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Abstract

In this paper, we consider the scheduling of jobs that may be com

peting for mutually exclusive resources. We model the conflicts between
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jobs with a conflict graphs so that all concurrently running jobs must

form an independent set in the graph. This model is natural and gen

eral enough to have applications in a variety of settings; however, we

are motivated by the following two specific applications: traffic inter

section control and session scheduling in high speed local area networks

with spatial reuse. Our goal is to bound the maximum response time of

any job in the system. It has been previously shown [13] that the best

competitive ratio achievable by any online algorithm for the maximum

response time on interval or bipartite graphs is Q{n), where n is the

number of nodes in the conflict graph. As a result, we study scheduling

with conflicts under probabilistic assumptions about the input. Each

node i has a value pi such that a job arrives at node i in any given time

unit with probability pi. Arrivals at different nodes and during different

time periods are independent. Under reasonable assumptions on the in

put sequence, we are able to obtain a bounded competitive ratio for an

arbitrary conflict graph. In addition, if the conflict graph is a perfect

graph, we give an algorithm whose competitive ratio converges to 1.
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1 Introduction

In this paper, we consider scheduling jobs which are competing for limited

resources. Jobs arrive in the system through time and require a certain set

of resources to be completed. Any two jobs which require the same resource

can not be executed simultaneously. We model the conflicts between jobs by

a conflict graph where each node in the graph represents a type of job. Jobs

of the same type have the same requirements. If two types of jobs demand a

common resource, there is an edge between those nodes in the graph. Thus, at

all times, the set of jobs currently being executed must belong to nodes which

form an independent set in the graph. Note that if there are two jobs of the

same type in the system, one must wait until the other is completed.

We were motivated by the following two specific applications:

Traffic Intersection Control ([4, 5, 6, 8, 9, 10, 11, 17, 19, 20, 21, 22,

24, 25, 26]). Today's traffic intersection controllers are based on thirty year

old signal phasing strategies. Signal phasings are optimized offline with his

torical data, downloaded into the controller and triggered by the presence of

vehicles. Even the state of the art in adaptive traffic signal control only ex

tend the optimization to a few seconds before every phase change. However,
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one expected consequence of an effective advanced traveler information system

(ATIS) [1, 2, 3, 15] is the rerouting of congested traffic to streets and arteri-

als that may either temporarily be under-utilized or which normally operate

below capacity. Under such conditions, signal settings which have been deter

mined based on recurrent traffic demand will not, in general, be "tuned" to

accommodate the transient demand generated by the real-time driver infor

mation. As a result, system performajice (as well as the effectiveness of the

ATIS) is limited by the capacity of the signal system to adapt to transient

traffic demand. Better strategies will be necessary for many of the proposed

Intelligent Transportation Systems.

A traffic intersection is depicted in Figure 1. As all drivers know, the traffic

on 1 is typically not allowed to proceed with the traffic on 2, 3, 4, 7, or 8. The

complete conflict graph for the traffic intersection is also depicted in Figure 1.

The intersection controller must schedule the vehicles through the intersection

so as to avoid any conflicts. We consider a 'job' to be a platoon or closely

spaced line of cars which must pass through the intersection.

Scheduling in high-speed local-area networks with spatial reuse

([7]). Local area networks with spatial reuse allow the concurrent access and
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Figure 1: The graph depicting a traflBc intersection.

transmission of user data with no intermediate buffering of packets. If some

node s has to send data to someother node f, a session is established between

the s and t. A session typically lasts for much longer than its data transmission

time and can be active only if it has exclusive use of all the links in its route

from 3 to t. Therefore, sessions whose routes share at least one link are in

conflict. Data transmissions among sessions must be scheduled so as to avoid

these conflicts. We examine the problem of scheduling connections on a bus

network where there is exactly one possible route between any two pairs of

points. Thus, if connections are defined by the two nodes which must be

connected, it is determined whether a given pair of connections will conflict

with each other.
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In the first application and for small networks in the second application,

it is reasonable to assume that each job requires roughly the same amount of

time to execute. Thus, we adopt a discrete model of time and assume that each

job requires one time unit to be completed once it is started. At the beginning

of a time unit, jobs may arrive on any subset of the nodes in G. The algorithm

then chooses any independent set of nodes from which to schedule a job. At

the end of the time unit, the scheduled jobs are gone from the graph. Then

at the beginning of the next time unit, another set of jobs may arrive.

There are two natural optimization problems that arise from this model.

The first is to minimize the total response time of all jobs in the system. The

second is to minimize the maximum response time of any job which enters

the system. We focus on bounding the maximum response time of any job

which is the maximum, over all jobs j, of dj —Uj, where dj is the time when

j departs and aj is the time when j arrives. In both applications we consider,

it is important to guarantee the best turnaround time to any job entering the

system.
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1.1 Our Results.

