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a b s t r a c t

Uncertain information is commonplace in real-world data management scenarios. The
ability to represent large sets of possible instances (worlds) while supporting efficient
storage and processing is an important challenge in this context. The recent formalism
of world-set decompositions (WSDs) provides a space-efficient representation for uncertain
data that also supports scalable processing. WSDs are complete for finite world-sets in
that they can represent any finite set of possible worlds. For possibly infinite world-sets,
we show that a natural generalization of WSDs precisely captures the expressive power
of c-tables. We then show that several important problems are efficiently solvable on
WSDs while they are NP-hard on c-tables. Finally, we give a polynomial-time algorithm
for factorizing WSDs, i.e. an efficient algorithm for minimizing such representations.

Crown Copyright© 2008 Published by Elsevier B.V. All rights reserved.

1. Introduction

Recently there has been renewed interest in incomplete information databases. This is due to the many important
applications that systems for representing incomplete information have, such as data cleaning, data integration, and
scientific databases.

Strong representation systems [19,3,18] are formalisms for representing sets of possible worlds which are closed under
query operations in a given query language. While there have been numerous other approaches to dealing with incomplete
information, such as closing possible worlds semantics using certain answers [1,7,12], constraint or database repair [13,
10,9], and probabilistic ranked retrieval [14,4], strong representation systems form a compositional framework that is
minimally intrusive by not requiring to lose information, even about the lack of information, present in an information
system: computing certain answers, for example, entails a loss of possible but uncertain information. Strong representation
systems can be nicely combined with the other approaches. For example, data transformation queries and data cleaning
steps effectedwithin a strong representation systems framework can be followed by a querywith ranked retrieval or certain
answers semantics, closing the possible worlds semantics.

The so-called c-tables [19,16,17] are the prototypical strong representation system. However, c-tables are not well suited
for representing large incomplete databases in practice. Two recentworks presented strong, indeed complete, representation
systems for finite sets of possible worlds. The approach of the Trio x-relations [8] relies on a form of intensional information
(‘‘lineage’’) only in combination with which the formalism is strong. In [5] large sets of possible worlds are managed using
world-set decompositions (WSDs). The approach is based on relational product decomposition to permit space-efficient
representation. [5] describes a prototype implementation and shows the efficiency and scalability of the formalism in terms

I This article is an extended version of the paper [L. Antova, C. Koch, D. Olteanu, World-set decompositions: Expressiveness and efficient algorithms, in:
Proc. ICDT, 2007, pp. 194–208] that has appeared in the Proceedings of the International Conference on Database Theory (ICDT) 2007.
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Fig. 1. Two completed survey forms and a world-set relation representing the possible worlds with unique social security numbers.

of storage and query evaluation in a large census data scenario with up to 2106 worlds, where each world stored is several
GB in size.
Examples of world-set decompositions. AsWSDs play a central role in this work, we next exemplify them using twomanually
completed forms that may originate from a census and which allow for more than one interpretation (Fig. 1). For simplicity
we assume that social security numbers consist of only three digits. For instance, Smith’s social security number can be read
either as ‘‘185’’ or as ‘‘785’’. We can represent the available information using a relation in which possible alternative values
are represented in set notation (so-called or-sets):

(TID) S N M
t1 { 185, 785 } Smith { 1, 2 }
t2 { 185, 186 } Brown { 1, 2, 3, 4 }

This or-set relation represents 2 · 2 · 2 · 4 = 32 possible worlds.
We now enforce the integrity constraint that all social security numbers be unique. For our example database, this

constraint excludes 8 of the 32 worlds, namely those in which both tuples have the value 185 as social security number.
This constraint excludes the worlds in which both tuples have the value 185 as social security number. It is impossible to
represent the remaining 24 worlds using or-set relations. What we could do is store each world explicitly using a table
called a world-set relation of a given set of worlds. Each tuple in this table represents one world and is the concatenation of
all tuples in that world (see Fig. 1).

Aworld-set decomposition is a decomposition of aworld-set relation into several relations such that their product (using
the product operation of relational algebra) is again the world-set relation. The world-set represented by our initial or-set
relation can also be represented by the product

t1.S
185
785

×
t1.N
Smith ×

t1.M
1
2

×

t2.S
185
186

×
t2.N

Brown ×

t2.M
1
2
3
4

In the same way we can represent the result of data cleaning with the uniqueness constraint for the social security
numbers as the product

t1.S t2.S
185 186
785 185
785 186

×
t1.N
Smith ×

t1.M
1
2

×
t2.N

Brown ×

t2.M
1
2
3
4

One can observe that the result of this product is exactly the world-set relation in Fig. 1. The decomposition is based on
the independence between sets of fields, subsequently called components. Only fields that depend on each other, for example
t1.S and t2.S, belong to the same component. Since {t1.S, t2.S} and {t1.M} are independent, they are put into different
components.

WSDs can be naturally viewed as c-tables whose formulas have been put into a normal form represented by the
component relations. The following c-table with global condition φ is equivalent to the WSD with our integrity constraint
enforced.
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Table 1
Decision problems for representation systems

Input Representation system W , instance I = (RI ), tuple t

Problems Tuple possibility: ∃A ∈ rep(W) : t ∈ RA

Tuple certainty: ∀A ∈ rep(W) : t ∈ RA

Instance possibility: ∃A ∈ rep(W) : RI
= RA

Instance certainty: ∀A ∈ rep(W) : RI
= RA

Tuple q-possibility (query q fixed): ∃A ∈ rep(W) : t ∈ q(A)

Tuple q-certainty (query q fixed): ∀A ∈ rep(W) : t ∈ q(A)

Instance q-possibility (query q fixed): ∃A ∈ rep(W) : RI
= q(A)

Instance q-certainty (query q fixed): ∀A ∈ rep(W) : RI
= q(A)

Table 2
Comparison of data complexities for standard decision problems

v-tables [3] (g)WSDs Trio [8] c-tables [17]
Tuple possibility PTIME PTIME PTIME NP-compl.
Tuple certainty PTIME PTIME PTIME coNP-compl.
Instance possibility NP-compl. NP-compl. NP-hard NP-compl.
Instance certainty PTIME PTIME NP-hard coNP-compl.
Tuple q-possibility NP-compl. NP-compl. ? NP-compl.
positive relational algebra PTIME PTIME ? NP-compl.
Tuple q-certainty coNP-compl. coNP-compl. ? coNP-compl.
positive relational algebra PTIME coNP-compl. ? coNP-compl.
Instance q-possibility NP-compl. NP-compl. NP-hard NP-compl.
Instance q-certainty coNP-compl. coNP-compl. NP-hard coNP-compl.
positive relational algebra PTIME coNP-compl. NP-hard coNP-compl.

T S N M cond
φ = ((x = 185 ∧ z = 186) ∨ (x = 785 ∧ z = 185)∨

(x = 785 ∧ z = 186)) ∧ (y = 1 ∨ y = 2)∧
(w = 1 ∨ w = 2 ∨ w = 3 ∨ w = 4)

x Smith y
z Brown w

Formal definitions of WSDs and c-tables will be given in the body of this article.
Contributions. The main goal of this work is to develop expressive yet efficient representation systems for infinite world-
sets and to study the theoretical properties (such as expressive power, complexity of query-processing, and minimization)
of these representation systems. Many of these results also apply to – and are new for – the world-set decompositions of [5].

In [18], a strong argument is made supporting c-tables as a benchmark for the expressiveness of representation systems;
we concur. Concerning efficient processing, we adopt a less expressive syntactic restriction of c-tables, called v-tables [19,
3], as a lower bound regarding succinctness and complexity. Themain development of this article is a representation system
that combines, in a sense, the best of all worlds: (1) It is just as expressive as c-tables, (2) it is exponentially more succinct
than unions of v-tables, and (3) on most classical decision problems, the complexity bounds are not worse than those for
v-tables.

In more detail, the technical contributions of this article are as follows1:

– We introduce gWSDs, an extension of the WSD model of [5] with variables and possibly negated equality conditions.
– We show that gWSDs are expressively equivalent to c-tables and are therefore a strong representation system for full

relational algebra.
– We study the complexity of the main data management problems [3,19] regarding WSDs and gWSDs, summarized in

Table 1. Table 2 compares the complexities of these problems in our context to those of existing strong representation
systems like the well-behaved ULDBs of Trio2 and c-tables.

