
Constructibility and Decidability versus

Domain Independence and Absoluteness

Arnon Avron

School of Computer Science, Tel Aviv University, Israel

Abstract

We develop a unified framework for dealing with constructibility and absoluteness in
set theory, decidability of relations in effective structures (like the natural numbers),
and domain independence of queries in database theory. Our framework and results
suggest that domain-independence and absoluteness might be the key notions in a
general theory of constructibility, predicativity, and computability.

1 Introduction: Absoluteness and Constructibility

As is well-known, Church Thesis (CT) identifies the intuitive, imprecise no-
tions of computability and decidability with the precise mathematical notion
of recursiveness. Accordingly, CT might be useful for two different goals. First,
the only known way to provide a precise mathematical proof that a certain
relation is not decidable, is to show that it is not recursive. Second, to become
convinced that a certain function (or relation) is recursive, it suffices by CT
to give an intuitive argument why it should be computable (or decidable), al-
lowing one to leave out most of the tedious details involved in a direct proof of
recursiveness (in principle such an informal argument can always be translated
into a full, rigorous one, but people seldom bother to do so).

Now the notion of computation to which CT applies is connected with count-
able discrete structures (like the natural numbers, or strings of symbols from
some alphabet). However, we believe that it is an instance of a more general
notion: the notion of construction, which is central in constructive mathe-
matics, but is also heavily used in all areas of classical mathematics (from

Email address: aa@cs.tau.ac.il (Arnon Avron).
URL: http://www.cs.tau.ac.il/ aa/ (Arnon Avron).

Preprint submitted to Elsevier Science 29 July 2007

Euclidean Geometry, where “construction problems” play a decisive role, to
set theory).

The ultimate goal of the research to which this paper and its planned con-
tinuations are devoted, is to develop a unified general logical framework for
studying the notions of construction and constructibility, with an eye to find
a corresponding generalization of CT. The present paper describes what we
believe to be promising steps in this direction. Its main focus is on construc-
tions with sets. This is justified by the central role that sets and set theories
have in modern mathematics. However, we do not want to commit ourselves
here to the platonic concept of “an arbitrary set”. Instead we take here the
logical view of a set as the extension of a property which is defined by some
“acceptable” (or “safe”) formula in some, intuitively meaningful, formal lan-
guage. 1 . Accordingly, the main question is: what formulas can be taken as
defining a construction of a set from given objects (including other sets)? To
get a possible reasonable answer, we combine ideas from three sources.

Set Theory Gödel classical work [11] on the constructible universe L is best
known for its applications in pure set theory, especially consistency and
independence proofs. However, it is of course of great interest also for the
study of the general notion of constructibility. Thus for characterizing the
“constructible sets” Gödel identified a set of basic operations on sets (which
we may call “computable operations”), that may be used for “effectively”
constructing new sets from given ones (in the process of creating the uni-
verse of “constructible” sets). For example, binary union and intersection
are “effective” in this sense, while the powerset operation is not. Gödel
has even provided a finite list of basic set operations, from which all other
“effective” (for his purposes) constructions can be obtained through com-
positions. Another very important idea which was introduced in [11] is the
notion of absoluteness of formulas. Roughly, a formula in the language of
set theory is absolute if its truth value in a transitive class M , for some
assignment v of objects from M to its free variables, depends only on v, but
not on M (i.e. the truth value is the same in every transitive class M , in
which v is legal). Absoluteness turned out to be a key property of formulas
which are used for defining “constructible sets”.

Formal arithmetic Absoluteness is not a decidable property. The following
set ∆0 of absolute formulas is therefore extensively used in set theory as a
syntactically defined approximation:

• Every atomic formula is in ∆0.
• If ϕ and ψ are in ∆0, then so are ¬ϕ, ϕ ∨ ψ, and ϕ ∧ ψ.

1 I am the first to admit that this is somewhat vague. But the goal of this type of
research is exactly to try to develop precise counterparts for the vague notions and
intuitions with which one starts.

2

• If x and y are two different variables, and ϕ is in ∆0, then so are ∃x ∈ yϕ
and ∀x ∈ yϕ.

Now a set of ∆0 formulas (also called in [16] “bounded formulas” or “Σ0-
formulas”) which has exactly the same definition (but of course in a different
signature) is used in formal arithmetic in order to characterize the com-
putable and the semi-computable (r.e.) relations on the natural numbers.
This obvious analogy between the roles in set theory of absolute formulas
and of set-theoretical ∆0 formulas, and the roles in formal arithmetic and
computability theory of decidable formulas and of arithmetical ∆0 formulas,
has indeed been noticed and exploited in the research on set theory.

Relational database theory: The importance of computations with sets
to this area is obvious: to provide an answer to a query in a relational
database, a computation should be made in which the input is a finite
set of finite sets of tuples (the “tables” of the database), and the output
should also be a finite set of tuples. In other words: the computation is
done with (finite) sets. Accordingly, for effective computations with finite
relations some finite set of basic operations has been identified in database
theory, and this basic set defines (via composition) what is called there “the
relational algebra” ([1,18]). Interestingly, there is a lot of similarity between
the list of operations used in the relational algebra and Gödel’s list of basic
operations for constructing sets.

It may be less obvious that also the idea of absoluteness is very impor-
tant for database theory. However, we shall see that domain independence
([13,18,1]), which is the key property that “acceptable” queries should have,
is strongly related to the property of absoluteness.

In what follows we reveal strong connections between the notions of con-
structibility, decidability, domain independence and absoluteness, and develop
a unified framework for dealing with them. Our framework and results suggest
that a certain general notion of domain independence (of which absoluteness
is a special case) is the really fundamental notion (while the others are special
cases of a sort, in some particular types of structures).

2 Domain Independence and Computability in Databases

2.1 The Concept of Domain Independence

From a logical point of view, a relational database DB of a scheme {P1, . . . , Pk}
is just a tuple 〈P1, . . . , Pk〉 of finite interpretations (called “tables”) of the
predicate symbols P1, . . . , Pk. DB can be turned into a structure S for a first-
order language L with equality, the signature of which includes {P1, . . . , Pk}

3

and perhaps also constants, by specifying a domain D, and an interpretation
of the constants of L in it 2 . The domain D should be at most countable (and
usually it is finite), and should of course include the union of the domains of
the tables in DB. A query for DB is simply a formula ψ of L. If ψ has n free
variables, then the answer to ψ in S is the set of n-tuples which satisfy it in S.
If ψ is closed, then the answer to the query is either “yes” or “no”, depending
on whether ψ holds in S or not (The “yes” and “no” can be interpreted as
{〈〉} and ∅, respectively. Here 〈〉 is the unique 0-tuple, and like in set theory,
it might be identified with ∅). Now not every formula ψ of a L can serve
as a query. Acceptable is only a query the answer to which is a function of
〈P1, . . . , Pk〉 alone (and does not depend on the exact identity of the domain
D, which might be unknown). Such queries are called domain independent
([13,18,1]). The exact definition is reproduced below.

Definition 1 Let σ be a first-order signature, and let S1 and S2 be two struc-
tures for σ. S1 is a weak substructure of S2 (notation: S1 ⊆σ S2) if the domain
of S1 is a subset of the domain of S2, and the interpretations in S1 and S2 of
the constants of σ are identical.

Definition 2 Let σ be a signature which includes
−→
P = {P1, . . . , Pk}.

(1) Let S1 and S2 be two structures for σ. S1 is a
−→
P −substructure of S2 (and

S2 is a
−→
P −extension of S1) if S1 ⊆σ S2, and the interpretations in S1 and

S2 of P1, . . . , Pk are identical (i.e.

S2 |= Pi(a1, . . . , an) ⇔ a1 ∈ S1 ∧ . . . ∧ an ∈ S1 ∧ S1 |= Pi(a1, . . . , an)

for every Pi in
−→
P and for all a1 ∈ S2, . . . , an ∈ S2).