In a previous paper [13], we have shown that deterministic online algorithms

have substantial limitations in this model. Specifically, we showed that on a

path of n nodes, the competitive ratio can be as bad as Q,{n). Furthermore,

there is no known competitive ratio which is bounded by any function of n for

bipartite or interval graphs. As a result, we are lead to consider probabilistic

assumptions over input sequences. The class of distributions that we consider

can be defined by a vector D = (pi,P2»•• -yPn)- At each time unit, a job arrives

on node i with probability pi. Arrivals in successive time units and on different

nodes are completely independent. Any such vector P induces a distribution

over arrival sequences which we will call T>{P). For a given algorithm A, we

will be interested in finding an algorithm which minimizes £'<r€i>(P)[cost^((T)],

where cost^((T) is the maximum response time of any job when algorithm

A schedules input sequence a. We are also interested in determining how

good our algorithm is in comparison to the optimal algorithm (which knows

(7 in advance). In the style of analyzing online algorithms against a diffuse

adversary as defined in [16], we determine

^<T€'P(F)[cOStoPT(<'')]
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In all cases, we are able to obtain the same bound (to within additive lower

order terms) for

''ceV(P)
costx(f)

costopr(«7)

The first set of bounds apply to general conflict graphs. Then we show how

to significantly improve those bounds in the case that the conflict graph is

a perfect graph. Note that the class of perfect graphs includes both of the

applications mentioned earlier.

It is reasonable to restrict the set of distributions to stable distributions

where it is possible to schedule jobs in such a way that the number of jobs in

the system returns to 0 with probability 1. Let G' denote the extended graph

induced by the job arrivals in the first I time units. This graph is obtained by

replacing each node in the graph by a clique whose size is the number of jobs

at that node. If two nodes are adjacent in the conflict graph, then the two

corresponding cliques are completely connected. The chromatic number of G^

is the number of time units necessary to schedule the set of jobs arriving in

the first / time units. Let ti = I —£[x(G')]. Certainly if £/ < 0 for all /, then

even the optimal algorithm will accumulate a continually growing backlog of

jobs. Thus, the only distributions of interest are those where there exists an /
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such that c/ > 0. In section 3, we will focus our attention on a more restricted

class of distributions where €i > 0. In section 4, we will focus our attention

on the more general class of distributions where e/ > 0.

In all cases, the algorithm that we analyze is the simple algorithm which

for a given gathers all the jobs that arrive in each block of / consecutive time

units and optimally schedules them before cmy of the jobs in the next block

of I time units. Note that we are assuming that the conflict graph is small or

simple enough that it is feasible to color any induced extended graph either

in real time or with some pre-processing. Let G\ be the extended subgraph

induced by the jobs that axrive in the block of / consecutive time units.

Algorithm 1-block: Optimally schedulethe jobs from the /-blockstarting

at the first time unit after the /-block finishes and after all jobs from

the i ~ 1" /-block have been scheduled.

The first theorem bounds the competitive ratio of /-block on any conflict graph:

Theorem 1 Let G be any conflict graph and P he any distribution vector.

For edge (a, 6) such that paPb is maximized, if ei > 0,

£[cOSti-6focfc] _
E[cOStoPT]

(1 -h o(l)),
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where m is the length of the input sequence and x is the chromatic number of

the conflict graph.

In the case of ci > 0, we obtain the following bound

Theorem 2 Consider any conflict graph G = (ViE) and distribution vector

P. Ifti > 0, then

L;[costi-feioefc] ^
E[cOStoPT] ~ ^1

It is reasonable to think that by combining jobs from consecutive /-blocks

(i.e. considering larger /), some improvement in theperformance can begained.

It is possible that E[x(Gl)] < •£^[x('̂ })] + -^[x(G2)], in which case, the 2-block

algorithm will perform better than the 1-block algorithm. If this is not the

case, then even the adversary can not combine jobs from consecutive blocks

which should lead to a stronger lower bound on the optimal cost. We are able

to formalize this intuition in the case where the conflict graph is a perfect

graph. In this case, we can prove that as I grows, the competitive ratio of

/-block converges to 1. That is, the performance of /-block converges to the

optimal offline algorithm.

Theorem 3 Let G be a conflict graph which is a perfect graph and let P be

the distribution vector. Suppose that ei > 0. Then there is an algorithm A
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suck that

£^[costA]
E[c08toPT]

= 1 + 0(1),

where the o(l) is a function which tends towards 0 as the length of the sequence

grows.

The algorithm A uses the /-block algorithm, periodically increasing L The

proof generalizes easily to the case where < r for some r. However,

the algorithm must use a block length which is an integer multiple of r.