– We present an efficient algorithm for optimizing gWSDs, i.e. for computing an equivalent gWSD whose size is smaller
than that of a given gWSD. In the case of WSDs, this is a minimization algorithm that produces the unique maximal
decomposition of a given WSD.

One can argue that gWSDs are a practically more applicable representation formalism than c-tables: while having the
same expressive power, many important problems are easier to solve. Indeed, as shown in Table 2, the complexity results
for gWSDs on many important decision problems are identical to those for the much weaker v-tables. At the same time

1 This article extends [6] with proofs, a modified algorithm for relational factorization with better space complexity, and new data complexity results
for tuple q-possibility, tuple q-certainty, and instance q-certainty, where the query is a full or positive relational algebra query.

2 The complexity results for Trio are from [8] and were not verified by the authors.
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WSDs are still concise enough to support the space-efficient representation of very large sets of possible worlds (cf. the
experimental evaluation onWSDs in [5]). Also, while gWSDs are strictly stronger than Trio representations, which can only
represent finite world-sets, the complexity characteristics are better.

The results on finding maximal product decompositions relate to earlier work done by the database theory community
on relational decomposition given schema constraints (cf. e.g. [2]). Our algorithms do not assume such constraints and only
take a snapshot of a database at a particular point in time into consideration. Consequently, updates may require to alter a
decomposition. Nevertheless, our results may be of interest independently from WSDs as for instance in certain scenarios
with very dense relations, decompositions may be a practically relevant technique for efficiently storing and querying large
databases.

Note that we do not consider probabilistic approaches to representing uncertain data (e.g. the recent work [14]) in this
article. However, there is a natural and straightforward probabilistic extension of WSDs which directly inherits many of the
properties studied in this article, see [5].

The structure of the article basically follows the list of contributions.

2. Preliminaries

We use the named perspective of the relational model and relational algebra with the operations selection σ , projection
π , product ×, union ∪, difference −, and renaming δ.

A relation schema is a construct of the form R[U], where R is a relation name and U is a nonempty set of attribute
names.3 Let D be an infinite set of atomic values, the domain. A relation over schema R[A1, . . . , Ak] is a finite set of tuples
(A1 : a1, . . . , Ak : ak) where a1, . . . , ak ∈ D. A relational schema is a tuple Σ = (R1[U1], . . . , Rk[Uk]) of relation schemas. A
relational structure (or database) A over schema Σ is a tuple (RA

1 , . . . , RA
k ), where each RA

i is a relation over schema Ri[Ui].
When no confusion may occur, we will also use R rather than RA to denote one particular relation over schema R[U]. For a
relation R, sch(R) denotes the set of its attributes, ar(R) its arity and |R| the number of tuples in R.

A set of possibleworlds (orworld-set) over schemaΣ is a set of databases over schemaΣ . LetW be a set of finite structures,
and let rep be a function that maps each W ∈ W to a world-set of the same schema. Then (W, rep) is called a strong
representation system for a query language if, for each queryQ of that language and eachW ∈ W such that the schema ofQ is
consistentwith the schema of theworlds in rep(W), there is a structureW ′

∈ W such that rep(W ′) = {Q (A) | A ∈ rep(W)}.

2.1. Tables

We now review a number of representation systems for incomplete information that are known from earlier work (cf.
e.g. [17,2]).

Let X be a set of variables. We call an equality of the form x = c or x = y, where x and y are variables from X and c
is from D an atomic condition, and will define (general) conditions as Boolean combinations (using conjunction, disjunction,
and negation) of atomic conditions and the constant ‘‘true’’.

Definition 1 (c-table). A c-multitable [19,17] over schema (R1[U1], . . . , Rk[Uk]) is a tuple

T = (RT
1 , . . . , RT

k , φT , λT )

where each RT
i is a set of ar(Ri)-tuples over D ∪ X, φT is a Boolean combination over equalities on D ∪ X called the global

condition, and function λT assigns each tuple from one of the relations RT
1 , . . . , RT

k to a condition (called the local condition
of the tuple). A c-multitable with k = 1 is called a c-table.

The semantics of a c-multitable T , called its representation rep(T ), is defined via the notion of a valuation of the variables
occurring in T (i.e. those in the tuples as well as those in the conditions). Let ν : X → D be a valuation that assigns each
variable in T to a domain value. We overload ν in the natural way to map tuples and conditions over D ∪ X to tuples and
formulas over D.4 A satisfaction of T is a valuation ν such that ν(φT ) is true. A satisfaction ν takes T to a relational structure
ν(T ) = (Rν(T )

1 , . . . , Rν(T )
k ) where each relation Rν(T )

i is obtained as Rν(T )
i := {ν(t) | t ∈ RT

i ∧ ν(λT (t)) is true}. The
representation of T is now given by its satisfactions, rep(T ) := {ν(T ) | ν is a satisfaction of T }. �

Example 1. Section 1 gives a c-table T representing our uncertain census data of Fig. 1. T uses one variable per uncertain
field and lists the possible values of the variables in the global condition φ. Each satisfaction of T defines a world and there
are 24 such worlds. The local conditions in T are ‘‘true’’ and omitted.

Fig. 6(a) shows a c-table T , where both tuples have local conditions. T has infinitely many satisfactions and thus
defines an infinite world-set. For example, the satisfaction {x 7→ 2, y 7→ 1, z 7→ 2} defines the world A with relation
TA

= {ν(〈A : x, B : 1〉) | ν(x 6= 2) is true )} ∪ {ν(〈A : z, B : y〉) | ν(y 6= 2) is true )} = {〈A : 2, B : 1〉}. �

3 For technical reasons involving the WSDs presented later, we exclude nullary relations and will represent these (e.g., when obtained as results from a
Boolean query) using unary relations over a special constant ‘‘true’’.

4 Done by extending ν to be the identity on domain values and to commute with the tuple constructor, the Boolean operations, and equality.



D. Olteanu et al. / Theoretical Computer Science 403 (2008) 265–284 269

φT
= (x 6= y)

RT A B
x 1
2 x

ST C
y
3

RA A B
1 1
2 1

SA C
2
3

ν :

{
x 7→ 1
y 7→ 2

(a) (b) (c)
Fig. 2. A g-multitable T (a), possible world A (b), and a valuation s.t. ν(T ) = A (c).

Proposition 1 ([19]). The c-multitables are a strong representation system for relational algebra.

We consider two important restrictions of c-multitables.

1. By a g-multitable [3], we refer to a c-multitable in which the global condition φT is a conjunction of possibly negated
equalities and λT maps each tuple to ‘‘true’’.

2. A v-multitable is a g-multitable in which the global condition φT is a conjunction of equalities.

Without loss of generality, wemay assume that the global condition of a g-multitable is a conjunction of negated equalities
and the global condition of a v-multitable is simply ‘‘true’’.5 Subsequently, we will always assume these two normal forms
and omit local conditions from g-multitables and both global and local conditions from v-multitables.

Example 2. Consider the g-multitable T = (RT , ST , φT ) of Fig. 2(a). Then the valuation of Fig. 2(c) satisfies the global
condition of T , as ν(x) 6= ν(y). Thus A ∈ rep(T ), where A is the structure from Fig. 2(b). �

Remark 1. It is known from [19] that v-tables are not a strong representation system for relational selection, but for the
fragment of relational algebra built from projection, product, and union.

The definition of c-multitables used here is from [17]. The original definition from [19] has been more restrictive in
requiring the global condition to be ‘‘true’’. While c-tables without a global condition are strictly weaker (they cannot
represent the empty world-set), they nevertheless form a strong representation system for relational algebra.

In [2], the global conditions of c-multitables are required to be conjunctions of possibly negated equalities. It will be
a corollary of a result of this paper (Theorem 2) that this definition is equivalent to c-multitables with arbitrary global
conditions. �

We next define a restricted form of c-tables, called mutex-tables (or x-tables for short). This formalism is of particular
importance in this paper as it is closely related to gWSDs, our main representation formalism. An x-table is a c-table where
the global condition is a conjunction of negated equalities and the local conditions are conjunctions of equalities and a special
form of negated equalities. We make this more precise next.

Consider a set of variables Y and a function µ : Y 7→ N+ mapping variables to positive numbers. The mutex set M(Y, µ)
for Y and µ is defined by

{‘‘true’’} ∪ {(x = i) | x ∈ Y, 1 ≤ i ≤ µ(x)} ∪ {(x 6= 1 ∧ · · · ∧ x 6= µ(x)) | x ∈ Y}.

