
Computation of Distances

for Regular and Context-Free

Probabilistic Languages ?

Mark-Jan Nederhof a, Giorgio Satta b,∗
aSchool of Computer Science, University of St Andrews,

North Haugh, St Andrews, KY16 9SX, Scotland
bDepartment of Information Engineering, University of Padua,

via Gradenigo, 6/A, I-35131 Padova, Italy

Abstract

Several mathematical distances between probabilistic languages have been inves-
tigated in the literature, motivated by applications in language modeling, compu-
tational biology, syntactic pattern matching and machine learning. In most cases,
only pairs of probabilistic regular languages were considered. In this paper we ex-
tend previous results to pairs of languages generated by a probabilistic context-free
grammar and a probabilistic finite automaton.

Key words: Probabilistic Context-Free Languages, Probabilistic Finite Automata,
Probabilistic Language Distances, Language Entropy, Kullback-Leibler Divergence

1 Introduction

In the last decade, widespread interest in probabilistic formal languages has
arisen in the areas of natural language processing [8,27,23], speech recogni-
tion [21], computational biology [14] and syntactic pattern matching [13]. In
all of these fields, formal languages are used to model the domain of inter-
est, and probabilities are exploited to direct the search in the relevant space.

? A preliminary version of some of the results presented in Section 3 appears in [30],
and a preliminary version of some of the results presented in Section 6 appears
in [31].
∗ Corresponding author. Tel.: +39 049 827 7948, fax: +39 049 827 7799.

URLs: http://www.cs.st-andrews.ac.uk/~mjn (Mark-Jan Nederhof),
http://www.dei.unipd.it/~satta (Giorgio Satta).

Preprint submitted to Elsevier 20 April 2007

For instance, in speech recognition, probabilistic regular languages are used
to rank different interpretations of a noisy acoustic signal, and in natural
language processing, probabilistic context-free grammars are used to rank dif-
ferent parses for an ambiguous input sentence. In this way more probable
interpretations of a sentence can be discriminated from less probable ones.

The success of this approach relies on the accuracy of the language model
expressed by the probabilistic grammar or automaton, i.e., whether the prob-
abilities assigned to derivations accurately reflect the ‘true’ probabilities in the
domain at hand. To this end, probabilities of the grammar or automaton are
usually estimated on the basis of a large corpus, i.e., a multiset of examples
annotated with various kinds of information [27]. A probability distribution
can be associated with such a corpus. This is called the empirical distribution
and describes the observed frequency of the phenomena of interest. Alterna-
tively, the parameters of a model can be estimated from a more expressive
language model. An example is the approximation of a source probabilistic
context-free language by means of a target probabilistic finite automaton [29].
The main goal of the estimation process is then to optimize some objective
function that expresses the ‘similarity’ between the source distribution and
the target distribution.

Several similarity measures between probability distributions have been pro-
posed and investigated in the literature, ranging from mathematical functions
that satisfy all of the properties of distances, to pseudo-distances, defined on
the basis of information-theoretic concepts. Examples of pseudo-distances are
cross-entropy and Kullback-Leibler divergence, which do not satisfy the prop-
erties of distances but are still very useful in practice. These measures can be
computed and compared to some threshold, in order to establish a criterion
for the convergence of estimation algorithms. These measures are also used
for the benefit of language modeling, where different target models are to be
compared against a source distribution, in order to select the model that best
fits the data. Even when such measures cannot be exactly computed, or when
their computation requires an exponential amount of time, they may still be
applied in practice by relying on efficient approximation algorithms.

Most of the algorithms reported in the literature for the computation of dis-
tances between probabilistic languages are stated for pairs of languages gen-
erated by probabilistic finite automata. An overview of these results can be
found in [39]. More recent work has been presented in [7,?,?]. The main contri-
bution of the present paper is the extension of some of these results to pairs of
languages generated by a probabilistic context-free grammar and a probabilis-
tic finite automaton, under various conditions. In deriving our algorithms for
the computation of the distances considered here, we exploit a construction
that was originally presented in [4] for the purpose of the computation of the
intersection of a context-free language and a regular language. We extend this

2

construction to the probabilistic case.

The remainder of this article is organized as follows. In Section 2 we briefly
recall the definitions of probabilistic and weighted context-free grammars and
finite automata. In Section 3 we introduce a probabilistic extension of a con-
struction computing the intersection of a context-free and a regular language.
In Section 4 we discuss several methods for the computation of the partition
function, which plays an important rôle in our algorithms. In Section 5 we
introduce some true distance measures, and provide algorithms for their exact
or approximate computation. In Section 6 we also provide algorithms for the
computation of some pseudo-distances that are commonly used in language
modeling and in machine learning. We close with some discussion in Section 7.

2 Preliminaries

In this section we briefly recall the definitions of probabilistic and weighted
context-free grammars and probabilistic and weighted finite automata. All of
the results we provide in this paper are stated for probabilistic formalisms,
but in some proofs we will need more general weighted formalisms as inter-
mediate models. Many of the definitions related to weighted and probabilistic
context-free grammars are based on [34,5] and those related to weighted and
probabilistic finite automata are based on [33,37]. Below, the symbol ε denotes
the empty string, and string concatenation is represented by operator ‘·’ or by
empty space. The length of a string x is written |x|.

A context-free grammar (CFG) is a tuple G = (Σ, N, S, R), where Σ and N
are two finite disjoint sets of terminals and nonterminals, respectively, S ∈ N
is the start symbol , and R is a finite set of rules, each of the form A → α,
where A ∈ N and α ∈ (Σ ∪ N)∗. In what follows, symbol a ranges over the
set Σ, symbols w, v range over the set Σ∗, symbols A, B range over the set
N , symbol X ranges over the set Σ ∪ N , symbols α, β, γ range over the set
(Σ ∪ N)∗, symbol π ranges over the set R, and symbols d, e range over the
set R∗. With slight abuse of notation, we treat a rule π = (A → α) ∈ R as an
atomic symbol when it occurs within a string dπe ∈ R∗.

For a fixed CFG G, we define the left-most derive relation ⇒G on triples
consisting of two strings α, β ∈ (Σ ∪N)∗ and a rule π ∈ R. We write α

π⇒G β
if and only if α is of the form wAδ and β is of the form wγδ, for some w ∈ Σ∗

and δ ∈ (Σ ∪ N)∗, and π = (A → γ). A left-most derivation (in G) is a
string d = π1 · · ·πm, m ≥ 0, such that α0

π1⇒G α1
π2⇒G · · · πm⇒G αm, for some

α0, . . . , αm ∈ (Σ∪N)∗; d = ε is always a left-most derivation. In the remainder
of this paper, we will let the term ‘derivation’ refer to ‘left-most derivation’,
unless specified otherwise. We omit the subscript from the notation ⇒G when

3

CFG G is understood.

If α0
π1⇒ · · · πm⇒ αm for some α0, . . . , αm ∈ (Σ ∪ N)∗, then we say that d =

π1 · · ·πm derives αm from α0 and we write α0
d⇒ αm; d = ε derives any

α0 ∈ (Σ ∪N)∗ from itself. Let w ∈ Σ∗. We define

D(w,G) = {d |S d⇒ w}, (1)

that is, D(w,G) is the set of all derivations (in G) of w from the start symbol
S. We also let D(G) = ∪w D(w,G). The language generated by G, written
L(G), is the set of all strings w ∈ Σ∗ such that |D(w,G)| > 0.

We say that G is ambiguous if |D(w,G)| > 1 for at least one string w. We
say that G is linear if each of its rules has at most one nonterminal in the
right-hand side.

A CFG is said to be reduced if for each nonterminal A there are d1, d2 ∈ R∗,

w1, w2 ∈ Σ∗ and β ∈ (Σ ∪ N)∗ such that S
d1⇒ w1Aβ and w1Aβ

d2⇒ w1w2. In
words, if a CFG is reduced, then for each nonterminal A there is at least one
derivation d1d2 that derives a string w1w2 from S and that includes some rule
with left-hand side A. Reduction of a CFG consists of removing the offending
nonterminals (if any) and the rules in which they occur, and can be carried
out in linear time in the size of the grammar [35, Theorem 4.17] (see below
for the definition of the size of a CFG).