1.2 Previous Work.

Minimizing the maximum response time for general conflict graphs is NP-hard:

even when all jobs arrive in a single time unit, the problem is equivalent to

graph coloring [14]. Even approximating the minimum maximum response

time to within a fixed polynomial factor is NP-complete [18]. In [13], we focus

on the more traditional worst-case analysis. Our results focused on two special

clctsses of graphs motivated by our applications: interval graphs and bipartite

graphs. We argued that the problem of scheduling with the traffic intersection

conflict graph depicted in Figure 1 is equivalent to scheduling on a K2,2' We

described a simple algorithm and proved that it obtains a competitive ratio
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of 4 on a 7^2,2- This result was then generalized for arbitrary bipartite and

interval graphs. Although the algorithms for bipartite and intervals graphs

are quite different, the bounds they achieve are the same: we proved that for

any sequence of jobs, the algorithm can complete every job in time 0(n^A^)^

where A is the maximum response time over all jobs in the optimal schedule

and n is the number of nodes in the conflict graph. Note that to achieve a

bound on the competitive ratio, we would have had to upper bound the cost of

the algorithm by a function which is linear in A. We obtained a lower bound

of n(n) on the competitive ratio of any algorithm on an n-node path. Since a

path is both bipartite and an interval graph, this gives a lower bound for both

classes.

2 A Useful Result from Queuing Theory

All of our bounds on the maximum response time make use of the following

result from queuing theory which follows from a result due to Iglehart [12].

Lemma 4 Suppose we have a sequence of identical independantly distributed

(i.i.d.) random variables 01,02,... ,Q:„ such that o,- € Z, E[ai] < Q, and

^ c for some constant c. We will denote the Prob[ai = x] by p^. Then let
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7 be the constant greater than 1 which satisfies:

xez

Define the sequence Qi = mcix{0,a, + Qi-i}, and let

Mm = majc aj.
l<»<m

Then

^(1 -0(1)) <f;[M„]< ^(1 +0(1)),
where the o(l) is taken to be a function of m.

Iglehart's theorem is proven for continuous time arrivals. We use a result

from Spitzer [23] to determine the distribution for discrete time arrivals. Igle-

haxt's result gives a very tight characterization of the distribution over Mm-

This allows us to derive an upper bound for the expectation of the ratio of the

online and offline costs as well as a bound on the ratio of the expectations.

See the Appendix for details.

We will frequently consider equations of the following form:

= 1-

As long as

Y.Pt = h
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the equation will have exactly two solutions: 1 and somevalue greater than 1.

When we refer to the solution to such an equation, we will always be referring

to the unique solution greater than 1.

3 «[x(G!)!<l

Throughout this section, we will assume that iJ[x(G-)] < 1 and analyze the

1-block algorithm.

3.1 A Bound for the Expected Cost

In order to find an upper bound for the algorithm, we will use Lemma 4

with ai = xi^i) - L Let rj be the probability that x(G-) = j. Define

Oj = Pro6[a, = j] = rj+i and let -yaig be the solution to the following equation:

E('Ta<.ra, = l.
xSZ

Let c = 1 —£^[x(G-)]. Lemma4 tells us the cost of the algorithm as a function

of faig- It is just a matter now of determining a bound for 'yaig-

Lemma 5

lalg > ( 1 + 1 —ri - €/ '
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where x ^ maximum value that x(^J) reach.

Proof. Since the Oi's are i.i.d., we will omit the subscript i. We know that

Qis an integer which is at least —1 and is at most Xi chromatic number

of the conflict graph. Thus, ^yaig is the solution to

E "jT" = 1-
~i<i<x

This is the same value which satisfies:

Thus, we can just consider the random variable a' which is j with probability

for j = Define

j ~ 1 ^^ 1 — ao

For every j > 0, let xj be the random variable which can only take on the

vcdues j or —1 and whose expectation is —c'. Oj = Prob[xj = j] is fixed and

can be easily determined as a function ofe' and j. Now suppose we generated

a' in the following way: Pick j € {1,2,. ..,x} with probability pj such that
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Pj ' Uj = a'j. Then generate Xj, and let a' take on the value of Xj. It can be

verified that this is exactly the distribution of a' and that the pj's sum to 1.

For j > 0, let 7j be the solution to

Now let

For all y,

Thus,

aiW +̂ =1-

7min = mm 7,-.

ajl^minY + ^ <1.
7nim

(l - ao) (1 -o<i<x

= E Pi ai(7mm)^ +^—^
0<i<x t Imin

< 1.

Note that if we plot

E +^
0<j<x '

as a function of 7, it is below 1 only for those values of 7 between 1 and %ig.

