
Archived version from NCDOCKS Institutional Repository http://libres.uncg.edu/ir/asu/

Selective Strictness and Parametricity
in Structural Operational Semantics, Inequationally.

By: Janis Voigtlaender and Patricia Johann

Abstract
Parametric polymorphism constrains the behavior of pure functional pro-grams in a way that
allows the derivation of interesting theorems about them solely from their types, i.e., virtually for
free. The formal background of such ‘free theorems’ is well developed for extensions of the
Girard-Reynolds poly-morphic lambda calculus by algebraic datatypes and general recursion,
pro-vided the resulting calculus is endowed with either a purely strict or a purely nonstrict
semantics. But modern functional languages like Clean and Haskell, while using nonstrict
evaluation by default, also provide means to enforce strict evaluation of subcomputations at will.
The resulting selective strictness gives the advanced programmer explicit control over evaluation
order, but is not without semantic consequences: it breaks standard parametricity results. This
paper develops an operational semantics for a core calculus supporting all the language features
emphasized above. Its main achievement is the char-acterization of observational approximation
with respect to this operational semantics via a carefully constructed logical relation. This
establishes the formal basis for new parametricity results, as illustrated by several example
applications, including the first complete correctness proof for short cut fusion in the presence of
selective strictness. The focus on observational approxima-tion, rather than equivalence, allows a
finer-grained analysis of computational behavior in the presence of selective strictness than would
be possible with observational equivalence alone.

Janis Voigtlaender and Patricia Johann (2007) "Selective Strictness and Parametricity
in Structural Operational Semantics, Inequationally". Theoretical Computer Science, vol. 388, no. 1 - 3
(2007), pp. 290 - 318. ISSN: 0304-3975 Version Of Record Available At www.sciencedirect.com

1 Introduction

To support the production of software that is rapidly prototyped, reliable, and main-
tainable, both programmers and programming language designers need to have at
their disposal techniques for reasoning effectively about program semantics. One
technique which is suitable for reasoning about programs in polymorphically typed
functional languages is based on parametricity properties [Rey83] — more color-
fully known as free theorems [Wad89] — associated with polymorphic functions.1

A parametricity property formalizes the intuition that a polymorphic function must
behave uniformly, i.e., must use the same algorithm to compute its result regardless
of the concrete type at which it is instantiated. The parametricity property for a
polymorphic function can be derived solely from the type of that function, with no
knowledge whatsoever of the function’s actual definition; this is the sense in which
parametricity properties are obtained ‘for free’. But a polymorphic function is only
guaranteed to satisfy its parametricity property if a parametricity theorem [Wad89]
— originally called abstraction theorem [Rey83] — holds for the underlying language
of which it is part. Thus parametricity properties are not actually ‘free’ at all: the
illusion of freeness is merely a reflection of the ease with which parametricity prop-
erties can be derived once the considerable task of proving a parametricity theorem

which guarantees that they hold has been completed.

Some popular applications which are typically justified by cleverly instantiating
parametricity properties actually require programming languages of interest to sat-
isfy properties which are stronger than those guaranteed solely by their parametricity
theorems. In particular, the past decade or so has seen the development of a num-
ber of parametricity-based techniques for automatically transforming modular-but-
inefficient programs in nonstrict functional languages such as Haskell [Pey03] into
efficient-but-monolithic equivalents [GLP93, TM95, Joh02, Sve02, Voi02, GJUV05].
Automatic transformation is essential to mitigating the inherent tension between the
design and development of programs that are easy to reason about and the run-time
efficiency of those programs. But the semantic correctness of parametricity-based
program transformations with respect to some (typically equivalence or preorder)
relation on programs in which we are interested does not always follow from para-
metricity theorems alone.

The key to stating and proving the parametricity theorem for a given language
(or, more precisely, for a given model of a language) is to interpret the types of
the language according to certain systematically-constructed relations, called logical

relations [Plo73, Fri75, Rey83, Sta85]. A parametricity theorem then asserts that
every closed term of closed type is related to itself by the relational interpretation of
its type.2 But proving correctness of parametricity-based program transformations

1As is standard, we take the term ‘polymorphic’ to refer to parametric polymorphism, as op-
posed to ad hoc polymorphism of the kind supported, for example, by type classes [WB89].

2More precisely, this description applies only in an operational semantics framework. For a
denotational model, the parametricity theorem asserts that the interpretation of every closed term
of closed type is related to itself by the relational interpretation of its type.

in a given model often requires more than just reflexivity of the logical relation: the
relational interpretation of each type — including ∀-types — must coincide exactly
with the relation induced by the model. (See Theorem 7.19 for an example of a
transformation whose correctness proof requires full coincidence.) When this is the
case, i.e., when there is a logical relation which coincides with the relation on pro-
grams in which we are interested, we say that we have a parametric model of that
relation. Constructing such a parametric model — and, therefore, proving correct-
ness with respect to a relation of interest of certain parametricity-based program
transformations — thus entails ensuring that a strengthening of the parametricity
theorem holds. The required strengthening, given formally after Corollary 6.8 below,
is closely related to Reynolds’ identity extension lemma [Rey83].

1.1 Parametric models and program transformations

The Girard-Reynolds polymorphic lambda calculus λ∀ [Gir72, Rey74] — which
is also known as ‘System F’ and provides the theoretical underpinning for many
polymorphically typed functional languages — is well-known to admit parametric
models [BFSS90, Has91, RR94]. Results derived from parametricity thus hold un-
conditionally in λ∀. But for calculi that more closely resemble modern functional
languages the story is not so simple. For instance, adding a fixpoint primitive to
a calculus, thus capturing general recursive definitions, weakens its parametricity
properties by imposing strictness and continuity conditions on (some of the) func-
tions appearing in those properties [Wad89, LP96]. The impact on identity exten-
sion and related strengthenings of parametricity theorems is also highly nontrivial.
Moreover, to help programmers control the time and space behavior of programs,
nonstrict languages often provide primitives for selectively forcing strict evaluation
in computations. Such primitives can further compromise parametricity-based re-
sults, such as the correctness of program transformations, for calculi which include
them; see, e.g., [JV04, JV06], Appendix B of [Voi02], and Section 2 below.

To study the impact of fixpoint recursion, Pitts [Pit00] constructed an opera-
tional model for the calculus PolyPCF obtained by adding a fixpoint primitive and
an algebraic datatype to λ∀ and endowing the result with a nonstrict semantics.
Pitts proved that his model is parametric in the sense discussed above, paving the
way for its use in [Joh02, Joh03, Joh05] to give the first fully satisfactory correct-
ness proofs for short cut fusion [GLP93] and related program transformations. This
suggests that an operational approach is also suitable for formal study of the (addi-
tional) impact of selective strictness on parametricity and program transformations
based on it. Nevertheless, like recent work in the area [RS04, BMP06, Møg06],
our studies of this issue [JV04, JV06] were first performed in a denotational set-
ting. This is primarily because working in a denotational setting allowed a more
intuitive initial approach to the problem. Concretely, to understand how free theo-
rems and parametricity-based program transformations are affected by the presence
of the polymorphic strict evaluation primitive seq in Haskell, we started with the
standardly accepted, but naive, denotational model for Haskell and constructed a

logical relation for which a parametricity theorem could be proved. We then used
this logical relation to derive appropriate variations of standard free theorems and
to recover (partial and total) correctness of some well-known parametricity-based
program transformations in the presence of seq. This work was significant in that
it showed the decade-old conventional wisdom regarding the impact of seq on para-
metricity relative to the standardly accepted denotational model for Haskell to be in
error. In particular, it was the first to correctly identify preconditions under which
parametricity-based program transformations can safely be applied in the presence
of seq. Indeed, while previous correctness arguments were for approximations of
— and thus ultimately targeted — ‘Haskell minus seq ’, our correctness arguments
instead targetted ‘Haskell including seq’. The work in [JV04, JV06] thus helped
move the focus of the discussion about the behavior of parametricity-based trans-
formations more toward ‘real Haskell’.

But despite providing important insights, the work in [JV04, JV06] has two sig-
nificant shortcomings. The first is that the standardly accepted denotational model
in which we were working could not be shown to be parametric because the state-
ment corresponding to Reynolds’ identity extension lemma for the logical relation
which we offered as witness that this model is parametric could not be established.
This statement remains a conjecture, which is unfortunate since correctness proofs
for some program transformations of interest — such as short cut fusion — de-
pend on it. The second shortcoming is that the status of the standardly accepted
denotational model with respect to the observable behavior of Haskell programs
has never been made precise. That is, the operational semantics that implemen-
tations of Haskell are, according to the language definition, expected to satisfy is
not guaranteed to be in any way tied into this denotational semantics. As a result,
equivalence in this denotational setting between a given Haskell program and the
new program obtained by applying parametricity-based transformations to it is in-
sufficient to allow us to draw any conclusions at all about the relationship between
the observable behavior of the given program and the observable behavior of the
transformed program.

Even with the above caveats, working in a denotational setting turned out to
be an important first step in understanding the impact of seq on parametricity.
As noted above, before [JV04, JV06], the impact of seq on parametricity, even
with respect to the standardly accepted denotational model, was misunderstood,
and [JV04, JV06] offer a complete correction to those long-standing misconceptions.
Given the fruitfulness of our initial, intuitive approach to understanding the inter-
play between selective strictness and parametricity, it is only natural to now ask
whether — and, if so, how — the insights developed in that denotational setting
can be transferred to a more rigorous operational setting.

1.2 This paper

In this paper we study the calculus PolySeq which is obtained by adding a Haskell-
like strictness primitive to Pitts’ PolyPCF. To provide a more fine-grained analysis

of program behavior than is possible by reasoning about observational equivalence
alone, we instead focus on observational approximation. In other words, as in [JV04,
JV06], we work in an inequational setting rather than an equational one. This is
reasonable since, as noted in those earlier papers, the effect of selective strictness
on an erstwhile (parametricity-based) program equivalence is to potentially make
one side of the equivalence less defined than the other. The key contribution of this
paper is thus the construction of a parametric model of observational approximation

for PolySeq. This ports the results from [JV04, JV06] to an operational setting in
which the outstanding issues mentioned in the previous subsection are resolved.

Our model of PolySeq observational approximation is similar to Pitts’ operational
semantics-based parametric model of PolyPCF observational equivalence [Pit00],
but his construction has been refined to accommodate inequational reasoning, as well
as the extra constraints on relational interpretations of types imposed by selective
strictness. While these constraints are in some sense ‘just’ operational analogues of
denotational ones discussed in [JV04, JV06], their translation and incorporation into
the operational semantics is delicate, and is accomplished rather differently than we
anticipated in those earlier papers. Another difference between our construction and
Pitts’ is that ours starts from a small-step semantics, rather than from a big-step
semantics. This allows us to more explicitly model the operational behavior of seq,
while at the same time providing some new insights into techniques for modularly
constructing parametric models for extensions of λ∀ that support multiple additional
language features.

Constructing a parametric model of PolySeq observational approximation is a
highly nontrivial undertaking precisely because the impact of seq on termination
is subtle and complex. At first glance, it may appear that this impact can be ac-
counted for by extending the operationally-based techniques of [Pit00] along the
lines suggested for ‘Lazy PCF’ in the conclusion of that paper. But seq impacts the
termination behavior of programs in ways that go beyond just making it possible to
observe termination of whole programs at function types, or, indeed, at any type.
In fact, seq can be used to force evaluation of any term of any type appearing at
any place in a program, so that termination of both intermediate and ‘top-level’
computations of any type becomes observable. Since a parametric model of PolySeq
observational approximation must relate every term of every type to every term of
the same type whose observable behavior the original term approximates in every
program context — in the sense that filling the program context with the original
term yields a term whose termination implies termination of any term obtained
by filling the same context with any term to which the original term is related
— this must be taken into account when defining the logical relation which wit-
nesses parametricity of the model. We accomplish this for the model constructed
in this paper by enforcing a convergence-preservation property at all types, in addi-
tion to appropriately restricting the relations over which quantification is performed
when defining the relational interpretation of ∀-types. While it is easy to see that
convergence-preservation is necessary, it is not at all obvious that it combines with
the restrictions on relations needed to accommodate fixpoints and algebraic data

types in a way that allows a Pitts-like construction to go through. Showing that it
does is the major technical contribution of the paper, and the source from which
all results about our parametric model of PolySeq observational approximation are
ultimately derived.

An important secondary contribution of this paper is to show how the model
we construct here can be used to prove the partial (or, indeed, total) correctness,
with respect to observational approximation (resp., observational equivalence) of
parametricity-based transformations on PolySeq programs. This will be exempli-
fied for the classical short cut fusion technique [GLP93]. Although we focus in this
paper on a calculus whose only algebraic datatypes are lists, all of the results here
carry over to extensions of PolySeq with non-list algebraic datatypes; in particular,
our results extend easily to prove correctness of short cut fusion for non-list alge-
braic datatypes. The techniques introduced in this paper can also be used to prove
(partial or total) correctness of parametricity-based transformations which fuse con-
sumers of algebraic data structures with producers parameterized over substitution
values [Joh02], and which are category-theoretic duals of short cut fusion for alge-
braic datatypes [TM95, Sve02]. At present, it is not known how the logical relation
techniques we use in this paper can be adapted for arbitrary recursive types.

The ultimate goal of the line of research advanced in this paper is the develop-
ment of tools for reasoning about parametricity properties of, and parametricity-
based transformations on programs in, real programming languages rather than toy
calculi. This provides another point in favor of the operational approach taken in
this paper. For while the Glasgow Haskell Compiler [GHC] uses a variant of λ∀ as its
intermediate language Core, a well-defined denotational semantics is not currently
known even for relevant subsets of Core. It is thus unclear whether results derived
relative to any particular denotational model of, say, PolySeq would eventually shed
any light at all on parametricity properties of Core. On the other hand, we derive
our results in this paper relative to an operational semantics very much like the one
that implementations like GHC are expected to satisfy, so that the parametricity
results we prove for PolySeq do indeed provide insights into those of Core and, by
extension, full Haskell.

The remainder of this paper is structured as follows. Section 2 informally dis-
cusses selective strictness and how it can break parametricity. Our formal study
of this issue begins in Section 3 with the syntax and semantics of PolySeq. In
Section 4 we study PolySeq termination, introduce restrictions on relations to ac-
commodate the fixpoint and selective strictness primitives, and examine their in-
terplay. Based on the aforementioned restrictions, and indeed driven by them, we
define our logical relation in Section 5. In Section 6 we prove our main technical
result (Corollary 6.8), namely that the logical relation characterizes PolySeq obser-
vational approximation. In Section 7 we use this result to establish extensionality
principles (Lemmas 7.6, 7.7, and 7.10), to enumerate terms up to observational
equivalence (Lemmas 7.16 and 7.18), and to prove correctness of short cut fusion
(Theorem 7.19). Section 8 concludes and explores the relationship of our work to
other work in the area. Throughout, proofs that are either routine or essentially

repeated or elaborated from [Pit00] are omitted.