A probabilistic CFG (PCFG) is a tuple G = (Σ, N, S, R, pG), where Σ, N,
S, R are defined as for a CFG and pG is a function from rules in R to real
numbers in the interval (0, 1]. Function pG is extended to instances of the
derive relation as follows. For a rule π ∈ R and a derivation d ∈ R∗, we write
f(π, d) to denote the number of occurrences of π within d. Let α, β ∈ (Σ∪N)∗.
We define

pG(α
d⇒ β) =


∏

π∈R pG(π)f(π,d), if α
d⇒ β;

0, otherwise.
(2)

The probability of a string w ∈ Σ∗ is defined as

pG(w) =
∑
d

pG(S
d⇒ w). (3)

The underlying CFG of a PCFG G = (Σ, N, S, R, pG) is G = (Σ, N, S, R).
We let a PCFG G inherit the properties we defined for CFG G. For example,

4

L(G) = L(G), and a PCFG is linear if and only if its underlying CFG is linear.
We define pG(L) =

∑
w∈L pG(w) for each language L ⊆ Σ∗. Note that pG(Σ∗)

= pG(L(G)).

A PCFG is said to be proper if, for all A ∈ N ,

∑
α

pG(A → α) = 1, (4)

that is, if the probabilities of all rules with left-hand side A sum to 1. A PCFG
is said to be consistent if pG(L(G)) = 1. Consistency implies that function pG

defines a probability distribution over the set of terminal strings in Σ∗. There
is a practical sufficient condition for consistency that is decidable [5].

A weighted CFG (WCFG) is a tuple G = (Σ, N, S, R, pG) defined as for a
PCFG, with the only difference that pG is now a function from rules in R to
positive real numbers. A WCFG is said to be convergent if pG(L(G)) < ∞.

Throughout this paper, we make the assumption that the weights of the
rules of our WCFGs are all rational numbers. We also assume a reason-
able (finite) representation of rational numbers satisfying the following con-
dition. Let ‖r‖ be the number of bits of rational number r under the cho-
sen representation. Then for any two rational numbers r1 and r2, we have
‖r1 · r2‖ ≤ ‖r1‖ + ‖r2‖. The size of a rule of the form A → α in a PCFG
or WCFG G is defined as ‖A → α‖ = |Aα| + ‖pG(A → α)‖. The size of G is
defined as ‖G‖ =

∑
A→α ‖A → α‖.

A finite automaton (FA) is a tuple M = (Σ, Q, I, F, T), where Σ and Q
are two finite disjoint sets of terminals and states, respectively, I ⊆ Q is the
set of initial states, F ⊆ Q is the set of final states, and T is a finite set
of transitions , each of the form r

a7→ s, where r, s ∈ Q and a ∈ Σ. In what
follows, symbols q, r, s range over the set Q, symbol τ ranges over the set T ,
and symbol c ranges over the set T ∗. Again, with slight abuse of notation, we
treat a transition τ = (r

a7→ s) ∈ T as an atomic symbol when it occurs within
a string in T ∗.

For a fixed FA M , we define a configuration to be an element of Q × Σ∗.
We also define a relation `M on triples consisting of two configurations and

a transition τ ∈ T . We write (r, w)
τ

`M (s, w′) if and only if w is of the form
aw′, for some a ∈ Σ, and τ = (r

a7→ s). A computation (in M) is a string

c = τ1 · · · τm, m ≥ 0, such that (r0, w0)
τ1
`M (r1, w1)

τ2
`M · · ·

τm

`M (rm, wm), for
some (r0, w0), . . . , (rm, wm) ∈ Q × Σ∗; c = ε is always a computation. We
omit the subscript from the notation `M when FA M is understood.

If (r0, w0)
τ1
` · · ·

τm

` (rm, wm) for some (r0, w0), . . . , (rm, wm) ∈ Q × Σ∗ and

5

c = τ1 · · · τm ∈ T ∗, then we write (r0, w0)
c

` (rm, wm). Let w ∈ Σ∗ and let
r, s ∈ Q. We define

Cr,s(w,M) = {c | (r, w)
c

` (s, ε)}, (5)

that is, Cr,s(w,M) is the set of all computations (in M) scanning w, starting
from r and ending in s. We also define

C(w,M) =∪r∈I,s∈F Cr,s(w,M), (6)

and let C(M) = ∪w C(w,M). The language recognized by M , written L(M),
is the set of all strings w ∈ Σ∗ such that |C(w,M)| > 0.

A FA M is deterministic if |I| = 1 and, for each r ∈ Q and a ∈ Σ, there is
at most one transition in T of the form r

a7→ s. It is easy to see that if M is
deterministic, then |C(w,M)| ≤ 1 for every string w ∈ Σ∗.

A FA is said to be reduced if, for each state q, there are r ∈ I, s ∈ F , c1, c2 ∈ T ∗

and w1, w2 ∈ Σ∗ such that (r, w1w2)
c1
` (q, w2) and (q, w2)

c2
` (s, ε). In words,

if a FA is reduced, then for each state q there is at least one computation
c1c2 going through q that recognizes a string w1w2. A FA can easily be turned
into one that is reduced by omitting the offending states and the transitions
that use them. This procedure can be carried out in linear time in the size of
the FA, using standard graph algorithms for the vertex-to-vertex reachability
problem [12].

A probabilistic FA (PFA) is a tuple M = (Σ, Q, I, F , T , pI , pF , pM), where
Σ, Q, I, F , T are defined as for a FA, and pI , pF , pM are functions that take
values in the interval (0, 1]. The domain of pI is I, the domain of pF is F ,
and the domain of pM is T . Function pM can be extended to computations as
follows. For a transition τ ∈ T and a computation c ∈ T ∗, we write f(τ, c) to
denote the number of occurrences of τ within c. Let (r, w) and (s, v) be two
configurations. We define

pM((r, w)
c

` (s, v)) =


∏

τ∈T pM(τ)f(τ,c), if (r, w)
c

` (s, v);

0, otherwise.
(7)

The probability of a string w ∈ Σ∗ is defined as

pM(w) =
∑

r∈I,s∈F,c

pI(r) · pM((r, w)
c

` (s, ε)) · pF (s). (8)

6

We define the underlying FA of a PFA in the obvious way, and let PFAs inherit
the properties we defined for FAs. We define pM(L) =

∑
w∈L pM(w) for each

language L ⊆ Σ∗. Note that pM(Σ∗) = pM(L(M)).

A PFA M is said to be proper if

∑
q∈I

pI(q) = 1, (9)

and if for all q ∈ Q

pF (q) +
∑
a,r

pM(q
a7→ r) = 1, (10)

that is, the probability of ending the computation at q and the probabilities
of all transitions from state q sum to 1. (In the above formula, we let pF (q)
= 0 for q /∈ F .) A PFA is said to be consistent if pM(L(M)) = 1, that is,
function pM defines a probability distribution over the set of strings in Σ∗. A
sufficient condition for the consistency of a PFA M is that M be proper and
reduced [39]. This condition can be easily decided.

A weighted FA (WFA) is a tuple M = (Σ, Q, I, F, T, pI , pF , pM) defined as
for a PFA, with the only difference that pM , pI , pF take values in the set of
positive real numbers. A WFA is said to be convergent if pM(L(M)) < ∞.

Again, we make the assumption that the weights of the transitions of our
WFAs are all rational numbers and are represented as in the case of WCFGs.
The size of a transition τ of the form r

a7→ s in a PFA or WFA M is defined
as ‖r a7→ s‖ = |ras|+ ‖pM(r

a7→ s)‖. The size of M is defined as

‖M‖=
∑
r

a7→s

‖r a7→ s‖+
∑
q∈I

‖pI(q)‖+
∑
q∈F

‖pF (q)‖. (11)

3 Weighted intersection

In this section we investigate an extension of a construction originally pre-
sented in [4] that computes the intersection of a context-free language and
a regular language. We will refer to this extended construction as weighted
intersection. The input consists of a WCFG G = (Σ, N, S, R, pG) and a
WFA M = (Σ, Q, I, F, T, pI , pF , pM). Note that we assume, without loss of
generality, that G and M share the same set of terminals Σ.

The output of the construction is a WCFG G∩ = (Σ, N∩, S∩, R∩, p∩), where

7

N∩ = (Q× (Σ ∪N)×Q) ∪ {S∩}, (12)

S∩ is a new symbol, and set R∩ is the smallest set satisfying the following
conditions.

• For each pair of states r ∈ I, s ∈ F , let the rule

π∩ = (S∩ → (r, S, s))

be in R∩, and let p∩(π∩) = pI(r) · pF (s).
• For each rule π = (A → X1 · · ·Xm) ∈ R, m ≥ 0, and each sequence of

states r0, . . . , rm ∈ Q, let the rule

π∩ = ((r0, A, rm) → (r0, X1, r1) · · · (rm−1, Xm, rm))

be in R∩, and let p∩(π∩) = pG(π); for m = 0, R∩ contains a rule π∩ =
((r0, A, r0) → ε) for each state r0.