Thus, -yalg > Imin-
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Solving for Cj and plugging it in, we get that 7^ is the solution to the

following equation:

JTrr + lTTT);

It can be verified, that if we let

This tells us that

irh)'-

j +i)^ Vi +J 7

lalg ^ Imit

— mm 7,

I<i<x

> min ( )'
i<i<x VI - eV

= (l+i_e-rJ
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Using the lower bound for 7a/j, we just have to plug the expression into

the bound from Lemma 4 and simplify.

Theorem 6

£^[cOSti_6/ocit] <^^^(1 +0(1)),

where m is the length of the sequence.

Proof. Using Lemma 4, we know that

£[cOSti-fciocfc] < ] (1 + o(l))
in7a/p

^ TO'-"'"'

3.2 Bounding the Competitive Ratio

In order to bound the ratio of the online to the offline, we need now a lower

bound for the optimal. For the lower bound on the optimal, we will determine

the backlog of jobs which accumulate on a single edge. We pick the edge (a, 6)

such that paPb is maximized. Then we invoke Lemma 4 with a,- defined as



Probabilistic Analysis of Scheduling with Conflicts

+1 with probability paPb

o:i = ' 0 with probability Pa(l - Pb) + P6(l —Pa)

—1 with probability (1 —Po)(l —Pfc)-

Then 7opt is chosen so that 7opf > 1 and

lopt[PaPb] + [Pa(l - Pb) + Pb{l - Pa)] + — — = 1-
lopt

There are two solutions to (2). The first is 1 and the second is less than

Lemma 7

lopt ^
1 — e — ri

where \E\ is the number of edges in the conflict graph.

Proof. In order to find an upper bound for

consider the graph obtained from the jobs that arrive during the t"" time unit.

Let Hi be the number of nodes which are part of connected components of size
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more than one in this graph.

Thus,

ElxiG])] < r^^E[m]

< ri + 2 ^ pipj
(iJ)eE{G)

< ri-}-2\E\(paPb)-

£;[x(Gj)] - n = 1 - e - n < 2\E\(p,pt).

The latter inequality holds since edge (a, 6) was chosen to maximize PaPb'

Regrouping, we get that

Thus,

1 ^ m
PaPb 1 ~ e - ri

lopt ^
1 - e - ri

Using the lower bound on the optimal and the upper bound on the algo

rithm, we can upper bound the ratio of the expected cost of the algorithm

over the expected cost of the optimal.

Lemma 8

^[costi.fejoefc] ^ x{G) ln(2|£;|)
£[costoFr] ~ e
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Proof. Using Lemma 4, we know that

E[costi.biock] ^ _l_ o(l))
E[costopT] ~ ln7ais

1" (l +TT^)

4 E[x{Gi)]<l

We will now consider the case where / —1 < £[x((?i)] < I and examine the

performance of the /-block algorithm.

4.1 A Bound for the Expected Cost

In order to find an upper bound for the algorithm, we will be using Lemma 4

with Qj = x(^!) ~ probability that x(^!) = j- We now

define Oj = Prob[Qi = j] = rj+/. Now let 'yaig be the value greater than 1 such
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Lemma 9

E(7a/.r«x = l.
®€2

5. /rani and V. Leung

> /'l 4. ('<^+1)^ \- 1, +/C(l-r,-£)j '

where c is the maximum value that x{^J) reach.

Proof. Define

1 —n 1 —flo'

For 1 < j < Ic and 1 < A: < /, it is possible to find values Oj < aj and

a-k ^ fl-jb so that if we let

Pj,k = - , -
Cj + a-k

jPi.k - <:(1 - Vi,k) =
1 — Co

Now if we let 7^,^ be the value greater than 1 which satisfies

ij,k
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then 7o<5 is a weighted average of the 7j,fc's. We will prove that for all j smd fc,

1 +
(/c-t- l)e

/c(l —n —e)

We first observe that

(, , {lc+l)e \ U+ ^)e"\ ^ ^(1 -Pj,t)
+ - I, jPi.k '

We will show that

l3,k >
Ml

Alternatively, we will show that

_ , n ^ 7 jPi* V^'^1

This inequality follows from the fact that c' > 0 and hence

j+k-

When

Pj,k = -j + k'

the above inequality is an equality, and the left hand side decreases with pj^k-
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4.2 Bounding the Competitive Ratio

For the lower bound on the optimal, we will again determine the backlog of

jobs which accumulate on a single edge. We again pick the edge (a, 6) such

that paPb is maximized. Then we invoke Lemma 4 with a, defined as follows:

+/ with probability [paPb]'

-\-l - 1 with probability /(PaP6)^"^[po(l - Pb) + Pb(l - Pa)]

I —/ with probability [(1 —pa)(l —pfc)]'.