(2) A formula ϕ(x1. . . . , xn) in σ is
−→
P −d.i. (

−→
P −domain-independent) 3 , if

whenever S1 is a
−→
P −substructure of S2 then for all a1 ∈ S2, . . . , an ∈ S2:

S2 |= ϕ(a1, . . . , an) ↔ a1 ∈ S1 ∧ . . . ∧ an ∈ S1 ∧ S1 |= ϕ(a1, . . . , an)

Note 1 The last condition can be reformulated as follows:

{−→a ∈ Sn
2 | S2 |= ϕ(−→a)} = {−→a ∈ Sn

1 | S1 |= ϕ(−→a })

This implies that if there are no predicate symbols in ϕ besides {P1, . . . , Pk}
(and equality), and the interpretations of the constants are fixed, then the val-

2 Usually it is demanded in databases to have different interpretations for different
constants. This is known as the unique name assumption. This assumption is not
important for us here.
3 This is a slight generalization of the definition in [17], which in turn is a general-
ization of the usual one ([13,18]). The latter applies only to free Herbrand structures
which are generated by adding to σ some new set of constants.

4

ues of the function F S
ϕ = λP1, . . . , Pk.{〈a1, . . . , an〉 ∈ Sn | S |= ϕ(a1, . . . , an)}

indeed do not depend on the choice of S.

Note 2 In Definition 2 we did not assume that the interpretations of the

predicates in
−→
P should be finite. This assumption is needed only when we want

to connect d.i. to the computability of the function F S
ϕ defined in the previous

Note: If L contains no function symbols, S is a structure for L−{P1, . . . , Pk},
and the interpretations of the predicate symbols of this language in S are
all decidable, then the value of F S

ϕ (P1, . . . , Pk) for finite P1, . . . , Pk can be
computed by switching to the finite substructure S ′ of S induced by the union
of the domains of P1, . . . , Pk, together with the interpretations in S of the

constants mentioned in ϕ. The
−→
P -d.i. of ϕ ensures that F S

ϕ (P1, . . . , Pk) =

F S′
ϕ (P1, . . . , Pk), and the latter is of course finite and computable.

Practical database query languages are designed so that only d.i. queries can
be formulated in them. Unfortunately, it is undecidable which formulas are d.i.
and which are not ([6]). Therefore all commercial query languages (like SQL)
allow to use as queries only formulas from some syntactically defined class
of d.i. formulas. Many explicit proposals of decidable, syntactically defined
classes of safe formulas have been made in the literature. The simplest among
them (and the closer to what has actually been implemented) is perhaps the

following class SS(
−→
P) (“syntactically safe” formulas for a database scheme

−→
P) from [18]: 4

(1) Pi(t1, . . . , tni
) ∈ SS(

−→
P) in case Pi (of arity ni) is in

−→
P (recall that each

ti is here either a variable or a constant).

(2) x = c, c = x and x 6= x are in SS(
−→
P) (where x is a variable and c is a

constant). 5

(3) ϕ ∨ ψ ∈ SS(
−→
P) if ϕ ∈ SS(

−→
P), ψ ∈ SS(

−→
P), and Fv(ϕ) = Fv(ψ) (where

Fv(ϕ) denotes the set of free variables of ϕ).

(4) ∃xϕ ∈ SS(
−→
P) if ϕ ∈ SS(

−→
P).

(5) If ϕ = ϕ1 ∧ϕ2 ∧ . . .∧ϕk, then ϕ ∈ SS(
−→
P) if the following conditions are

met:
(a) For each 1 ≤ i ≤ k, either ϕi is atomic, or ϕi is in SS(

−→
P), or ϕi is a

negation of a formula of either type.
(b) Every free variable x of ϕ is limited in ϕ. This means that there exists

1 ≤ i ≤ k such that x is free in ϕi, and either ϕi ∈ SS(
−→
P), or there

exists y which is already limited in ϕ, and ϕi ∈ {x = y, y = x}.

4 What we present below is both a generalization and a simplification of Ullman’s
original definition.
5 x 6= x was not mentioned by Ullman, but it is obviously d.i.

5

The set SS(
−→
P) does not seem to resemble much the set ∆0. Thus the latter is

closed under negation, while SS(
−→
P) is not. Nevertheless, in the next subsec-

tion a strong connection will be revealed, when we introduce in the context of
databases a common generalization of d.i. and absoluteness. It should also be

noted that there is one clause in the definition of SS(
−→
P) which is somewhat

strange and complicated: the last one, which treats conjunction. In the unified
framework described in the next subsection this problematic clause is replaced
by a simpler one (which at the same time is more general).

2.2 Partial Domain Independence and Absoluteness in Databases

To see the connection between absoluteness and d.i., we start by recalling
the most basic notion of absoluteness as given in [14] (Definition 3.1 (1)).
For simplicity, we assume from now on that σ is a first-order signature with
equality and no function symbols.

Definition 3 Let S1 ⊆σ S2. ϕ(x1, . . . , xn) is absolute for S1 and S2 if

∀a1 ∈ S1, . . . , an ∈ S1. S2 |= ϕ(a1, . . . , an) ↔ S1 |= ϕ(a1, . . . , an)

Absoluteness of formulas in the context of databases can most naturally be
defined now as follows:

Definition 4 Let σ be a signature like in Definition 2. A formula ϕ in σ is

called
−→
P −absolute if ϕ is absolute for S1 and S2 whenever S1 and S2 are

structures for σ such that S1 is a
−→
P -substructure of S2.

There is an obvious similarity between the concepts of d.i. and absoluteness as
defined above. However, the two notions are not identical. Thus, the formula
x = x is not d.i., although it is clearly absolute. In order to provide a common
generalization, the formula property of d.i. was turned in [3] into the following
relation between a formula ϕ and finite subsets of Fv(ϕ) (recall that Fv(ϕ)
denotes the set of free variables of ϕ):

Definition 5

(1) Let S1 ⊆σ S2. A formula ϕ(x1, . . . , xn, y1, . . . , ym) in σ is d.i. for S1 and
S2 with respect to {x1, . . . , xn} (notation: ϕ �S1;S2 {x1, . . . , xn}), if for
all a1, . . . , an ∈ S2 and b1 . . . , bm ∈ S1:

S2 |= ϕ(−→a ,
−→
b) ↔ a1 ∈ S1 ∧ . . . ∧ an ∈ S1 ∧ S1 |= ϕ(−→a ,

−→
b)

6

(2) Let σ be like in Definition 2. A formula ϕ(x1, . . . , xn, y1, . . . , ym) in σ is
−→
P −d.i. with respect to {x1, . . . , xn} if ϕ �S1;S2 {x1, . . . , xn} whenever S1

is a
−→
P -substructure of S2.

Note that ϕ is
−→
P −d.i. iff it is

−→
P −d.i. with respect to Fv(ϕ). On the other

hand ϕ is
−→
P −absolute iff it is

−→
P −d.i. with respect to ∅. Note also that the

formula x = y is only partially d.i.: it is d.i. with respect to {x} and with
respect to {y}, but not with respect to {x, y}.

Again the condition on ϕ in Definition 5(1) can be reformulated as follows:

∀b1 . . . , bm ∈ S1.{−→a ∈ Sn
2 | S2 |= ϕ(−→a ,

−→
b)} = {−→a ∈ Sn

1 | S1 |= ϕ(−→a ,
−→
b })

This now implies that if ϕ(x1, . . . , xn, y1, . . . , ym) is
−→
P −d.i. with respect to

{x1, . . . , xn}, all the predicate symbols in ϕ are included in
−→
P ∪ {=}, and the

interpretations of the constants are fixed, then the values of the function 6

F S
ϕ = λP1, . . . , Pk.λy1, . . . , ym ∈ S.{〈a1, . . . , an〉 ∈ Sn | S |= ϕ(a1, . . . , an,

−→y)}

do not depend on the exact choice of the structure S to which y1, . . . , ym

all belong, but only on the interpretations of {P1, . . . , Pk} in it, and on the
identity of y1, . . . , ym. Note that for given P1, . . . , Pk and S, F S

ϕ (P1, . . . , Pk) is
a function from Sm to the set of subsets of Sn. By an argument similar to that
given in Note 2, if P1, . . . , Pk are all finite then the values of this function are
finite sets, and the function itself is computable 7 . Note that in case n = 0 the
possible values of this function are {〈〉} and ∅, which again can be taken as
“true” and “false”, respectively. Hence in this particular case what we get is
a computable m-ary predicate on S. From this point of view m-ary predicates
on a set S should be viewed as a special type of functions from Sm to the set of
finite sets of S-tuples, rather than as a special type of functions from Sm to S,
with arbitrary chosen two elements from S serving as the two classical truth
values (while like in set theory, functions from Sm to S should be viewed as
a special type of (m+ 1)-ary predicates on S. Alternatively, one may identify
functions from Sm to S with functions from Sm to the set of singletons of
elements of S).