Intuitively, M defines for each variable of Y possibly negated equalities such that a variable valuation satisfies precisely one
of these conditions.

Definition 2 (x-table). An x-multitable is a c-multitable

T = (RT
1 , . . . , RT

k , φT , λT ),

where (1) the global condition φT is a conjunction of negated equalities, (2) all local conditions defined by λT are
conjunctions over formulas from a mutex set M(Y, µ) and equalities over X ∪ D, and (3) the variables in Y do not occur
in RT

1 , . . . , RT
k , φT . An x-multitable with k = 1 is called an x-table. �

Example 3. Fig. 5(b) shows an x-table T over the mutex set M(Y, µ) where Y = {x1} and µ(x1) = 1. The mutex conditions
on x1 are used to state that instantiations of the first tuple cannot occur in the same worlds with instantiations of the last
two tuples.

Fig. 7(b) shows an x-multitable T over a mutex set with Y = {x1, x3} and µ(x1) = µ(x3) = 1. The mutex conditions
on x1 are used to state that instantiations of the first two tuples of R and of the first tuple of S cannot occur in the same
worlds with instantiations of the third tuple of R and the second tuple of S. For example, the satisfaction {x1 7→ 2, x3 7→

2, y 7→ 3, z 7→ 4} of T defines the world A with RA
= {〈A : 2〉, 〈A : 1〉} and SA

= {〈B : 2〉}, whereas the satisfaction
{x1 7→ 1, x3 7→ 1, y 7→ 3, z 7→ 4} defines the world B with RB

= {〈A : 2〉, 〈A : 3〉, 〈A : 1〉} and SB
= {〈B : 4〉, 〈B : 1〉}. �

It will be a corollary of joint results of this paper (Lemma 1 and Theorem 2) that x-multitables are as expressive as c-
multitables.

5 Each g-multitable resp. v-multitable can be reduced to one in this normal form by variable replacement and the removal of tautologies such as x = x
or 1 = 1 from the global condition.
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Proposition 2. The x-multitables capture the c-multitables.

This result implies that x-multitables are a strong representation system for relational algebra. In this paper, however, we
will make particular use of a weaker form of strongness, namely for positive relational algebra, in conjunction with efficient
query evaluation.

Proposition 3. The x-multitables are a strong representation system for positive relational algebra. The evaluation of positive
relational algebra queries on x-multitables has polynomial data complexity.

Proof. Weuse the algorithmof [19,17] for the evaluation of relational algebra queries on c-multitables and obtain an answer
c-multitable of polynomial size. Consider a fixed positive relational algebra query Q , c-multitable T , and c-table T ′, where
T ′ represents the answer to Q on T . We compute T ′ by recursively applying each operator in Q . The evaluation follows
the relational case except for the computation of global and local conditions (which do not exist in the relational case). The
global condition of T becomes the global condition of T ′. For projection and union, tuples preserve their local conditions
from the input. In case of selection, the local condition of a result tuple is the conjunction of the local condition of the input
tuple and, if required by the selection condition, of new equalities involving variables in the tuple and constants from the
positive selections of Q . In case of product, the local condition of a result tuple is the conjunction of the local conditions of
the constituent input tuples.

The local conditions in T ′ are thus conjunctions of local conditions of T and possibly additional equalities. In case T is
an x-table, then its local conditions are conjunctions over formulas from amutex set M and further equalities. Thus the local
conditions of T ′ are also conjunctions over formulas from M and further equalities. T ′ is then an x-table. �

3. New representation systems

This section introduces novel representation systems beyond those surveyed in the previous section. We start
with finite sets of v(g-,c-)tables, or tabsets for short, then show how to inline tabsets into tabset-tables, and finally
introduce decompositions of such tabset-tables based on relational product. Such decompositions are our main vehicle for
representing incomplete data and the next sections are dedicated to their expressiveness and efficiency.

3.1. Tabsets and tabset tables

We consider finite sets of multitables as representation systems, and will refer to such constructs as tabsets (rather than
asmultitable-sets, to be short).

A g-(resp., v-)tabset T = {T1, . . . , Tn} is a finite set of g-(v-)multitables. The representation of a tabset is the union of the
representations of the constituent multitables,

rep(T) := rep(T1) ∪ · · · ∪ rep(Tn).

Note that finite sets of v-multitables are more expressive than v-multitables: v-tabsets can trivially represent any finite
world-set with one v-multitable representing precisely one world. It is known [2] that no v-multitable can represent the
world-set consisting of an empty world and a non-empty world, as produced by, e.g., selection queries on v-multitables.

We next construct an inlined representation of a tabset as a single table by turning each multitable into a single tuple.
Let A be a g-tabset over schema Σ . For each R[U] in Σ , let |R|max = max{|RA

| : A ∈ A} denote the maximum cardinality
of R in any multitable of A. Given a g-multitable A ∈ Awith RA

= {t1, . . . , t|RA|}, let inline(RA) be the tuple obtained as the
concatenation (denoted ◦) of the tuples of RA padded with a special tuple t⊥ up to arity |R|max,

inline(RA) := t1 ◦ · · · ◦ t|RA| ◦ (t⊥, . . . . . . . . . , t⊥︸ ︷︷ ︸
|R|max−|RA|

), where t⊥ = 〈⊥, . . . ,⊥︸ ︷︷ ︸
ar(R)

〉

Then tuple

inline(A) := inline(RA
1 ) ◦ · · · ◦ inline(RA

|Σ |
)

encodes all the information in A.
We make use of the symbol ⊥ to align the g-tables of different sizes and uniformly inline g-tabsets. Given a g-multitable

A padded with additional tuples t⊥, there is no world represented by inline(A) that contains instantiations of these tuples.
We extend this interpretation and generally define as t⊥ any tuple that has at least one symbol ⊥, i.e. 〈A1 : a1, . . . , An : an〉,
where at least one ai is ⊥, is a t⊥ tuple. This allows for several different inlinings that represent the same world-set.

Definition 3 (gTST). Given an inlining function inline, a g-tabset table (gTST) of a g-tabset A is the pair (W , λ) consisting of
the table6 W = {inline(A) | A ∈ A} and the function λ which maps each tuple inline(A) of W to the global condition of
A. �

6 Note that this table may contain variables and occurrences of the ⊥ symbol.
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Fig. 3. Translation from a tabset (a) to a TST (b).

A vTST (TST) is obtained in strict analogy, omitting λ (λ and variables).
To compute inline(RA), we have fixed an arbitrary order of the tuples in RA. We represent this order by using indices di

to denote the i-th tuple in RA for each g-multitable A, if that tuple exists. Then the TST has schema

{R.di.Aj | R[U] in Σ, 1 ≤ i ≤ |R|max, Aj ∈ U}.

Example 4. An example translation from a tabset to a TST is given in Fig. 3.

The semantics of a gTST (W , λ) as a representation system is given in strict analogy with tabsets,

rep(W , λ) :=

⋃
{rep(inline−1(t), λ(t)) | t ∈ W }.

Remark 2. Computing the inverse of ‘‘inline’’ is an easy exercise. In particular, we map inline(RA) to RA as

(a1, . . . , aar(R)·|R|max) 7→ {(aar(R)·k+1, . . . , aar(R)·(k+1)) | 0 ≤ k < |R|max, aar(R)·k+1 6= ⊥, . . . , aar(R)·(k+1) 6= ⊥}.

By construction, the TSTs capture the tabsets.

Proposition 4. The g(resp., v)TSTs capture the g-(v-)tabsets.

Finally, there is a noteworthy normal form for gTSTs.

Proposition 5. The gTST in which λ maps each tuple to a common global condition φ unique across the gTST, that is, λ : · 7→ φ,
capture the gTST.

Proof. Given a g-tabset A, we may assume without loss of generality that no two g-multitables from A share a common
variable, either in the tables or the conditions, and that all global conditions in A are satisfiable. (Otherwise we could safely
remove some of the g-multitables in A.) But, then, φ is simply the conjunction of the global conditions in A. For any tuple t
of the gTST of A, the g-multitable (inline−1(t), φ) is equivalent to (inline−1(t), λ(t)). �

Proviso. We will in the following write gTSTs as pairs (W , φ), where W is the table and φ is a single global condition shared by
the tuples of W.