• For each transition τ = (r
a7→ s) ∈ T , let the rule

π∩ = ((r, a, s) → a)

be in R∩, and let p∩(π∩) = pM(τ).

Note that each derivation S∩
d∩⇒ w in G∩ must have the form d∩ = (S∩ →

(r, S, s)) · d′∩, for some r ∈ I, s ∈ F . Further note that when we provide a
PCFG and a PFA as input to the weighted intersection, the resulting WCFG
G∩ is also a PCFG, although in general G∩ may not be proper and may not be
consistent. The above facts will be used implicitly on a number of occasions
below.

From the definition of G∩ it directly follows that, for each rule (r0, A, rm) →
(r0, X1, r1) · · · (rm−1, Xm, rm) in R∩, there is a unique rule A → X1 · · ·Xm in R
from which the former rule was constructed. Similarly, each rule (r, a, s) → a
uniquely identifies a transition r

a7→ s. This means that a derivation d∩ in G∩
can be divided into a sequence h1(d∩) of rules from G and a sequence h2(d∩)
of transitions from M, where h1 and h2 are string homomorphisms that we
define point-wise as

8

h1(π∩) =


π, if π∩ = ((r0, A, rm) → (r0, X1, r1) · · · (rm−1, Xm, rm)),

and π = (A → X1 · · ·Xm);

ε, if π∩ = ((r, a, s) → a) or π∩ = (S∩ → (r, S, s)).

h2(π∩) =


τ, if π∩ = ((r, a, s) → a) and τ = (r

a7→ s);

ε, if π∩ = ((r0, A, rm) → (r0, X1, r1) · · · (rm−1, Xm, rm))

or π∩ = (S∩ → (r, S, s)).

We also define h(d∩) = (h1(d∩), h2(d∩)).

Fix some w ∈ Σ∗. It can be easily seen that, if S∩
d∩⇒ w for some d∩ = (S∩ →

(r, S, s)) · d′∩ with h(d∩) = (d, c), then S
d⇒ w and (r, w)

c

` (s, ε). Conversely,

if S
d⇒ w for some d and (r, w)

c

` (s, ε) for some r ∈ I, s ∈ F and c, then
there must be a derivation d∩ = (S∩ → (r, S, s)) · d′∩ such that h(d∩) = (d, c)

and S∩
d∩⇒ w.

The following lemma can now be stated without further proof.

Lemma 1 By restricting its domain, h becomes a bijection from D(w,G∩)
to D(w,G) × (∪r∈I,s∈F Cr,s(w,M)), for each w ∈ Σ∗. Furthermore, for each
w ∈ Σ∗ and for each d∩ ∈ D(w,G∩) with d∩ = (S∩ → (r, S, s)) · d′∩, we have

p∩(S∩
d∩⇒ w) = pG(S

h1(d∩)⇒ w) · pI(r) · pM((r, w)
h2(d∩)

` (s, ε)) · pF (s).

If we are only interested in the weights assigned to strings by our models, then
we can use the following result.

Lemma 2 For each w ∈ Σ∗, we have p∩(w) = pG(w) · pM(w).

Proof. Due to the existence of h, with the properties stated in Lemma 1, we
can write

9

p∩(w) =
∑
d∩

p∩(S∩
d∩⇒ w)

=
∑

(S∩→(r,S,s))·d′∩

p∩(S∩
(S∩→(r,S,s))·d′∩⇒ w)

=
∑

(S∩→(r,S,s))·d′∩∈D(w,G∩)

pG(S
h1(d′∩)⇒ w) ·

· pI(r) · pM((r, w)
h2(d′∩)

` (s, ε)) · pF (s)

=
∑
d

pG(S
d⇒ w) ·

∑
r∈I,s∈F,c

pI(r) · pM((r, w)
c

` (s, ε)) · pF (s)

= pG(w) · pM(w).

From Lemma 2 we immediately have that L(G∩) = L(G) ∩ L(M).

In later sections we will also need the following result.

Lemma 3 If G and M are convergent, then so is G∩.

Proof. Using Lemma 2 we can write

p∩(L(G∩)) =
∑
w

p∩(w)

=
∑
w

pG(w) · pM(w)

≤
∑
w

pG(w) ·
∑
w

pM(w)

= pG(L(G)) · pM(L(M)).

All of the above results hold for any grammar G∩ constructed by weighted
intersection. Note however that, in the general case, G∩ may not be a reduced
grammar. In what follows, we always assume that G∩ has been reduced. Since
we have already observed in Section 2 that reduction of a (W)CFG can be
carried out in linear time, this assumption does not change the asymptotic
complexity of the algorithms that will be presented later.

We conclude the present section with a discussion of the computational com-
plexity of weighted intersection. The most expensive step in the construction
of G∩ is the construction of rules of the form (r0, A, rm) → (r0, X1, r1) · · ·
(rm−1, Xm, rm) in R∩. Let ρ(G) be the length of the longest right-hand side
of a rule in the input grammar G. Then in the worst case there could be
Θ(|R| · |Q|ρ(G)+1) different rules of the above form.

One way to avoid this exponential growth is to preprocess G by casting it
into a normal form that imposes a bound on the length of right-hand sides,

10

in such a way that a bijection between the derivations in the two grammars
is established that preserves the associated weights. One such form is the
well-known Chomsky normal form [19], which was extended in [1] to WCFGs.
However, such a transformation is problematic in the treatment of so-called
empty rules, that is, rules of the form A → ε. We apply below an alternative
normal form for CFGs and extend it to WCFGs.

Given a WCFG G = (Σ, N, S, R, pG), we define a new WCFG G ′ = (Σ, N ′,
S, R′, p′), where

N ′ = N ∪ {[α] | (A → αβ) ∈ R, |αβ| ≥ 3, |α| ≥ 2}, (13)

and set R′ satisfies the following conditions.

• For each rule π = (A → X1 · · ·Xm) ∈ R, 0 ≤ m ≤ 2, let π be also in R′,
and let p′(π) = pG(π).

• For each rule π = (A → X1 · · ·Xm) ∈ R, m ≥ 3, let the rule

π′ = (A → [X1 · · ·Xm])

be in R′, and let p′(π′) = pG(π).
• For each nonterminal [X1 · · ·Xm] ∈ N ′, m > 2, let the rule

π′ = ([X1 · · ·Xm] → [X1 · · ·Xm−1]Xm)

be in R′, and let p′(π′) = 1.
• For each nonterminal [X1X2] ∈ N ′, let the rule

π′ = ([X1X2] → X1X2)

be in R′, and let p′(π′) = 1.

Note that ρ(G ′) ≤ 2. Furthermore, it is not difficult to show that, for each
w ∈ Σ∗, there is a bijection from D(w,G) to D(w,G ′) that preserves the
weight of each derivation. Finally, note that the above transformation linearly
expands the number of rules in R and copies their weights to the new rules,
so the construction can be easily carried out in time proportional to ‖G‖, and
therefore ‖G ′‖ = O(‖G‖).

We conclude that the time and space complexity of weighted intersection
becomes O(‖G‖ · |Q|3). If we take |Q| to be the length of an input string, this
is also the time complexity of several practical parsing algorithms for PCFGs.
A discussion of the relation between weighted intersection and parsing can be
found in [28].

11

4 Partition functions

In this section we introduce the so-called partition function of a PCFG, which
will be used in later sections. We also discuss several methods that have been
used in the literature for the computation of this function. Let G = (Σ, N, S,
R, pG) be a PCFG. We define the partition function of G as the function Z
that assigns to each A ∈ N the value

Z(A) =
∑
d,w

pG(A
d⇒ w). (14)

Note that Z(S) = 1 means that G is consistent. More generally, one may want
to compute the partition function for non-consistent PCFGs. As an example,
let G be a consistent PCFG representing our language model, and consider
some property P of strings that can be characterized by means of a regular
expression or, equivalently, by a deterministic FA. We can turn this FA into a
PFA such that every generated string is assigned a probability of one (we will
see an example of such a construction later in Section 6). We then apply the
weighted intersection of Section 3 to G and our PFA, resulting in a possibly
non-consistent PCFG GP . It is not difficult to see that Z(S) ≤ 1 in GP pro-
vides the probability that a string generated by the original language model
G satisfies P . Examples of properties P of interest are the set of strings that
have a prefix or infix u for some fixed u ∈ Σ∗ [22,38,30], and the set of strings
of length k for some fixed k ≥ 0 [10].