2 Selective strictness breaks parametricity

In PolyPCF, as in other nonstrict calculi, function arguments are evaluated only
when required. But evaluation can be explicitly forced in the presence of a strict
evaluation primitive such as Haskell’s seq. Although it was not originally given a
polymorphic type, seq has for quite some time now been denotationally specified as
follows in Haskell language definitions such as [Pey03]:3

seq :: ∀α β. α → β → β
seq ⊥ b = ⊥
seq a b = b if a 6= ⊥

Here ⊥ is the undefined value corresponding to a nonterminating computation or
a runtime error, such as might be obtained as the result of a failed pattern match.
The operational behavior of seq is to evaluate its first argument before returning its
second argument. Note that seq can be applied at all types.

A prototypical example of a function which uses seq — indeed, the one probably
discussed most frequently on the Haskell Mailing List [HML] — is:

foldl ′ :: ∀α β. (β → α → β) → β → [α] → β
foldl ′ f z [] = z
foldl ′ f z (h : t) = seq z′ (foldl ′ f z′ t)

where z′ = f z h

Here seq ensures that the accumulating parameter is computed immediately in each
recursive step rather than constructing a complex closure, representing the overall
accumulation, which would be computed only at the end of the call to foldl ′. Thus,
in many situations foldl ′ offers a useful and easily obtained efficiency improvement
over the Haskell prelude function foldl . Further examples of programs which make
use of selective strictness via seq can be found in [THLP98]. Note that other means
of explicitly introducing strictness in Haskell programs — e.g., strict datatypes, the
strict application function $!, and the recently introduced bang patterns — are all
definable in terms of seq. Similarly, language features for selective strictness in
Clean [CLR] are interdefinable with seq [EM06].

The impact of selective strictness on the semantics of, and reasoning techniques
for, languages like Clean and Haskell can be severe. This impact has been studied, for
example, in [HK05] and [EM06], as well as in our own recent work [JV04, JV06]. It

3Actually, the type given there for seq is just α → β → β. But the semantics of α and β occurring
free in the type of seq is exactly an implicit universal quantification. For clarity, we prefer to make
all quantification over type variables explicit. This is supported by most Haskell implementations
via the keyword forall. Note that while adding or omitting outermost quantifications (as here
for seq ’s type) is just a matter of syntactic convenience, the positioning of ‘inner ∀s’ is crucial for
functions like build in Figure 1 below (see also the footnote on the next page).

has also been noticed somewhat more in passing in [Voi02], [DJ04], and [DHJG06].
That the mixture of nonstrict and strict evaluation is currently a topic of great
interest in programming languages research is further evidenced by recent work in
the areas of program verification [ABB+05] and implementation [RMP06]. Our
specific focus in this paper is on the impact of selective strictness on parametric
polymorphism in nonstrict languages.

The classic example of a parametricity-based program transformation is the short
cut fusion rule [GLP93]. This rule eliminates intermediate lists from compositions
of list producers written in terms of build and list consumers written in terms of
foldr using the following rule for appropriately typed g, c, and n:

foldr c n (build g) = g c n (1)

Definitions of foldr and build are given in Figure 1. The function foldr , which
is standard in the Haskell prelude, takes as input a function c, a value n, and a
list l, and produces a value by replacing all occurrences of (:) in l by c and any
occurrence of [] in l by n. For instance, foldr (+) 0 l sums the (numeric) elements
of the list l. The function build , on the other hand, takes as input a polymorphic
function g providing a type-independent template for constructing ‘abstract’ lists,
and applies it to the list constructors (:) and [] to get a corresponding ‘concrete’ list.4

For example, build (λ c n → c 4 (c 9 n)) produces the list [4,9]. Applying rule (1)
to a composition matching its left-hand side yields a corresponding instance of the
right-hand side which avoids constructing intermediate lists produced by build g and
immediately consumed by foldr c n. This is accomplished by applying g to the (:)-
and []-replacement functions c and n directly.

foldr :: ∀α β. (α → β → β) → β → [α] → β
foldr c n = f where f [] = n

f (h : t) = c h (f t)

build :: ∀α. (∀β. (α → β → β) → β → β) → [α]
build g = g (:) []

Figure 1: Haskell functions for short cut fusion.

The short cut fusion rule is derived from the parametricity property for g, or,
more accurately, for g’s type. But the simple instantiation in which g = seq, c = ⊥,
and n = 0 shows that (1) is no longer an equivalence if seq is present. The intuitive
reason for this breakdown of short cut fusion lies in the differences in definedness
and strictness properties of the arguments supplied to g before and after applying
the short cut fusion rule. The list constructors (:) and [] passed to g by build are

4Taking a polymorphic function as argument, build has a rank-2 type [Lei83]. While such higher-
rank types are not covered by the current Haskell standard [Pey03], they are actually supported
by most implementations. For recent work on type inference in this setting see [VWP06].

both non-⊥, and so is any value obtained by combining them. But since no such a

priori guarantees exist for their replacement functions c and n, the same use of seq

inside g might result in the undefined value ⊥ on the right-hand side of (1) and a
non-⊥ value on the left-hand side.

Before publication of [JV04, JV06], a folk theorem had long held that parametric-
ity properties remain valid in the presence of seq if all of the functions appearing in
them (where one is free to make a choice) are strict and total. But as shown there,
this is not the case: although strictness and totality of the consumer (foldr c n)
just happen to be sufficient for recovering correctness of the short cut fusion rule
when seq is present, they are not enough to recover the parametricity properties of
all polymorphic functions in this situation. In fact, it is probably this happenstance
vis-a-vis the short cut fusion rule that is responsible for the failure of the folklore
approach to parametricity in the presence of seq having gone unnoticed for so long.
In [JV04, JV06] we gave constraints which guarantee that parametricity properties
of polymorphic functions hold in the denotational setting considered there, even
in the presence of seq. In this paper we translate these constraints to the opera-
tional setting and show how their operational counterparts can be used to recover
parametricity properties of polymorphic functions — as well as correctness of pro-
gram transformations based on parametricity — without the shortcomings of the
denotationally-based development of [JV04, JV06] discussed in Section 1.1. Our
results for short cut fusion in particular can be found in Section 7.5.

3 PolySeq

As a testbed for exploring the impact of selective strictness on parametricity results
in an operational setting we use a concrete calculus, PolySeq, which extends the
Girard-Reynolds calculus λ∀ with an algebraic datatype of lists, as well as primitives
for general recursion and selective strictness that can be applied at all types. As in
λ∀ and PolyPCF, and by contrast with Clean and Haskell, all typing is explicit in
the syntax of terms. That is, lambda-bound variables always come with an attached
type, and with regard to polymorphism, both type generalization and specialization
are made explicit. Another, purely syntactic, difference from Clean and Haskell
is that there is only one mechanism to perform pattern matching, namely by case
expressions. And rather than using recursive function equations, recursion is made
explicit using a fixpoint primitive in the standard way. As an example, consider the
following ‘translation’ of the Haskell function foldl ′ from the introduction:

foldl ′ = Λα.Λβ.fix(λg :: (β → α → β) → β → α-list → β.λf :: β → α → β.λz :: β.
λl :: α-list .case l of {nil ⇒ z;

h : t ⇒ seq(f z h, g f (f z h) t)})

Note that the sharing of the two underlined expressions, which was present in the
Haskell version via the binding ‘where z′ = f z h’, is lost in PolySeq, which does
not provide any sharing construct. But this difference has no impact at all on any

semantic properties we are going to study. For while implementations of Haskell
typically apply a lazy evaluation strategy, the language definition [Pey03] only man-
dates that the semantics be nonstrict (apart from where selective strictness is used,
of course), without committing to either call-by-name or call-by-need. Clearly, such
a commitment is unnecessary, as it would have no impact on the observable behavior
of programs. Indeed, choosing between call-by-name and call-by-need can only im-
pact program properties regarding time and space usage, neither of which is under
study here or specified in [Pey03]. Put differently, the semantics of foldl ′ in Haskell
is invariant under replacing its second defining equation from the introduction by

foldl ′ f z (h : t) = seq (f z h) (foldl ′ f (f z h) t) ,

so it makes no sense to complicate PolySeq by modeling a sharing construct.

3.1 Syntax and typing

The syntax of PolySeq types and terms is given in Figure 2, where α and x range
over disjoint countably infinite sets of type variables and term variables, respectively.
The only difference to Figure 1 in [Pit00], apart from the slightly different notation,
is the addition of the new term former seq. Alongside τ and M , we also let σ and A,
B, C, F , G, H, L, N , R, T , and V range over the syntactic categories of types and
terms, respectively. Moreover, β and c, f , g, h, l, n, t, and y are used as additional
type and term variables, respectively, and all the mentioned conventions apply to
versions with indices or primes as well. To reduce the need for brackets, function
types and function applications are read right- and left-associative, respectively, so
that τ1 → τ2 → τ3 means τ1 → (τ2 → τ3), while F A B means (F A) B. The
constructions ∀α.−, λx :: τ.−, Λα.−, and case M of {nil ⇒ M ′; x : x′ ⇒ −} are
binders for α, x, and x′. We identify types and terms up to renaming of bound (type
and term) variables. The concept of free variables in a type or term is defined in the
usual way. For example, α is a free variable in nilα, but not in Λα.nilα. We write
Typ for the set of closed types, that is, those having no free variables. The result of
capture-avoiding substitution of a type τ ′ for all free occurrences of a type variable
α in a type τ or a term M is denoted by τ [τ ′/α] or M [τ ′/α], respectively. Similarly,
M [M ′/x] denotes the result of capture-avoiding substitution of a term M ′ for all
free occurrences of a term variable x in a term M . Additionally, we use substitution
for lists of distinct variables (e.g., M2[H/h, T/t] and τ [~τ/~α]) and substitution for

type and term variables at once (e.g., M [~σ/~α, ~N/~x]).
Types are assigned to (some) terms according to the axioms and rules in Figure 3,

where Γ ranges over typing environments of the form ~α, x1 :: τ1, . . . , xm :: τm for a
finite list ~α of distinct type variables, m ∈

�
, a list ~x = x1, . . . , xm of distinct term

variables, and types τ1, . . . , τm whose free variables are in ~α. The only difference of
note to Figure 2 in [Pit00] is the addition of the typing rule for seq. In a typing
judgment of the form Γ ` M :: τ , with Γ as above, we require that M ’s free
variables are in ~α, ~x and that τ ’s free variables are in ~α. As in [Pit00], the explicit
type information in the syntax of function abstractions and empty lists ensures that

Types τ ::= α type variable
| τ → τ function type
| ∀α.τ ∀-type
| τ -list list type

Terms M ::= x term variable
| λx :: τ.M function abstraction
| M M function application
| Λα.M type generalization
| Mτ type specialization
| nilτ empty list
| M : M non-empty list
| case M of {nil ⇒ M ; x : x ⇒ M} case expression
| fix(M) fixpoint recursion
| seq(M, M) strictness primitive

Figure 2: Syntax of the PolySeq calculus.

for every Γ and M there is at most one τ with Γ ` M :: τ . Given τ ∈ Typ, we write
Term(τ) for the set of terms M for which � ` M :: τ is derivable, where is the
empty typing environment. Further, we set Term =

⋃

τ∈Typ

Term(τ).

3.2 Operational semantics

Our semantics for PolySeq follows Plotkin’s style of structural operational seman-
tics [Plo04]. In particular, and in contrast to [Pit00], we start from a small-step
rather than from a big-step formulation. As pointed out below, the two approaches
are equivalent in a precise sense, and indeed [Pit00] also makes essential use of a
small-step semantics indirectly in the proof of Theorem 3.6 and (thus) in the struc-
tural termination relation >. Working directly with a small-step semantics avoids
such indirection, and it is interesting to see that an approach without any big-step
overlay is itself sufficient for constructing the desired parametric model.

PolySeq values are given by the following grammar:

V ::= λx :: τ.M | Λα.M | nilτ | M : M.

Note that adding seq to a calculus does not introduce any new values. The subset
of Term consisting of all elements that respect the above grammar is denoted by
Value. Further, given τ ∈ Typ, we set Value(τ) = Value ∩ Term(τ).

The remaining ingredients for setting up a small-step semantics are redex/re-
duct-pairs and a notion of reduction in context. The former are just as in the proof
of Theorem 3.6 in [Pit00], except that an appropriate pair involving seq is added.

Γ, x :: τ ` x :: τ

Γ, x :: τ ` M :: τ ′

Γ ` (λx :: τ.M) :: τ → τ ′

Γ ` F :: τ → τ ′ Γ ` A :: τ
Γ ` F A :: τ ′

α, Γ ` M :: τ

Γ ` Λα.M :: ∀α.τ
Γ ` G :: ∀α.τ

Γ ` Gτ ′ :: τ [τ ′/α]

Γ ` nilτ :: τ -list Γ ` H :: τ Γ ` T :: τ -list
Γ ` (H : T) :: τ -list

Γ ` L :: τ -list Γ ` M1 :: τ ′ Γ, h :: τ, t :: τ -list ` M2 :: τ ′

Γ ` case L of {nil ⇒ M1; h : t ⇒ M2} :: τ ′

Γ ` F :: τ → τ
Γ ` fix(F) :: τ

Γ ` A :: τ Γ ` B :: τ ′

Γ ` seq(A, B) :: τ ′

Figure 3: PolySeq type assignment relation.

Definition 3.1. Let τ ∈ Typ and R, R′ ∈ Term(τ). We write R ; R′ for the
following pairs:

R R′ if
(λx :: τ ′.N) A N [A/x] x :: τ ′ ` N :: τ

(Λα.N)τ ′ N [τ ′/α] α ` N :: τ ′′

case nilτ ′ of {nil ⇒ M ; h : t ⇒ M ′} M h :: τ ′, t :: τ ′-list ` M ′ :: τ
case H : T of {nil ⇒ M ; h : t ⇒ M ′} M ′[H/h, T/t] h :: τ ′, t :: τ ′-list ` M ′ :: τ

fix(F) F fix(F)
seq(V, M) M V ∈ Value ,

where x, h, and t are term variables, α is a type variable, τ ′ ∈ Typ, A, H ∈ Term(τ ′),
M ∈ Term(τ), T ∈ Term(τ ′-list), F ∈ Term(τ → τ), and the further types and
terms that occur in the table are subject to the restrictions recorded on the right. 3

It is essential that V is a value in the last pair above, because otherwise one would
not ensure the intended semantics of seq, which is to first evaluate its first argu-
ment before reducing to the second. Notice also that type instantiation requires an
evaluation step in PolySeq, whereas in Haskell it does not.