Given
−→
P , let ϕ � X abbreviate that ϕ is

−→
P −d.i. with respect to X. It is not

difficult to see (see Theorem 2 below) that � has the following properties:

6 For brevity, we use again the notation FS
ϕ , even though the function here might

depend also on the choice of of the subset {x1, . . . , xn} of Fv(ϕ), with respect to
which ϕ is

−→
P −d.i. (there may be more than one possible choice).

7 In fact, it remains computable even if there are other predicate symbols in ϕ
besides {P1, . . . , Pm}, provided that their interpretations in S are all decidable.

7

1. ϕ � X if ϕ is t1 = t2 or p(t1, . . . , tn) (where p ∈
−→
P), and X ⊆ Fv(ϕ).

2. x 6= x � {x}, t = x � {x}, and x = t � {x} if x 6∈ Fv(t).
3. ¬ϕ � ∅ if ϕ � ∅.
4. ϕ ∨ ψ � X if ϕ � X and ψ � X.
5. ϕ ∧ ψ � X ∪ Y if ϕ � X, ψ � Y , and Y ∩ Fv(ϕ) = ∅.
6. ∃yϕ � X − {y} if y ∈ X and ϕ � X.

These properties can be used to define a syntactic approximation �s−→
P

of the
−→
P -d.i. relation. It can easily be checked that the set {ϕ | ϕ �s−→

P
Fv(ϕ)} strictly

extends SS(
−→
P) (but note how the complicated last clause in the definition of

SS(
−→
P) is replaced here by a concise clause concerning conjunction!).

3 A General Framework for D. I. and Absoluteness

Although the notion of
−→
P -absoluteness is closely related to the set-theoretical

notion of absoluteness, it is not really a generalization of that notion as it is
usually used in set theory. In addition to =, the language of set theory has only
one binary predicate symbol: ∈. Now the notion of {∈}-absoluteness is useless,
since if S2 is a model of ∀x∃y.x ∈ y then S1 can be an {∈}-substructure of S2 iff
S1 is identical with S2. The notion of ∅-absoluteness, in contrast, is identical to
the most general notion of absoluteness as defined e.g. in [14], but that notion
is of little use in set theory. Thus ∆0-formulas are not ∅-absolute. Indeed, in
order for ∆0-formulas to be absolute for structures S1 and S2 (where S1 is a
substructure of S2), we should assume that S1 is a transitive substructure of
S2. This means that if b is an element of S1, and S2 |= a ∈ b, then a belongs to
S1, and S1 |= a ∈ b. In other words: the formula x ∈ y should be d.i. for S1 and
S2 with respect to {x} (but not with respect to {y}). This observation leads
to the following general framework for domain independence and absoluteness
(originally introduced in [3]):

Definition 6 A d.i.-signature is a pair (σ, F), where σ is an ordinary first-
order signature with equality and no function symbols, and F is a function
which assigns to every n-ary predicate symbol from σ (other than equality) a
subset of P({1, . . . , n}). 8

Definition 7 Let (σ, F) be a d.i.-signature, and let S1 ⊆σ S2. S2 is called
a (σ, F)−extension of S1 (and S1 is called a (σ, F)−substructure of S2) if
p(x1, . . . , xn) �S1;S2 {xi1 , . . . , xik} whenever p is an n-ary predicate of σ,
x1, . . . , xn are n distinct variables, and {i1, . . . , ik} ∈ F (p).

8 In [3] a more general notion of a d.i.-signature was introduced, in which function
symbols are allowed, and a corresponding condition for them is given.

8

Definition 8 Let (σ, F) be a d.i.-signature.

(1) A formula ϕ of σ is called (σ, F)−d.i. w.r.t. X (notation: ϕ �(σ,F) X) if
ϕ �S1;S2 X whenever S2 is a (σ, F)−extension of S1.

(2) A formula ϕ of σ is called (σ, F)−d.i. if ϕ �(σ,F) Fv(ϕ).
(3) A formula ϕ of σ is called (σ, F)−absolute if ϕ �(σ,F) ∅.

Note 3 We assume that we are talking only about first-order languages with
equality, and so we do not include the equality symbol in our first-order sig-
natures. Had it been included then we would have demanded F (=) to be
{{1}, {2}} (or {{1}, {2}, ∅}, which is equivalent). The reason is that x1 = x2

is always d.i. w.r.t. both {x1} and {x2}, but usually not w.r.t. {x1, x2}.

Note 4 It is easy to see that if ϕ �(σ,F) X and Z ⊆ X, then ϕ �(σ,F) Z. In
particular: if ϕ �(σ,F) X for some X then ϕ is (σ, F)-absolute. 9

Examples.

• Let σ include
−→
P = {P1, . . . , Pk}. Assume that the arity of Pi is ni, and

define F (Pi) = {{1, . . . , ni}}, and F (Q) = ∅ in case Q 6∈
−→
P . Then ϕ is

(σ, F)−d.i. w.r.t. X iff it is
−→
P −d.i. w.r.t. X in the sense of Definition 5.

• Let σZF = {∈} and let FZF (∈) = {{1}}. Then S2 is a (σZF , FZF)−extension
of S1 iff S1 ⊆σZF

S2, and x1 ∈ x2 �S1;S2 {x1}. The latter condition means
that S1 is a transitive substructure of S2 (In particular, the universe V
is a (σZF , FZF)−extension of the transitive sets and classes). Therefore
ϕ(x1, . . . , xn, y1, . . . , yk) �(σZF ,FZF) {x1, . . . , xn} iff the following holds when-
ever S1 is a transitive substructure of S2, and y1, . . . , yk ∈ S1:

{〈x1, . . . , xn〉 | S1 |= ϕ} = {〈x1, . . . , xn〉 | S2 |= ϕ}

In particular, a formula is (σZF , FZF)-absolute iff it is absolute in the usual
sense this notion is used in set theory.

• Assume that F (p) is nonempty for every p in σ. Then (see Note 4) S1 is
a substructure of S2 (in the usual sense of model theory) whenever S2 is a
(σ, F)-extension of S1.

Theorem 1 The property of (σ, F)-absoluteness is in general undecidable 10 .

Proof: We show it in the case where σ has no constants, and F (p) = {∅}
for all p. Let ϕ be any sentence. We prove that the formula x = x∧ϕ is (σ, F)-

9 In [3] the values of the function F were demanded to be closed under subsets. By
the present note, this condition is not really necessary.
10 A similar result was proved in [6] for d.i. in databases. However, this was done
under the assumption that the interpretations of all the predicate symbols are finite.
Here we do not assume this.

9

absolute iff ϕ is either logically valid or a logical contradiction. Assume that
it is neither. Then there are structure St and Sf for σ such that ϕ is true in St

and false in Sf . Without loss in generality, we may assume that St and Sf are
disjoint. Let S be the structure for σ whose domain is the union of the domains
of St and Sf , and the interpretation of any predicate p in it is the union of the
interpretations of p in St and Sf . It is easy to see that S is a (σ, F)-extension
of both St and Sf . Obviously, it is impossible that both x = x∧ϕ �St;S ∅ and
x = x∧ϕ �Sf ;S ∅. Hence x = x∧ϕ is not (σ, F)-absolute in this case. On the
other hand it is easy to see that it is (σ, F)-absolute if ϕ is logically valid or a
logical contradiction. It follows that had (σ, F)-absoluteness been decidable,
logical validity of formulas in σ would have been decidable. This is not always
the case, of course. 2

It follows from Theorem 1 that the semantic relation of (σ, F)−d.i. is unde-
cidable. Hence again it should be replaced in practice by a useful syntactic
approximation. Now the most natural way to define a syntactic approximation
of a semantic logical relation concerning formulas is by a structural induction.
Such an inductive definition should be based on the behavior of the atomic
formulas and of the logical connectives and quantifiers with respect to the
original semantic relation. The next theorem lists the most obvious and useful
relevant properties of �(σ,F):

Theorem 2 �(σ,F) has the following properties:

(1) p(t1, . . . , tn) �(σ,F) X in case p is an n-ary predicate symbol of σ, and
there is I ∈ F (p) such that:
(a) For every x ∈ X there is i ∈ I such that x = ti.
(b) X ∩ Fv(tj) = ∅ for every j ∈ {1, . . . , n} − I.