3.2. World-set decompositions

We are now ready to define world-set decompositions, our main vehicle for efficient yet expressive representation
systems.

A product m-decomposition of a relation R is a set of non-nullary relations {C1, . . . , Cm} such that C1 × · · · × Cm = R. The
relations C1, . . . , Cm are called components. A productm-decomposition of R ismaximal(ly decomposed) if there is no product
n-decomposition of Rwith n > m.

Definition 4 (Attribute-Level gWSD). Let (W , φ) be a gTST. Then an attribute-level world-set m-decomposition (m-gWSD) of
(W , φ) is a pair of a productm-decomposition ofW together with the global condition φ. �
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Fig. 4. Set of four worlds and a corresponding 2-WSD.

We also consider two important simplifications of gWSDs, those without global condition, called vWSDs, and vWSDs
without variables, called WSDs. An example of a WSD is shown in Fig. 4.

The semantics of a gWSD is given by its exact correspondence with a gTST,

rep ({C1, . . . , Cm}, φ)︸ ︷︷ ︸
gWSD

:= rep (C1 × · · · × Cm, φ)︸ ︷︷ ︸
gTST

.

To decomposeW , we treat its variables and the⊥-value as constants. Clearly, the g-tabsetA and any gWSD ofA represent
the same set of possible worlds.

It immediately follows from the definition of WSDs that

Proposition 6. Any finite set of possible worlds can be represented as a 1-WSD.

Corollary 1. WSDs are a strong representation system for any relational query language.

In the case of infinite world-sets, however, the mere extension of WSDs with variables and equalities does not suffice to
make them strong. The lack of power to express negated equalities, despite the ability to express disjunction, keeps vWSDs
(and thus equally v-tabsets) from being strong in the case of infinite world-sets.

Proposition 7. vWSDs are a strong representation system for projection, product and union, and are not a strong representation
system for selection and difference.

Proof. We show that v-tabsets are a strong representation system for projection, product and union but not for selection
and difference. From the equivalence of v-tabsets and vWSDs (each v-tabset is a 1-vWSD) the property also holds for vWSDs.

Let T = {T1, . . . , Tn} be a v-tabset ofmultitables over schemaΣ . The results of the operations projectionπU(R1), product
R1 × R2 and union R1 ∪ R2 on T , respectively, (with R1, R2 ∈ Σ) are then defined as

πU(R1)(T ) = {R′
| Ti ∈ T , R′

= πU(RTi
1 )}

(R1 ∪ R2)(T ) = {R′
| Ti ∈ T , R′

= RTi
1 ∪ RTi

2 }

(R1 × R2)(T ) = {R′
| Ti ∈ T , R′

= RTi
1 × RTi

2 }.

To show that v-tabsets are not strong for selection and difference we consider a v-tabset consisting of the following
v-multitable (R, S):

R A B
d1 x 2
d2 1 x

S A B
d3 1 1

Consider the selection σA=1(R). The answer world-setW consists of the world {〈A : 1, B : 2〉, 〈A : 1, B : 1〉} in case x = 1,
and the worlds {〈A : 1, B : c〉}, where c ∈ D − {1}, in case x 6= 1. We prove by contradiction that there is no v-tabset
representing precisely the world-set W . Since W is an infinite world-set and a v-tabset consists of only finitely many v-
tables, there must be at least one v-table T that represents infinitely many worlds of the form {〈A : 1, B : c〉 | c ∈ D} and
rep(T ) ⊆ W . Since all tuples in aworld ofW have 1 as a value for A, all tuples in T must have it too, otherwise T will represent
worlds that are not in W . Also, to represent infinitely many worlds, T must contain at least one variable. Thus T consists of
v-tables with tuples of the form 〈A : 1, B : y〉, where for at least one such tuple y is a variable. But then for y 7→ 3, a v-table
containing 〈A : 1, B : y〉 with variable ymust not contain any other tuple whose instantiation is different from 〈A : 1, B : 3〉,
as there are no worlds in W containing 〈A : 1, B : 3〉 and other different tuples. This implies that for y 7→ 1, W has either
a world {〈A : 1, B : 1〉} (in case of v-tables with one tuple 〈A : 1, B : y〉), or a world {〈A : 1, B : 1〉, 〈A : 1, B : 3〉} (in case of
v-tables with several more tuples). Contradiction.

Consider now the difference R − S. The answer world-set W ′ consists of the world 〈A : 1, B : 2〉 in case x = 1, and
the worlds {〈A : c, B : 2〉, 〈A : 1, B : c〉}, c ∈ D − {1}, in case x 6= 1. We prove by contradiction that there is no v-tabset
representing precisely theworld-setW . Using arguments similar to the above case of selection, the answer v-tabset consists
of v-tables that have (possibly many) tuples of the form {〈A : y, B : 2〉, 〈A : 1, B : y〉}, where y is a variable for at least one
pair of such tuples. But then, for y 7→ 1, there are worlds that contain {〈A : 1, B : 2〉, 〈A : 1, B : 1〉} and these worlds are not
inW . Contradiction. �

Wewill later see that, in contrast to vWSDs, gWSDs are a strong representation system for any relational language, because
they capture c-multitables (Theorem 2).
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Remark 3. Verifying nondeterministically that a structure A is a possible world of gWSD ({C1, . . . , Cm}, φ) is easy: all we
need is choose one tuple from each of the component tables C1, . . . , Cm, concatenate them into a tuple t , and check whether
a valuation exists that satisfies φ and takes inline−1(t) to A. �

The vWSDs are already exponentially more succinct than the v-tabsets. As is easy to verify,
Proposition 8. Any v-tabset representation of the WSD{ C1 R.d1.A

a1
b1

· · ·

Cn R.dn.A
an
bn

}
where the ai, bi are distinct domain values takes space exponential in n.

By a similar argument, v(resp.,g)WSDs are exponentially more succinct than v-(g-)TSTs. Succinct attribute-level
representations have a rather high price:
Theorem 1. Given an attribute-level (g)WSD W , checking whether the empty world is in rep(W) is NP-complete.
Proof. To prove this, we show that the problem is in NP for attribute-level gWSDs and NP-hard for attribute-level WSDs.

Let W = ({C1, . . . , Cn}, φ) be a gWSD. The problem is in NP since we can nondeterministically check whether there is a
choice of component tuples t1 ∈ C1, . . . , tn ∈ Cn such that t1 ◦ · · · ◦ tn represents the empty world.

The proof of NP-hardness is by reduction from Exact Cover by 3-Sets (X3C) [15]. Given a finite set X of size |X | = 3q and
a set C of three-element subsets of X , does C contain a subset C ′ such that every element of X occurs in exactly one member
of C ′?

Construction.Weconstruct an attribute-levelWSD {C1, . . . , Cq} as follows. Let Ci be a table of schema Ci[d1.Ai, . . . , d|X |.Ai]

with tuples 〈d1.Ai : a1, . . . , d|X |.Ai : a|X |〉 for each S ∈ C such that aj = ⊥ if j ∈ S and aj = 1 otherwise.
Correctness. This is straightforward to show, but note that each tuple of a component relation contains exactly three ⊥

symbols. The WSD represents a set of worlds in which each one contains, naively, up to 3 · q tuples. The composition of q
component tuplesw1 ∈ C1, . . . , wq ∈ Cq can only represent the emptyworld if the⊥ symbols inw1, . . . , wq do not overlap.
This guarantees that w1 ◦ · · · ◦ wq represents the empty set only if the sets from C corresponding to w1, . . . , wq form an
exact cover of X . �

Example 5. We give an example of the previous reduction from X3C to testing whether the empty world is in the
representation of a WSD. Let X = {1, 2, 3, 4, 5, 6, 7, 8, 9} and let C = {{1, 5, 9}, {2, 5, 8}, {3, 4, 6}, {2, 7, 8}, {1, 6, 9}}.
Then the WSD {C1, C2, C3} with each Ci the table

Ci d1.Ai d2.Ai d3.Ai d4.Ai d5.Ai d6.Ai d7.Ai d8.Ai d9.Ai
⊥ 1 1 1 ⊥ 1 1 1 ⊥

1 ⊥ 1 1 ⊥ 1 1 ⊥ 1
1 1 ⊥ ⊥ 1 ⊥ 1 1 1
1 ⊥ 1 1 1 1 ⊥ ⊥ 1
⊥ 1 1 1 1 ⊥ 1 1 ⊥

for 1 ≤ i ≤ 3 represents the emptyworld, because every tuple di has⊥ symbol for some attributes in the result of combining
the first tuple of C1, the third tuple of C2, and the fourth tuple of C3. Therefore, the first, third and fourth sets in C are an exact
cover of X . �

It follows that the problem of decidingwhether the q-ary tuple (1, . . . , 1) orwhether theworld containing just that tuple
is uncertain is NP-complete. Note that this NP-hardness is a direct consequence of the succinctness increase in gWSDs as
compared to gTSTs. On gTSTs, checking for the empty world is a trivial operation.
Corollary 2. Tuple certainty is coNP-hard for attribute-level WSDs.