To describe reduction in context, we use the machinery of evaluation contexts
introduced in [FFKD87]. Following [HS97], we represent these contexts as stacks of
evaluation frames. Compared to [Pit00], an appropriate additional kind of evaluation
frame is introduced to account for seq.

Definition 3.2. The grammar for evaluation frame stacks is

S ::= Id | S ◦ E ,

where E ranges over evaluation frames:

E ::= (− M) | −τ | (case − of {nil ⇒ M ; x : x ⇒ M}) | seq(−, M).

If a stack comprises a single evaluation frame E, then we denote it by E rather than
Id ◦ E. Moreover, given an evaluation frame E and a term M , we write E{M} for
the term that results from replacing ‘−’ by M in E. 3

Argument and result types are assigned to (some) evaluation frame stacks according
to the axiom and rules in Figure 4, where Γ again ranges over typing environments,
with well-formedness conditions similar to those for term typing judgments. The
only difference of note to Figure 6 in [Pit00] is the addition of the typing rule for
the new evaluation frame. As in [Pit00], for every Γ, S, and τ there is at most
one τ ′ with Γ ` S :: τ τ ′; this satisfies all needs for type uniqueness we will
encounter. Given τ, τ ′ ∈ Typ, we write Stack(τ, τ ′) for the set of evaluation frame
stacks S for which � ` S :: τ τ ′ is derivable. Since we will later want to restrict
our attention to evaluation frame stacks which return results of list type, we set, for
every τ ∈ Typ, LStack(τ) =

⋃

τ ′∈Typ

Stack(τ, τ ′-list).

Γ ` Id :: τ τ

Γ ` S :: τ ′ � τ ′′ Γ ` A :: τ
Γ ` S ◦ (− A) :: (τ → τ ′) τ ′′

Γ ` S :: τ [τ ′/α] τ ′′

Γ ` S ◦ −τ ′ :: (∀α.τ) τ ′′

Γ ` S :: τ ′ τ ′′ Γ ` M1 :: τ ′ Γ, h :: τ, t :: τ -list ` M2 :: τ ′

Γ ` S ◦ (case − of {nil ⇒ M1; h : t ⇒ M2}) :: τ -list τ ′′

Γ ` S :: τ ′ � τ ′′ Γ ` B :: τ ′

Γ ` S ◦ seq(−, B) :: τ τ ′′

Figure 4: Typing evaluation frame stacks.

The (typed) operations of concatenating two evaluation frame stacks and of
applying an evaluation frame stack to a term are given as follows.

Definition 3.3. Let τ ∈ Typ. Given S ∈ LStack(τ), we define for every τ ′ ∈ Typ

and S ′ ∈ Stack(τ ′, τ) the concatenation (S @ S ′) ∈ LStack(τ ′) by induction on the
structure of S ′ as follows:

S @ Id = S
S @ (S ′′ ◦ E) = (S @ S ′′) ◦ E.

Moreover, we define for every τ ′ ∈ Typ, S ∈ Stack(τ ′, τ), and M ∈ Term(τ ′) the
application (S M) ∈ Term(τ) by induction on the structure of S as follows:

Id M = M
(S ′ ◦ E) M = S ′ (E{M}). 3

The transition relation induced by the choice of values, redex/reduct-pairs, and
evaluation frames is defined in the following (standard) way.

Definition 3.4. Let τ1, τ2, τ
′ ∈ Typ, S1 ∈ Stack(τ1, τ

′), M1 ∈ Term(τ1), S2 ∈
Stack(τ2, τ

′), and M2 ∈ Term(τ2). We write (S1, M1)
� (S2, M2) for the following

pairs:
(S1, M1) (S2, M2) if

(S, E{N}) (S ◦ E, N) N /∈ Value

(S ◦ E, V) (S, E{V }) V ∈ Value

(S, R) (S, R′) R ; R′ ,

where S is an evaluation frame stack, E is an evaluation frame, and the terms that
occur in the table are subject to the restrictions recorded on the right. 3

Intuitively, the first two transition rules navigate a term to detect the next redex to
be reduced, while the third rule performs a small-step reduction in a given evaluation
context. Note that � is deterministic, but not terminating (due to fix). If we denote
by � ∗ the reflexive, transitive closure of � , then evaluation of a term to a value
can be captured as follows.

Definition 3.5. Given M ∈ Term and V ∈ Value of the same type, we write
M ⇓ V if (Id , M) � ∗ (Id , V). Given M ∈ Term, we write M⇓ if there is some V
with M ⇓ V , and M⇑ otherwise. In the former case we say that M converges, and
in the latter we say that it diverges. Note that every value converges. 3

Thus, we have provided a stack-based abstract machine for PolySeq. The evaluation
relation ⇓ induced by this machine is the same as the one we would obtain via
defining a big-step semantics by adding the rule

A ⇓ V B ⇓ V ′

seq(A, B) ⇓ V ′

to Figure 3 in [Pit00]. The proof of this fact is very similar to that of (3) inside the
proof of Theorem 3.6 in [Pit00]; we do not give it here. But since the small-step
semantics is a bit more low-level than the big-step semantics, the small-step se-
mantics more immediately reflects the operational behavior of seq in actual Haskell
implementations. This is because the evaluation frame seq(−, M) and the reduction
seq(V, M) ; M make it explicit that seq first evaluates its first argument, before
turning to the second one, while no such order is imposed in the above big-step rule.

Before moving on to the intended notion of operational approximation, we give
three observations about termination issues and the existence of a ‘polymorphic
bottom’. The first two observations follow easily from the definitions of ⇓ and � ,
the third one arises by combination of the first two.

Observation 3.6. For every τ ∈ Typ: fix(λx :: τ.x)⇑.
�

Observation 3.7. For every R, R′ ∈ Term, if R ; R′, then R⇓ ⇔ R′⇓.
�

Observation 3.8. Let Ω = Λα.fix(λx :: α.x) ∈ Term(∀α.α). While Ω⇓, for every
τ ∈ Typ: Ωτ⇑.

�

Being able to describe to what value, if any, a term evaluates is usually not
enough to reason about the operational behavior of a programming language. In
particular, stipulating that two terms are to be considered equivalent (if and) only if
both evaluate to the same value is a much too strong requirement. It would outlaw,
for example, consideration of quicksort and heapsort implementations as semanti-
cally equivalent, on the grounds that their representations as function abstractions
would necessarily be different. Such a situation would be highly undesirable, given
that two different algorithms performing the same computational task (such as sort-
ing a list) should clearly be equated by any reasonable semantics. For this reason,
it is standard to allow only particular observations to be made about terms in the
language (with comparison of function abstraction representations not being one of
them), but to require that two terms are considered equivalent (if and) only if they
lead to the same observations in every possible context.

Following [Pit00], we choose evaluation of terms of list type to the empty list
as the only observation possible for PolySeq. Actually, due to the presence of seq,
this allows the observation of termination at arbitrary types, in a sense later made
precise in Corollary 4.16. So in contrast to the situation in the setting without seq,
the initial choice to observe termination only at list types has no impact on the
results here. The important point is that we can still observe only termination at
arbitrary types, and not the full representation of any obtained value. To capture
observations in context, we again follow the treatment in [Pit00]. That is, we specify
a number of desirable properties our notion of semantic approximation for PolySeq
should have, and then ask for the largest relation with those properties. Of course,
reasoning about semantic approximation only makes sense if we have at least a
preorder, i.e., a relation that is reflexive and transitive. But in addition to that,
the intended notion of approximation should also be a congruence, i.e., should be
compatible with all term formers and with substitution, in a sense made precise
below. This is where the ‘context closure’ of observational approximation is ensured.
To tie in the possible observations themselves, we impose an adequacy property,
reflecting the above discussion about ‘nil-termination’. But since we are interested
in approximation rather than equivalence, we trade the bidirectional implication in
the conclusion of the definition of adequacy in [Pit00] for unidirectional implication
in the first part of the next definition.

Definition 3.9. Let the relation E comprise 4-tuples of the form (Γ, M, M ′, τ) with
Γ ` M :: τ and Γ ` M ′ :: τ . We write Γ ` M E M ′ :: τ when the tuple (Γ, M, M ′, τ)
is in E , and we abbreviate this to M E M ′ if Γ = � since τ is then uniquely
determined as the closed type of both M and M ′.

1. E is adequate if for every τ ∈ Typ and L, L′ ∈ Term(τ -list):

L E L′ ⇒ (L ⇓ nilτ ⇒ L′ ⇓ nilτ).

2. E is compatible if it is closed under the axioms and rules in Figure 5, which
differs from Figure 4 in [Pit00] only by the new rule for seq.

3. E is substitutive if it is closed under the rules in Figure 6, where Γ[τ ′/α] is
the typing environment obtained from Γ by replacing every x :: σ therein
by x :: σ[τ ′/α].

4. E is reflexive if for every environment Γ, term M , and type τ with Γ ` M :: τ :

Γ ` M E M :: τ.

5. E is transitive if E; E ⊆ E , where relation composition E1; E2 is defined by:

Γ ` M (E1; E2) M ′ :: τ ⇔ ∃M ′′. Γ ` M E1 M ′′ :: τ ∧ Γ ` M ′′ E2 M ′ :: τ.

3

Γ, x :: τ ` x E x :: τ

Γ, x :: τ ` M E M ′ :: τ ′

Γ ` (λx :: τ.M) E (λx :: τ.M ′) :: τ → τ ′

Γ ` F E F ′ :: τ → τ ′ Γ ` A E A′ :: τ
Γ ` (F A) E (F ′ A′) :: τ ′

α, Γ ` M E M ′ :: τ

Γ ` Λα.M E Λα.M ′ :: ∀α.τ
Γ ` G E G′ :: ∀α.τ

Γ ` Gτ ′ E G′
τ ′ :: τ [τ ′/α]

Γ ` nilτ E nilτ :: τ -list Γ ` H E H ′ :: τ Γ ` T E T ′ :: τ -list
Γ ` (H : T) E (H ′ : T ′) :: τ -list

Γ ` L E L′ :: τ -list Γ ` M1 E M ′
1 :: τ ′ Γ, h :: τ, t :: τ -list ` M2 E M ′

2 :: τ ′

Γ ` (case L of {nil ⇒ M1; h : t ⇒ M2})
E (case L′ of {nil ⇒ M ′

1; h : t ⇒ M ′
2}) :: τ ′

Γ ` F E F ′ :: τ → τ
Γ ` fix(F) E fix(F ′) :: τ

Γ ` A E A′ :: τ Γ ` B E B′ :: τ ′

Γ ` seq(A, B) E seq(A′, B′) :: τ ′

Figure 5: Compatibility properties.

It is easy to see that every compatible relation E is also reflexive. Our intended no-
tion of ‘contextual’ approximation is the largest relation satisfying all five properties
from Definition 3.9. We call it observational approximation and write it as vobs .
The existence of such a largest relation is, however, only stipulated for now. Us-
ing techniques of [Las98], existence could be proved in a direct manner here by

α, Γ ` M E M ′ :: τ

Γ[τ ′/α] ` M [τ ′/α] E M ′[τ ′/α] :: τ [τ ′/α]

Γ, x :: τ ` M E M ′ :: τ ′ Γ ` N E N ′ :: τ

Γ ` M [N/x] E M ′[N ′/x] :: τ ′

Figure 6: Substitutivity properties.

characterizing vobs as the union of all adequate and compatible (and, therefore,
substitutive) relations, from which coincidence of observational approximation and
‘contextual’ approximation follows straightforwardly. But since we are interested
in a more constructive and ultimately more useful characterization, we defer the
proof of the existence of vobs to Theorem 6.7, where it is characterized by a relation
inductively derived based on the type structure of PolySeq. Of course, this means
that up to that point in Section 6 we may not assume anything about vobs , and
we will not do so. When we finally have returned to vobs , we will often use its
reflexivity and transitivity without explicit mention.

4 PolySeq termination

In this section we study various aspects of termination in PolySeq. These are essen-
tial for characterizing observational approximation in the presence of fix and seq

in the way we aim to do. Regarding fix, it has long been known [Wad89, LP96]
that parametricity can only be achieved by restricting attention to relations that
are admissible in a sense corresponding to the concepts of strictness and continuity
in denotational semantics. The main technical contribution of [Pit00] was an ac-
count of such admissibility in an equational operational setting, based on a closure
operator arising from nil-termination. As we will demonstrate, neither moving to
an inequational setting nor adding seq breaks any of that machinery in principle.
Indeed, the relevant Lemma 4.14 below can still be established in an inequational
setting — whether or not seq is present — when adopting a directed counterpart
to Pitts’ closure operator. But adding seq requires more. The reason is that with
a strictness primitive that can be applied at all types, a new restriction must be
imposed on relational interpretations of types. This was already observed in [LP96]
and [PLST98] for the equational setting, and was both made more rigorous and ex-
tended to an inequational setting in [JV04, JV06], but all in denotational semantics
only. Here we present (in Definition 4.17) an operational counterpart to the relevant
new restriction on relations imposed in [JV04, JV06], show how it interacts with the
aforementioned operational machinery for fixpoint admissibility (Lemma 4.18), and
show how it guarantees the key property needed to achieve parametricity in the
presence of seq (Lemma 4.19).

4.1 General properties of nil-termination

First, we fix a special notation for expressing that evaluating a particular term in a
particular context described by an evaluation frame stack leads to the empty list.

Definition 4.1. Let τ, τ ′ ∈ Typ, S ∈ Stack(τ, τ ′-list), and M ∈ Term(τ). We write
S > M if (S, M) � ∗ (Id ,nilτ ′). 3

Note that, rather than taking the described behavior as definition of >, Pitts defines
> via a syntactic system of structural rules (see Figure 7 of [Pit00]) and then proves

that S > M if and only if (S, M) � ∗ (Id ,nilτ ′) inside his Theorem 3.6. Our approach
is simpler in that it obviates the need for an extra set of syntactic rules and an
attendant proof. The key point is, of course, that we still get all the properties of >

that we need. In particular, the structural properties present in Figure 7 of [Pit00],
plus corresponding ones having to do with seq, are all embodied in Observations 4.2
and 4.3 below. Moreover, since these follow generically from Definitions 3.4, 3.5,
and 4.1 (and from determinism of �), without considering the concrete sets of
redex/reduct pairs and evaluation frames at hand, our approach promises to be
more amenable to (further) extensions of the calculus.

Observation 4.2. For every τ ∈ Typ, L ∈ Term(τ -list): Id > L ⇔ L ⇓ nilτ .
�

Observation 4.3. Let τ ∈ Typ and S ∈ LStack(τ).