(2) (a) ϕ �(σ,F) {x} if ϕ ∈ {x 6= x, x = t, t = x}, and x 6∈ Fv(t).
(b) t = s �(σ,F) ∅.

(3) ¬ϕ �(σ,F) ∅ if ϕ �(σ,F) ∅.
(4) ϕ ∨ ψ �(σ,F) X if ϕ �(σ,F) X and ψ �(σ,F) X.
(5) ϕ ∧ ψ �(σ,F) X ∪ Y if ϕ �(σ,F) X, ψ �(σ,F) Y , and Y ∩ Fv(ϕ) = ∅.
(6) ∃yϕ �(σ,F) X − {y} if y ∈ X and ϕ �(σ,F) X.
(7) If ϕ �(σ,F) {x1, . . . , xn}, and ψ �(σ,F) ∅, then ∀x1 . . . xn(ϕ→ ψ) �(σ,F) ∅.

Proof: Most of the proofs of the various properties are straightforward. We
do (5),(6), and (7) as examples. In the following, we assume that S2 is a
(σ, F)-extension of S1.

For property 5, assume that θ = ϕ ∧ ψ, where ϕ �(σ,F) X, ψ �(σ,F) Y , and
Y ∩ Fv(ϕ) = ∅. To simplify notation, assume that Fv(ϕ) = {x, z}, Fv(ψ) =
Fv(θ) = {x, y, z}, X = {x}, Y = {y}. Let Z(c) = {x ∈ S2 | S2 |= ϕ(x, c)}
for c ∈ S1. Since ϕ �(σ,F) X, Z(c) = {x ∈ S1 | S1 |= ϕ(x, c)} as well.
Hence Z(c) ⊆ S1. This and the fact that ψ �(σ,F) Y imply that if d ∈ Z(c)

10

then {y ∈ S2 | S2 |= ψ(d, y, c)} = {y ∈ S1 | S1 |= ψ(d, y, c)}. Denote this
set by W (c, d). Now both of the sets {〈x, y〉 ∈ S2

2 | S2 |= θ(x, y, c)} and
{〈x, y〉 ∈ S2

1 | S1 |= θ(x, y, c)} equal the union of the sets {d} ×W (c, d) for
d ∈ Z(c). Hence these two sets are the same, and so θ �(σ,F) {x, y}, which is
what we need to prove.

For property 6, assume that ψ = ∃yϕ, where ϕ �(σ,F) X, and y ∈ X. To
simplify notation, assume that Fv(ϕ) = {x, y, z}, and X = {x, y}. Now for
c ∈ S1, {〈x, y〉 ∈ S2

2 | S2 |= ϕ(x, y, c)}= {〈x, y〉 ∈ S2
1 | S1 |= ϕ(x, y, c)}, since

ϕ �(σ,F) X. This immediately implies that also {x ∈ S2 | S2 |= ψ(x, c)} =
{x ∈ S1 | S1 |= ψ(x, c)}, since these two sets are just the projections on the
second component of the above equal sets. Hence ψ �(σ,F) {x}, which is what
we need to prove.

Finally, property 7 follows from properties 3, 5, and 6, since ∀x1 . . . xn(ϕ→ ψ)
is equivalent to ¬∃x1 . . . xn(ϕ ∧ ¬ψ). 2

Note 5 Using exactly the same argument, we can actually prove a stronger
result: For every S1 and S2 such that S1 is a (σ, F)-substructure of S2, the
relation �S1;S2 has the properties 1–7 from Theorem 2.

Note 6 Theorem 2 remains true for languages which include more complex
terms (not just variables and constants), provided that x = t �(σ,F) {x}
whenever x 6∈ Fv(t).

Now Theorem 2 naturally leads to the following syntactic relation:

Definition 9 �s
(σ,F) is the least relation which has the properties of �(σ,F)

listed in Theorem 2 11 .

Corollary 1 If ϕ �s
(σ,F) X then ϕ �(σ,F) X. The converse might fail.

Proof: Immediate from Theorems 2 and 1. 2

Note that �s
(σ,F) is a direct generalization of �s−→

P
. On the other hand, the set

of ∆0-formulas of σZF is obviously a subset of {ϕ | ϕ �s
(σZF ,FZF) ∅}.

11 Property 7 is easily derivable from the others. Hence if ∀ and → are taken as
defined in terms of the other logical constants, then the same relation is obtained
if we omit property 7 from the list in Theorem 2.

11

4 The Role of Absoluteness in Effective Structures

We turn in this section to explore the relations between d.i. and absoluteness
on one hand, computability and decidability on the other. For this we assume
in most of the theorems and proofs an intuitive understanding of the notions
of “effectivity”, “computability”, and “decidability” (of the type assumed in
textbooks when proving that all recursive functions are “computable”). By
Church thesis, valid exact mathematical theorems are obtained from our re-
sults whenever these notions are translated (perhaps via some “effective” cod-
ing) into an appropriate, precisely defined, notion of recursiveness (and our
proofs can then easily, though tediously, be converted into full proofs of these
theorems). However, our results remain true for stronger (or even weaker) no-
tions of “effectiveness” (e.g. relative ones) which satisfy certain simple closure
conditions (which are implicit in our proofs).

4.1 Absoluteness and Decidability

Definition 10 Let (σ, F) be a d.i.-signature, and let S be a structure for σ.
A formula ϕ is called (S, F)−d.i. w.r.t. X (ϕ �(S,F) X) if ϕ �S′;S X whenever
S ′ is a (σ, F)−substructure of S. ϕ is (S, F)−absolute if ϕ �(S,F) ∅.

Obviously, if S is a structure for σ, then �s
(σ,F)⊆�(σ,F)⊆�(S,F). In particular: if

ϕ �s
(σ,F) ∅ then ϕ is (S, F)−absolute. The converses are not true (by Theorem

1 and the example concerning N which is given below). It is also easy to show
that �(S,F) has the properties 1–7 from Theorem 2 (using the same arguments
as in the proof of that theorem).

Definition 11 Let (σ, F) be a d.i.-signature, and let S be a structure for σ.

(1) S is effectively (σ, F)−locally finite if for every finite subset A of S one
can effectively find a finite (σ, F)−substructure S ′ of S s. t. A ⊆ S ′.

(2) S is (σ, F)−effective if S is effectively (σ, F)−locally finite, and all the
interpretations in S of the predicates of σ are decidable.

(3) S is strongly (σ, F)−effective if it is (σ, F)−effective, and the elements of
S can effectively be enumerated.

Examples.

Databases Assume that σ is finite. Then every structure S for σ, in which
the interpretations of all the predicate symbols (except equality) are finite,
is (σ, F)−effective: Given A, let S ′ be the substructure of S whose domain

12

is the union of A, the set of the interpretations in S of the constants of σ,
and all the domains of the interpretations in S of the predicates of σ.