Then 7opt is chosen so that 'fopt > 1 and

yipt\PaPb]'-\-lopll(PaPby~'̂ \Pa{^~Pb)-^Pb{^~Pa)]-\---- +— ^ =1.
Topt

Lemma 10

Topt ^

Proof. There are two solutions to (3). The first is 1 and the second is less
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Thus

PaPb

Using the lower bound on the optimal and the upper bound on the algo

rithm, we can upper bound the ratio of the expected cost of the algorithm

over the expected cost of the optimal.

Lemma 11

E[costi-biock] ^
£[cOStoPTl ^

Proof. Using Lemma 4, we know that

•g[cOSti_fejocJb] ^ !E_22£I(i +o(l))
E[costoPT] ~ ln7oij,

< '(X(G) +I)ln(;^)
- In Cl + ^"

^ /(x(G) +l)x(G)(l-n-e)ln(;f^)
(X(G) + I)e ^

< (1 + 0(1)).
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5 Perfect Graphs

We now turn to the special case where the conflict graph is a perfect graph.

We are assuming that it is the case that J?[x(G'̂ )] < 1, although the proof

goes through under the weaker condition that for some r, £[x(G'")] < r as

long as the block size is chosen to be a multiple of r. We will consider the

/-block algorithm. Let 7en(0 > ^ satisfy

'£Problx(G')-l = x](t^H)r = l.

Let C be a clique in the graph. Let Cf be the number of jobs arriving in

the clique in the time unit. Let C- be the number of jobs arriving in the

/-block. The same 7c > 1 satisfies both of the following equations:

1 =
X

1 = YlilcfProbp -l = x]

We prove the following theorem:

Theorem 12 There is a clique C such that

lonil) >
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The 0(1) above is taken to be as m grows. All other parametersof the system

are constants.

The proof of Theorem 3 is straightforward once Theorem 12 has been

established:

Proof of Theorem 3. The algorithm implements the /-block algorithm,

periodically increasing I so that / grows with the length of the sequence and

the additional cost of / grows more slowly than the cost of the algorithm. One

way to achieve this is to double / every time the cost of the algorithm increases

by a factor of 4. In this case,

£^[cOS'ton/ine] lu"yppf ..
.£;[costopr] ln7on(/)

ln7c

= (1 + 0(1))-

Before proving Theorem 12, we require some definitions. Fix a value for /.

For each clique C, let

= Prob[C' —I = X

fic = I-EIC]
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As defined above, 7c is the solution to

YIpcAicT = 1.

Define 70 to be the solution to

S. Irani and V. Leung

1- iv PC.J (7c)®+nj: pcAjcf=1,
x>B J x>B

where N is the number of cliques in the graph.

Lemma 13 If

<

then (7c)^ ^ 7c> where the o(l) tends towards 0 as I gets large.

We first give the proof of the theorem modulo Lemma 13.

Proof of Theorem 12. Consider the solutions to the following series of

equations. In each step, weight is either added to the coefficients on the right
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or weight is shifted from smaller values of x to larger values of x. In either

case, the value of 7 which satisfies the equation does not increase.

= Prob[x(G') - I = xl7'

= ^ Proi[maj: C' —1= x]7®

^ Pro6[max C' - I= x]7^ + ^ Pro6[max C - I= x]7'
x<B ^ x>B

E + E
x<B C x>B C

Let 7 be the solution to the last equation. Notice that

is the average of

E + E JLpc '̂y'
x<B C x>B C

E ^PC.xl^ + E ^PC.xl",
x<B x>B

for all cliques. Thus, if we let D be the clique with the smallest 70, we know

7on(0 > 7 > 7D-

If we can show that
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then we can invoke Lemma 13 and the theorem follows. Suppose that for some

Let F be the clique which realizes //mm- We will show that 7f < 7f < 7c

which establishes that C can not be the clique with the smallest 7c. 7f is

maximized when [F^ —1] is +1 with probability p and —1 with probability

1 —p where p is chosen so that p —(1 —p) = Pmin- It can be verified that in

this case, 7f < 1+ Pmin <1 + ^Mc- Thus, all we must do is to show that

Since

the first term is

(1 + Pmin)^ + ^ PC,x (1 + CcPcT < L
x>B

Pmini
2 '

(l+Z^min) 2 <6 2

As I grows, this term becomes very small.

