, Skeptic
Protocol:

K0 := C.
FOR n = 1, 2, . . .:

Reality announces xn ∈ X.
Skeptic announces continuous Sn : [0, 1] → R.
Forecaster announces pn ∈ [0, 1].
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Reality announces yn ∈ {0, 1}.
Kn := Kn−1 + Sn(pn)(yn − pn).

END FOR.

Lemma 1 Forecaster has a strategy in Binary Forecasting Game II that ensures
K0 ≥ K1 ≥ K2 ≥ · · · .

Proof Forecaster can use the following strategy to ensure K0 ≥ K1 ≥ · · · :

• if Sn(0) and Sn(1) are both positive or both negative, take pn := (1 +
signSn(0))/2;

• otherwise, choose pn so that Sn(pn) = 0 (such a pn will exist).

A measure-theoretic version of Lemma 1 (involving randomization) was
proved in [19], Proposition 1.

Proof of the theorem

We start by noticing that

(yn − pn)
2 = pn(1 − pn) + (1 − 2pn)(yn − pn) (24)

both for yn = 0 and for yn = 1. Following K29∗, Forecaster ensures that Skeptic
will never increase his capital with the strategy

sn :=
n−1
∑

i=1

K ((pn, xn), (pi, xi)) (yi − pi)+
1

2
K ((pn, xn), (pn, xn)) (1− 2pn) (25)

(continuous in pn by our assumptions). The increase in Skeptic’s capital when
he follows (25) is

KN −K0 =

N
∑

n=1

sn(yn − pn)

=

N
∑

n=1

n−1
∑

i=1

K ((pn, xn), (pi, xi)) (yn − pn)(yi − pi)

+
1

2

N
∑

n=1

K ((pn, xn), (pn, xn)) (1− 2pn)(yn − pn)

=
1

2

N
∑

n=1

N
∑

i=1

K ((pn, xn), (pi, xi)) (yn − pn)(yi − pi)

− 1

2

N
∑

n=1

K ((pn, xn), (pn, xn)) (yn − pn)
2
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+
1

2

N
∑

n=1

K ((pn, xn), (pn, xn)) (1− 2pn)(yn − pn)

=
1

2

N
∑

n=1

N
∑

i=1

K ((pn, xn), (pi, xi)) (yn − pn)(yi − pi)

− 1

2

N
∑

n=1

K ((pn, xn), (pn, xn)) pn(1− pn)

(we used (24) in the last equality). We can rewrite this as

KN −K0 =
1

2

∥

∥

∥

∥

∥

N
∑

n=1

(yn − pn)Φ(pn, xn)

∥

∥

∥

∥

∥

2

H

− 1

2

N
∑

n=1

pn(1− pn) ‖Φ(pn, xn)‖2H ,

which immediately implies (2).

B Forecast-continuity of feature mappings and

kernels

In this appendix we will prove, essentially following [25], Lemma 3, that the
forecast-continuity of a kernel K on [0, 1] × X is equivalent to the continuity
in p of a feature mapping Φ(p, x) satisfying (1). As a byproduct, we will also
see that the forecast-continuity of a kernel K on [0, 1]×X can be equivalently
defined by requiring that

• K((p, x), (p′, x)) should be continuous in p, for all x ∈ X and all p′ ∈ [0, 1],

• and K((p, x), (p, x)) should be continuous in p, for all x ∈ X.

In one direction the statement is obvious: if Φ(p, x) is continuous in p, the
continuity of the operation of taking the inner product immediately implies that
K is forecast-continuous, in both senses.

Now suppose that K is forecast-continuous, as defined in the first paragraph
of this appendix (this is the apparently weaker sense of forecast-continuity). To
complete the proof, notice that

‖Φ(p, x)− Φ(pn, x)‖H
=
√

K((p, x), (p, x)) − 2K((p, x), (pn, x)) +K((pn, x), (pn, x))

→
√

K((p, x), (p, x)) − 2K((p, x), (p, x)) +K((p, x), (p, x)) = 0

when pn → p (n → ∞).
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C Derivation of the kernel of the Fermi–Sobolev

space

We first describe the standard reduction of the problem of finding the kernel of
an RKHS to a variational problem. Let K be the kernel of an RKHS F on Z.