1. For every τ ′ ∈ Typ, M ∈ Term(τ ′), and evaluation frame E with E{M} ∈
Term(τ): S > E{M} ⇔ S ◦ E > M .

2. For every R, R′ ∈ Term(τ) with R ; R′: S > R ⇔ S > R′.
�

By repeated applications of Observation 4.3(1), we also have the following corollary.

Corollary 4.4. For every τ, τ ′ ∈ Typ, S ∈ Stack(τ, τ ′), S ′ ∈ LStack(τ ′), and M ∈
Term(τ):

(S ′ @ S) > M ⇔ S ′
> S M.

�

The following lemma shows that nil-termination is respected in a certain sense by
evaluation of the term put in context.

Lemma 4.5. For every τ ∈ Typ, S ∈ LStack(τ), and M ∈ Term(τ):

S > M ⇔ ∃V ∈ Value(τ). M ⇓ V ∧ S > V.
�

The proof, which proceeds by two inductions over � ∗-sequences, is given in [VJ06].
An immediate consequence is the following ‘strictness of stacks’ result.

Corollary 4.6. For every τ ∈ Typ and M ∈ Term(τ), if M⇑, then for every
S ∈ LStack(τ), S > M does not hold.

�

4.2 Termination for fix and >>-closedness

The key role of > in [Pit00] is its use in defining an order-reversing Galois connec-
tion, and the use of the induced closure operator in characterizing a class of relations
that admit a form of fixpoint induction. A similar construction, replacing bidirec-
tional implication by unidirectional implication, is repeated in the following three
definitions.

Definition 4.7. Given τ, τ ′ ∈ Typ, we define

Rel(τ, τ ′) = P(Term(τ) × Term(τ ′))

and

StRel(τ, τ ′) = P(LStack(τ) × LStack(τ ′)).

Further, we set Rel =
⋃

τ,τ ′∈Typ

Rel(τ, τ ′). 3

Definition 4.8. Let τ, τ ′ ∈ Typ. Given r ∈ Rel(τ, τ ′), we define r> ∈ StRel(τ, τ ′)
by

(S, S ′) ∈ r> iff ∀(M, M ′) ∈ r. S > M ⇒ S ′
> M ′.

Similarly, given s ∈ StRel(τ, τ ′), we define s> ∈ Rel(τ, τ ′) by

(M, M ′) ∈ s> iff ∀(S, S ′) ∈ s. S > M ⇒ S ′
> M ′. 3

The following properties are standard, for every τ, τ ′ ∈ Typ and r, r1, r2 ∈ Rel(τ, τ ′):

r ⊆ r>> (2)

(r>>)> = r> (3)

r1 ⊆ r2 ⇒ r>>
1 ⊆ r>>

2 . (4)

Definition 4.9. A relation r ∈ Rel is >>-closed if r>> = r. 3

Note that by (2) and (3), respectively, the condition r>> = r is equivalent to r>> ⊆ r
and to the existence of some r′ ∈ Rel with r = (r′)>>.

Several important properties of >>-closed relations can be established now. The
first is that they respect adequate and compatible relations. The second is that they
relate two appropriately typed terms if the first of them is diverging.

Lemma 4.10. Let E be an adequate and compatible relation, let τ, τ ′ ∈ Typ, and
r ∈ Rel(τ, τ ′). If r is >>-closed, then for every M1 ∈ Term(τ) and M2, M3 ∈
Term(τ ′):

(M1, M2) ∈ r ∧ M2 E M3 ⇒ (M1, M3) ∈ r.

Proof: The desired (M1, M3) ∈ r follows from >>-closedness of r and the following
reasoning for every (S, S ′) ∈ r>:

S > M1 ⇒ S ′
> M2 by (S, S ′) ∈ r> and (M1, M2) ∈ r

⇔ Id > S ′ M2 by Corollary 4.4
⇔ S ′ M2 ⇓ nilτ ′′ by Observation 4.2
⇒ S ′ M3 ⇓ nilτ ′′

⇔ S ′
> M3 by Observation 4.2 and Corollary 4.4.

Here τ ′′ ∈ Typ is such that S ′ ∈ Stack(τ ′, τ ′′-list), and the second implication follows
from M2 E M3, because E is compatible and adequate.

�

Lemma 4.11. For every τ, τ ′ ∈ Typ, M ∈ Term(τ), M ′ ∈ Term(τ ′), and r ∈
Rel(τ, τ ′), if M⇑ and r is >>-closed, then (M, M ′) ∈ r.

Proof: By Corollary 4.6, M⇑ implies that for every (S, S ′) ∈ r>: S > M ⇒ S ′
>

M ′. Thus, we have (M, M ′) ∈ r>> = r.
�

The previous lemma provides a kind of base case for fixpoint induction. To establish
this principle in full, we first need to look at the finite unwindings of a fixpoint.

Definition 4.12. Let τ ∈ Typ and F ∈ Term(τ → τ). By induction on n ∈
�
, we

define fix(n)(F) ∈ Term(τ) as follows:

fix(n)(F) =

{

fix(λx :: τ.x) if n = 0

F fix(n−1)(F) otherwise. 3

Then the following important termination property holds for fix and its unwindings.
The proof, which uses Observations 3.6 and 3.7 and Corollary 4.6, can be found
in [VJ06].

Lemma 4.13. For every τ ∈ Typ, S ∈ LStack(τ), and F ∈ Term(τ → τ):

S > fix(F) ⇔ ∃n ∈
�
. S > fix(n)(F).

�

This ‘unwinding lemma’ can now be used to establish a fixpoint induction principle
for binary relations. It justifies the claim that >>-closed relations have appropriate
admissibility properties, and indeed corresponds to what is identified as the nec-
essary parametricity property of fix in Sections 7 and 5 of [Wad89] and [LP96],
respectively. Its proof is essentially the same as that of Theorem 3.11 in [Pit00], and
uses Observation 3.6 and Lemmas 4.11 and 4.13.

Lemma 4.14. Let τ, τ ′ ∈ Typ, F ∈ Term(τ → τ), F ′ ∈ Term(τ ′ → τ ′), and r ∈
Rel(τ, τ ′). If

∀(A, A′) ∈ r. (F A, F ′ A′) ∈ r

and r is >>-closed, then (fix(F),fix(F ′)) ∈ r.
�

4.3 Termination for seq and convergence-preservation

To handle the strictness primitive, we ultimately need an analogue of Lemma 4.14
for seq. In Sections 5 of [JV04] and [JV06], the relevant parametricity property of
seq was identified as saying that for appropriate relations r1 and r2, terms A and
A′ related by r1, and terms B and B′ related by r2, we should have that seq(A, B)
and seq(A′, B′) are related by r2. It turns out that >>-closedness is not a strong
enough restriction on r1 and r2 to achieve this, just as strictness and continuity were
not enough in the denotational setting. To see why, we first need the following key
statement, playing a similar role for seq as Lemma 4.13 does for fix, as well as a
corollary of this statement.

Lemma 4.15. Let τ ∈ Typ, S ∈ LStack(τ), A ∈ Term, and B ∈ Term(τ). Then:
S > seq(A, B) ⇔ A⇓ ∧ S > B.

Proof: Let τ ′ ∈ Typ be such that A ∈ Term(τ ′). Then we reason as follows:

S > seq(A, B)
⇔ S ◦ seq(−, B) > A by Observation 4.3(1)
⇔ ∃V ∈ Value(τ ′). A ⇓ V ∧ S ◦ seq(−, B) > V by Lemma 4.5
⇔ ∃V ∈ Value(τ ′). A ⇓ V ∧ S > B by Observation 4.3.

�

Corollary 4.16. For every M ∈ Term and τ ∈ Typ: M⇓ ⇔ seq(−,nilτ) > M .

Proof: We reason as follows:

M⇓ ⇔ Id > seq(M,nilτ) by Lemma 4.15 and Id > nilτ
⇔ seq(−,nilτ) > M by Observation 4.3(1).

�

The corollary essentially says that in the presence of seq, observing nil-termination
of terms of list type suffices to observe general termination of arbitrary terms.

Now, we can give a counterexample to the parametricity property of seq men-
tioned at the start of this subsection. Let r1 = {(Ω, Ω∀α.α)}>> and r2 = {(M, M) | M
∈ Term(∀α.α)}>>, both of which are in Rel(∀α.α, ∀α.α), and let A′ = Ω∀α.α and
A = B = B′ = Ω. Clearly, r1 and r2 are >>-closed, and (A, A′) ∈ r1 and
(B, B′) ∈ r2 hold by (2). So we would expect that (seq(A, B), seq(A′, B′)) ∈
r2 also holds. But this does not hold, as is argued now. Note that for every
S ∈ LStack(∀α.α) we have (S, S) ∈ {(M, M) | M ∈ Term(∀α.α)}>. So to have
(seq(Ω, Ω), seq(Ω∀α.α, Ω)) ∈ {(M, M) | M ∈ Term(∀α.α)}>> would imply that for
every such S we have S > seq(Ω, Ω) ⇒ S > seq(Ω∀α.α, Ω). But this is contradicted
by Observation 3.8, Lemma 4.15, and Corollary 4.16.

The reason for the failure described above is that the given r1 relates a converging
term to a diverging term. To repair this failure, we introduce a new restriction on
relations, namely convergence-preservation. This restriction is a relatively direct
translation of the totality restriction discussed in the denotational setting of [JV04,
JV06]. In particular, in contrast to what was envisaged in those earlier papers, the

new restriction is not enforced by a variant of >>-closure or by a completely new
closure operator. But of course, the new restriction must at least nicely coexist with
>>-closure in a certain sense, to be discussed below the following definition.

Definition 4.17. We say that r ∈ Rel is convergence-preserving if for every (M, M ′) ∈
r: M⇓ ⇒ M ′⇓. For given τ, τ ′ ∈ Typ, the restriction of Rel(τ, τ ′) to convergence-
preserving relations is denoted by Rel⇓(τ, τ ′). We set Rel⇓ =

⋃

τ,τ ′∈Typ

Rel⇓(τ, τ ′). 3

Note that the r1 used in the counterexample above also provides evidence that not
every >>-closed relation is convergence-preserving. However, we can show that the
notions of >>-closure and convergence-preservation are compatible in the sense that
the former preserves the latter. This is essential, since otherwise the modular way in
which the two restrictions are introduced (and later preserved) would break down.

Lemma 4.18. For every r ∈ Rel⇓, r>> ∈ Rel⇓ also holds.

Proof: For arbitrary τ ∈ Typ and every (M, M ′) ∈ r, we have:

seq(−,nilτ) > M ⇔ M⇓ by Corollary 4.16
⇒ M ′⇓ since r is convergence-preserving
⇔ seq(−,nilτ) > M ′ by Corollary 4.16.

Thus, (seq(−,nilτ), seq(−,nilτ)) ∈ r>, and consequently for every (N, N ′) ∈ r>>:

seq(−,nilτ) > N ⇒ seq(−,nilτ) > N ′ ,

which by Corollary 4.16, applied twice as above, is equivalent to N⇓ ⇒ N ′⇓.
�

A further connection between the concepts of convergence-preservation and >>-
closure is established in the following lemma, which provides the sought after para-
metricity property of seq, and thus the analogue for seq of Lemma 4.14.

Lemma 4.19. Let r1 ∈ Rel⇓, r2 ∈ Rel , (A, A′) ∈ r1, and (B, B′) ∈ r2. If r2 is
>>-closed, then (seq(A, B), seq(A′, B′)) ∈ r2.

Proof: The desired (seq(A, B), seq(A′, B′)) ∈ r2 follows from >>-closedness of r2

and the following reasoning for every (S, S ′) ∈ r>2 :

S > seq(A, B) ⇔ A⇓ ∧ S > B by Lemma 4.15

⇒ A′⇓ ∧ S > B by (A, A′) ∈ r1 ∈ Rel⇓

⇒ A′⇓ ∧ S ′
> B′ by (S, S ′) ∈ r>2 and (B, B′) ∈ r2

⇔ S ′
> seq(A′, B′) by Lemma 4.15.

�

Since in the previous lemma one relation must be convergence-preserving and the
other one must be >>-closed, we actually have to impose (and preserve) both re-
strictions on all relations in our type-based characterization of observational ap-
proximation. This is so because seq can be applied at all types according to the

corresponding typing rule in Figure 3, in which no restrictions are imposed on τ or
τ ′. Hence, the relational interpretation of every type must be able to fulfill either of
the two roles r1 and r2 in Lemma 4.19, and so must adhere to both restrictions. This
is what will drive the development of the relational interpretation of PolySeq types
in Section 5. But first we need to set up a few more auxiliary statements. The first
is an analogue of Lemma 4.5 for general termination.

Lemma 4.20. For every τ, τ ′ ∈ Typ, S ∈ Stack(τ, τ ′), and M ∈ Term(τ):

(S M)⇓ ⇔ ∃V ∈ Value(τ). M ⇓ V ∧ (S V)⇓.

Proof: We reason as follows:

(S M)⇓
⇔ seq(−,nilτ) > S M by Corollary 4.16
⇔ (seq(−,nilτ) @ S) > M by Corollary 4.4
⇔ ∃V ∈ Value(τ). M ⇓ V ∧ (seq(−,nilτ) @ S) > V by Lemma 4.5
⇔ ∃V ∈ Value(τ). M ⇓ V ∧ (S V)⇓ ,

where the last equivalence is again by Corollaries 4.4 and 4.16.
�

Lemma 4.20 implies that for every M ∈ Term and evaluation frame E with E{M} ∈
Term, if E{M}⇓, then M⇓. Letting M = F and E = (− A), we have the following
corollary.

Corollary 4.21. For every τ, τ ′ ∈ Typ, F ∈ Term(τ → τ ′), and A ∈ Term(τ), if
(F A)⇓, then F⇓.

�

5 The logical relation

The key to parametricity results, and to our characterization of observational ap-
proximation by a logical relation, is to build relational interpretations of types by
induction on the type structure. Starting from an interpretation of type variables
by relations (between terms), this requires defining a relational action for each of
the ways of forming PolySeq types. Such an action takes an appropriate num-
ber of relations and produces a new one as the interpretation for the compound
type. During this propagation of relations along the type structure it is essential
that the restrictions needed to accommodate fix and seq — namely, >>-closedness
and convergence-preservation — are preserved. In our development convergence-
preservation will always hold by construction, whereas preservation of >>-closedness
is established a posteriori.

The main characteristic of all logical relations, from the very beginning [Plo73,
Fri75, Rey83, Sta85] up to newer accounts [Pit00, Pit05, Ahm06, DHJG06], is that
for two functions to be related they must map related arguments to related results.
In an inequational setting with seq present, the relational action for function types
must additionally enforce the requirement that two function terms are only related

if convergence of the first implies convergence of second. This corresponds to the
additional restriction in the relational action for function types in [JV04, JV06],
transferred to the operational setting.