The remainder of the left hand side is maximized when [C^ —1] is +x

with probability p and -x with probability 1 - p where p is chosen so that
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f;[l - C^] = (ic. Since -nc = XP- X(1 - we get that

X-PC

pc,x is only non-zero with probability when x is a multiple of x in which case

ProblC'-l =yx]=[!^) ^
For ease of notation, we make the substitution

PC,xy =

-f

Now to bound the second term in the sum:

^ X]PC,r(l + OfMc)'
x>B

1-fl + f

X A f\

1 + ^-^^ ' 2 2

-f)'

l-fl + /3

-g)'(-er
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l\fl (1

y># ^ 2 '-5 '^5

B \ 2 2 4x

The latter summation is simply the probability that the sum of / i.i.d. random

variables whose expectation is

is at least

This value is exponentially small in I and for large enough /, it will be much

less than

Proof of Lemma 13. Throughout this proof, we refer to one clique C, so

we drop the subscript C from the parameters. The bound is proven by a series

of steps. In each step we consider the solution to a new equation. The solution

to the first equation is 7c eind the solution to the last equation is 7c. At each

step we prove that the equation changes by a sufficiently small amount that
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the solution decreases by at most a power of 1 —o(l). Let

B- .

- -''(•* I)
P+ = ProblC' e

P- = ProblC'- I < B-] <

To derive the inequalities above, observe that C' —1 is the sum of / i.i.d.

random variables. The expectation of - 1 is ^ and its maximum value is

X- Then apply a standard Chernoff inequality.

Now consider the following four equations:

70 satisfies 1 =
X

71 satisfies 1 = ^
x<B~ xyB"

72 satisfies 1 = (1 —P'*")7^^ + pxl^
«>B+

73 satisfies 1 = (1 —iVP'*")7^^ + ^ iV7^px
x>B+

The following lemma which is proven in the Appendix will be very useful.

Lemma 14 Suppose that 7 > 1 and satisfies the following inequality

E p.r <i+A
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Suppose that 7 *5 the solution to

^ = 1.
s<x<b

Then 7 > 7^"® as long as there exists X < 0 and P such that the following

conditions are satisfied.

Z! Px = 1-
s<x<b

In (1 + 5^^)

E Px^l-i'-
l<X<^

7 -* > —65.

^<i.
1 -P - 6
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Step 1: We know that

E Pr{tof*+ E Px(7or <!+/'-•
x<B- x>B-

We must establish that for sufficiently large /, all the conditions of

Lemma 14 are satisfied in order to lower bound 71. We will let A

P X B+, s* and 6 ^ x'-

Condition 1 follows from the fact that

E Px = Epx = 1-
s<x<b «

Condition 3 follows from the fact that a fraction of at least 1 —P"*" of

the weight is on values which are at most To establish condition 4,

we must prove that 7^^"^ > 6/. 70 is minimized when C* - 1 is +x with

probability p and —x with probability 1 —p, where p is chosen so that

Xp —(1 —p)x = p. In this case,

Thus,

As long as

7o>|l + -

(70)-"^ >11 +^
2(X+1) lau*

I > 4x(x+ 1)
log 1 " ap? '
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we will have that 70 > 61. Condition 5 is satisfied since P~ is expo

nentially small in /, so there is an I large enough so that

-^<1.
1 - P+ - 6

Thus, by Lemma 14, 71 > 70 for

In (1 +

Step 2: We know that

H H Pi(7if < 1+y,
x<B+ x>B+

where

V< 7^ - 7f' < 7f^ = -yi' .

In a similar manner to Step 1, letting A Y, P *— P"*", X *—

3 < /, and b <— we can show that the conditions for Lemma 14 are

satisfied which will give us that 72 > 7}"*^ for

In (1 -H (iStj)

Using the fact that
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is exponentially smsJl in /. Thus, / caji be chosen large enough so that

1 - P+ - 6

Again, using the fact that

an almost identical cirgument as in Step 1 can be used to show that for

/ large enough, > 61. Thus, by Lemma 14, 72 > 7i~^' for

^ In (1 + (iSry)
M •

Step 3: Let d = Inf, and pick the largest S so that (72)^ ^ We know

1- - S Px (72)^ + H A^(72rP:r+
I B+<x<S x>S J B+<x<S x>S

< (AT'̂ +'p-^j + l.

Since is exponentially small in I and A is a constant which depends

only on the graph, when I is large enough, N'̂ '̂ ^P'̂ will be at most
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and we can apply Lemma 14 as in Steps 1 and 2. Thus, we have some

72a which satisfies

(72ar+ E + E Px(72.r = 1,
B+<ar<5 ®>5

where jsa > 72"°^^^- Now let 726 = (720)^"^- When a: > 5, we know

Thus,

(726)^ <
N '