This problem remains in coNP even for general gWSDs. Nevertheless, since computing certain answers is a central task
related to incomplete information, we will consider also the following restriction of gWSDs. As we will see, this alternative
definition yields a representation system in which the tuple and instance certainty problems are in polynomial time while
the formalism is still exponentially more succinct than gTSTs.
Definition 5 (gWSD). An attribute-level gWSD is called a tuple-level gWSD if for any two attributes Ai, Aj from the schema
of relation R, and any tuple id d, the attributes R.d.Ai, R.d.Aj of the component tables are in the same component schema. �

In other words, in tuple-level gWSDs, values for one and the same tuple cannot be split across several components –
that is, here the decomposition is less fine-grained than in attribute-level gWSDs. In the remainder of this article, we will
exclusively study tuple-level (g-, resp. v-)WSDs, and will refer to them as just simply (g-, v-)WSDs. Obviously, tuple-level
(g)WSDs are just as expressive as attribute-level (g)WSDs, since they all are just decompositions of 1-(g)WSDs.

However, tuple-level (g)WSDs are less succinct than attribute-level (g)WSDs. For example, any tuple-level WSD
equivalent to the attribute-level WSD{ C1 R.d.A1

a1
b1

· · ·

Cn R.d.An
an
bn

}
must be exponentially larger. Note that the WSDs of Proposition 8 are tuple-level.
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Fig. 5. Translating gWSDs into x-multitables: x-table (b) is equivalent to gWSD (a).

4. Main expressiveness result

In this section we study the expressive power of gWSDs. We show that gWSDs and c-multitables are equivalent in
expressive power, that is, for each gWSD one can find an equivalent c-multitable that represents the same set of possible
worlds and vice versa.

Theorem 2. gWSDs capture the c-multitables.

Corollary 3. gWSDs are a strong representation system for relational algebra.

We prove that gWSDs capture the c-multitables by providing a translation of gWSDs into x-multitables, a syntactically
restricted form of c-multitables, and a translation of c-multitables into gWSDs.

Lemma 1. Any gWSD has an equivalent x-multitable of polynomial size.

Proof. Let W = ({C1, . . . , Cm}, φ) be a (tuple-level) m-gWSD that encodes a g-tabset A over relational schema
(R1[U1], . . . , Rk[Uk]).

Construction.We define a translation f from W to an equivalent c-multitable T = (RT
1 , . . . , RT

k , φT , λT ) in the following
way.

In case a component Cj ofW is empty, thenW represents the empty world-set and is equivalent to any x-multitable with
an unsatisfiable global condition, i.e. x 6= x. We next consider the case when all components of W are non-empty.

1. The global condition φ of W becomes the global condition φT of the x-multitable T .
2. For each relation schema Rl[U] we create a table RT

l with the same schema.
3. We construct a mutex set M({x1, . . . , xm}, µ) with µ(xj) = |Cj| − 1 that has a new variable xj for each component Cj of

W . For each local world wi ∈ Cj (with 1 ≤ i ≤ |Cj|) we create a conjunction

cond(wi) =


true . . . µ(xj) = 0
(xj = i) . . . 1 ≤ i ≤ µ(xj)
µ(xj)∧
l=1

(xj 6= l) . . . i = µ(xj) + 1.

Clearly, any valuation of xj satisfies precisely one conjunction cond(wi). Let d be a tuple identifier for a relation R defined
in Cj, and t be the tuple for d in wi. If t is not a t⊥-tuple, then we add t with local condition λT (t) to RT

l , where RT
l is the

corresponding table from the x-multitable and λT (t) is the conjunction cond(wi).

Example 6. Consider the 1-gWSD ({C1}, φ) given in Fig. 5(a). The first tuple of C1 encodes a g-table R with a single tuple
(with identifier d1), and the second tuple of C1 encodes two v-tuples with identifiers d1 and d2. The encoding of the gWSD
as an x-table T with global condition φT is given in Fig. 5(b). The local conditions of tuples in T T are conjunctions from a
mutex set M({x1}, µ) = {true, (x1 = 1), (x1 6= 1)}, where µ(x1) = 1. Our translation relies on the fact that any valuation of
the mutex variables satisfies precisely one (in)equality for each mutex variable. For instance, if the first tuple of T T would
have the local condition x1 = 2, then a valuation {x1 7→ 2} would wrongly allow worlds containing instantiations of the
first two tuples of T T , although this is forbidden by our gWSD. �

Correctness. Take the g-tabset A represented by W :

A =

{
(inline−1(w1 × · · · × wm), φ) |

m∧
j=1

(wj ∈ Cj)

}
.

We create a g-tabset A′ that consists of the g-multitables of A with global conditions φ enriched by conjunctions from
our mutex set M such that precisely one of these conjunctions is true for any valuation of the mutex variables. We consider
then a new global condition φ(w1,...,wm) := φ ∧ cond(w1) ∧ · · · ∧ cond(wm) for each g-multitable B(w1,...,wm) defined by
inline−1(w1 × · · · × wm) with initial global condition φ.

Clearly, A′ is equivalent to A, because there is a ono-to-one mapping between g-multitables of A and of A′, respectively.
A choice of a g-multitable from A, or any world A it represents, is then precisely mapped to its corresponding g-multitable
from A′, or world A, under an appropriate assignment of the mutex variables. This also holds for the other direction.
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Fig. 6. Translating c-tables into 1-gWSDs.

We next show that rep(A′) = rep(T ).
Any total valuation ν over the mutex variables x1, . . . , xm is identity on φ and satisfies precisely one conjunction

cond(w1) ∧ · · · ∧ cond(wm):

ν(A′) = ({(ν(B(v1,...,vm)), ν(φ(v1,...,vm))) | 1 ≤ j ≤ m, vj ∈ Cj}) = (B(w1,...,wm), φ).

Let B = (B(w1,...,wm), φ) for short. It remains to show that rep(B) = rep(ν(T )).
(⊆) The translation f maps each tuple of a table RB

l to an identical tuple in RT
l , where Rl ∈ {R1, . . . , Rk}. We also have

ν(φ) = φ = φT . Thus RB
l ⊆ RT

l in each world represented by T .
(⊇) Assume there is a tuple t ∈ ν(RT

l ) such that t 6∈ RB
l . The translation f ensures that t comes from a combination of local

worlds (c1, . . . , cm), which corresponds to a g-multitable B ′ with global condition φ ∧ cond(c1) ∧ · · · ∧ cond(cm). We thus
have that ν(cond(c1) ∧ · · · ∧ cond(cm)) = true for t to be defined by B ′. However, there is only one combination of local
worlds with this property, namely (w1, . . . , wm), which defines B. Contradiction.

Complexity. By construction, the translation f is the identity for global conditions and maps each tuple t defined by a
component of W and different from t⊥ to precisely one tuple of of a table of T with local condition of polynomial size. The
translation f is thus polynomial. �

For the other, somewhat more involved direction, we first show that c-multitables can be translated into equivalent
g-tabsets. That is, disjunction on the level of entire tables plus conjunctions of negated equalities as global conditions, as
present in g-tables, are enough to capture the full expressive power of c-tables. In particular, we are able to eliminate all
local conditions.

Proposition 9. Any c-multitable has an equivalent g-tabset.

Proof. Let T = (RT
1 , . . . , RT

k , φT , λT ) be a c-multitable over relational schema (R1[U1], . . ., Rk[Uk]); φT is the global
condition and λT maps each tuple to its local condition. Let XT and DT be the set of all variables and the set of all constants
appearing in the c-multitable, respectively.