We can characterize the partition function of a PCFG as a solution of a
specific system of equations. Following the approach in [18,9], we introduce
generating functions associated with the nonterminals of the grammar. Let
N = {A1, A2, . . . , A|N |}. For each Ak ∈ N , let mk be the number of rules in R
with left-hand side Ak, and assume some fixed order for these rules. For each i
with 1 ≤ i ≤ mk, let Ak → αk,i be the i-th rule with left-hand side Ak. Recall
also that f(A, α) denotes the number of occurrences of symbol A within string
α. For each k with 1 ≤ k ≤ |N |, the generating function associated with Ak

is defined as

gAk
(z1, z2, . . . , z|N |) =

mk∑
i=1

(
pG(Ak → αk,i) ·

|N |∏
j=1

z
f(Aj ,αk,i)
j

)
. (15)

Furthermore, for each i ≥ 1 we recursively define functions g
(i)
Ak

(z1, z2, . . . , z|N |)
by

g
(1)
Ak

(z1, z2, . . . , z|N |) = gAk
(z1, z2, . . . , z|N |), (16)

12

and, for i ≥ 2, by

g
(i)
Ak

(z1, z2, . . . , z|N |) = gAk
(g

(i−1)
A1

(z1, z2, . . . , z|N |), g
(i−1)
A2

(z1, z2, . . . , z|N |), . . . ,

g
(i−1)
A|N|

(z1, z2, . . . , z|N |)). (17)

Using induction it is not difficult to show that, for each k and i as above,
g

(i)
Ak

(0, 0, . . . , 0) is the sum of the probabilities of all derivations from Ak having
depth not exceeding i. (The depth of a derivation is the depth of the corre-
sponding derivation tree.) This implies that, for i = 0, 1, 2, . . ., the sequence

of the g
(i)
Ak

(0, 0, . . . , 0) monotonically converges to Z(Ak).

For each k with 1 ≤ k ≤ |N | we can now write

Z(Ak) = lim
i→∞

g
(i)
Ak

(0, . . . , 0)

= lim
i→∞

gAk
(g

(i−1)
A1

(0, 0, . . . , 0), . . . , g
(i−1)
A|N|

(0, 0, . . . , 0))

= gAk
(lim
i→∞

g
(i−1)
A1

(0, 0, . . . , 0), . . . , lim
i→∞

g
(i−1)
A|N|

(0, 0, . . . , 0))

= gAk
(Z(A1), . . . , Z(A|N |)).

The above shows that the values of the partition function provide a solution
of the system of |N | equations

zk = gAk
(z1, z2, . . . , z|N |). (18)

If G is a linear PCFG, the equations in (18) are all linear. Then the system has
at most one solution. The solution can be obtained in cubic time in |N |, and
in less than cubic time by using asymptotically faster algorithms for matrix
multiplication; see for instance [2,12]. When we take into account the size of the
representation of (rational) probabilities of the rules in the input PCFG, these
algorithms can still be made to run in polynomial time; see for instance [16].
We can thus state the following lemma without further proof.

Lemma 4 The partition function associated with a linear PCFG G with ra-
tional probabilities for each rule can be exactly computed in polynomial time
in ‖G‖.

In the case of a general PCFG, the equations in (18) are non-linear, and we
cannot hope to obtain closed-form expressions for the sought solution, that is,
the values of the partition function. Even worse, despite the fact that we have
assumed that all the probabilities of the rules in the input PCFG are rational
numbers, the sought solution of the system can be composed of irrational
numbers, as observed in [15].

13

Nonetheless, the partition function can still be approximated to any degree of
precision by iterative computation of the relation in (17), as done for instance
in [38,1]. This corresponds to the so-called fixed-point iteration method, which
is well-known in the numerical calculus literature and is frequently applied to
systems of non-linear equations because it can be easily implemented. When
a number of standard conditions are met, each iteration of (17) adds a fixed
number of bits to the precision of the approximated solution [24, Chapter 4].
Since each iteration can easily be implemented to run in polynomial time,
this means that we can approximate the partition function of a PCFG in
polynomial time in the size of the PCFG itself and in the number of bits of
the desired precision.

In practical applications where large PCFGs are empirically estimated from
data sets, the standard conditions mentioned above for the polynomial time
approximation of the partition function are usually met. However, there are
some degenerate cases for which these standard conditions do not hold, result-
ing in exponential time behaviour of the fixed-point iteration method. This
has been firstly observed in [15], where an alternative algorithm is proposed
for the approximation of the partition function, based on Newton’s method
for the solution of non-linear systems.

Experiments with Newton’s method for the approximation of partition func-
tions of PCFGs have been carried out by [40,32], showing a considerable im-
provement over the fixed-point iteration method. As far as we know, it has
not yet been proved or refuted whether Newton’s method can approximate
the partition function in polynomial time in the size of the PCFG itself and
in the number of bits of the desired precision. Some of the algorithms we pro-
pose in the next sections for the computation of distances between language
distributions make use of suitable approximations of the partition function.
As will be discussed later, whether these algorithms run in polynomial time
or not depends on the above-mentioned open problem.

5 Distances between probabilistic languages

In this section we give an overview of some of the most commonly used dis-
tances between pairs of probabilistic languages. We also develop algorithms
for the computation of such distances, in case the two languages are generated
by a non-ambiguous PCFG and a PFA. As already discussed in Section 1, this
extends results in the literature that were stated for pairs of deterministic
PFAs. The distances d we treat in this section satisfy the well-known prop-
erties of metrics, that is, for probability distributions p, p′ and p′′ defined on
sets of strings, we have

14

(i) d(p, p′) = 0 if and only if p = p′;
(ii) d(p, p′) = d(p′, p);
(iii) d(p, p′) + d(p′, p′′) ≥ d(p, p′′).

We start with the L2 norm. Let p and p′ be probability distributions defined
on sets of strings. Without loss of generality, we assume a common alphabet
for the two distributions. We define

d2(p, p
′) =

√∑
w

(p(w)− p′(w))2. (19)

We also introduce the notion of coemission for distributions p and p′, defined
as

C(p, p′) =
∑
w

p(w) · p′(w). (20)

Note that if p and p′ are defined by means of some grammar or automaton
model, then C(p, p′) is the probability that the two models independently
generate the same string.

We can rewrite the definition of d2 as

d2(p, p
′) =

√∑
w

p(w)2 − 2
∑
w

p(w) · p′(w) +
∑
w

p′(w)2

=
√

C(p, p)− 2 · C(p, p′) + C(p′, p′). (21)

We have thus reduced the problem of computing d2 to the problem of com-
puting coemission probabilities for the involved distributions.

We now discuss the problem of computing (21) for different combinations of
models. Let G = (Σ, N, S, R, pG) be a PCFG, and let M = (Σ, Q, I, F, T, pI ,
pF , pM) be a PFA. Using the associated distributions pG and pM , equality (21)
is instantiated to

d2(pG, pM) =
√

C(pG, pG)− 2 · C(pG, pM) + C(pM , pM). (22)

We first consider term C(pG, pM). Let G∩ = (Σ, N∩, S∩, R∩, p∩) be the WCFG
defined by the weighted intersection of G and M as in Section 3. By Lemma 2
we have p∩(w) = pG(w) · pM(w) for every w ∈ Σ∗. Therefore we can conclude
that

p∩(L(G∩)) = C(pG, pM). (23)

15

We can then compute or approximate the coemission C(pG, pM) through the
value Z(S∩) of the partition function Z of G∩, as discussed in Section 4.

Consider now term C(pG, pG) in (22). From this point onward, we assume that
G is non-ambiguous. We define a second PCFG G ′ = (Σ, N, S, R, p′G) with
the same underlying CFG, such that p′G(π) = pG(π)2 for every π ∈ R. We can
now write

C(pG, pG) =
∑
w

pG(w)2

=
∑
d,w

pG(S
d⇒ w)2

=
∑

d∈D(G)

(
∏

A→α

pG(A → α)f(A→α,d))2

=
∑

d∈D(G)

∏
A→α

p′G(A → α)f(A→α,d)

=
∑
w

p′G(w) = p′G(L(G ′)). (24)

Again, we can compute or approximate C(pG, pG) through the value Z(S) of
the partition function Z of G ′, using (24).

We are left with term C(pM , pM) from (22). In principle, we could derive equal-
ities for the computation of C(pM , pM) from the equalities developed above
for the case of C(pG, pM). This is because any PFA can be transformed into an
equivalent PCFG, deriving the same language and with the same distribution.
A more efficient computation of C(pM , pM) can be obtained using the algo-
rithm reported in [39] for the computation of the coemission C(pM , p′M) for
possibly distinct distributions pM and p′M , defined by means of PFAs. More
precisely, the algorithm proposed in [39] is based on the so-called cross-product
construction of two FAs [19], which is then generalized to the probabilistic case.
(Such a construction has an obvious similarity to the weighted intersection re-
ported in Section 3.) While the algorithm is defined for deterministic PFAs,
it can be easily generalized to the nondeterministic case.