Definition 5.1. Given τ1, τ
′
1, τ2, τ

′
2 ∈ Typ, r1 ∈ Rel(τ1, τ

′
1), and r2 ∈ Rel(τ2, τ

′
2), we

define (r1 → r2) ∈ Rel⇓(τ1 → τ2, τ
′
1 → τ ′

2) by

(F, F ′) ∈ (r1 → r2) iff (F⇓ ⇒ F ′⇓) ∧ ∀(A, A′) ∈ r1. (F A, F ′ A′) ∈ r2

for every F ∈ Term(τ1 → τ2) and F ′ ∈ Term(τ ′
1 → τ ′

2). 3

The relational action corresponding to ∀-types usually relates two polymorphic
terms if respective instances, at arbitrary types, are related by the images, under a
given relation-to-relation mapping, of certain relations between terms of the types
at which instantiation occurs. The relation-to-relation mapping will be derived from
the compound action of the body of the ∀-type on relations interpreting the type
variable from its head. The range of relations over which the quantification oc-
curs — i.e., the concretization of ‘certain’ above — depends on the primitives the
calculus supports, at arbitrary types, in extension of the Girard-Reynolds calcu-
lus λ∀. As we have argued, fix and seq mandate relations to be >>-closed and
convergence-preserving. Since the later construction of the logical relation will en-
sure that the relation-to-relation mapping always first >>-closes its argument relation
(cf. clause (8) in Definition 5.4), only convergence-preservation needs to be explicitly
enforced in the quantification of relations below. The aforementioned >>-closure of
the argument relation will not affect its convergence-preservation property due to
Lemma 4.18. To ensure that also the result of the relational action is convergence-
preserving, we explicitly enforce this property in a manner analogous to the way it
was enforced in Definition 5.1. That this explicit enforcement is strictly necessary
here is argued below the following definition.

Definition 5.2. Let τ1 and τ ′
1 be types with at most a single free variable, α say.

Suppose R is a function that maps every τ2, τ
′
2 ∈ Typ and r ∈ Rel⇓(τ2, τ

′
2) to an

Rτ2,τ ′

2
(r) ∈ Rel(τ1[τ2/α], τ ′

1[τ
′
2/α]). Then we define (∀R) ∈ Rel⇓(∀α.τ1, ∀α.τ ′

1) by

(G, G′) ∈ (∀R) iff (G⇓ ⇒ G′⇓)

∧ ∀τ2, τ
′
2 ∈ Typ, r ∈ Rel⇓(τ2, τ

′
2). (Gτ2 , G

′
τ ′

2

) ∈ Rτ2 ,τ ′

2
(r)

for every G ∈ Term(∀α.τ1) and G′ ∈ Term(∀α.τ ′
1). We also write ∀R as ∀r.R(r),

suppressing reference to τ2 and τ ′
2. 3

Assume the condition G⇓ ⇒ G′⇓ were dropped from the previous definition. Then
the relation ∀R would no longer be guaranteed to be convergence-preserving. To
see this, consider τ1 = τ ′

1 = α and let R be the function that maps every τ2, τ
′
2 ∈

Typ and r ∈ Rel⇓(τ2, τ
′
2) to r>>. This function is well-behaved insofar as it maps

every convergence-preserving relation to one that is both >>-closed and convergence-
preserving (cf. Lemma 4.18). Nevertheless, ∀R would not be convergence-preserving,

because it would relate G = Ω and G′ = Ω∀α.α. This is because for every τ2, τ
′
2 ∈

Typ and r ∈ Rel⇓(τ2, τ
′
2), we have (Ωτ2 , (Ω∀α.α)τ ′

2
) ∈ r>> by Observation 3.8 and

Lemma 4.11. But Ω⇓ and Ω∀α.α⇑ by Observation 3.8.
The relational action for list types is a straightforward structural lifting, ap-

propriately combined with >>-closure. No special care is needed with respect to
convergence-preservation, because it is satisfied automatically.

Definition 5.3. Given τ, τ ′ ∈ Typ and r ∈ Rel(τ, τ ′), we define lift(r) ∈ Rel(τ -list ,
τ ′-list) as the greatest (post-)fixpoint (with respect to set inclusion) of the mapping
s 7→ (1 + (r × s))>> for s ∈ Rel(τ -list , τ ′-list), where

1 + (r × s) = {(nilτ ,nilτ ′)} ∪ {(H : T, H ′ : T ′) | (H, H ′) ∈ r ∧ (T, T ′) ∈ s}

for every such s. The existence of the greatest fixpoint is guaranteed by monotonicity
of the mapping s 7→ (1+(r×s))>> with respect to set inclusion, which in turn follows
from (4). Note that the fixpoint property

lift(r) = (1 + (r × lift(r)))>> , (5)

the observation that 1 + (r × lift(r)) is convergence-preserving (since it only re-
lates values), and Lemma 4.18 imply that lift(r) is convergence-preserving, and thus
actually lift(r) ∈ Rel⇓(τ -list , τ ′-list). 3

Combining the relational actions, the logical relation ∆ is defined by induction
on the structure of PolySeq types. It maps a type and a list containing convergence-
preserving relations as interpretations for the type’s free variables to a new relation.
The new relation is convergence-preserving by construction, i.e., because the rela-
tional actions always deliver convergence-preserving relations.

Definition 5.4. For every type τ , n ∈
�
, list ~α = α1, . . . , αn of distinct type

variables containing the free variables of τ , lists ~τ = τ1, . . . , τn and ~τ ′ = τ ′
1, . . . , τ

′
n

of closed types, and list ~r = r1, . . . , rn with ri ∈ Rel⇓(τi, τ
′
i) for every 1 ≤ i ≤ n, we

define ∆τ (~r/~α) ∈ Rel⇓(τ [~τ/~α], τ [~τ ′/~α]) by induction on the structure of τ as follows:

∆αi
(~r/~α) = ri (6)

∆τ ′→τ ′′(~r/~α) = ∆τ ′(~r/~α) → ∆τ ′′(~r/~α) (7)

∆∀α.τ ′(~r/~α) = ∀r.∆τ ′(~r, r>>/~α, α) (8)

∆τ ′-list(~r/~α) = lift(∆τ ′(~r/~α)). (9)

Note that without loss of generality the variable bound in the head of ∀α.τ ′ in
clause (8) can be assumed to not occur in ~α. Note also that the mapping r 7→
∆τ ′(~r, r>>/~α, α) in the right-hand side of that clause is well-defined since it will only
be invoked for convergence-preserving relations r by Definition 5.2. But Lemma 4.18
ensures that r>> is also convergence-preserving for each such r, and can therefore
be used as an argument for ∆τ ′. 3

To ultimately establish that ∆τ (~r/~α) is >>-closed (in addition to being convergence-
preserving) provided every relation in ~r is, we have to show how >>-closedness is
pushed along the type structure by the relational actions for function and ∀-types.
This is the task of the following two lemmas.

Lemma 5.5. For every r1, r2 ∈ Rel , if r2 is >>-closed, then so is r1 → r2.
�

The proof of this lemma uses Observation 4.3(1) and Lemma 4.18. The main con-
ceptual difference from the proof of Lemma 4.7(iii) in [Pit00] is the extra proof
obligation arising from the additional convergence-preservation restriction in the
definition of r1 → r2. As in the equational setting of [VJ06], this extra obligation is
met using Lemma 4.18. The proof of the following lemma is very similar.

Lemma 5.6. Let R be as in Definition 5.2. If Rτ2,τ ′

2
(r) is >>-closed for every τ2, τ

′
2 ∈

Typ and r ∈ Rel⇓(τ2, τ
′
2), then ∀R is also >>-closed.

�

The following lemma gives the desired statement about propagation of >>-
closedness. It is the analogue of Lemma 4.11 in [Pit00], and is proved by induction
on the structure of τ . The proof uses Lemmas 4.18, 5.5, and 5.6, and (5).

Lemma 5.7. Let τ , ~α, and ~r be as in Definition 5.4. If every relation in ~r is
>>-closed, then so is ∆τ (~r/~α).

�

By induction on the structure of types, we easily obtain the following results as well.

Observation 5.8. Let τ , ~α, and ~r be as in Definition 5.4. Moreover, let r′ ∈ Rel⇓

and let α′ be a type variable not occurring in ~α (and hence not occurring free in τ).
Then:

∆τ (~r, r
′/~α, α′) = ∆τ (~r/~α).

�

Observation 5.9. Let τ , ~α, and ~r be as in Definition 5.4. Moreover, let α′ be a
type variable not occurring in ~α and let τ ′ be a type with free variables in ~α, α′.
Then:

∆τ ′[τ/α′](~r/~α) = ∆τ ′(~r, ∆τ (~r/~α)/~α, α′).
�

6 Proving the main result

In this section we first prove the parametricity theorem and then prove its strength-
ening corresponding to identity extension. Proofs of parametricity theorems typi-
cally proceed by induction on typing derivations, which in our case would mean by
induction on the axioms and rules in Figure 3. Instead, our proof will be based on
the closely related system describing compatibility in Figure 5. In any case, consid-
erations similar to those in [JV04, JV06] are necessary. In particular, since the rela-
tional action for function types was changed by adding a convergence-preservation
restriction, a stronger statement than in the case of the ‘standard’ logical relation

must be proved for the rule in whose conclusion a function type appears, i.e., for the
compatibility rule for function abstractions. The extra proof obligation thus arising
in the following analogue of Lemma 4.7(i) in [Pit00] is met using the fact that every
function abstraction is a value and thus trivially converges. The proof uses Obser-
vation 4.3(2) and proceeds as does the corresponding one for the equational setting,
which can be found in its entirety in [VJ06].

Lemma 6.1. Let τ1, τ
′
1, τ2, τ

′
2 ∈ Typ, r1 ∈ Rel(τ1, τ

′
1), and r2 ∈ Rel(τ2, τ

′
2). Let

x be a term variable and M and M ′ be terms such that x :: τ1 ` M :: τ2 and
x :: τ ′

1 ` M ′ :: τ ′
2. If

∀(A, A′) ∈ r1. (M [A/x], M ′[A′/x]) ∈ r2

and r2 is >>-closed, then (λx :: τ1.M, λx :: τ ′
1.M

′) ∈ (r1 → r2).
�

Similarly, we need an analogue of Lemma 4.8(i) in [Pit00], for type generalizations.
In contrast to the situation in [JV04, JV06], we have now imposed an explicit conver-
gence-preservation restriction on the relational action for ∀-types as well. Conse-
quently, an extra proof obligation now also arises in the following ‘compatibility
lemma’ for type generalizations, but can be met just as for function abstractions.

Lemma 6.2. Let τ1, τ ′
1, α, and R be as in Definition 5.2, and let M and M ′ be

terms such that α ` M :: τ1 and α ` M ′ :: τ ′
1. If

∀τ2, τ
′
2 ∈ Typ, r ∈ Rel⇓(τ2, τ

′
2). (M [τ2/α], M ′[τ ′

2/α]) ∈ Rτ2,τ ′

2
(r)

and Rτ2 ,τ ′

2
(r) is >>-closed for every τ2, τ

′
2 ∈ Typ and r ∈ Rel⇓(τ2, τ

′
2), then (Λα.M, Λα.M ′)

∈ (∀R).
�

As is typical in proofs about logical relations, we have to generalize the statement
we ultimately want to prove from terms and types without free variables to those
with free variables. Hence, we also need to extend the logical relation itself to open
terms, which is as usual done via closing substitutions.

Definition 6.3. Let n, m ∈
�
, let ~α be a list of n type variables, ~x = x1, . . . , xm be

a list of term variables, τ1, . . . , τm be types, and Γ = ~α, x1 :: τ1, . . . , xm :: τm. Given
terms M and M ′ and a type τ with Γ ` M :: τ and Γ ` M ′ :: τ , we write

Γ ` M ∆ M ′ :: τ

if for every pair of lists ~σ = σ1, . . . , σn and ~σ′ = σ′
1, . . . , σ

′
n of closed types and

every list ~r = r1, . . . , rn of >>-closed ri ∈ Rel⇓(σi, σ
′
i), we have that for every pair

of lists ~N = N1, . . . , Nm and ~N ′ = N ′
1, . . . , N

′
m with (Nj, N

′
j) ∈ ∆τj

(~r/~α) for every
1 ≤ j ≤ m, the following membership holds:

(M [~σ/~α, ~N/~x], M ′[~σ′/~α, ~N ′/~x]) ∈ ∆τ (~r/~α). 3

Now, we can go about proving the fundamental property of ∆, namely that it is
reflexive. That is, we prove the following parametricity theorem.

Theorem 6.4. The relation ∆ is compatible, and thus reflexive. In particular, for
every τ ∈ Typ and M ∈ Term(τ): (M, M) ∈ ∆τ ().

Proof: To prove that ∆ is compatible, we have to show that it is closed under each
of the axioms and rules in Figure 5. The axiom Γ, x :: τ ` x ∆ x :: τ is trivially
satisfied due to the way ∆ is defined. Also by that definition, to establish the rule

Γ ` A ∆ A′ :: τ Γ ` B ∆ B′ :: τ ′

Γ ` seq(A, B) ∆ seq(A′, B′) :: τ ′

it suffices to show that for Γ as in Definition 6.3, types τ and τ ′, terms A, A′, B,
and B′ with Γ ` A :: τ , Γ ` A′ :: τ , Γ ` B :: τ ′, and Γ ` B′ :: τ ′, lists ~σ = σ1, . . . , σn

and ~σ′ = σ′
1, . . . , σ

′
n of closed types, list ~r = r1, . . . , rn of >>-closed ri ∈ Rel⇓(σi, σ

′
i),

list ~N = N1, . . . , Nm of Nj ∈ Term(τj[~σ/~α]), and list ~N ′ = N ′
1, . . . , N

′
m of N ′

j ∈
Term(τj[~σ

′/~α]),

(A[~σ/~α, ~N/~x], A′[~σ′/~α, ~N ′/~x]) ∈ ∆τ (~r/~α) (10)

and
(B[~σ/~α, ~N/~x], B′[~σ′/~α, ~N ′/~x]) ∈ ∆τ ′(~r/~α) (11)

imply
(seq(A, B)[~σ/~α, ~N/~x], seq(A′, B′)[~σ′/~α, ~N ′/~x]) ∈ ∆τ ′(~r/~α).

By substitution, the latter is equivalent to

(seq(A[~σ/~α, ~N/~x], B[~σ/~α, ~N/~x]), seq(A′[~σ′/~α, ~N ′/~x], B′[~σ′/~α, ~N ′/~x])) ∈ ∆τ ′(~r/~α).