Construction. We construct a g-tabset G with g-multitables over the same schema (R1[U1], . . . , Rk[Uk]) as follows. We
consider comparisons of the form τ = τ ′ and τ 6= τ ′ where τ , τ ′

∈ XT ∪ DT are variables or constants from the c-
multitable. We compute the set of all consistent Θ =

∧
{τ θτ ,τ ′ τ ′

| τ , τ ′
∈ XT ∪ DT } where θτ ,τ ′ ∈ {=, 6=} for all τ , τ ′ and

Θ � φT . Note that the equalities in Θ define an equivalence relation on XT ∪ DT . In particular, we take into account that
c = c ′ is consistent iff c and c ′ are the same constant. We denote by [xi]= the equivalence class of a variable xi with respect
to the equalities given by Θ and by h([xi]=) the representative element of that equivalent class (e.g. the first element with
respect to any fixed order of the elements in the class).

For each Θ , we construct a g-multitable GΘ in G. Each tuple t from a table RT
i becomes a tuple in RGΘ

i if Θ � λT (t).
The global condition of GΘ is Θ . To strictly adhere to the definition of g-multitables, we remove the equalities from Θ and
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Fig. 7. Example of a 3-gWSD and an equivalent x-multitable.

enforce them in the tables RGΘ

1 , . . . , RGΘ

k : In case of a tuple 〈x1, . . . , xn〉, we replace xi by c in case c ∈ DT , Θ � (xi = c), and
by h([xi]) in case ∀c ∈ DT , Θ � (xi 6= c).

Correctness. Clearly, the g-tabset G consists of a finite number of g-multitables, because the finite number of variables
and constants in T induces finitely many consistent Θ ’s. We next show that rep(G) = rep(T ).

(⊆) Given a world A represented by a g-multitable GΘ ⊆ G for a conjunction Θ . For simplicity, we consider
the (equivalent) multitable where the equalities are not removed from Θ and also not propagated in the g-tables. By
construction, Θ � φT and a tuple t is in a table RGΘ if it occurs in a table RT such that Θ � λT (t). Thus we necessarily
have that A ∈ rep(T ).

(⊇) Given a world A ∈ rep(ν(T )) defined by a total valuation ν consistent with φT . Because ν and Θ talk about the
same set of variables and there is a Θ for each possible (in)equality on any two variables or variable and constants that are
consistent with φT , there exists a consistent Θ such that Θ � ν. Let GΘ be the g-multitable in G for our chosen Θ . Take
now any tuple t in a table RT such that ν(λT (t)) = true. Then, because Θ � ν we have Θ � λT (t) and t ∈ RGΘ . Thus
A ∈ rep(GΘ) ⊆ rep(G). �

Any g-tabset can be inlined into a g-TST, which, by the definition of gWSDs, represents a 1-gWSD. It then follows that

Lemma 2. Any c-multitable has an equivalent gWSD.

Example 7. Fig. 6(a) shows a c-tableT . Following the construction from the proof of Proposition 9,we create nine consistent
Θ ’s and one g-table for each of them. Fig. 6(c) shows the Θ ’s and an inlining of all these g-tables into a gTST. The gTST is
normalized by creating one common global condition. This gTST with a global condition of inequalities is in fact a 1-gWSD.
Fig. 6(b) shows a simplified version of our 1-gWSD, where duplicate tuples are removed and some different tuples are
merged. For instance, the tuple for Θ4 is equal to the tuple for Θ1 and can be removed. Also, by merging the tuples for Θ2
and Θ3 we also allow y to take value 1 and thus we eliminate the inequality y 6= 1 form the global condition φ. �

As a corollary of Lemma 1, x-multitables, a syntactically restricted form of c-multitables, are at least as expressive as
gWSDs. However, by Lemma 2, gWSDs are at least as expressive as c-multitables. This implies that

Corollary 4. The x-multitables capture gWSDs and thus c-multitables.

To sum up, we can chart the expressive power of the representation systems considered in this paper as follows.
As discussed in Section 3, v-multitables are less expressive than finite sets of v-multitables (or v-tabsets), which are
syntactic variations of vTSTs. The vWSDs (resp., gWSDs) are equally expressive to v(g)TSTs yet exponentially more succinct
(Proposition 8). The gWSDs are more expressive than vWSDs because gWSDs can represent the answers to any relational
algebra query, whereas vWSDs cannot represent answers to queries with selections or difference. Finally, c-multitables are
captured by their syntactic restriction called x-multitables and also by gWSDs.

5. Complexity of managing gWSDs

We consider the data complexity of the decision problems defined in Section 1. Note that in the literature the tuple
(q-)possibility and (q-)certainty problems are sometimes called bounded or restricted (q-)possibility, and (q-)certainty
respectively, and the instance (q-)possibility and (q-)certainty are sometimes called (q-)membership and (q-)uniqueness [3].
A comparison of the complexity results for these decision problems in the context of gWSDs to those of c-tables [3] and
Trio [8] is given in Table 2.

5.1. Tuple (q)-possibility

We first prove complexity results for tuple q-possibility in the context of x-tables. This is particularly relevant as gWSDs
can be translated in polynomial time into x-tables, as done in the proof of Lemma 1.

Lemma 3. Tuple q-possibility is in PTIME for x-tables and positive relational algebra.

Proof. Recall fromDefinition 2 andProposition 3 that x-tables are closedunder positive relational algebra and the evaluation
of positive relational algebra queries on x-tables is in PTIME.
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Consider a constant tuple t and a fixed positive relational query Q , both over schema U , and two x-multitables T and T ′

such that T ′
= Q (T ).

In case the global condition of T ′ is unsatisfiable, then T ′ represents the emptyworld-set and t is not possible. The global
condition is a conjunction of negated equalities and we can check its unsatisfiability in PTIME. We consider next the case
of satisfiable global conditions. Following the semantics of x-tables, the tuple t is possible in T ′ iff there is a tuple t ′ in T ′

and a valuation ν consistent with the global and local conditions such that t ′ equals t under ν. This can be checked for each
T ′-tuple individually and in PTIME. �

Theorem 3. Tuple q-possibility is in PTIME for gWSDs and positive relational algebra.

Proof. This follows from the polynomial time translation of gWSDs into x-multitables ensured by Lemma 1 and the PTIME
result for x-multitables given in Lemma 3. �

For full relational algebra, tuple q-possibility becomes NP-hard even for v-tables where each variable occurs atmost once
(also called Codd tables) [3].

Theorem 4. Tuple q-possibility is in NP for gWSDs and relational algebra and NP-hard for WSDs and relational algebra.

Proof. Tuple q-possibility is in NP for gWSDs and relational algebra because gWSDs can be translated polynomially into
c-tables (see Lemma 1) and tuple q-possibility is in NP for c-tables and relational algebra [3].

We show NP-hardness for WSDs and relational algebra by a reduction from 3CNF-satisfiability [15]. Given a set Y of
propositional variables and a set of clauses ci = ci,1 ∨ ci,2 ∨ ci,3 such that for each i, k, ci,k is x or ¬x for some x ∈ Y, the
3CNF-satisfiability problem is to decide whether there is a satisfying truth assignment for

∧
i ci.

Construction. We create a WSD W = (C1, . . . , C|Y|, CS) representing worlds of two relations R and S over schemas R(C)

and S(C), respectively, as follows.7 For each variable xi in Y we create a component Ci with two local worlds, one for xi and
the other for ¬xi. For each literal ci,k we create an R-tuple 〈i〉 with id di,k. In case ci,k = xj or ci,k = ¬xj, then the schema of Cj
contains the attribute R.di,k.C and the local world for xj or ¬xj, respectively, contains the values 〈i〉 for these attributes. All
component fields that remained unfilled are finally filled in with ⊥-values. The additional component CS has n attributes
S.d1.C, . . . , S.dn.C and one local world (1, . . . , n). Thus, by construction, S = {〈C : 1〉, . . . , 〈C : n〉} and R ⊆ S in all worlds
defined by W .

The problem of deciding whether
∧

i ci has a satisfying truth assignment is equivalent to deciding whether the nullary
tuple 〈〉 is possible in the answer to the fixed query Q = {〈〉} − π∅(S − R), with S and R defined by W .

Correctness. Clearly, 〈〉 is possible in the answer to Q iff there is a world A ∈ rep(W) where π∅(S − R) is empty, or
equivalently S − R is empty. Because by construction R ⊆ S in all worlds defined by W , we further refine our condition to
∃A ∈ rep(W) : SA

= RA. We next show that
∧

i ci has a satisfying truth assignment exactly when ∃A ∈ rep(W) : SA
= RA.