From all of the arguments above, and from the computational analysis of
the intersection construction in Section 3, we conclude that the computation
of distance d2 for a non-ambiguous PCFG and a PFA can be reduced in
polynomial time to the computation of the partition function of a PCFG.
Using Lemma 4 we can then state the following result without further proof.

Theorem 5 Let G be a linear and non-ambiguous PCFG, and let M be a
PFA. Let pG and pM be the associated distributions. Quantity d2(pG, pM)2 can
be exactly computed in polynomial time in ‖G‖ and ‖M‖.

16

The desired distance d2(pG, pM) can be approximated on the basis of d2(pG, pM)2,
by applying standard algorithms from numerical analysis that work in polyno-
mial time in the number of bits of the desired precision. Note that this is not
needed in many practical applications, as the square of distance d2(pG, pM) is
sufficient to compare distances for different models and to evaluate learning
curves for convergence.

For the more general case of a distribution pG associated with a non-ambiguous
PCFG, we can use our reduction above to approximate distance d2(pG, pM)
through the approximation of the partition function. If the latter problem
can be solved in polynomial time, as discussed in Section 4, then distance
d2(pG, pM) can be approximated in polynomial time in the size of the input
models and in the number of bits of the desired precision.

One might also wonder whether our assumption on non-ambiguity of the
PCFG can be dropped. If we do so, we observe a drastic change in the com-
plexity of the problem, as discussed in what follows. Consider a linear PCFG
G and a PFA M, with associated distributions pG and pM , respectively. Under
these more general conditions we can still exactly compute terms C(pG, pM)
and C(pM , pM) through (23), as discussed above. If we were able to compute
d2(pG, pM), then we could easily derive term C(pG, pG) from (22). Let us define
the derivational coemission for G as

Cd(pG, pG) =
∑
d,w

(p(S
d⇒ w))2. (25)

We observe that the method implied by (24) also provides a method for the
exact computation of Cd(pG, pG), this time without the requirement that the
grammar be non-ambiguous. Finally, notice that Cd(pG, pG) = C(pG, pG) if
and only if G is non-ambiguous. However, the problem of testing whether a
linear (P)CFG is non-ambiguous is undecidable [25]. This precludes the exact
computation of C(pG, pG) and thereby of d2(pG, pM) for a linear, possibly
ambiguous PCFG.

We now introduce a second distance, which uses the logarithm of probabili-
ties. This is especially convenient in practical applications, since for infinite
languages the probabilities of sentences can be arbitrarily small. Let p and p′

be probability distributions defined over sets of strings. Below we assume that
∞−∞ = 0 and that 0

0
= 1. We define

dlog(p, p
′) = max

w
|log(p(w))− log(p′(w))| . (26)

We discuss below how to compute (26) in the case of a non-ambiguous PCFG
G = (Σ, N, S, R, pG) and a deterministic PFA M = (Σ, Q, I, F, T, pI ,

17

pF , pM), under the assumption that L(G) = L(M). In order to simplify the
notation, we assume F is a singleton {qF}, for some qF ∈ Q, and pF (qF) = 1.
Every deterministic PFA can be transformed into a deterministic PFA of this
form, by adding a new final state qF with pF (qF) = 1, and introducing a special
end-marker not in Σ. The end-marker is appended to each input string, and
transitions reading the end-marker are added from each former final state q of
the source PFA to qF , moving the probability mass pF (q) to the new transition.
This preserves the original language distribution, modulo the addition of the
end-marker.

We start by rewriting (26) as

dlog(pG, pM) = max
w

∣∣∣∣∣log(
pG(w)

pM(w)
)

∣∣∣∣∣
= max{max

w
log(

pG(w)

pM(w)
),−1 ·min

w
log(

pG(w)

pM(w)
)}. (27)

We focus below on the computation of quantity maxw log(pG(w)
pM (w)

); the other

term in (27) can be computed in a similar way.

We define a WFA M′ = (Σ, Q, I, F, T, pI , pF , p′M), such that p′M(τ) = 1
pM (τ)

for each transition τ ∈ T . Note that M′ is not a PFA in general, since the
weights 1

pM (τ)
can be strictly greater than 1. Let G∩ = (Σ, N∩, S∩, R∩, p∩) be

the WCFG obtained by applying the weighted intersection to G and M′. By
Lemma 2 we have p∩(w) = pG(w) · p′M(w), for every w ∈ Σ∗.

Let us fix some string w ∈ L(G). By our assumptions, there is a unique
derivation dw for w in G, and a unique computation cw scanning w in M. We
can write

pG(w)

pM(w)
=

∏
π∈R pG(π)f(π,dw)∏
τ∈T pM(τ)f(τ,cw)

=
∏
π∈R

pG(π)f(π,dw) ·
∏
τ∈T

(
1

pM(τ)

)f(τ,cw)

= p∩(w). (28)

Thus we have

max
w

pG(w)

pM(w)
= max

d∩,w
p∩(S∩

d∩⇒ w). (29)

In words, the above quantity represents the highest weight of a derivation in
G∩. In the case of a PCFG, several algorithms for its computation can be found

18

in the literature, running in polynomial time in the size of the input grammar.
All of these algorithms also work within the same time bound for WCFGs with
derivations of bounded weight. For instance, [11] discusses a polynomial time
method, based on dynamic programming, that is an adaptation of Dijkstra’s
algorithm for the search of the shortest path in a graph with non-negative
weights [12]. From the above, we derive the following result.

Theorem 6 Let G be a non-ambiguous PCFG, and let M be a deterministic
PFA such that L(G) = L(M). Let pG and pM be the associated distributions.
Quantity 2dlog(pG, pM) can be exactly computed in polynomial time in ‖G‖ and
‖M‖.

Similarly to the case of distance d2, we can approximate distance dlog(pG, pM)
from quantity 2dlog(pG, pM) by applying standard numerical methods for com-
putation of logarithms that work in polynomial time in the number of bits of
the desired precision.

If we allow L(G) 6= L(M), then dlog(pG, pM) is undefined, but it may still be
useful in practice to compute the max function in (26) restricted to strings w
in L(G) ∩ L(M). Property (iii) of metrics, as discussed at the beginning of this
section, then no longer holds, but this is not a problem for many applications.
For example, one may want to determine a probability assignment pG to rules
of a fixed CFG M that minimizes the distance between distribution pG and
a fixed distribution pM , among several such assignments. One may compare
different choices on the basis of the distance dlog between pG and pM , restricted
to L(G) ∩ L(M) as discussed above.

We close the present section with a discussion of some other distance mea-
sures from the literature on probabilistic language models. Let p and p′ be
probability distributions defined over sets of strings. We define

d∞(p, p′) = max
w

|p(w)− p′(w)| . (30)

In [26] it is shown that computation of d∞ is NP-hard for two PFAs, and it
remains so even if these automata are acyclic. Another distance related to d2

is defined as

d1(p, p
′) =

∑
w

|p(w)− p′(w)| . (31)

Again, in [26] it is shown that computation of d1 is NP-hard for two acyclic
PFAs. See also [?] for related results. To the best of our knowledge, it is not
known whether d∞ and d1 can be computed in polynomial time for a linear,
non-ambiguous PCFG and a deterministic PFA.

19

6 Pseudo-distances for probabilistic languages

In this section we consider the Kullback-Leibler (KL) divergence, also called
relative entropy, between the string distributions induced by a PCFG and
a PFA. As discussed in more detail below, the KL divergence is not a true
distance, since it does not satisfy all of the properties of metrics. Therefore we
call this measure a ‘pseudo-distance’.

The KL divergence is an important concept in information theory, where it is
defined between probability distributions having the same domain, and it is
commonly used in language modeling to evaluate how well an empirically es-
timated model fits a reference model; see for instance [27]. Using the weighted
intersection from Section 3, we now present a method for the computation of
the KL divergence under a number of assumptions to be discussed below.

We start with the necessary definitions. In what follows we view a random
variable as a denumerable set X associated with a probability distribution
pX . Let f be a real-valued function defined over X. The expected value of f
with respect to distribution pX is defined as

EpX
f(x) =

∑
x∈X

pX(x) · f(x).