The Natural Numbers Define the d.i. signature (σN , FN) as follows:
• σN is the first-order signature which includes the constant 0, the binary

predicate <, and the ternary relations P+ and P×.
• FN (<) = {{1}}, FN (P+) = FN (P×) = {∅}.
The standard structure N for σN has the set N of natural numbers as
its domain, with the usual interpretations of 0 and <, and the (graphs of
the) operations + and × on N (viewed as ternary relations on N) as the
interpretations of P+ and P×, respectively. It is easy to see that N is a
(σN , FN)-extension of a structure S for σN iff the domain of S is an initial
segment of N (where the interpretations of the relation symbols are the
corresponding reductions of the interpretations of those symbols in N).
The same will be true if we replace < by the binary predicate Succ (with “y
is the successor of x” as the intended interpretation of Succ(x, y)), and let
FN (Succ) = {{1}}, or if we delete < altogether, and let FN (P+) = {{1, 2}}.
It follows thatN and its variants are strongly (σN , FN)−effective. Note that
ϕ is (N , FN)-absolute if for any assignment v in N , ϕ gets the same truth
value in all initial segments of N (including N itself) which contain the
values assigned by v to its free variables. Thus ∀y(y = 0 ∨ ∃zSucc(z, y)) is
(N , FN)-absolute, even though it is clearly not (σN , FN)-absolute.

S-expressions Following [8], let V0 be the set of Lisp’s S-expressions, i.e.:
all the expressions generated from 0 (or nil) using the pairing operation. 12

Construct a corresponding d.i. signature (σV , FV) by letting σV have a con-
stant 0 and a ternary relation pair (where pair(x, y, z) is interpreted in V0 as
“z = 〈x, y〉”), with FV (pair) = {{1, 2}}. It is easy to see that V0 is strongly
(σV , FV)-effective (Similar treatments can be given to other data structures
used for computations, like strings of Symbols from some finite alphabet).

Hereditarily finite sets Obviously, the structure HF of hereditarily finite
sets is strongly (σZF , FZF)−effective. This example is particularly interest-
ing, because of Corollary 3 below.

Next we present some results which connect d.i. to computability, and abso-
luteness with decidability.

Theorem 3 If S is (σ, F)−effective, and

ϕ(x1, . . . , xn, y1, . . . , yk) �(S,F) {x1, . . . , xn}

then Gϕ = λy1, . . . , yk.{〈x1, . . . , xn〉 ∈ Sn | S |= ϕ(x1, . . . , xn, y1, . . . , yk)} is a
computable function from Sk to the set of finite subsets of Sn.

12 V0 was suggested in [8] as a framework for computability theory and metamath-
ematics which is superior to N .

13

Proof: Let b1, . . . , bk be elements of S. To compute Gϕ(b1, . . . , bk), find a
finite (σ, F)−substructure S1 of S whose domain S1 include b1, . . . , bk, and
compute {〈x1, . . . , xn〉 ∈ Sn

1 | S1 |= ϕ(x1, . . . , xn, b1, . . . , bk)}. This is possible,
and the result is finite, because S1 is finite, and the interpretations of the
predicates of σ in S are decidable. Now the result is Gϕ(b1, . . . , bk), because
ϕ(x1, . . . , xn, y1, . . . , yk) �(S,F) {x1, . . . , xn}, and b1, . . . , bk ∈ S1. 2

Corollary 2 Let S be like in Theorem 3, and let ϕ be (S, F)−absolute, with
Fv(ϕ) = {x1, . . . , xn}. Then {〈a1, . . . , an〉 ∈ Sn | S |= ϕ(a1, . . . , an)} is a
decidable n-ary relation on S. In particular, this is true for ϕ if ϕ �s

(σ,F) ∅.

One application of theorem 3 is the well-known fact (see Note 2) that given

a database DB with scheme
−→
P , the answer to any

−→
P -d.i. query is finite and

can effectively be computed in any structure for DB.

Other important applications are for the structures N , V0, and HF . Thus it
follows from Corollary 2 that every formula ϕ such that ϕ �s

(σV ,FV) ∅ defines a
decidable relation on V0. Similar results obtain of course for N and HF . For
the latter we have also:

Corollary 3 If ϕ(x1, . . . , xn, y1, . . . , yk) �s
(σZF ,FZF) {x1, . . . , xn} then Gϕ =

λy1, . . . , yk.{〈x1, . . . , xn〉 ∈ HF n | HF |= ϕ(x1, . . . , xn, y1, . . . , yk)} is a com-
putable function from HF k to HF .

The relations �s
(σN ,FN) and �s

(σZF ,FZF) are quite interesting. For convenience,
denote them by �s

N and �s
HF , respectively. It can easily be seen that �s

N is
the minimal relation which satisfies the following conditions:

(1) ϕ �s
N ∅ if ϕ is atomic.

(2) ϕ �s
N {x} if ϕ ∈ {x 6= x, x = t, t = x, x < t}, and x 6∈ Fv(t).

(3) ¬ϕ �s
N ∅ if ϕ �s

N ∅.
(4) ϕ ∨ ψ �s

N X if ϕ �s
N X and ψ �s

N X.
(5) ϕ ∧ ψ �s

N X ∪ Y if ϕ �s
N X, ψ �s

N Y , and Y ∩ Fv(ϕ) = ∅.
(6) ∃yϕ �s

N X − {y} if y ∈ X and ϕ �s
N X.

(7) ∀y1, . . . , yn(ϕ→ ψ) �s
N ∅ if ϕ �s

N {y1, . . . , yn} and ψ �s
N ∅.

�s
HF has an almost identical characterization. The only difference is that in

the second clause < should be replaced by ∈. 13

It follows from the above characterization of �s
N that the set of formulas ϕ

such that ϕ �s
N ∅ is a straightforward extension of Smullyan’s set of bounded

formulas ([16]).

13 Note again that in both cases condition (7) is superfluous if we take ∀ and → as
defined in terms of the other connectives and ∃.

14

Problem For a set of formulas A, let R(A) denote the set of relations on N
which are defined by some formula in A. From our results it follows that

R({ϕ | ϕ �s
N ∅}) ⊆ R({ϕ | ϕ �(σN ,FN) ∅}) ⊆ R({ϕ | ϕ �(N ,FN) ∅}) ⊆ DEC

where DEC is the set of decidable relations on N . Now the problem is: which
of these three inclusions is actually an equality, and which of them is proper?
(since it is easy to show that the first set in this chain is a proper subset of the
last, at least one of the three inclusions is proper). A similar problem exists
concerning HF and (σZF , FZF).

With the aid of Church Thesis, things become much clearer when we consider
semi-decidability rather than decidability. According to the thesis, the semi-
decidable relations on N (or HF) are precisely the recursively enumerable
(r.e.) ones, and for the latter we have the following theorem (which provides
another crucial connection between absoluteness and decidability):

Theorem 4 The following conditions are equivalent for a relation R on N :

(1) R is r.e.
(2) R is definable by a formula of the form ∃y1, . . . , ynψ, where ψ �s

N ∅.
(3) R is definable by a formula of the form ∃y1, . . . , ynψ, where the formula

ψ is (σN , FN)-absolute.
(4) R is definable by a formula of the form ∃y1, . . . , ynψ, where the formula

ψ is �(N ,FN)-absolute.

A similar result obtains if instead of N , σN , and FN we consider HF , σZF ,
and FZF , respectively,

Proof: We do the proof in the case of N . In this case (2) follows from (1)
by Smullyan’s characterization in [16] of the r.e. subsets of N using his set
of bounded formulas (recall that if ψ is bounded, then ψ �s

N ∅). Obviously,
(3) follows from (2), and (4) follows from (3). To show that (4) entails (1),
assume that R is definable by a formula of the form ∃y1, . . . , ynψ, where the for-
mula ψ(x1, . . . , xk, y1, . . . , yn) is (N , FN)-absolute. Given numbers n1, . . . , nk

we search whether R(n1, . . . , nk) by examining all the finite initial segments
of N that contain n1, . . . , nk, and return “true” if we find in one of them
numbers m1, . . . ,mn such that ψ(n1, . . . , nk,m1, . . . ,mn) is true in it. From
the fact that ψ is (N , FN)-absolute, it easily follows that this procedure halts
with the correct answer in case R(n1, . . . , nk), and never halt otherwise. It
follows that R is semi-decidable, and so it is r.e. (by Church Thesis or by a
direct translation of this argument to a precise proof). 2

It follows from the last theorem that according to Church Thesis, the semi-
decidable relations on N are precisely the projections of the absolute relations

15

on N (where a relation on N is absolute iff it is definable by a (σN , FN)-
absolute formula). A similar result (which uses a more natural language) ob-
tains for HF . These are purely model-theoretic consequences of the Thesis.