First, assume there is a truth assignment ν of Y that proves
∧

i ci is satisfiable. Then, ν(ci) is true for each clause ci. Because
each clause ci is a disjunction, this means there is at least one ci,k for each ci such that ν(ci,k) is true.

Turning to W , ν represents a choice of local worlds of W such that for each variable xj ∈ Y if ν(xj) = true then we choose
the first local world of Cj and if ν(xj) = false then we choose the second local world of Cj. Let wj be the choice for Cj and let
wCS be the only choice for CS . Then, W defines a world A = inline−1(w1 × · · · × w|Y| × wCS ) and RA contains those tuples
defined in the chosen local worlds. Because there is at least one ci,k per clause ci such that ν(ci,k) is true, there is also a local
world wj that defines R-tuple 〈C : i〉 for each ci. Thus RA

= SA.
Now, assume there exists a world A ∈ rep(W) such that SA

= RA. Thus RA
= {〈C : 1〉, . . . , 〈C : n〉} and there is a

choice of local worlds of the components in W that define all R-tuples 〈C : 1〉 through 〈C : n〉. By construction, this choice
corresponds to a truth assignment ν thatmaps at least one literal ci,k of each ci to true. Thus ν is a satisfying truth assignment
of

∧
i ci. �

The construction used in the proof of Theorem 4 can be also used to show that instance possibility is NP-hard for (tuple-
level) WSDs: deciding the satisfiability of 3CNF is reducible to deciding whether the relation {〈C : 1〉, . . . , 〈C : n〉} is a
possible instance of R.

Example 8. Fig. 8 gives a 3CNF clause set and its WSD encoding. Checking the satisfiability of c1 ∧ c2 ∧ c3 is equivalent
to checking whether there is a choice of local worlds in the WSD such that 〈〉 is possible in the answer to the query
{〈〉} − π∅(S − R), or, simpler, such that S − R is empty. This also means that R = {〈C : 1〉, 〈C : 2〉, 〈C : 3〉}. For example,
{x1 7→ true, x2 7→ true, x3 7→ true, x4 7→ true} is a satisfying truth assignment. Indeed, the corresponding choice of local
worlds (C1 : x1, C2 : x2, C3 : x3, C4 : x4, CS : wCS ) defines a world A in which RA

= SA. �

The result for tuple possibility follows directly from Theorem 3, where the positive relational query is the identity.

Theorem 5. Tuple possibility is in PTIME for gWSDs.

Recall from Table 2 that tuple possibility is NP-complete for c-tables. This is because deciding whether a tuple is possible
requires to check satisfiability of local conditions, which can be arbitrary Boolean formulas.

7 For clarity reasons, we use two relations; they can be represented as one relation with an additional attribute stating the relation name.
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Fig. 8. 3CNF clause set encoded as WSD.

Fig. 9. Exact cover by 3-sets encoded as WSD.

5.2. Instance (q)-possibility

Theorem 6. Instance possibility is in NP for gWSDs and NP-hard for WSDs.

Proof. Let W = ({C1, . . . , Cn}, φ) be a gWSD. The problem is in NP since we can nondeterministically check whether there
is a choice of tuples t1 ∈ C1, . . . , tn ∈ Cn such that t1 ◦ · · · ◦ tn represents the input instance.

We show NP-hardness for WSDs with a reduction from Exact Cover by 3-Sets [15].
Given a set X with |X | = 3q and a collection C of 3-element subsets of X , the exact cover by 3-sets problem is to decide

whether there exists a subset C ′
⊆ C , such that every element of X occurs in exactly one member of C ′.

Construction. The set X is encoded as an instance consisting of a unary relation IX over schema IX [A] with 3q tuples.
The collection C is represented as a WSD W = {C1, . . . , Cq} encoding a relation R over schema R[A], where C1, . . . , Cq are
component relations. The schema of a component Ci is Ci[R.dj+1.A, R.dj+2.A, R.dj+3.A], where j = b

i
3c. Each 3-element set

c = {x, y, z} ∈ C is encoded as a tuple (x, y, z) in each of the components Ci.
The problem of deciding whether there is an exact cover by 3-sets of X is equivalent to deciding whether IX ∈ rep(W).
Correctness.We prove the correctness of the reduction, that is, we show that X has an exact cover by 3-sets exactly when

IX ∈ rep(W).
First, assume there is a world A ∈ rep(W) with RA

= IX . Then there exist tuples wi ∈ Ci, 1 ≤ i ≤ q, such that
A = rep({w1} × · · · × {wq}). As IX and RA have the same number of tuples and all elements of IX are different, it follows
that the values in w1, . . . , wq are disjoint. But then this means that the elements in w1, . . . , wq are an exact cover of X .

Now, assume there exists an exact cover C ′
= {c1, . . . , cq} of X . Let wi ∈ Ci such that wi = ci, 1 ≤ i ≤ q. As the elements

ci are disjoint, the world A = rep({w1} × · · · × {wq}) contains exactly 3q tuples. Since C ′ is an exact cover of X and each
element of X (and therefore of IX ) appears in exactly one local world wi, it follows that IX = RA. �

Example 9. Consider the set X and the collection of 3-element sets C defined as

X = {1, 2, 3, 4, 5, 6, 7, 8, 9}
C = {{1, 5, 9}, {2, 5, 8}, {3, 4, 6}, {2, 7, 8}, {1, 6, 9}}

The encoding of X and C is given in Fig. 9 as WSD W and instance IX . A possible cover of X , or equivalently, a world of
rep(W) equivalent to IX , is the world inline−1(w1 ◦ w3 ◦ w4) or, by resolving the record composition,

inline−1(t1.A : 1, t2.A : 5, t3.A : 9, t4.A : 3, t5.A : 4, t6 : A : 6, t7 : 2, t8 : 7, t9.A : 8). �

Theorem 7. Instance q-possibility is NP-complete for gWSDs and relational algebra.

Proof. For the identity query, the problem becomes instance possibility, which is NP-complete (see Theorem 6). To show it
is in NP, we use the PTIME reduction from gWSDs to c-tables given in Lemma 1 and the NP-completeness result for instance
q-possibility and c-tables [3]. �
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5.3. Tuple and instance certainty

Theorem 8. Tuple certainty is in PTIME for gWSDs.

Proof. Consider a tuple-level gWSD W = ({C1, . . . , Cm}, φ) and a tuple t . Tuple t is certain exactly if φ is unsatisfiable
or there is a component Ci such that each tuple of Ci contains t (without variables): Suppose φ is satisfiable and for each
component Ci there is at least one tuple wi ∈ Ci that does not contain t . Then there is a world-tuple w ∈ C1 × · · · × Cm such
that tuple t does not occur inw. If there is a mapping θ that maps some tuple inw to t and for which θ(φ) is true, then there
is also a mapping θ ′ such that θ ′(w) does not contain t but θ ′(φ) is true. Thus t is not certain. �

As shown in Table 2, tuple certainty is coNP-complete for c-tables, as it requires to check tautology of local conditions,
which can be arbitrary Boolean formulas.

Theorem 9. Instance certainty is in PTIME for gWSDs.

Proof. Given an instance I and a gWSD W representing a relation R, the problem is equivalent to checking for each world
A ∈ rep(W ) whether (1) I ⊆ RA and (2) RA

⊆ I . Test (1) is reducible to checking whether each tuple from I is certain in R,
and is thus in PTIME (cf. Theorem 5). For (2), we check in PTIME whether there is a tuple different from t⊥ in some world of
rep(W ) that is not in the instance I . IfW has variables then it cannot represent certain instances. �

5.4. Tuple and instance q-certainty

Theorem 10. Tuple and instance q-certainty are in coNP for gWSDs and relational algebra and coNP-hard for WSDs and positive
relational algebra.

Proof. Tuple and instance q-certainty are in coNP for gWSDs and full relational algebra because gWSDs can be translated
polynomially into c-tables (see Lemma 1) and tuple and instance q-certainty are in coNP for c-tables and full relational
algebra [3].

We show coNP-hardness for WSDs and positive relational algebra by a reduction from 3DNF-tautology [15]. Given a set
Y of propositional variables and a set of clauses ci = ci,1 ∧ ci,2 ∧ ci,3 such that for each i, k, ci,k is x or ¬x for some x ∈ Y, the
3DNF-tautology problem is to decide whether

∨
i ci is true for each truth assignment of Y.