We write log to represent logarithms in base 2, and we assume that 0·log 0 = 0.
The entropy of pX is defined as the expected value of the so-called information
function defined over elements of X:

H(pX) = EpX
log

1

pX(x)

=−
∑
x∈X

pX(x) · log pX(x).

If we consider the probability distributions associated with PCFGs, the above
notion of entropy can be carried over to the domain of languages and deriva-
tions generated by these grammars, as explained below. Throughout this sec-
tion we let G = (Σ, N, S, R, pG) be a proper and consistent PCFG and
M = (Σ, Q, I, F, T, pI , pF , pM) be a proper and consistent PFA. For a
nonterminal A ∈ N , let us define the rule entropy relative to A as the entropy
of the distribution pG on all rules with A in their left-hand sides:

20

Hr(A, pG) = EpG
log

1

pG(A → α)

=−
∑
α

pG(A → α) · log pG(A → α). (32)

The derivational entropy of G is defined as the entropy of pG, viewed as a
distribution over the set D(G) of all derivations of G:

Hd(pG) = EpG
log

1

pG(S
d⇒ w)

=−
∑
d,w

pG(S
d⇒ w) · log pG(S

d⇒ w). (33)

Similarly to the derivational entropy, the sentential entropy of G is defined as
the entropy of pG, viewed as a distribution over L(G):

Hs(pG) = EpG
log

1

pG(w)

=−
∑
w

pG(w) · log pG(w). (34)

It is not difficult to see that Hd(pG) ≥ Hs(pG). Equality holds if and only if G
is non-ambiguous, as shown for instance in [36, Theorem 2.2].

Let us assume that L(G) ⊆ L(M); we will later drop this constraint. The
Kullback-Leibler divergence between G and M is defined as

KL(pG || pM) = EpG
log

pG(w)

pM(w)

=
∑
w

pG(w) · log
pG(w)

pM(w)
. (35)

One can show that KL(pG || pM) ≥ 0, and that equality holds if and only if pG

and pM are point-wise equal. However, properties (ii) and (iii) in Section 5 do
not hold here.

The KL divergence is commonly related to the notion of cross-entropy of G
and M, defined as the expectation under distribution pG of the information
of strings generated by M:

H(pG || pM) = EpG
log

1

pM(w)

=−
∑
w

pG(w) · log pM(w). (36)

21

We have

KL(pG || pM) =
∑
w

pG(w) · log
pG(w)

pM(w)

=
∑
w

pG(w) · log
1

pM(w)
+
∑
w

pG(w) · log pG(w)

= H(pG || pM)−Hs(pG). (37)

If distribution pG is fixed and we need to optimize the choice of pM , then
quantity H(pG || pM) can also be used as a measure to evaluate the tightness
of the model. More discussion on this will be provided later. In what follows,
we develop an algorithm for the computation of the KL divergence through
equality (37). We first need to develop methods for the computation of the
expectation of the frequency of a rule or a nonterminal over all derivations of
a PCFG. These quantities will be used later by our algorithms.

Recall that f(A → α, d) is the number of occurrences of rule A → α in a
derivation d of G. We similarly define f(A, d) as the number of occurrences
of a nonterminal A in left-hand sides of rules in d. We thus have f(A, d) =∑

α f(A → α, d). Below we consider two related quantities:

EpG
f(A → α, d) =

∑
d,w

pG(S
d⇒ w) · f(A → α, d), (38)

EpG
f(A, d) =

∑
d,w

pG(S
d⇒ w) · f(A, d)

=
∑
α

EpG
f(A → α, d). (39)

Different methods for the computation of the above expectations have been
proposed in the literature. A method based on the so-called momentum matrix
is reported in [20]. In [10], the same quantities are computed using a gener-
alization of recursive equalities originally presented in [22]. Both of the above
methods assume that the PCFG is proper and consistent. Following [29], we
adopt here an alternative approach, based on the notion of outside probabili-
ties, which is related to the inside-outside algorithm [3,8] for the unsupervised
estimation of PCFGs from sentence samples by the criterion of maximum like-
lihood. Such a method is applicable even if a PCFG is not consistent or is not
proper. In such cases, pG(L(G)) 6= 1, and thus the definition of expectation
should be extended in the obvious way to a deficient distribution.

Consider a rule A → α and a derivation S
d⇒ w, w ∈ Σ∗, such that f(A →

α, d) > 0. We start by observing that we can factorize d at each occurrence of

22

A → α. More precisely, assuming d = π1π2 · · ·πm, m ≥ 1, we fix m1 such that
πm1 = A → α. We can now write d as

S
π1···πm1−1⇒ uAβ

πm1⇒ uαβ
πm1+1···πm2⇒ uxβ
πm2+1···πm⇒ uxv,

with uxv = w. We call derivation πm1+1 · · ·πm2 the inner part of d, and we
call derivations π1 · · ·πm1−1 and πm2+1 · · ·πm the outer parts of d, both with
respect to occurrence πm1 . Based on this, we can write

EpG
f(A → α, d) =

∑
d=π1···πm,m1,m2,β,u,v,x:

S
d1⇒uAβ, with d1=π1···πm1−1,

(A→α)=πm1 ,

α
d2⇒x, with d2=πm1+1···πm2 ,

β
d3⇒v, with d3=πm2+1···πm

m∏
i=1

pG(πi). (40)

For each nonterminal A, we can define quantities that are obtained as the sum
of the probabilities of all outer parts of derivations at some rule with left-hand
side A:

out(A) =
∑

d1,u,β,d3,v

pG(S
d1⇒ uAβ) · pG(β

d3⇒ v). (41)

It is not difficult to see that the above quantities are not probabilities them-
selves. More precisely, we could have out(A) > 1, since outer parts of deriva-
tions for A do not represent disjoint events. In a similar way, we can define
quantities that are obtained as the sum of the probabilities of all inner parts
of derivations for some string α ∈ (Σ ∪N)∗:

in(α) =
∑
d2,x

pG(α
d2⇒ x). (42)

We can rewrite (40) by grouping together all of the outer and all of the inner
parts of derivations, resulting in

EpG
f(A → α, d) = out(A) · pG(A → α) · in(α). (43)

23

We are left with the computation of quantities out(A) and in(α). We observe
that for each α = Xα′ with X ∈ N ∪Σ and α′ 6= ε, we have

in(α) = in(X) · in(α′). (44)

From (42), we can easily derive

in(X) =

 1, X ∈ Σ;

Z(X), X ∈ N.
(45)

We have thus reduced the computation of quantities in(α) to the computa-
tion of the partition function of the grammar. These latter quantities can be
computed or approximated as discussed in Section 4.

Once quantities in(α) have been computed or approximated, we can derive a
system of equations for the computation of quantities out(A). For any A, B ∈
N , we let δ(A, B) = 1 if A = B and δ(A, B) = 0 otherwise. Without loss of
generality, we assume that the start symbol S does not occur in the right-hand
side of any rule of G. (We can always cast a PCFG in a form that satisfies this
assumption, preserving the probability distribution on the generated strings
and derivations). We can write

out(A) = δ(A, S) +
∑

B,α,β

out(B) · pG(B → αAβ) · in(α) · in(β). (46)

We can now state our first intermediate result.

Lemma 7 Let G be a linear and consistent PCFG. For each rule A → α,
we can exactly compute the expectations EpG

f(A → α, d) and EpG
f(A, d) in

polynomial time in ‖G‖.

Proof. Since G is linear, we can exactly compute in polynomial time the par-
tition function as stated in Lemma 4. This provides all quantities in(α). The
equalities in (46) represent a linear system of |N | equations whose solution
can be exactly computed in polynomial time in the size of G (see the discus-
sion on linear systems in Section 4). Finally, the desired expectations can be
computed through equations (43) and (39).

Our next step is to provide a characterization of the derivational entropy of
G. Starting from the definition in (33), we use (2) and write

24

Hd(pG) =−
∑
d,w

pG(S
d⇒ w) · log pG(S

d⇒ w)

=−
∑
d,w

pG(S
d⇒ w) · log

∏
A→α

pG(A → α)f(A→α,d)

=−
∑
d,w

pG(S
d⇒ w) ·

∑
A→α

f(A → α, d) · log pG(A → α)

=−
∑

A→α

log pG(A → α) ·
∑
d,w

pG(S
d⇒ w) · f(A → α, d)

=−
∑

A→α

log pG(A → α) · EpG
f(A → α, d). (47)

We can now state a second intermediate result.

Lemma 8 Let G be a linear, consistent PCFG. We can approximate the
derivational entropy Hd(pG) in polynomial time in ‖G‖ and in the number
of bits of the desired precision.