4.2 Upward Absoluteness and Semi-decidability

Theorem 4 suggests that formulas of the form ∃y1, . . . , ynψ, where ψ is (σ, F)-
absolute, may have a special interest in general. Next we turn our attention
to an obvious property that these formulas have, and which might be crucial
for their connection with semi-decidability.

Definition 12 Let (σ, F) be a d.i.-signature, and let S ′ and S be structures
for σ such that S ′ is a (σ, F)-substructure of S. A formula ϕ(x1, . . . , xn) in σ
is upward (σ, F)-absolute (notation: (σ, F)− ↑) with respect to S ′ and S if for
all a1, . . . , an ∈ S ′, if S ′ |= ϕ(a1, . . . , an) then S |= ϕ(a1, . . . , an). ϕ is upward
(S, F)-absolute (notation: (S, F)− ↑) if it is (σ, F)− ↑ with respect to S ′ and
S for every S ′ which is a (σ, F)-substructure of S. ϕ is (σ, F)− ↑ (upward
(σ, F)-absolute) if it is (S, F)− ↑ for every structure S for σ.

Theorem 5 Upward (σ, F)-absoluteness has the following properties:

(1) If ϕ is (σ, F)-absolute then ϕ is (σ, F)− ↑.
(2) If ϕ and ψ are (σ, F)− ↑ then so are ϕ ∨ ψ and ϕ ∧ ψ.
(3) If ϕ is (σ, F)− ↑ then so is ∃xϕ.
(4) If ϕ(x1, . . . , xn, y1, . . . , yk) �(S,F) {y1, . . . , yk}, and ψ(−→x ,−→y) is (σ, F)− ↑,

then ∀y1, . . . , yk(ϕ→ ψ) is (σ, F)− ↑.

The same is true for upward (S, F)-absoluteness.

Proof: We prove the last property as an example (the rest are straightfor-
ward). So assume that ϕ and ψ have the relevant properties, S ′ is a (σ, F)-
substructure of S, and a1, . . . , an are elements of S ′ such that

(∗) S ′ |= ∀y1, . . . , yk(ϕ(a1, . . . , an, y1, . . . , yk) → ψ(a1, . . . , an, y1, . . . , yk))

We show that also

S |= ∀y1, . . . , yk(ϕ(a1, . . . , an, y1, . . . , yk) → ψ(a1, . . . , an, y1, . . . , yk))

Let b1, . . . , bk be arbitrary elements of S. We should show that

(@) S |= ϕ(a1, . . . , an, b1, . . . , bk) → ψ(a1, . . . , an, b1, . . . , bk)

This is obvious if S 6|= ϕ(a1, . . . , an, b1, . . . , bk). So assume the opposite. Since
ϕ(x1, . . . , xn, y1, . . . , yk) �(S,F) {y1, . . . , yk}, and a1, . . . , an are elements of S ′,

16

this assumption implies that b1, . . . , bk are all elements of S ′ too, and that
S ′ |= ϕ(a1, . . . , an, b1, . . . , bk). From this and (∗) it follows that S ′ is a model
of ψ(a1, . . . , an, b1, . . . , bk). Hence S |= ψ(a1, . . . , an, b1, . . . , bk) as well (because
ψ is (σ, F)− ↑), and so (@) is true. 2

Theorem 5 naturally leads to the following Definition and Corollary:

Definition 13 Let (σ, F) be a d.i.-signature. Σ(σ, F) is the least set of for-
mulas which has the properties of (σ, F)− ↑ listed in Theorem 5.

Corollary 4 Every formula in Σ(σ, F) is upward (σ, F)-absolute.

Problems: Is every formula which is upward (σ, F)-absolute logically equiva-
lent to some formula in Σ(σ, F)? Or even to a formula of the form ∃y1, . . . , ynψ,
where ψ is (σ, F)-absolute? And given a structure S for σ, is every formula
which is upward (S, F)-absolute equivalent in S to some formula in Σ(σ, F)?
Or to a formula of the form ∃y1, . . . , ynψ, where ψ is (σ, F)-absolute? Or to a
formula of the form ∃y1, . . . , ynψ, where ψ is (S, F)-absolute?

It is very easy to see that the set Σ(σN , FN) is a superset of the set Σ of
formulas in the language σN (as defined e.g. in [16]). The latter is used in
[16] to characterize (using Church Thesis) the semi-decidable subsets of N .
The next theorem suggests a general strong analogy between semi-decidable
formulas and upward absolute formulas (Again we assume in its proof only an
intuitive understanding of “semi-decidable”: ϕ(x1, . . . , xn) is semi-decidable
in a structure S if there exists an effective procedure, that given a tuple
〈a1, . . . , an〉 ∈ Sn halts iff that tuple satisfies ϕ in S).

Theorem 6 If S is strongly (σ, F)−effective then the set of formulas which
are semi-decidable in S (i.e. define semi-decidable relations on S) has all the
properties of (σ, F)− ↑ listed in Theorem 5.

Proof: That if ϕ is (S, F)-absolute then ϕ defines a semi-decidable relation
on S immediately follows from Corollary 2.

Assume that ϕ and ψ are both semi-decidable in S. Given a tuple −→a , to decide
whether −→a satisfies ϕ ∧ ψ, check first whether it satisfies ϕ. If it does, check
whether it satisfies ψ. To decide whether −→a satisfies ϕ ∨ ψ, check in parallel
(or by a fair interleaving) whether it satisfies ϕ, and whether it satisfies ψ.
Halt when one of them succeeds.

Assume that ϕ(−→x , y) is semi-decidable in S. To decide whether −→a satisfies
∃yϕ, check (by a fair interleaving) for every b ∈ S whether 〈a1, . . . , an, b〉 sat-
isfies ϕ (this is possible by the strong effectivity of S). Halt once one succeeds.

17

Finally, assume that ϕ(x1, . . . , xn, y1, . . . , yk) �(S,F) {y1, . . . , yk}, and that
ψ(x1, . . . , xn, y1, . . . , yk) is semi-decidable in S. To decide whether −→a satis-

fies ∀y1, . . . , yk(ϕ→ ψ), find first all the tuples in {
−→
b ∈ Sk | S |= ϕ(−→a ,

−→
b)}.

By Theorem 3 this set is finite and computable. Now check in parallel (or by

a fair interleaving) for each
−→
b in this set whether S |= ψ(−→a ,

−→
b)}. 2

Corollary 5 If S is strongly (σ, F)−effective then every formula in Σ(σ, F)
is semi-decidable in S.

Corollary 6 A relation on N is semi-decidable iff it is definable by some
formula in Σ(σN , FN).

Proof: This is immediate from the previous Corollary and Theorem 4. 2

Problems: It follows from Corollaries 4 and 6 that every semi-decidable
relation on N is definable by an upward (σN , FN)-absolute formula. It is
not clear whether the converse is also true. It is also not known whether
semi-decidability implies upward (σ, F)-absoluteness in every strongly (σ, F)-
effective structure.

Despite the intimate relationship that the results of this section suggest, fur-
ther research is needed in order to understand the full connection between
upward absoluteness and semi-decidability. Following the basic idea of [2], it
seems to us very likely that in order to provide a satisfactory answer (and
develop an appropriate general theory), one should go beyond first-order lan-
guages by introducing into the language an operation TC for the transitive
closure of (definable) predicates. We leave that for future investigations.

5 Domain Independence and Predicativity

To complete the picture, we return in this section to the area in which the
notion of absoluteness has first been introduced: set theory. We do it briefly,
leaving most details and discussions (and all proofs) to a future paper.