(72i)®^+ E ^PA72bf <l + h2bf-
s>B+

Since 7^^ is very small, we can apply Lemma 14 again to get that 73 >

l-o(l)
726 •

For perfect graphs, the following lemma shows that if there exists r such

that £[x(G'")] < r, then for all / > r, £^[x(GO] <

Lemma 15 IfG is a perfect graph, then

mo'i)] ^ I
- /+i
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Proof. Let betheextended graph formed by thearrival ofmjobs

on node i. Let g, = 1 —pi-

/ \

^ S *•* 51 X(<Jni,n2,...,n*) n P» *9*
ni=0n2=0 n*=0 »=l

1+1 l+l 1+1 fe / + 1

E[x(G'̂ ')] = E E E „jn
TH=0n2=O n*=0 t=l

Each term

k I

X(^ni.n2,—.n*) U

in £?[x(Gi)] is equivalent to

ni+l 712+1 nfc+1 k I

S S "• £ x(<^ni.n2 njn
Ui=ni U2«7l2 ^k—^k »=1 —

Pi-?.'""'""-

The equivalence can be verified by observing that there axe 2^ terms in the

summation in (5), each one represented by a subset S of {1,2,...fc}. For

i € 5, we take u, = n, + 1 and for t ^ 5, we talte Uj = nj. The equivalence

follows using the identity

E nP'n9i=i-
SC{1,2 k}i€S tgS

Now we can express E[x(G-)] by substituting the term in (5) for the term in

(4) and regrouping. Let hi = max{0,ni —1} and n,- —min{i, ni}. All the
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terms in £?[x(Gi)] with the fax:tor

ni„l+l"ni
IIp'"'?'

in its equivalent representation from (5) sum up to

ni fi2 "fc A I

E E E .jn
ui=ni U2=n2 «fc=nfc

•^[x(^i)] can be obtciined by summing the above expression over all combina

tions for the n,-'s ranging from 0 to / 1. The term in with the

factor

«•«'+l-n,
IlPi"'?'

k /+ 1
„jn

We wish to show that (/ -|- 1) • (Expression (6)) is at least I • (Expression (7)).

This is the same as showing

1 nj n2 k I

T E E E x(G'«i,u2,....«fc)II
ui=ni u^=no utsnt

/
* / + 1

^ j j X(^ni ,n2,— ,nfc )n
\ /.
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Let each term

k I

xiOu, .«2.—.Ufc )n
i=l

in (8) be a vertex in a graph H. Let there bean edge between any two ofthese

terms that differ in only one of their u '̂s. H is a hypercube of dimension d

equal to the number of i's such that n, ^ hi.

Since Gni,n2,...,n* is a perfect graph, there is a subset 5 such that

jes

Note that we never need to include j in 5 if rij = 0. If we substitute

i€S

into (9), we get

We know that

i€5

Thus, (8) is at least

1 fti n2 n* * / 7 \

jE E-EE".nr
tijsnj U2=A2 «fc="fc j€5 t=l V V

= -E E E E'f'~M n (']•
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The theorem follows from the identity:

( ' ) U E E - E f'"M n f'l

This identity can be proven by induction on k using the fact that for = / +1

or fii = 0, then n, = n,, and

In the case of i = j, we use the fact that

Ui-lJ \n,-l

(Recall that it will never be the case that rij = 0 for any j € 5.) Then for

I < Tii < I., v/e use the fact that

-U -

In the case of z = we use the fact that
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6 Open Problems

We would like to extend the analysis of the /-block algorithm to non-perfect

graphs and slowly varying loads p, at node i.
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A Appendix: Proofs of Queuing Theory Re

sults

A.l Iglehart's Lemma

Iglehaxt proves a continuous time version of our lemma where arrival and

departure rates from a queue are i.i.d. random variables. In order to prove
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the discrete time version which we use here, we use the following lemma which

can be found in Spitzer, p. 218 [23].

Lemma 16 Let ... be a sequence of i.i.d. random variables. The Xi's

are integers and we will denote the Prob[Xi = j] by pj. We will consider the

random walk defined by

Sn=t,Xi.

Suppose that Xi is a-periodic,

Y^jPj < oo
j=i

and E[Xi] = p <0. Let 7 be the positive number satisfying

Suppose further that

Yl I'P' =

0 < ^ x^^Px < 00.
r€Z

If wt define M = max{5n 1n > 0}, then there is a constant such that

lim Prob[M > x]

With this lemma, Iglehart's proof goes through, practically unchanged to

yield the following tight characterization of the distribution over Mm-
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Lemma 17 Suppose we have a sequence of identical independantly distributed

random variables ai,a2)'*'j^n such that G Z, £[a,l < 0, and oci < c for

some constant c. We will denote the Prob[ai = x] by Px- Then let 7 be the

positive constant which satisfies

E T'P* =

Define the sequence d,- = max{0,aj + d,_i}, and let

Then

Mm = max di.
l<t<m

lim Pr[\n^Mm —logfcm <x] = A*(a:),

where A(a:) = e k is a constant which depends only on and <l> —

£;[min{j | j > 0,dj = 0}].