Proof. Since G is linear and consistent, this follows directly from Lemma 7
and equation (47), and from the fact that we can approximate each quantity
log pG(A → α).

Under the restrictive assumption that the consistent PCFG G is also proper,
we have in(α) = 1 for every α. Using (43), the derivational entropy in (47)
can be written as

Hd(pG) =−
∑
A

∑
α

log pG(A → α) · out(A) · pG(A → α) · in(α)

=−
∑
A

out(A) ·
∑
α

pG(A → α) · log pG(A → α)

=
∑
A

out(A) ·Hr(A, pG), (48)

where we have used the definition of rule entropy in (32). The characterization
in (48) was already known from [17, Theorem 10.7, pp. 90–92]. The proof
reported in that work is different from ours and uses the already mentioned
momentum matrix. Our characterization in (47) is more general, since we do
not assume that G is a proper PCFG.

We now turn to the main result of this section, developing some equalities
for the computation of the cross-entropy of G and M, defined as in (36). We
assume that M is a deterministic PFA. Furthermore, we assume that F is a
singleton {qF}, and pF (qF) = 1. As discussed in Section 5, this is without loss
of generality.

Since M is deterministic, for each sentence w ∈ L(M) there is a single com-

25

putation in C(w,M), which we denote as cw below. Since pI(qI) = pF (qF) = 1,
we can also write

pM(cw) =
∏
τ∈T

pM(τ)f(τ,cw). (49)

Recall that we are working under the assumption that L(G) ⊆ L(M). For

d ∈ D(G), we write y(d) to denote the (unique) string w such that S
d⇒ w.

Using (49), the cross-entropy of G and M can now be rewritten as

H(pG || pM) =−
∑
w

pG(w) · log pM(w)

=−
∑
w

(∑
d

pG(S
d⇒ w)

)
· log pM(w)

=−
∑
d,w

pG(S
d⇒ w) · log

∏
s

a7→t

pM(s
a7→ t)f(s

a7→t,cw)

=−
∑
d,w

pG(S
d⇒ w) ·

∑
s

a7→t

f(s
a7→ t, cw) · log pM(s

a7→ t)

=−
∑
s

a7→t

log pM(s
a7→ t) ·

∑
d,w

pG(S
d⇒ w) · f(s

a7→ t, cw)

=−
∑
s

a7→t

log pM(s
a7→ t) · EpG

f(s
a7→ t, cy(d)). (50)

Below we elaborate on the computation of quantities EpG
f(s

a7→ t, cy(d)).

Let us introduce a new PFA M′ = (Σ, Q, I, F, T, pI , pF , p′M), derived from
PFA M by setting p′M(s

a7→ t) = 1 for each s
a7→ t ∈ T . Note that M′ is still

a deterministic PFA, and we can therefore associate each string w ∈ L(M′)
with a unique computation cw of M′. Furthermore, we have L(M) = L(M′)
and, for each w ∈ L(M′), we have p′M(w) = 1.

Consider now the WCFG G∩ = (Σ, N∩, S∩, R∩, p∩) obtained by applying the
weighted intersection of Section 3 to G and M′. Since p′M(w) = 1 for each
w ∈ L(M′), we can derive from Lemma 1 that, for each d∩ ∈ D(G∩), we have

p∩(S∩
d∩⇒ w) = pG(S

h1(d∩)⇒ w).

From the same lemma we can also establish that, for each w ∈ L(G)∩L(M′)
and d∩ ∈ D(G∩, w), we have

f(s
a7→ t, cw) = f((s, a, t), d∩). (51)

26

Finally, observe that since G is consistent, G∩ is also consistent. However, G∩
might not be proper. The lack of properness does not affect our algorithm
below, since we have nowhere used this property in the intermediate results
developed in this section.

Using the above observations, we can now write

EpG
f(s

a7→ t, cy(d)) =
∑
d,w

pG(S
d⇒ w) · f(s

a7→ t, cw)

=
∑
d∩,w

p∩(S∩
d∩⇒ w) · f((s, a, t), d∩)

= Ep∩ f((s, a, t), d∩). (52)

Finally, we combine (52) and (50), resulting in

H(pG || pM) =−
∑
s

a7→t

log pM(s
a7→ t) · EpG

f(s
a7→ t, cy(d))

=−
∑
s

a7→t

log pM(s
a7→ t) · Ep∩ f((s, a, t), d∩). (53)

We can now state our two main results about the computation of the cross-
entropy and of the KL divergence.

Lemma 9 Let G be a linear, consistent PCFG and let M be a determinis-
tic PFA, with associated distributions pG and pM , respectively. Assume that
L(G) ⊆ L(M). Then the cross-entropy H(pG || pM) can be approximated in
polynomial time in ‖G‖ and ‖M‖, and in the number of bits of the desired
precision.

Proof. The intersection grammar G∩ defined as in the previous discussion is
a linear, consistent PCFG, and can be constructed in polynomial time. The
statement now follows from Lemma 7 and equation (53), and from the fact
that we can approximate quantities log pM(s

a7→ t).

Theorem 10 Let G be a linear, consistent and non-ambiguous PCFG and let
M be a deterministic PFA, with associated distributions pG and pM , respec-
tively. Assume that L(G) ⊆ L(M). Then the KL divergence KL(pG || pM) can
be approximated in polynomial time in ‖G‖ and ‖M‖, and in the number of
bits of the desired precision.

Proof. We have already observed that, for non-ambiguous PCFGs, the sen-
tential entropy and the derivational entropy are the same. From (37) we can
therefore write

27

KL(pG || pM) = H(pG || pM)−Hd(pG). (54)

The theorem now follows from Lemma 8 and Lemma 9.

A method for the approximated computation of the KL divergence between
two distributions associated with deterministic PFAs has been presented in [7].
Our Theorem 10 is a generalization of that result. In [7] a different technique
from ours is used, based on a specific factorization of computations of de-
terministic PFAs. This technique is also applied in [6] to the approximated
computation of the KL divergence for certain probabilistic tree languages.
The result in [7] has also been extended in [?] to distributions associated
with non-ambiguous PFAs, that is, PFAs that accept each string by means of
exactly one computation.

To conclude the present section, we consider extensions to the above results
for more general conditions on G and M. If we drop the linearity assumption
for G, then we can no longer compute the expectations of rule frequencies as
in Lemma 7, since we cannot hope to exactly compute the partition function
of the grammar. In this case a result on polynomial time approximation of the
cross-entropy and the KL divergence depends on the open problem discussed in
Section 4 about the polynomial time approximation of the partition function.
If G is linear and possibly ambiguous, equation (54) in the proof of Theorem 10
no longer holds, and we would need to compute instead the sentential entropy
Hs(pG), which seems to be problematic for the following reason. Recall that
the sentential entropy and the derivational entropy are the same if and only
if the PCFG at hand is non-ambiguous. Under the assumption of linearity of
the grammar, we can compute Hd(pG) on the basis of Lemma 9. However, we
cannot hope to obtain a closed-form solution for Hs(pG), as determining its
equality to Hd(pG) would allow us to decide ambiguity of CFGs, in conflict with
the undecidability of this problem [25]. Whether the condition of determinism
for M can be dropped, without altering the polynomial time results above, is
still an open problem, but we conjecture that the answer is negative.

As a final remark we point out that, for many purposes, computation of Hd(pG)
is not needed. For example, assume we are given a FA M and are seeking
possible functions pM that extend M to a PFAM, with the goal of minimizing
the distance between the distributions induced by G and M. Then the choice
that minimizes H(pG || pM) determines the choice that minimizes KL(pG || pM),
irrespective of Hs(pG). Formally, we can use the above characterization to
compute

p∗M = argmax
pM

KL(pG || pM)

= argmax
pM

H(pG || pM).

28

Similar approximation problems frequently occur in language modeling appli-
cations, where the statistical parameters are sought that result in the tightest
model.