Let c ∈ Z. According to [16] (Satz III.3), the minimum of ‖f‖F among the
functions f ∈ F satisfying f(c) = 1 is attained by the function K(·, c)/K(c, c).
Therefore, we obtain a function k(·, c) proportional to K(·, c) by solving the
optimization problem ‖f‖F → min under the constraint f(c) = 1 (or under
the constraint f(c) = d, where d is any other constant). It remains to find the
coefficient of proportionality in terms of k(·, c). If K(·, ·) = αk(·, ·), we have:

K(c, c) = ‖K(·, c)‖2F ;

αk(c, c) = α2 ‖k(·, c)‖2F ;

α =
k(c, c)

‖k(·, c)‖2F
.

Therefore, the recipe for finding K is: for each c ∈ Z solve the optimization
problem ‖f‖F → min under the constraint f(c) = 1 (the completeness of RKHS
implies that the minimum is attained) and set

K(z, c) :=
k(z, c)k(c, c)

‖k(·, c)‖2F
, (26)

where k(·, c) is the solution.
Now let us apply this technique to finding the kernel corresponding to the

Fermi–Sobolev space on [0, 1] with the norm given by (7). Let c ∈ [0, 1] and let
f be the solution to the optimization problem ‖f‖F → min under the constraint
f(c) = 1 (because of the convexity of the set {f ∈ F | f(c) = 1}, there is only
one solution). First we show that the derivative f ′ is a linear function on [0, c]
and on [c, 1], arguing indirectly. Suppose, for concreteness, that f ′ is not linear
on the interval (0, c); in particular this interval is non-empty. There are three
points 0 < t1 < t2 < t3 < c such that

f ′(t2) 6=
t3 − t2
t3 − t1

f ′(t1) +
t2 − t1
t3 − t1

f ′(t3). (27)

For a small constant ǫ > 0 (in particular, we assume 2ǫ < min(t1, t2 − t1, t3 −
t2, c− t3)), let g : [0, 1] → R be a smooth function such that

∫ 1

0 g(t) dt = 0 and:

• g(t) = 0 for t < t1 − ǫ;

• g(t) is increasing for t1 − ǫ < t < t1 + ǫ;

• g(t) = t3 − t2 for t1 + ǫ < t < t2 − ǫ;

• g(t) is decreasing for t2 − ǫ < t < t2 + ǫ;
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• g(t) = −(t2 − t1) for t2 + ǫ < t < t3 − ǫ;

• g(t) is increasing for t3 − ǫ < t < t3 + ǫ;

• g(t) = 0 for t > t3 + ǫ.

Since, for any δ ∈ R (we are interested in nonzero δ small in absolute value),

‖f + δg‖2FS = ‖f‖2FS + 2δ

∫ 1

0

f ′(t)g′(t) dt+ δ2
∫ 1

0

(g′(t))2 dt,

the definition of f implies

∫ 1

0

f ′(t)g′(t) dt = 0.

However, as ǫ → 0, the last integral tends to

f ′(t1)(t3 − t2)− f ′(t2)(t3 − t1) + f ′(t3)(t2 − t1),

which cannot, by (27), be zero.
Once we know that f is a quadratic polynomial to the left and to the right

of c, we can easily find (this can be done conveniently using a computer algebra
system) that, ignoring a multiplicative constant,

f(t) = 3t2 + 3c2 − 6c+ 8 = 3t2 + 3(1− c)2 + 5

to the left of c and

f(t) = 3t2 + 3c2 − 6t+ 8 = 3(1− t)2 + 3c2 + 5

to the right of c. By (26), we can now find

K(t, c) =
f(t)f(c)

‖f‖2F
= f(t)/6,

which agrees with (8).
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