A.2 Proof of Lemma 4

Let 7,<^ and Mm be defined as in §A.l. We will show that there is a constant

k such that for large enough m,

1 ,-,fw T Infcm 2
_ _ < £[M„] < — +In km —In ^ 1

In 7 7 -
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Using Lemma 17, for m large enough we have that

Thus,

f In km 1
Prob Mm - 1 >y = 1 -

eH—

< 1- 1 1 2
^ "r ^.eV»n-r

, Inkm ^
E[Mr„\ - < 2^ 7

ln7 't>

2^ 2

For the lower bound, we will use the fact that for m laxge enough,

Thus,

rinfcm-ln<A ay 1
Frob ; Mm £ y = e •

in 7

1 1
< 1" — =
" tAi' 7-1
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A.3 Bounding the Expectation of the Ratio

Iglehart's Lemma gives a very tight characterization of Mm which allows us

to prove a bound on the ratio of the expected maximum achieved by two se

quences. In order to upper bound the ratio, we need to establish that the

maxima of the two sequences are positively correlated. In all of our prob

lems, the maximum accumulation of jobs on an edge or clique in the graph

is positively correlated with the performance of the /-block algorithm, so the

following lemma implies that our bounds hold for the expectation of the ratio

as well as the ratio of the expectation.

Lemma 18 Suppose we have two random variables Mn ond Mn, each defined

by its own random walk as described above. 7 and <t> are as defined above for

Mn, and 7 and i are the corresponding values for Mn- Suppose that Mn and

Mn are positively correlated so that for all x and y such that x > y,

E[Mn \Mn = x]> ElMn \ Mn = v]-

Furthermore, suppose that Mn = 0 only if Mn = 0. Then

lim <1^(1 +0(1)).
.Mn. m7
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Proof. From the positive correlation assumption, we have that

e\^] <E[M^]e\^ .

In /jn —In ^

We know that

Pr[Mn < A —x] = e '^forl^aj^A —1.

^ = E

Then Prob[Mn > A]> I-X. Thus,

1 -X

A ^^ X=1
1 _ Y

xe-'<'

We must now establish that
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using the fact that A grows with respect to n while all the other variables are

constant. We divide the sum into two parts and bound each part separately:

^ xe-'̂ ' X{A- x)e- '̂
[rs=l ^ ^ /I X

The first summation can be bounded follows:

y EISL <1V —<—-— =Of-l
^^7' ^4(7-1)2 \AJ

The second summation can be bounded as follows:

(A —x)e

^ ?5?
s 4f:i

72 x=l ®

73

Thus, using the result from Lemma 4, we can conclude that
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B Proof of Lemma 14

In order to prove Lemma 14 we need the following lemma which we state

without proof.

Lemma 19 Consider 7 which satisfies

Y,Pxl' = c.

Suppose that

~s<x<b X

For each pair (i,j) € [1,..., s] x [1,..., 6], we can find and fiij such that

= c(a.vj + fiij)

Y^aij = p-i
j

ZAj = Pi

We use Lemma 19 to get a set of a's and such that for any pair (a,c),

aoc7 " + ^acY = (1+ ^)(Qac + fiac)-

After normalizing, we get that for

Qac + 0ac'
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(1 - pjj'" + pj'' = (1 -i- A).

We would like to find a 7 such that for any a > —X,

[(1 - P)7-" +P7l - [(1 - P)7-" +P7l >3^. (:

If we succeed, then we will have

SEK'y"' + Ajf]
» i

^ E + E EK-7"' + Ajfl
i>-X j i<-X j

< E E (1 + +A.) + E E(1 + +Ai)
i>-X j ^ i-/-/ i<_x j

< P-i(^ AA- ] +X^(l +A)pj + p_.-(l +X)
i>-x ^ i-py j i<_x

< (1-P)(i +A-^)+(1 +A)P
= 1.

Using (1 - + PT-" = (1 + ^) to solve for p, we get that

1 + ^-7-
P = — :: •

Y - 7-»

We use this value to plug into (10). We also make the substitutions 7^7^ S

where

_ ln(l+3A0 ^ {n(l-\-3A')
cln7 ~ In 7
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I-P-

This results in the following inequality which we would like to establish:

7C - 7"°

7'-7"" /

We will make the substitution 0 = and

jfc =
a

[1-<1 + 3A')?]

1+3/1'
>A'.

Keep in mind the assumptions of the lemma which tell us that

V 6a 6^ = 7° > 7--^ > -65 > — = 7.
c k

We want to prove the following:

this is true as long as

k ak-l

0' - 0^'

A' K —
^ -6'

1+3/1'
> A'.

3A'f - p-'(l + A)\ , + w
-ir[ ^ J-"^-
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It is sufficient to show that

±(1 - p") + 20'-' +J>0-

Since > 6, it is sufficient to verify that

i(l - 0') +0'- 20'-' +4>0.

Since > 4, the inequality holds.