When L(G) − L(M) is non-empty, both KL(pG || pM) and H(pG || pM) are
undefined, as their definitions imply a division by pM(w) = 0 for w ∈ L(G)−
L(M). If an underlying FA M is given, and our task is to compare the relative
distances between pG and pM for different choices of pM , we may resort to
the following. We exclude strings in L(G) − L(M) and renormalize pG to
compensate for the restricted domain. In effect, this means we define

pG|M(w) =


pG(w)

Z
, if w ∈ L(M);

0, otherwise,

where Z is the normalization constant
∑

w∈L(M) pG(w). As pG|M is clearly a
probability distribution on strings, we can now apply the KL divergence to
pG|M and pM , which we rewrite as

KL(pG|M || pM) =
∑
w

pG|M(w) · log
pG|M(w)

pM(w)

=
∑

w∈L(M)

pG|M(w) · log
pG|M(w)

pM(w)

=
∑

w∈L(M)

1

Z
· pG(w) · log

(
1

Z
· pG(w)

pM(w)

)

=
∑

w∈L(M)

1

Z
· pG(w) · log

1

Z
+

∑
w∈L(M)

1

Z
· pG(w) · log

pG(w)

pM(w)

= log
1

Z
+

1

Z
·
∑

w∈L(M)

pG(w) · log
pG(w)

pM(w)
. (55)

As Z depends only on pG and M , which we assumed to be fixed, we can identify
the choice of pM that minimizes KL(pG|M || pM) on the basis of KL(pG || pM),
defined as

KL(pG || pM) =
∑

w∈L(M)

pG(w) · log
pG(w)

pM(w)
. (56)

Because strings in L(M)−L(G) contribute zero values to the above expression,
the only strings we need to consider are those in L(G) ∩ L(M). As weighted
intersection is by its nature restricted to strings in L(G) ∩ L(M), it follows
that the algorithms we have discussed earlier in this section can be straightfor-
wardly applied to approximate KL(pG || pM). A related observation is that the

29

normalization constant Z equals Z(S∩), where S∩ is the start symbol of the
PCFG resulting from weighted intersection, as in the construction discussed
before.

7 Discussion

Computation of distances between probabilistic languages has important ap-
plications in areas such as natural language processing, speech recognition,
computational biology and syntactic pattern matching. Most of the algorithms
reported in the literature are concerned with the computation of distances be-
tween pairs of languages generated by probabilistic finite automata. In this
paper we have extended some of these results to pairs of languages generated
by a probabilistic context-free grammar and a probabilistic finite automaton,
under various conditions.

There are no essential differences between probabilistic finite automata and
Hidden Markov Models (HMMs); see [39] for discussion. Our results easily
extend to the class of HMMs, which is used more frequently than the class of
probabilistic finite automata in such areas as speech recognition and compu-
tational biology.

References

[1] S. Abney, D. McAllester, F. Pereira, Relating probabilistic grammars and
automata, in: 37th Annual Meeting of the Association for Computational
Linguistics, Proceedings of the Conference, Maryland, USA, 1999.

[2] A. Aho, J. Hopcroft, J. Ullman, The Design and Analysis of Computer
Algorithms, Addison-Wesley, 1974.

[3] J. Baker, Trainable grammars for speech recognition, in: J. Wolf, D. Klatt (eds.),
Speech Communication Papers Presented at the 97th Meeting of the Acoustical
Society of America, 1979.

[4] Y. Bar-Hillel, M. Perles, E. Shamir, On formal properties of simple phrase
structure grammars, in: Y. Bar-Hillel (ed.), Language and Information: Selected
Essays on their Theory and Application, chap. 9, Addison-Wesley, Reading,
Massachusetts, 1964, pp. 116–150.

[5] T. Booth, R. Thompson, Applying probabilistic measures to abstract languages,
IEEE Transactions on Computers C-22 (1973) 442–450.

[6] J. Calera-Rubio, R. Carrasco, Computing the relative entropy between regular
tree languages, Information Processing Letters 68 (6) (1998) 283–289.

30

[7] R. Carrasco, Accurate computation of the relative entropy between stochastic
regular grammars, RAIRO (Theoretical Informatics and Applications) 31 (5)
(1997) 437–444.

[8] E. Charniak, Statistical Language Learning, MIT Press, 1993.

[9] Z. Chi, Statistical properties of probabilistic context-free grammars,
Computational Linguistics 25 (1) (1999) 131–160.

[10] A. Corazza, R. De Mori, R. Gretter, G. Satta, Computation of probabilities for
an island-driven parser, IEEE Transactions on Pattern Analysis and Machine
Intelligence 13 (9) (1991) 936–950.

[11] A. Corazza, R. De Mori, R. Gretter, G. Satta, Optimal probabilistic evaluation
functions for search controlled by stochastic context-free grammars, IEEE
Transactions on Pattern Analysis and Machine Intelligence 16 (10) (1994) 1018–
1027.

[12] T. Cormen, C. Leiserson, R. Rivest, Introduction to Algorithms, The MIT Press,
1990.

[13] R. Duda, P. Hart, D. Stork, Pattern Classification, John Wiley and Sons, New
York, NY, 2001.

[14] R. Durbin, S. Eddy, A. Krogh, G. Mitchison, Biological Sequence Analysis:
Probabilistic Models of Proteins and Nucleic Acids, Cambridge University
Press, Cambridge, UK, 1999.

[15] K. Etessami, M. Yannakakis, Recursive Markov chains, stochastic grammars,
and monotone systems of nonlinear equations, in: 22nd International
Symposium on Theoretical Aspects of Computer Science, vol. 3404 of Lecture
Notes in Computer Science, Springer-Verlag, Stuttgart, Germany, 2005.

[16] B. Gregory, E. Kaltofen, Analysis of the binary complexity of asymptotically
fast algorithms for linear system solving, SIGSAM Bull. 22 (2) (1988) 41–49.

[17] U. Grenander, Lectures in Pattern Theory, Vol. I: Pattern Synthesis, Springer-
Verlag, 1976.

[18] T. E. Harris, The Theory of Branching Processes, Springer-Verlag, Berlin,
Germany, 1963.

[19] J. Hopcroft, J. Ullman, Introduction to Automata Theory, Languages, and
Computation, Addison-Wesley, 1979.

[20] S. Hutchins, Moments of strings and derivation lengths of stochastic context-
free grammars, Information Sciences 4 (1972) 179–191.

[21] F. Jelinek, Statistical Methods for Speech Recognition, MIT Press, 1997.

[22] F. Jelinek, J. Lafferty, Computation of the probability of initial substring
generation by stochastic context-free grammars, Computational Linguistics
17 (3) (1991) 315–323.

31

[23] D. Jurafsky, J. Martin, Speech and Language Processing, Prentice-Hall, 2000.

[24] C. Kelley, Iterative Methods for Linear and Nonlinear Equations, SIAM,
Philadelphia, PA, 1995.

[25] H. Lewis, C. Papadimitriou, Elements of the Theory of Computation, Prentice-
Hall, 1981.

[26] R. Lyngso, C. S. Pedersen, The consensus string problem and the complexity of
comparing hidden Markov models, Journal of Computing and System Science
65 (2002) 545–569.

[27] C. Manning, H. Schütze, Foundations of Statistical Natural Language
Processing, Massachusetts Institute of Technology, 1999.

[28] M.-J. Nederhof, Weighted deductive parsing and Knuth’s algorithm,
Computational Linguistics 29 (1) (2003) 135–143.

[29] M.-J. Nederhof, A general technique to train language models on language
models, Computational Linguistics 31 (2) (2005) 173–185.

[30] M.-J. Nederhof, G. Satta, Probabilistic parsing as intersection, in: 8th
International Workshop on Parsing Technologies, LORIA, Nancy, France, 2003.

[31] M.-J. Nederhof, G. Satta, Kullback-Leibler distance between probabilistic
context-free grammars and probabilistic finite automata, in: Proc. of the 20th

COLING, vol. 1, Geneva, Switzerland, 2004.

[32] M.-J. Nederhof, G. Satta, Using newton’s method to compute the partition
function of a PCFG, submitted article (2006).

[33] A. Paz, Introduction to Probabilistic Automata, Academic Press, New York,
1971.

[34] E. Santos, Probabilistic grammars and automata, Information and Control 21
(1972) 27–47.

[35] S. Sippu, E. Soisalon-Soininen, Parsing Theory, Vol. I: Languages and Parsing,
vol. 15 of EATCS Monographs on Theoretical Computer Science, Springer-
Verlag, 1988.

[36] S. Soule, Entropies of probabilistic grammars, Information and Control 25
(1974) 57–74.

[37] P. Starke, Abstract Automata, North-Holland Publishing Company,
Amsterdam, 1972.

[38] A. Stolcke, An efficient probabilistic context-free parsing algorithm that
computes prefix probabilities, Computational Linguistics 21 (2) (1995) 167–
201.

[39] E. Vidal, F. Thollard, C. de la Higuera, F. Casacuberta, R. C. Carrasco,
Probabilistic finite-state machines – Part I, IEEE Trans. on Pattern analysis
and Machine Intelligence 27 (7) (2005) 1013–1025.

32

[40] D. Wojtczak, K. Etessami, Premo: an analyzer for Probabilistic Recursive
Models, to appear in TACAS’07 (2007).

33