But this is indeed implied by (10) and (11) due to Lemma 4.19, taking into ac-
count that ∆τ (~r/~α) is convergence-preserving (by Definition 5.4) and ∆τ ′(~r/~α) is
>>-closed (by Lemma 5.7). The remaining axiom and rules from Figure 5 are estab-
lished in a similar fashion using Lemmas 4.14, 4.18, 5.7, 6.1, and 6.2, Observation 5.9,
(2), (5), and an analogue of Lemma 4.10(ii) in [Pit00], derived from (3), (5), and
Observation 4.3.

�

We can use the technique of the preceding proof, together with Lemma 5.7 and
Observation 5.9, to show that ∆ is also closed under the rules in Figure 6. This
gives the following lemma.

Lemma 6.5. The relation ∆ is substitutive.
�

One further important property that ∆ should have if it is to characterize observa-
tional approximation — indeed the very property tying in the observational aspect
— is (inequational) adequacy with respect to nil-termination. The proof uses (5)
and Observation 4.2 and is similar to that of the second part of Theorem 4.15
in [Pit00].

Lemma 6.6. The relation ∆ is adequate.
�

Finally, we can show that ∆ is not just any adequate, compatible, and substitutive
relation, but is actually exactly the one we are looking for.

Theorem 6.7. The relation ∆ is the largest adequate, compatible, and substitutive
relation. It is also reflexive and transitive.

Proof: For the first statement, by Theorem 6.4 and Lemmas 6.5 and 6.6, it remains
to prove that ∆ subsumes every adequate, compatible, and substitutive relation.
Let E be such a relation, let Γ, M , M ′, and τ be as in Definition 6.3, and assume
Γ ` M E M ′ :: τ . Further, let ~σ = σ1, . . . , σn and ~σ′ = σ′

1, . . . , σ
′
n be lists of closed

types, ~r = r1, . . . , rn be a list of >>-closed ri ∈ Rel⇓(σi, σ
′
i), and ~N = N1, . . . , Nm

and ~N ′ = N ′
1, . . . , N

′
m be lists with (Nj, N

′
j) ∈ ∆τj

(~r/~α) for every 1 ≤ j ≤ m. Since
∆ is reflexive (cf. Theorem 6.4), we have Γ ` M ∆ M :: τ , which by Definition 6.3
implies that

(M [~σ/~α, ~N/~x], M [~σ′/~α, ~N ′/~x]) ∈ ∆τ (~r/~α). (12)

Moreover, Γ ` M E M ′ :: τ and the substitutivity of E imply that

M [~σ′/~α, ~N ′/~x] E M ′[~σ′/~α, ~N ′/~x]. (13)

Since (12) and (13) combine into (M [~σ/~α, ~N/~x], M ′[~σ′/~α, ~N ′/~x]) ∈ ∆τ (~r/~α) by Lem-
mas 4.10 and 5.7, and since this is obtained independently of the choice of the lists
~σ, ~σ′, ~r, ~N , and ~N ′ above, we indeed have the desired Γ ` M ∆ M ′ :: τ by Defini-
tion 6.3.

For the second statement, note that since ∆ is compatible, it is also reflexive.
Moreover, it is easy to see that the collection of adequate, compatible, and sub-
stitutive relations is closed under relation composition. This implies that ∆; ∆ is
adequate, compatible, and substitutive, and is thus subsumed by the largest such
relation, i.e., ∆; ∆ ⊆ ∆. But this means that ∆ is also transitive.

�

With the above characterization, we have established that ∆ coincides with our
intended notion of approximation as discussed at the end of Section 3.2. So the
following corollary can be read either as a definition of vobs in terms of ∆ or as a
coincidence statement between vobs and ∆. In the latter reading, we take vobs to
be characterized as the union of all adequate, compatible, and substitutive relations
and ∆ to be characterized independently based on the type structure of PolySeq.

Corollary 6.8. Let Γ, M , M ′, and τ be as in Definition 6.3. Then:

Γ ` M vobs M ′ :: τ ⇔ Γ ` M ∆ M ′ :: τ.

In particular, for every τ ∈ Typ and M, M ′ ∈ Term(τ):

M vobs M ′ ⇔ (M, M ′) ∈ ∆τ ().
�

Together with Observations 5.8 and 5.9, the statement about closed types in the pre-
vious corollary implies a statement about observational approximation correspond-
ing to what is usually referred to as the identity extension lemma. This statement
says that for every type τ with free variables in ~α = α1, . . . , αn, list ~τ = τ1, . . . , τn

of closed types, and list ~r = r1, . . . , rn of relations with

ri = {(M, M ′) | M, M ′ ∈ Term(τi) ∧ M vobs M ′} ,

we have:

∆τ (~r/~α) = {(M, M ′) | M, M ′ ∈ Term(τ [~τ/~α]) ∧ M vobs M ′}.

7 Applications

In this section we show how our characterization of observational approximation by a
logical relation can be used to study the semantics of PolySeq. Our study progresses
from relatively basic statements about notions from the operational semantics in
Section 3.2 to the correctness of parametricity-based program transformations.

7.1 Exploring observational approximation

Since for every τ ∈ Typ, ∆τ () is convergence-preserving by Definition 5.4, we obtain
the following simple consequence of Corollary 6.8.

Corollary 7.1. For every M, M ′ ∈ Term of the same type, if M vobs M ′, then
M⇓ ⇒ M ′⇓.

�

Note that the above does not hold in the setting without seq. In particular, Ex-
amples 5.3 and 5.5 in [Pit00] provide PolyPCF observational equivalences — and
hence approximations — that do not adhere to convergence-preservation. Namely,
they yield that for every τ1, τ2 ∈ Typ, λx :: τ1.Ωτ2 vobs Ωτ1→τ2, and that for every
type τ with at most a single free variable, α say, Λα.Ωτ vobs Ω∀α.τ . In light of
Observation 3.8 and Corollary 7.1, neither of the two can be true in PolySeq. This
motivates turning attention to extensionality principles, because that is where the
two examples above come from. But before doing so, we look at three different ways
of establishing observational approximations that work independently of whether or
not seq is present in the calculus.

First, note that the converse implication does not hold in Corollary 7.1: the
fact that convergence of one term implies convergence of another does not mean
that the first term observationally approximates the second. The reason is that two
terms that are both convergent can have otherwise completely different behavior.
But if the first term is divergent, then it approximates any term of the same type,
regardless of the convergence behavior of that second term, as established by the
following lemma.

Lemma 7.2. For every M, M ′ ∈ Term of the same type, if M⇑, then M vobs M ′.

Proof: By Corollary 6.8, it suffices to show that (M, M ′) ∈ ∆τ (), where τ is the
type of both M and M ′. But this follows from Lemmas 4.11 and 5.7.

�

If we say that two terms M and M ′ are observationally equivalent, written M =obs

M ′, if and only if M vobs M ′ and M ′ vobs M both hold, then Lemma 7.2 entails
that all divergent terms of the same type are observationally equivalent.

To establish observational equivalence of two convergent terms, we may use one
of the following two lemmas. Each states that a certain operational notion from
Section 3.2 implies observational equivalence. Note that two separate observational
approximations must be established for each lemma. The statements can also be
regarded as instances of Corollary 4.16 in [Pit00].

Lemma 7.3. For every M ∈ Term and V ∈ Value, if M ⇓ V , then M =obs V .

Proof: By Corollary 6.8, it suffices to show that (M, V) ∈ ∆τ () and (V, M) ∈ ∆τ (),
where τ is the type of both M and V . By Lemma 5.7, ∆τ () is >>-closed, i.e., is
equal to (∆τ ())

>>. Then it suffices to reason for every (S, S ′) ∈ (∆τ ())
> as follows:

S > M ⇔ S > V by M ⇓ V and Lemma 4.5
⇒ S ′

> V by (S, S ′) ∈ (∆τ ())
> and (V, V) ∈ ∆τ ()

and
S > V ⇒ S ′

> V by (S, S ′) ∈ (∆τ ())
> and (V, V) ∈ ∆τ ()

⇔ S ′
> M by M ⇓ V and Lemma 4.5 ,

where (V, V) ∈ ∆τ () holds by Theorem 6.4.
�

Lemma 7.4. For every R, R′ ∈ Term, if R ; R′, then R =obs R′.
�

The proof of Lemma 7.4 is analogous to that of Lemma 7.3 above, but using Obser-
vation 4.3(2) instead of Lemma 4.5. Combining Lemmas 7.3 and 7.4 with the fact
that vobs is compatible, we obtain the following corollary.

Corollary 7.5. For every A, B ∈ Term, if A⇓, then seq(A, B) =obs B.
�

7.2 Extensionality principles

This subsection deals with extensionality principles. The standard one for func-
tion types — namely that two functions are ‘the same’ if (and only if) they return
the same results for every possible argument — has to be revised for PolySeq, in
addition to porting it to the inequational setting. Since seq allows an additional
observation to be made about function terms, namely checking them for conver-
gence without applying them to any argument, it is necessary that convergence be
preserved between the two function terms in question.

Lemma 7.6. Let τ1, τ2 ∈ Typ. Then for every F, F ′ ∈ Term(τ1 → τ2):

F vobs F ′ iff (F⇓ ⇒ F ′⇓) ∧ ∀A ∈ Term(τ1). F A vobs F ′ A.

Proof: The left-to-right implication follows from Corollary 7.1 and the compatibil-
ity of vobs . For the right-to-left implication it suffices by Corollary 6.8 and clause (7)
to prove that (F, F ′) ∈ ∆τ1() → ∆τ2(). Since F⇓ ⇒ F ′⇓ is known, it remains by
Definition 5.1 to show that for every (M, M ′) ∈ ∆τ1(): (F M, F ′ M ′) ∈ ∆τ2(). But
this follows by Lemmas 4.10 (for the adequate and compatible relation vobs) and 5.7
from

(F M, F M ′) ∈ ∆τ2() ∧ F M ′ vobs F ′ M ′.

Here the first conjunct follows by Definition 5.1 from (F, F) ∈ ∆τ1() → ∆τ2(), which
holds due to Theorem 6.4, while the second one follows from the assumption that
for every A ∈ Term(τ1), F A vobs F ′ A.

�

The standard extensionality principle for ∀-types states that two polymorphic terms
are observationally equivalent if and only if all their corresponding instances are. In
PolySeq we must enrich the inequational version of this principle by an explicit
convergence-preservation check, just as we did with the extensionality principle for
function types above. The reason, of course, is that seq can also be used at ∀-types.
The proof of the following lemma is completely analogous to that of Lemma 7.6
above.

Lemma 7.7. Let τ be a type with at most a single free variable, α say. Then for
every G, G′ ∈ Term(∀α.τ):

G vobs G′ iff (G⇓ ⇒ G′⇓) ∧ ∀τ ′ ∈ Typ. Gτ ′ vobs G′
τ ′.

�

One important consequence of Lemma 7.7 is that in PolySeq it is not true for every
G ∈ Term(∀α.τ) that if for every τ ′ ∈ Typ, Gτ ′ =obs Ωτ [τ ′/α], then G =obs Ω∀α.τ .
A counterexample is exactly the term G = Λα.Ωτ from Example 5.5 in [Pit00].
(Note that Example 5.5 in [Pit00] was shown above — below Corollary 7.1 — to
fail in the presence of seq.) This might seem a bit surprising, given that the refuted
implication is the direct translation into the operational setting of laws (2) and (5)
in [JV04] and [JV06], respectively. The resolution of this apparent contradiction is
that PolySeq combines selective strictness and impredicative polymorphism in such
a way that type generalization and instantiation are observable, while they are not
in Haskell (and while Pitts’ PolyPCF has only impredicative polymorphism but no
selective strictness). Ultimately, this is also the reason why we had to explicitly
enforce G⇓ ⇒ G′⇓ in the relational action for ∀-types (cf. Definition 5.2), whereas
a corresponding enforcement was not necessary in [JV04, JV06].

The extensionality principle for list types is essentially a coinduction principle.
To state it, we need the following notion.

Definition 7.8. Let τ ∈ Typ and s ∈ Rel(τ -list , τ -list). We say that s is a simula-

tion if for every (L, L′) ∈ s the following implications hold:

1. if L ⇓ nilτ , then L′ ⇓ nilτ ,

2. if L ⇓ H : T (for some H and T), then there are H ′ and T ′ with L′ ⇓ H ′ : T ′,
H vobs H ′, and (T, T ′) ∈ s. 3

Note that it is also possible to define the notion of simulation more generally, with
an arbitrary relation to tie corresponding list elements together rather than doing so
by vobs at some type τ . But the specialized definition above suffices for our purposes
and we prefer not to add unnecessary complication. A particularly simple example
of a simulation is given in the following lemma, whose proof is straightforward, using
adequacy and compatibility of vobs , Observation 3.8, Corollary 7.1, and Lemmas 7.3
and 7.4.

Lemma 7.9. For every τ ∈ Typ, the relation {(L, L′) | L, L′ ∈ Term(τ -list) ∧
L vobs L′} is a simulation.

�

The extensionality principle for list types then amounts to the statement that the
simulation from the previous lemma is the greatest one at a given τ ∈ Typ.

Lemma 7.10. Let τ ∈ Typ. Then for every L, L′ ∈ Term(τ -list), L vobs L′ if and
only if (L, L′) is contained in some simulation.

�

The proof of the lemma is straightforward, proceeding essentially as in [Pit00] or,
more simply, [VJ06]. That no changes (apart from replacing bidirectional implica-
tion by unidirectional implication) are necessary for list types — either here in the
extensionality principle or prior to that in the development of the logical relation
— makes sense intuitively. For inequationality at list types has been ‘built into’ the
logical relation via the new notion of >>-closure, rather than ‘added on’ a posteriori

as in [JV04, JV06]. And inclusion of seq into the calculus has no real impact on
what can happen at list types, given that seq(A, B) with A of list type can always
be ‘mimicked’ by (case A of {nil ⇒ B; h : t ⇒ B}).

7.3 Manufacturing permissible relations

For applications of the logical relation that make more essential use of the power
inherent in the quantification over relations in clause (8), such as those applications
studied in the next two subsections, we need a source of appropriately restricted
relations. In the equational setting without seq, Pitts identified a source of >>-
closed relations by considering graphs of evaluation frame stacks. We define two
analogous notions of graphs suited to the inequational setting as follows.

Definition 7.11. For every τ, τ ′ ∈ Typ and S ∈ Stack(τ, τ ′), we define left-graphS ∈
Rel(τ, τ ′) by

(M, M ′) ∈ left-graphS iff S M vobs M ′

and right-graphS ∈ Rel(τ ′, τ) by

(M, M ′) ∈ right-graphS iff M vobs S M ′. 3

Since in the inequational treatment of PolySeq we have to ensure that relational
interpretations of types are not only >>-closed but also convergence-preserving, we
need to restrict attention to just particular stacks that give rise to such relations.
As the following lemma shows, actually no restriction is necessary for right-graphs.