In Section 3 we have noted that the notion of (σZF , FZF)-absoluteness is iden-
tical to Gödel’s original notion of absoluteness, and that {ϕ | ϕ �s

HF ∅} is a
natural extension of the set of ∆0-formulas in the language of σZF . However,
in order to fully exploit the power of the idea of partial d.i. in the framework
of set theory, we need to use a language which is stronger (and more natural)
than the official language of ZF . The main feature of the stronger language
is that it employs a rich class of set terms of the form {x | ϕ}. Of course,
not every formula ϕ can be used in such a term. The basic idea is to allow
only formulas which are d.i. with respect to {x}. Intuitively, in such a case the

18

term {x | ϕ} denotes a set with an absolute identity. This set is “effectively”
constructed from the (values of the) parameters of ϕ and the sets referred to
in ϕ (this is made precise in Theorem 8 below). Since d.i. is a semantic notion,
we use instead a formal approximation �RST . �RST is basically the natural
extension of �s

HF to our reacher language. However, the definition of that very
language depends in turn on that of �RST . Accordingly, the sets of terms and
formulas of our language, and the relation �RST , are defined together by a
simultaneous induction:

Definition 14 The language LRST is defined as follows:

Terms:
(1) Every variable is a term.
(2) If x is a variable, and ϕ is a formula such that ϕ �RST {x}, then {x | ϕ}

is a term (and Fv({x | ϕ}) = Fv(ϕ)− {x}).
Formulas:

(1) If t and s are terms than t = s and t ∈ s are atomic formulas.
(2) If ϕ and ψ are formulas, and x is a variables, then ¬ϕ, (ϕ∧ψ), (ϕ∨ψ)

(ϕ→ ψ), ∀xϕ, and ∃xϕ are formulas.
The d.i. relation �RST :

(1) ϕ �RST ∅ if ϕ is atomic.
(2) ϕ �RST {x} if ϕ ∈ {x 6= x, x = t, t = x, x ∈ t}, and x 6∈ Fv(t).
(3) ¬ϕ �RST ∅ if ϕ �RST ∅.
(4) ϕ ∨ ψ �RST X if ϕ �RST X and ψ �RST X.
(5) ϕ ∧ ψ �RST X ∪ Y if ϕ �RST X, ψ �RST Y , and Y ∩ Fv(ϕ) = ∅.
(6) ∃yϕ �RST X − {y} if y ∈ X and ϕ �RST X.
(7) ∀y1, . . . , yn(ϕ→ ψ) �RST ∅ if ϕ �RST {y1, . . . , yn} and ψ �RST ∅.

Note 7 �RST is a syntactic approximation of an intuitive set-theoretical rela-
tion of “universe-independence” (see part (2) of Theorem 8 below). Note that
it is defined using exactly the same clauses used to characterize �s

HF in Sec-
tion 4 (after Corollary 3). However, in the case of �RST the first two clauses
refer to richer classes of terms and atomic formulas than they do in the case
of �s

HF .

Here are some examples of valid terms of LRST :

• ∅ =Df {x | x 6= x}
• {t1, . . . , tn} =Df {x | x = t1 ∨ . . . ∨ x = tn} (where x is new).
• 〈t, s〉 =Df {{t}, {t, s}}.
• {x ∈ t | ϕ} =Df {x | x ∈ t ∧ ϕ}, provided ϕ �RST ∅. (where x 6∈ Fv(t)).
• {t | x ∈ s} =Df {y | ∃x.x ∈ s ∧ y = t} (where y is new, and x 6∈ Fv(s)).
• s× t =Df {x | ∃a∃b.a ∈ s ∧ b ∈ t ∧ x = 〈a, b〉} (where x, a and b are new).
• ⋃

t =Df {x | ∃y.y ∈ t ∧ x ∈ y}

19

The following theorem and its two corollaries determine the expressive power
of LRST , and connect it (and �RST) with the class of rudimentary set functions
— a refined version of Gödel basic set functions which was independently
introduced by Gandy in [10] and by Jensen in [12] (See also [5]). For simplicity
of presentation, we assume in them the platonic universe V of ZF (that a
language even stronger than LRST has a semantics in V was proved in [4]).

Theorem 7

(1) If F is an n-ary rudimentary function, then there exists a formula ϕ with
the following properties:
(a) Fv(ϕ) = {y, x1, . . . , xn}
(b) ϕ �RST {y}
(c) F (x1, . . . , xn) = {y | ϕ}.

(2) If ϕ is a formula such that:
(a) Fv(ϕ) = {y1, . . . , yk, x1, . . . , xn}
(b) ϕ �RST {y1, . . . , yk}
then there exists a rudimentary function F such that:

F (x1, . . . , xn) = {〈y1, . . . , yk〉 | ϕ}

Corollary 7 Every term of LRST with n free variables explicitly defines an n-
ary rudimentary function. Conversely, every rudimentary function is defined
by some term of LRST .

Corollary 8 If Fv(ϕ) = {x1, . . . , xn}, and ϕ �RST ∅, then ϕ defines a rudi-
mentary predicate P . Conversely, if P is a rudimentary predicate, then there
is a formula ϕ such that ϕ �RST ∅, and ϕ defines P .

Next we introduce the most basic formal set theory in the language LRST :

Definition 15 RST is the first-order theory with equality in the language
LRST

14 which has the following axioms:

• Extensionality: ∀z(z ∈ x↔ z ∈ y) → x = y
• Comprehension: ∀x(x ∈ {x | ϕ} ↔ ϕ) (where ϕ �RST {x}).

Our final theorem uses RST to clarify the connection between �RST and d.i.
(and absoluteness) in the context of set theory. Again for simplicity we assume
in it the universe V of ZF .

14 LRST has richer classes of terms than those allowed in orthodox first-order sys-
tems. In particular: a variable can be bound in them within a term. The notion of
a term being free for substitution should be extended accordingly. Otherwise the
rules/axioms concerning the quantifiers, terms, and equality remain unchanged.

20

Theorem 8 Let M be a transitive (in V) model of RST .

(1) If t is a term of LRST with Fv(t) = {x1, . . . , xn}, then

V |= ∀x1 . . . ∀xn.x1 ∈M∧ . . . ∧ xn ∈M→ tM = t

(2) Let ϕ be a formula of LRST such that Fv(ϕ) = {y1, . . . , yk, x1, . . . , xn},
and ϕ �RST {y1, . . . , yk}. Then for every a1, . . . , an ∈ M, the class
{〈y1, . . . , yk〉 | ϕ(y1, . . . , yk, a1, . . . , an)} is a set, and it equals the class
{〈y1, . . . , yk〉 ∈ Mk | M |= ϕ(y1, . . . , yk, a1, . . . , an)}

Note 8 RST can be shown to be equivalent to Gandy’s basic set theory ([10])
and to the system called BST0 in [15]. It is a very weak subsystem of ZF .
Even for getting from it the system obtained from ZF by deleting the axioms
of infinity and foundations, one should considerably strengthen the relation
�RST (but then the resulting relation does not reflect d.i. anymore, and the
terms do not always have absolute meaning). See [4] for further details.

On Predicative Set Theory. In his writings Gödel expressed the view that
his hierarchy of constructible sets codified the predicatively acceptable means
of set construction, and that the only impredicative aspect of the constructible
universe L is its being based on the full class On of ordinals. This seems to us
to be only partially true. We think that indeed the predicatively acceptable in-
stances of the comprehension schema are those which determine the collections
they define in an absolute way, independent of the extension of the “surround-
ing universe”. Therefore a formula ψ is predicative (with respect to x) if the
collection {x | ψ(x, y1, . . . , yn)} is completely and uniquely determined by the
identity of the parameters y1, . . . , yn, and the identity of other objects referred
to (e.g. using constants) in ψ (all of which should be well-determined before).
In other words: ψ is predicative (with respect to x) iff it is d.i. (with respect
to x). It follows that all the operations used by Gödel are indeed predicatively
acceptable, and even capture what is intuitively predicatively acceptable in
the language of RST . However, we believe that one should go beyond first-
order languages in order to capture at least the most obvious means of set
construction which are predicatively acceptable. In [2] we suggest that an ad-
equate language for this might again be obtained by adding to the language of
RST an operation TC for transitive closure of binary predicates. 15 The idea
is to replace �RST by a relation �PZF , which like �RST is a syntactic approxi-
mation of an intuitive set-theoretical relation of “universe-independence”, but
this time only with respect to “universes” which contains the set ω of natural

15 [15] makes some related steps. Thus it considers languages with an operation for
forming the transitive closure of a given set or a given relation (when the latter is a
set of pairs), or a language in which a predicate symbol ∈∗, denoting the transitive
closure of the special predicate ∈, is added as an extra symbol to the language.
However, none of these extensions forces one to go beyond HF .