Lemma 7.12. For every τ, τ ′ ∈ Typ and S ∈ Stack(τ, τ ′), right-graphS is >>-closed
and convergence-preserving.

Proof: The proof of >>-closure is essentially as that for Lemma 6.1 in [Pit00]. To
see that right-graphS is convergence-preserving, let (M, M ′) ∈ right-graphS, i.e.,
M vobs S M ′. By Corollary 7.1, this implies that M⇓ ⇒ (S M ′)⇓. So it remains
to show that (S M ′)⇓ ⇒ M ′⇓. But this holds by Lemma 4.20.

�

For left-graphs, the above observation motivates the following definition.

Definition 7.13. Given τ, τ ′ ∈ Typ and S ∈ Stack(τ, τ ′), we say that S is total if
for every V ∈ Value(τ): (S V)⇓. 3

The analogue of Lemma 7.12 for left-graphs is now proved similarly to above (using
the opposite direction of Lemma 4.20).

Lemma 7.14. For every τ, τ ′ ∈ Typ and S ∈ Stack(τ, τ ′), left-graphS is >>-closed.
Moreover, if S is total, then left-graphS is convergence-preserving as well.

�

7.4 Enumerating terms up to observational equivalence

One application of parametricity and extensionality results presented in [Pit00],
and one which is also popular in the Haskell community (as various discussions
on [HML] indicate), is to show that certain types have only a small number of
inhabitants which differ with respect to observational equivalence. In particular,
Pitts’ Examples 2.6 and 2.7 state, respectively, that in the absence of seq, every
element of Term(∀α.α) is observationally equivalent to Ω, and that every element of
Term(∀α.α → α) is observationally equivalent either to Ω∀α.α→α or to Λα.λx :: α.x.
We will revisit these examples for PolySeq and observe interesting differences. But
first we need the following auxiliary lemma.

Lemma 7.15. For every τ ∈ Typ and M, M ′ ∈ Term(τ), if M⇑ and (M ′, M ′) ∈
{(M, M)}>>, then M ′⇑ as well.

Proof: From (M ′, M ′) ∈ {(M, M)}>> follows that for every (S, S ′) ∈ {(M, M)}>:
S > M ′ ⇒ S ′

> M ′. Choose S = seq(−,nilτ) and S ′ = seq(−, Ωτ -list), which is a
valid choice due to the following reasoning:

seq(−,nilτ) > M ⇔ M⇓ by Corollary 4.16
⇔ M⇓ ∧ Id > Ωτ -list by M⇑
⇔ Id > seq(M, Ωτ -list) by Lemma 4.15
⇔ seq(−, Ωτ -list) > M by Observation 4.3(1).

Now, seq(−,nilτ) > M ′ ⇒ seq(−, Ωτ -list) > M ′ implies

M ′⇓ ⇒ (M ′⇓ ∧ Id > Ωτ -list)

by using Observation 4.3(1), Lemma 4.15, and Corollary 4.16 in a manner similar
to that above. Since Id > Ωτ -list does not hold (cf. Observations 3.8 and 4.2), this
implies M ′⇑.

�

Now, we can show that although not all elements of Term(∀α.α) are observationally
equivalent in PolySeq, they do separate into exactly two equivalence classes.

Lemma 7.16. For every G ∈ Term(∀α.α), either G =obs Ω or G =obs Ω∀α.α.

Proof: By Theorem 6.4 and Definition 5.4, we have (G, G) ∈ (∀r.r>>). By Defini-
tion 5.2, this implies that for every τ ∈ Typ and r ∈ Rel⇓(τ, τ): (Gτ , Gτ) ∈ r>>. For
fixed τ , choose r = {(Ωτ , Ωτ)}, which obviously is convergence-preserving. Then we
get Gτ⇑ by Observation 3.8 and Lemma 7.15. Since this is so for every τ ∈ Typ,
the claim follows by Observation 3.8 and Lemmas 7.2 and 7.7.

�

To provide a similar account for the type ∀α.α → α, we first need a further
auxiliary lemma. Its statement should also hold for Pitts’ setting without seq, but
a proof would be much more complicated there, as it could not make use of the
convergence-preservation of relational interpretations of types. In fact, there seems
to be no way in PolyPCF to prove the statement solely based on the reflexivity of
the logical relation as below.

Lemma 7.17. Let τ be a type with at most a single free variable, α say. Then for
every G ∈ Term(∀α.τ):

(∃τ ′ ∈ Typ. Gτ ′⇓) ⇒ (∀τ ′ ∈ Typ. Gτ ′⇓).

Proof: By Theorem 6.4 and clause (8), we have (G, G) ∈ (∀r.∆τ (r
>>/α)). By Def-

inition 5.2, this implies that for every τ1, τ2 ∈ Typ and r ∈ Rel⇓(τ1, τ2): (Gτ1 , Gτ2) ∈
∆τ (r

>>/α). For fixed τ1 and τ2, choose r = � , which obviously is convergence-
preserving. By Lemma 4.18 and Definition 5.4, ∆τ (r

>>/α) is then also convergence-
preserving. This means that for every τ1, τ2 ∈ Typ: Gτ1⇓ ⇒ Gτ2⇓.

�

Now, we can show that in PolySeq, Term(∀α.α → α) is factorized into four, rather
than two, equivalence classes with respect to =obs . The two additional ones arise
exactly from the failures of Pitts’ Examples 5.3 and 5.4 in the presence of seq, as
observed below Corollary 7.1.

Lemma 7.18. For every G ∈ Term(∀α.α → α), exactly one of the following alter-
natives holds:

1. G =obs Ω∀α.α→α,

2. G =obs Λα.Ωα→α,

3. G =obs Λα.λx :: α.Ωα, or

4. G =obs Λα.λx :: α.x.

Proof: By Theorem 6.4 and Definition 5.4, we have (G, G) ∈ (∀r.r>> → r>>). By
Definitions 5.1 and 5.2, this implies the following statement:

∀τ1, τ2 ∈ Typ, r ∈ Rel⇓(τ1, τ2), M1 ∈ Term(τ1), M2 ∈ Term(τ2).
(M1, M2) ∈ r>> ⇒ (Gτ1 M1, Gτ2 M2) ∈ r>>.

(14)

From this, we get that

∀τ ∈ Typ, M ∈ Term(τ). M⇑ ⇒ (Gτ M)⇑ (15)

by instantiating τ1 = τ2 = τ , r = {(M, M)}, and M1 = M2 = M , and by using (2)
and Lemma 7.15. Now, we prove that

∀τ ∈ Typ, M ∈ Term(τ). Gτ M vobs Ωτ (16)

or
∀τ ∈ Typ, M ∈ Term(τ). Gτ M =obs M , (17)

by contradiction. Assume that neither (16) nor (17) holds. Then there exist τ1, τ2 ∈
Typ, M1 ∈ Term(τ1), and M2 ∈ Term(τ2) with

¬(Gτ1 M1 vobs Ωτ1)

and
¬(Gτ2 M2 =obs M2). (18)

From these negations we get (Gτ1 M1)⇓, M1⇓, and M2⇓ by Lemma 7.2 and (15). Us-
ing (14) with r = left-graph

seq(−,M2), which is >>-closed and convergence-preserving
by M2⇓, Observation 3.7, and Lemma 7.14, we get that (M1, M2) ∈ left-graph

seq(−,M2)

implies (Gτ1 M1, Gτ2 M2) ∈ left-graph
seq(−,M2), i.e.,

seq(M1, M2) vobs M2 ⇒ seq(Gτ1 M1, M2) vobs Gτ2 M2.

By M1⇓, (Gτ1 M1)⇓, and Corollary 7.5, the precondition of this implication is ful-
filled, whereas its conclusion and (18) together imply that

¬(Gτ2 M2 vobs M2). (19)

must hold. Now using (14) with r = right-graph
seq(−,M2), which is >>-closed and

convergence-preserving by Lemma 7.12, we get that (M2, M1) ∈ right-graph
seq(−,M2)

implies (Gτ2 M2, Gτ1 M1) ∈ right-graph
seq(−,M2), i.e.,

M2 vobs seq(M1, M2) ⇒ Gτ2 M2 vobs seq(Gτ1 M1, M2).

But by M1⇓, (Gτ1 M1)⇓, and Corollary 7.5, the precondition of this implication is
fulfilled, whereas its conclusion contradicts (19). Consequently, the assumption that
neither (16) nor (17) holds was wrong. From this, the claim follows by Observa-
tion 3.8, Corollary 7.1, and Lemmas 7.2, 7.4, 7.6, 7.7, and 7.17.

�

7.5 Correctness of short cut fusion

The PolySeq equivalents of the Haskell functions foldr and build from Figure 1 in
Section 2 are as follows:

foldr = Λα.Λβ.λc :: α → β → β.λn :: β.fix(λf :: α-list → β.λl :: α-list .
case l of {nil ⇒ n; h : t ⇒ c h (f t)})

and

build = Λα.λg :: ∀β.(α → β → β) → β → β.gα-list (λh :: α.λt :: α-list .h : t) nilα.

Due to the explicit syntactic representation of type specialization in PolySeq, the
short cut fusion rule (1) becomes a bit more verbose now. It says that for every
τ, τ ′ ∈ Typ, G ∈ Term(∀β.(τ → β → β) → β → β), C ∈ Term(τ → τ ′ → τ ′), and
N ∈ Term(τ ′):

(foldr τ)τ ′ C N (build τ G) =obs Gτ ′ C N (20)

Of course, just as noted for ‘Haskell with seq’ in Section 2, the rule does not hold
unconditionally in PolySeq. For example, it is easy to see that the above observa-
tional equivalence does not hold if G is Λβ.λc :: τ → β → β.λn :: β.seq(c, n), C is
Ωτ→τ ′→τ ′, and N is any converging element of Term(τ ′).

But partial correctness of foldr/build -fusion does hold even in PolySeq with its
selective strictness primitive, and total correctness can be recovered by imposing
restrictions on N and C, as established in the following theorem.

Theorem 7.19. For every τ, τ ′ ∈ Typ, G ∈ Term(∀β.(τ → β → β) → β → β), C ∈
Term(τ → τ ′ → τ ′), and N ∈ Term(τ ′):

Gτ ′ C N vobs (foldr τ)τ ′ C N (build τ G).

Moreover, if N⇓ and for every A ∈ Term(τ) and B ∈ Term(τ ′), (C A B)⇓, then:

(foldr τ)τ ′ C N (build τ G) vobs Gτ ′ C N.

Proof: By Theorem 6.4 and Definition 5.4, we have

(G, G) ∈ (∀r.(∆τ (r
>>/β) → (r>> → r>>)) → (r>> → r>>)).

By Lemma 4.18, Definitions 5.1 and 5.2, and Observation 5.8, this implies that for ev-
ery τ1, τ2 ∈ Typ, r ∈ Rel⇓(τ1, τ2), C1 ∈ Term(τ → τ1 → τ1), C2 ∈ Term(τ → τ2 → τ2),
N1 ∈ Term(τ1), and N2 ∈ Term(τ2):

C1⇓ ⇒ C2⇓
∧ (∀(A1, A2) ∈ ∆τ (). (C1 A1)⇓ ⇒ (C2 A2)⇓

∧ ∀(B1, B2) ∈ r>>. (C1 A1 B1, C2 A2 B2) ∈ r>>)
∧ (N1, N2) ∈ r>>

⇒ (Gτ1 C1 N1, Gτ2 C2 N2) ∈ r>>.

We consider two instantiations of this.
First, we instantiate τ1 = τ ′, τ2 = τ -list , C1 = C, C2 = λh :: τ.λt :: τ -list .h : t,

N1 = N , N2 = nilτ , and

r = {(M, L) | M ∈ Term(τ ′) ∧ L ∈ Term(τ -list) ∧ M vobs (foldr τ)τ ′ C N L}.

By the definition of foldr , Lemma 7.4, and the compatibility of vobs , this r equals
right-graphS, where

S = case − of {nil ⇒ N ;
h : t ⇒ C h (fix(λf :: τ -list → τ ′.λl :: τ -list .

case l of {nil ⇒ N ; h′ : t′ ⇒ C h′ (f t′)}) t)} ,

and thus is >>-closed and convergence-preserving by Lemma 7.12. Hence, the choice
of r was justified (i.e., r really is in Rel⇓(τ ′, τ -list)), and occurrences of r>> in the
implication displayed above can be replaced by r itself. Then the first claim of the
theorem follows from the definition of build , Lemma 7.4, the compatibility of vobs ,
and Observation 3.7, provided we can establish

∀(A1, A2) ∈ ∆τ (), B1 ∈ Term(τ ′), B2 ∈ Term(τ -list).
B1 vobs (foldr τ)τ ′ C N B2

⇒ C A1 B1 vobs (foldr τ)τ ′ C N ((λh :: τ.λt :: τ -list .h : t) A2 B2)

and
N vobs (foldr τ)τ ′ C N nilτ .

But these two statements follow from Corollary 6.8, the definition of foldr , Lemma 7.4,
and the compatibility of vobs .

Now, let N⇓ and (C A B)⇓ for every A ∈ Term(τ) and B ∈ Term(τ ′). Then
we instantiate τ1 = τ -list , τ2 = τ ′, C1 = λh :: τ.λt :: τ -list .h : t, C2 = C, N1 = nilτ ,
N2 = N , and

r = {(L, M) | L ∈ Term(τ -list) ∧ M ∈ Term(τ ′) ∧ (foldr τ)τ ′ C N L vobs M}.

By the definition of foldr , Lemma 7.4, and the compatibility of vobs , this r equals
left-graphS, where S is as for the first instantiation. Since under the preconditions
on N and C, S is total by Observation 3.7, the chosen r is again >>-closed and
convergence-preserving by Lemma 7.14. Then the second claim of the theorem
follows from the definition of build , Lemma 7.4, and the compatibility of vobs ,
provided we can establish that C⇓, that for every A2 ∈ Term(τ), (C A2)⇓, that

∀(A1, A2) ∈ ∆τ (), B1 ∈ Term(τ -list), B2 ∈ Term(τ ′).
(foldr τ)τ ′ C N B1 vobs B2

⇒ (foldr τ)τ ′ C N ((λh :: τ.λt :: τ -list .h : t) A1 B1) vobs C A2 B2 ,

and that
(foldr τ)τ ′ C N nilτ vobs N.

But the two ‘convergence conditions’ follow from the precondition on C by Corol-
lary 4.21, whereas the other two statements follow from Corollary 6.8, the definition
of foldr , Lemma 7.4, and the compatibility of vobs .

�

Note that the above proof relies on Corollary 6.8 rather than just on the weaker
Theorem 6.4. This is exactly where the proofs in [JV04, JV06] had to resort to an
unproved conjecture, because the statement corresponding to the identity extension
lemma for the (denotational-style) logical relation offered there could not be shown
to hold. This has now been remedied in the operational setting. The preconditions
on N and C imposed for total correctness in Theorem 7.19 of course closely corre-
spond to the denotational ones suggested for foldr/build-fusion in [JV04] and [JV06].
For pragmatic discussions of the implications such preconditions have for short cut
fusion and related transformations in practice, consult the latter paper.

8 Conclusion and related work

We have constructed a parametric model of observational approximation for a non-
strict polymorphic lambda calculus with general recursion, an algebraic datatype,
and selective strictness. This puts earlier — more intuition-based than formally-
derived — accounts [JV04, JV06] of free theorems and parametricity-based program
transformations for functional languages mixing all these features, like Clean and
Haskell, on a firm theoretical basis.

In retrospect, an interesting relationship can be observed between the restrictions
introduced in [JV04, JV06] to accommodate selective strictness — or, more precisely,
their operational-style incarnations coming forward in the present paper — and ideas
from both Pitts’ original paper on PolyPCF [Pit00] and his extended study in [Pit05]
of what is essentially ‘Call-by-value PolyPCF’. Firstly, Figure 9 of [Pit00] proposes
using roughly the following as the relational interpretation of function types in a call-
by-name calculus ‘Lazy PCF’ in which termination at function types is observable:

{(λx :: τ1.M, λx :: τ ′
1.M

′) | ∀(A, A′) ∈ r1. (M [A/x], M ′[A′/x]) ∈ r2}
>>

Since function abstractions are values, and thus converge, the relation of which
Pitts’ (now bidirectional) >>-closure is taken here is clearly convergence-reflecting,
i.e., bidirectionally convergence-preserving. By the analogue of our Lemma 4.18 for
the equational setting (which is known to hold for PolySeq [VJ06] and expected to
hold for ‘Lazy PCF’ as well), the proposed relational interpretation of function types
is then itself also convergence-reflecting. So the above is quite reminiscent of r1 → r2

in our Definition 5.1. For a calculus incorporating impredicative polymorphic types
and observable termination at those types — i.e., for ‘Lazy PolyPCF’ rather than
‘Lazy PCF’ — one would of course have to ensure convergence-preservation or -
reflection of the relational interpretation of ∀-types as well, either explicitly as we
do in Definition 5.2 or more indirectly in a manner similar to that above. But
even then, one would not yet have a logical relation appropriate for PolySeq. For
while the aforementioned adaptations account for observability of whole program
termination at arbitrary types in ‘Lazy PolyPCF’, they do not fully capture the
impact of selective strictness in PolySeq, namely that termination of arbitrary in-
termediate computations becomes observable as well. To account for that, we have

imposed convergence-preservation not only on the result of each relational action,
but also on the relations over which we quantify in the relational action for ∀-types.
And interestingly, something similar happens in Pitts’ account for ‘Call-by-value
PolyPCF’ in [Pit05]. The enforcement of convergence-reflection is again done quite
indirectly rather than in the direct way we have preferred in the present paper (and
which is indeed preferable when it comes to applying the logical relation as in the
previous section), but the basic idea is the same. Nevertheless, as a whole, the
logical relation from [Pit05] is not appropriate for PolySeq. In particular, the rela-
tional action for function types given there requires relatedness of function results
only for related function arguments that are values. Regarding the extensionality
principle for function types, this would imply that A ∈ Term(τ1) in Pitts’ (equa-
tional) analogue of our Lemma 7.6 is replaced by A ∈ Value(τ1). And while this
gives a correct principle for a purely strict calculus, it is wrong for PolySeq. That
the logical relation characterizing PolySeq observational approximation — and thus
equivalence — can ultimately be understood as a kind of blend of logical relations
for ‘Lazy PolyPCF’ and ‘Call-by-value PolyPCF’ is not entirely surprising, since
it corresponds to the fact that intuitively ‘Haskell with seq’ is situated somewhere
between ‘Haskell without seq’ and a purely strict language like ML. But, of course,
finding just the right blend, or equivalently, identifying the precise position selective
strictness occupies between pure nonstrictness and pure strictness was the task we
set out to solve with this paper. Interestingly, the picture drawn up above finds a
complement, and is tied back to denotational semantics, in recent domain-theoretic
work by Møgelberg [Møg06]. There, he sketches a program logic for a polymorphic
call-by-value calculus with recursive types and terms and shows it to give rise to a
computationally adequate model suitable for deriving consequences of parametricity
along the lines of those in [Pit05]. And for the relational interpretations of types he
arrives at something similar to our restrictions on relations in [JV04, JV06].

Pitts’ study of parametric polymorphism for the purely strict version of PolyPCF
was mainly motivated by concerns regarding existential types (∃-types, see [MP88])
rather than ∀-types. A similar motivation underlies other recent work on operationally-
based logical relations for purely strict calculi [Ahm06]. Hence, it would be inter-
esting to see how things change when ∃-types are integrated into PolySeq as well.
It is easy to see that the observationally isomorphic encoding of ∃-types by ∀-types
provided for purely nonstrict PolyPCF in Section 7 of [Pit00] breaks down in Pol-
ySeq (just as the encoding of list types from Example 2.8 of that paper does). So
if we want to reason about existential types, they must be explicitly added to the
calculus, and their interplay with selective strictness must be studied very carefully.
This is ongoing work.

Acknowledgments

We thank the anonymous reviewers for their suggestions for improving the presen-
tation of the paper. We particularly thank the reviewer who encouraged us to move
from the equational to the inequational setting in this paper.

References

[ABB+05] A. Abel, M. Benke, A.L. Bove, R.J.M. Hughes, and U. Norell. Verifying
Haskell programs using constructive type theory. In Haskell Workshop,

Proceedings, pages 62–73. ACM Press, 2005.

[Ahm06] A. Ahmed. Step-indexed syntactic logical relations for recursive and
quantified types. In European Symposium on Programming, Proceedings,
volume 3924 of LNCS, pages 69–83. Springer-Verlag, 2006.

[BFSS90] E.S. Bainbridge, P.J. Freyd, A. Scedrov, and P.J. Scott. Functorial poly-
morphism. Theoretical Computer Science, 70:35–64, 1990. Corrigendum
Ibid., 71:431, 1990.

[BMP06] L. Birkedal, R.E. Møgelberg, and R.L. Petersen. Parametric domain-
theoretic models of polymorphic intuitionistic / linear lambda calculus.
In Mathematical Foundations of Programming Semantics 2005, Proceed-

ings, volume 155 of ENTCS, pages 191–217. Elsevier B.V., 2006.

[CLR] Clean Language Report 2.0
(http://www.cs.ru.nl/∼clean/CleanExtra/report20/index.html).

[DHJG06] N.A. Danielsson, R.J.M. Hughes, P. Jansson, and J. Gibbons. Fast and
loose reasoning is morally correct. In Principles of Programming Lan-

guages, Proceedings, pages 206–217. ACM Press, 2006.

[DJ04] N.A. Danielsson and P. Jansson. Chasing bottoms — A case study in pro-
gram verification in the presence of partial and infinite values. In Math-

ematics of Program Construction, Proceedings, volume 3125 of LNCS,
pages 85–109. Springer-Verlag, 2004.

[EM06] M. van Eekelen and M. de Mol. Proof tool support for explicit strict-
ness. In Implementation and Application of Functional Languages 2005,

Selected Papers, volume 4015 of LNCS, pages 37–54. Springer-Verlag,
2006.

[FFKD87] M. Felleisen, D.P. Friedman, E. Kohlbecker, and B. Duba. A syntactic
theory of sequential control. Theoretical Computer Science, 52:205–237,
1987.

[Fri75] H. Friedman. Equality between functionals. In Logic Colloquium ’72–73,

Proceedings, pages 22–37. Springer-Verlag, 1975.

[GHC] The Glasgow Haskell Compiler (http://www.haskell.org/ghc).

[Gir72] J.-Y. Girard. Interprétation functionelle et élimination des coupures dans

l’arithmétique d’ordre supérieure. PhD thesis, Université Paris VII, 1972.

[GJUV05] N. Ghani, P. Johann, T. Uustalu, and V. Vene. Monadic augment and
generalised short cut fusion. In International Conference on Functional

Programming, Proceedings, pages 294–305. ACM Press, 2005.

[GLP93] A. Gill, J. Launchbury, and S.L. Peyton Jones. A short cut to deforesta-
tion. In Functional Programming Languages and Computer Architecture,

Proceedings, pages 223–232. ACM Press, 1993.

[Has91] R. Hasegawa. Parametricity of extensionally collapsed term models of
polymorphism and their categorical properties. In Theoretical Aspects of

Computer Software, Proceedings, volume 526 of LNCS, pages 495–512.
Springer-Verlag, 1991.

[HK05] W.L. Harrison and R.B. Kieburtz. The logic of demand in Haskell. Jour-

nal of Functional Programming, 15:837–891, 2005.

[HML] The Haskell Mailing List Archive
(http://www.mail-archive.com/haskell@haskell.org).

[HS97] R. Harper and C. Stone. An interpretation of Standard ML in type
theory. Technical Report CMU-CS-97-147, Carnegie Mellon University,
1997.

[Joh02] P. Johann. A generalization of short-cut fusion and its correctness proof.
Higher-Order and Symbolic Computation, 15:273–300, 2002.

[Joh03] P. Johann. Short cut fusion is correct. Journal of Functional Program-

ming, 13:797–814, 2003.

[Joh05] P. Johann. On proving the correctness of program transformations based
on free theorems for higher-order polymorphic calculi. Mathematical

Structures in Computer Science, 15:201–229, 2005.

[JV04] P. Johann and J. Voigtländer. Free theorems in the presence of seq. In
Principles of Programming Languages, Proceedings, pages 99–110. ACM
Press, 2004.

[JV06] P. Johann and J. Voigtländer. The impact of seq on free theorems-based
program transformations. Fundamenta Informaticae, 69:63–102, 2006.

[Las98] S.B. Lassen. Relational Reasoning about Functions and Nondeterminism.
PhD thesis, University of Aarhus, 1998.

[Lei83] D. Leivant. Polymorphic type inference. In Principles of Programming

Languages, Proceedings, pages 88–98. ACM Press, 1983.

[LP96] J. Launchbury and R. Paterson. Parametricity and unboxing with un-
pointed types. In European Symposium on Programming, Proceedings,
pages 204–218. Springer-Verlag, 1996.

[Møg06] R.E. Møgelberg. Interpreting polymorphic FPC into domain theoretic
models of parametric polymorphism. In International Colloquium on

Automata, Languages and Programming, Proceedings, volume 4052 of
LNCS, pages 372–383. Springer-Verlag, 2006.

[MP88] J.C. Mitchell and G.D. Plotkin. Abstract types have existential type.
ACM Transactions on Programming Languages and Systems, 10:470–502,
1988.

[Pey03] S.L. Peyton Jones, editor. Haskell 98 Language and Libraries: The Re-

vised Report. Cambridge University Press, 2003.

[Pit00] A.M. Pitts. Parametric polymorphism and operational equivalence.
Mathematical Structures in Computer Science, 10:321–359, 2000.

[Pit05] A.M. Pitts. Typed operational reasoning. In B.C. Pierce, editor, Ad-

vanced Topics in Types and Programming Languages, pages 245–289.
MIT Press, 2005.

[Plo73] G.D. Plotkin. Lambda-definability and logical relations. Memorandum
SAI-RM-4, University of Edinburgh, 1973.

[Plo04] G.D. Plotkin. A structural approach to operational semantics. Journal

of Logic and Algebraic Programming, 60-61:17–139, 2004.

[PLST98] S.L. Peyton Jones, J. Launchbury, M.B. Shields, and A.P. Tolmach.
Bridging the gulf: A common intermediate language for ML and Haskell.
In Principles of Programming Languages, Proceedings, pages 49–61. ACM
Press, 1998.

[Rey74] J.C. Reynolds. Towards a theory of type structure. In Colloque sur la

Programmation, Proceedings, pages 408–423. Springer-Verlag, 1974.

[Rey83] J.C. Reynolds. Types, abstraction and parametric polymorphism. In In-

formation Processing, Proceedings, pages 513–523. Elsevier Science Pub-
lishers B.V., 1983.

[RMP06] B. Rudiak-Gould, A. Mycroft, and S.L. Peyton Jones. Haskell is not not
ML. In European Symposium on Programming, Proceedings, volume 3924
of LNCS, pages 38–53. Springer-Verlag, 2006.

[RR94] E.P. Robinson and G. Rosolini. Reflexive graphs and parametric poly-
morphism. In Logic in Computer Science, Proceedings, pages 364–371.
IEEE Computer Society Press, 1994.

[RS04] G. Rosolini and A. Simpson. Using synthetic domain theory to prove
operational properties of a polymorphic programming language based on
strictness. Manuscript, 2004.

[Sta85] R. Statman. Logical relations and the typed lambda-calculus. Informa-

tion and Control, 65:85–97, 1985.

[Sve02] J. Svenningsson. Shortcut fusion for accumulating parameters & zip-
like functions. In International Conference on Functional Programming,

Proceedings, pages 124–132. ACM Press, 2002.

[THLP98] P.W. Trinder, K. Hammond, H.-W. Loidl, and S.L. Peyton Jones. Al-
gorithm + Strategy = Parallelism. Journal of Functional Programming,
8:23–60, 1998.

[TM95] A. Takano and E. Meijer. Shortcut deforestation in calculational form.
In Functional Programming Languages and Computer Architecture, Pro-

ceedings, pages 306–313. ACM Press, 1995.

[VJ06] J. Voigtländer and P. Johann. Selective strictness and parametricity in
structural operational semantics. Technical Report TUD-FI06-02, Tech-
nische Universität Dresden, 2006.

[Voi02] J. Voigtländer. Concatenate, reverse and map vanish for free. In In-

ternational Conference on Functional Programming, Proceedings, pages
14–25. ACM Press, 2002.

[VWP06] D. Vytiniotis, S. Weirich, and S.L. Peyton Jones. Boxy types: inference
for higher-rank types and impredicativity. In International Conference

on Functional Programming, Proceedings, pages 251–262. ACM Press,
2006.

[Wad89] P. Wadler. Theorems for free! In Functional Programming Languages and

Computer Architecture, Proceedings, pages 347–359. ACM Press, 1989.

[WB89] P. Wadler and S. Blott. How to make ad-hoc polymorphism less ad hoc. In
Principles of Programming Languages, Proceedings, pages 60–76. ACM
Press, 1989.