21

numbers (i.e. finite ordinals). �PZF is defined like �RST , but with the follow-
ing extra clause: (TCx,yϕ)(x, y) �PZF X if ϕ �PZF X, and {x, y} ∩ X 6= ∅.
Thus the set ω of the finite ordinals is definable in this extended language by
the term {y | ∃x.x = ∅ ∧ (TCx,yy = {z | z = x ∨ z ∈ x})(x, y)}.

6 Some Related Work

There were of course plenty of works in the past on generalizing computabil-
ity theory to more general types of structures. To the best of my knowledge,
none of them has concentrated on domain independence as the fundamental
notion. However, absoluteness does play an important role in the generaliza-
tion of computability theory to arbitrary admissible structures. Other points
of similarity between works in this area (see e.g. [7]) and the present one is
the unification they both suggest between classical computability theory and
constructibility in set theory, and the emphasis of both on relations (rather
than functions) and on their formal definability. There is still a big difference
between the two approaches in that admissible sets (or more generally, admis-
sible structures) are based on Kripke-Platek set theory KP (or some variant
of it, like KPU), and this theory is not predicatively justified. Indeed, one of
its main principles is the impredicative ∆0-collection schema. This schema is
valid and constructive for HF and similar structures. However, it is not con-
structive anymore when infinite sets are allowed as first-class citizens (i.e. as
elements of other sets). Moreover, in the general case the identity of the various
sets that ∆0-collection postulates is not always domain-independent. 16

Another research which has even greater similarity with the present one is the
work of Sazonov and his coauthors (see e.g. [15]) on “bounded set theory”
(BST). The main points of similarity are the following:

• In BST too the emphasis is on computability with sets. In fact, HF is for
BST the fundamental data structure for computability theory. Moreover,
the problem of (effective) definability and computability of operations on
sets is one of the main goals of this research program.

• Like in the present work, Gödel’s constructibility theory provides a great
part of the motivation and ideas, and according to both works the rudimen-
tary operations are the most basic (effective) constructions on sets 17 .

• BST is explicitly connected to database theory in general, and to query

16 It is worth noting that KP can be obtained from RST by the addition of ∆0-
collection and (the predicatively acceptable) ∈-induction.
17 However, while the approach of the present paper naturally leads to the rudi-
mentary operations, it seems to me that taking them as the most adequate starting
point was somehow assumed by Sazonov.

22

languages in particular. In fact, this connection is one of the main possible
applications suggested for it in [15] (and it is indeed investigated in other
papers of Sazonov). It should be noted that BST can be used for query
languages for semistructured databases, which are more general than the
relational databases dealt with here (the present approach can in fact be
extended to such structures, but doing this does not seem to contribute
much to the specific goals of this paper).

• In order to provide an adequate treatment of effective set theories, both
works introduce languages with complicated terms, including nested ab-
stract set terms. What is more, the basic language of BST, ∆(BST0), and
our basic language LRST , are equivalent in their expressive power. 18

Having reviewed the similarities between the work on BST and ours, let us
turn to the differences:

• First of all, the goals of the two research programs seem to be different. BST
is designed mainly to provide a “theory of computability (over sets) with
bounded resources” ([15]). As far as I understand, the research on BST does
not aim to get a generalized CT, nor does it have the much less ambitious
specific goal of this paper: the unification of important notions developed
in different areas of mathematics and computer science.

• As a result of the difference in goals, the concept of domain-independence
(central to the present work) plays no real role in the research on BST
(despite its close connections with database theory). Even the notion of
absoluteness is connected to the research in BST only in a roundabout
way, through the central role that ∆-formulas play in BST. Note however
that unlike in our work, ∆-formulas are not taken in BST as a syntactic
approximation of an important semantic notion (absoluteness), but as the
obvious appropriate language for dealing with “bounded resources”. 19

• It was noted in [15] that all the constructs considered in the various lan-
guages of BST have a natural semantics in “any reasonable universe of sets
V, say for Zermelo-Fraenkel set theory ZF”. However, it was already em-
phasized above that none of these constructs can take us out of HF . This
is not something peculiar to the languages dealt with in [15], but (so I be-
lieve) is crucial to the whole approach. The fundamental notion of BST is
“bounded” (operation, formula, resource, ...), and it is an essential feature of
this notion that it cannot force us to get out of HF (Sazonov would almost
certainly agree with this, but unlike me, he would take it as an important

18 It is worth noting that while LRST is based on just one uniform set-forming
constructor (the abstraction {x | ϕ}), ∆(BST0) is based on a mixture of complicated
forms of abstraction (like {t(x) | x ∈ a ∧ ϕ}) and operation symbols (like

⋃
).

19 I believe that this view might have prevented Sazonov and his coauthors from
trying to extend the language of ∆-formulas in the way it is done here. Instead they
have introduced into their languages by brute force various set-theoretic operations.

23

virtue of this notion and of his approach). In contrast, it was pointed out at
the end of Section 5, that by using an appropriate extension of the language,
the notion of domain-independence leads to the introduction (as an object)
of the set of natural numbers, and to predicative (or countable) set theory.

References

[1] S. Abiteboul, R. Hull and V. Vianu, Foundations of Databases, Addison-
Wesley, 1995.

[2] Avron A., Transitive Closure and the mechanization of Mathematics, In Thirty
Five Years of Automating Mathematics (F. Kamareddine, ed.), 149-171,
Kluwer Academic Publishers, 2003.

[3] A. Avron, Safety Signatures for First-order Languages and Their Applications,
in First-Order Logic revisited (Hendricks et al, eds.), 37-58, Logos Verlag
Berlin, 2004.

[4] Avron A., Formalizing Set Theory as It Is Actually Used, In Proceedings of
Mathematical Knowledge Management (MKM 2004) (A. Asperti, G.
Bancerek, and A. Trybulec, eds.), 32-43, LNCS 3119, Springer, 2004.

[5] K. J. Devlin, Constructibility, Perspectives in Mathematical Logic, Springer-
Verlag, 1984.

[6] R.A. Di Paola, The recursive unsolvability of the decision problem for the class
of definite formulas. J. ACM 16(2) (1969) 324-327.

[7] Y. L. Ershov, Definability and Computability, Siberian School of Algebra
and Logic, Consultants Bureau, New-York, 1996.

[8] Feferman S., Finitary Inductively Presented Logics, In Logic Colloquium
1988, Amsterdam, North-Holland, 191-220, 1989. Reprinted in [9], 297-328.

[9] Gabbay D., editor, What is a Logical System? Oxford Science Publications,
Clarendon Press, Oxford, 1994.

[10] Gandy, R. O., em Set-theoretic functions for elementary syntax, In Axiomatic
set theory, Part 2, AMS, Providence, Rhode Island, 103-126, 1974.

[11] K. Gödel, The Consistency of the Continuum Hypothesis, Annals of
Mathematical Studies, No. 3, Princeton University Press, Princeton, N.J., 1940.

[12] R. B. Jensen, The Fine Structure of the Constructible Hierarchy, Annals of
Mathematical Logic 4, 229-308, 1972.

[13] M. Kiffer, On Safety Domain independence and capturability of database
queries, Proc. International Conference on database and knowledge bases, 405-
414, Jerusalem 1988.

24

[14] K. Kunen, Set Theory, An Introduction to Independence Proofs, North-
Holland, 1980.

[15] V. Y. Sazonov, On Bounded Set Theory, Proceedings of the 10th International
Congress on Logic, Methodology and Philosophy of Sciences, Florence, August
1995, in Volume I: Logic and Scientific Method, Kluwer Academic Publishers,
85-103, 1997.

[16] R. M. Smullyan, The Incompleteness Theorems, Oxford University Press,
1992.

[17] D. Suciu, Domain-independent queries on databases with external functions,
Theoretical Computer Science 190, 279-315, 1998.

[18] J.D. Ullman, Principles of database and knowledge-base systems,
Computer Science Press, 1988.

25