Construction. We create a WSD W = (C1, . . . , C|Y|) representing worlds of a relation R over schema R(C, P) as follows.
For each variable xi in Ywe create a component Ci with two local worlds, one for xi and the other for ¬xi. For each literal ci,k
we create an R-tuple (i, k) with id di,k. In case ci,k = xj or ci,k = ¬xj, then the schema of Cj contains the attributes R.di,k.C
and R.di,k.P , and the local world for xj or¬xj, respectively, contains the values (i, k) for these attributes. All component fields
that remained unfilled are finally filled in with ⊥-values.

The problem of deciding whether
∨

i ci is a tautology is equivalent to deciding whether the nullary tuple 〈〉 is certain in
the answer to the fixed positive relational algebra query Q := π∅(σφ((R r1) × (R r2) × (R r3))), where

φ := (r1.C = r2.C and r1.C = r3.C and r1.P = 1 and r2.P = 2 and r3.P = 3).

Correctness. We prove the correctness of the reduction, that is, we show that
∨

i ci is a tautology exactly when ∀A ∈

rep(W) : 〈〉 ∈ QA.
First, assume there is a truth assignment ν of Y that proves

∨
i ci is not a tautology. Then, there exists a choice of local

worlds of W such that for each variable xi ∈ Y if ν(xi) = true then we choose the first local world of Ci and if ν(xi) = false
thenwe choose the second localworld of Ci. Letwi be the choice for Ci. Then,W defines aworldA = inline−1(w1×· · ·×w|Y|)
and RA contains those tuples defined in the chosen local worlds. If ν proves

∨
i ci is not a tautology, then ν(

∨
i ci) is false

and, because
∨

i ci is a disjunction, no clause ci is true. Thus RA does not contain tuples (i, 1), (i, 2), and (i, 3) for each clause
ci. This means that the condition of Q cannot be satisfied and thus the answer of Q is empty. Thus the tuple 〈〉 is not certain
in the answer to Q .

Now, assume there exists a world A ∈ rep(W) such that 〈〉 6∈ QA. Then, RA contains no the set of three tuples (i, 1),
(i, 2), and (i, 3) for any clause ci, because such a triple satisfies the selection condition. This means that the choice of local
worlds of the components in W correspond to a valuation ν that does not map all ci,1, ci,2, and ci,3 to true, for any clause ci.
Thus

∨
i ci is not a tautology.

Because by construction QA is either {} or {〈〉} for any world A ∈ rep(W), the same proof also works for instance q-
certainty with instance {〈〉}. �

Example 10. Fig. 10 gives a 3DNF clause set and its WSD encoding. Checking tautology of H := c1 ∨ c2 ∨ c3 is equivalent
to checking whether the nullary tuple is certain in the answer to the query from the proof of Theorem 10. Formula H
is not a tautology because it becomes false under the truth assignment {x1 7→ true, x2 7→ true, x3 7→ false, x4 7→

true}. This is equivalent to checking whether the nullary tuple is in the answer to our query in the world A defined
by the first local world of C1 (encoding x1 7→ true), the first local world of C2 (encoding x2 7→ true), the second
local world of C3 (encoding x3 7→ false), and the first local world of C4 (encoding x4 7→ true). The relation RA is
{〈C : 1, P : 1〉, 〈C : 2, P : 1〉, 〈C : 1, P : 2〉, 〈C : 3, P : 1〉, 〈C : 2, P : 3〉} and the query answer is empty. �
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Fig. 10. 3DNF clause set encoded as WSD.

6. Optimizing gWSDs

In this section we study the problem of optimizing a given gWSD by further decomposing its components using the
product operation.We note that product decomposition corresponds to the new notion of relational factorization. We define
this notion and study some of its properties, like uniqueness and primality or minimality in the context of relations without
variables and the special ⊥ symbol. It turns out that any relation admits a unique minimal factorization, and there is an
algorithm, calledprime-factorization, that can compute it efficiently.We thendiscuss decompositions of (g)WSDcomponents
in the presence of variables and the ⊥ symbol.

6.1. Prime factorizations of relations

Definition 6. Let there be schemata R[U] and Q [U ′
] such that ∅ ⊂ U ′

⊆ U . A factor of a relation R over schema R[U] is a
relation Q over schema Q [U ′

] such that there exists a relation R′ with R = Q × R′.

A factor Q of R is called proper, if Q 6= R. A factor Q is prime, if it has no proper factors. Two relations over the same schema
are coprime, if they have no common factors.

Definition 7. Let R be a relation. A factorization of R is a set {C1, . . . , Cn} of factors of R such that R = C1 × · · · × Cn.

In case the factors C1, . . . , Cn are prime, the factorization is said to be prime. From the definition of relational product and
factorization, it follows that the schemata of the factors C1, . . . , Cn are a disjoint partition of the schema of R.

Proposition 10. For each relation a prime factorization exists and is unique.

Proof. Consider any relation R. Existence is clear because R admits the factorization {R}, which is prime in case R is prime.
Uniqueness is next shown by contradiction. Assume R admits two different prime factorizations {πU1(R), . . . , πUm(R)}

and {πV1(R), . . . , πVm(R)}. Since the two factorizations are different, there are two setsUi, Vj such thatUi 6= Vj andUi∩Vj 6= ∅.
But then, as of course R = πU−Vj(R) × πVj(R), we have πUi(R) = πUi

(
πU−Vj(R) × πVj(R)

)
= πUi−Vj(R) × πUi∩Vj(R). It follows

that {πU1(R), . . . , πUi−1(R), πUi−Vj(R), πUi∩Vj(R), πUi+1(R), . . . , πUm(R)} is a factorization of R, and the initial factorizations
cannot be prime. Contradiction. �

6.2. Computing prime factorizations

This section first gives two important properties of relational factors and factorizations. Based on them, it further devises
an efficient yet simple algorithm for computing prime factorizations.

Proposition 11. Let there be two relations S and F , an attribute A of S and not of F , and a value v ∈ πA(S). Then, for some
relations R, E, and I holds S = F × R ⇔ σA=v(S) = F × E and σA6=v(S) = F × I .

Proof. Note that the schemata of F and R represent a disjoint partition of the schema of S and thus A is an attribute of R.
⇒. Relation F is a factor of σA=v(S) because σA=v(S) = σA=v(F × R) = F × σA=v(R).
Analogously, F is a factor of σA6=v(S).
⇐. Relation F is a factor of S because S = σA=v(S) ∪ σA6=v(S) = F × E ∪ F × I = F × (E ∪ I). �

Corollary 5. A relation S is prime iff σA=v(S) and σA6=v(S) are coprime.

The algorithm prime-factorization given in Fig. 11 computes the prime factorization of an input relation S as follows. It
first finds the trivial prime factors with one attribute and one value (line 1). These factors represent the prime factorization
of S, in case the remaining relation is empty (line 2). Otherwise, the remaining relation is disjointly partitioned in relations
Q and R (line 4) using any selection with constant A = v such that Q is smaller than R (line 3). The prime factors of Q are
then probed for factors of R and in the positive case become prime factors of S (lines 5 and 6). This property is ensured by
Proposition 11. The remainder of Q and R, which does not contain factors common to both Q and R, becomes a factor of S
(line 7). According to Corollary 5, this factor is also prime.
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Fig. 11. Computing the prime factorization of a relation.

Example 11. We exemplify our prime factorization algorithm using the following relation S with three prime factors.

S A B C D E
a1 b1 c1 d1 e1
a1 b1 c1 d1 e2
a1 b1 c1 d2 e1
a1 b1 c1 d2 e2
a2 b1 c1 d1 e1
a2 b1 c1 d1 e2
a2 b1 c1 d2 e1
a2 b1 c1 d2 e2
a2 b2 c2 d1 e1
a2 b2 c2 d1 e2
a2 b2 c2 d2 e1
a2 b2 c2 d2 e2

A B C
a1 b1 c1
a2 b1 c1
a2 b2 c2

×

D
d1
d2

×

E
e1
e2

To ease the explanation, we next consider all variables of the algorithm followed by an exponent i, to uniquely identify their
values at recursion depth i.

Consider the sequence of selection parameters (A, a1), (D, d1), (E, e1).
The relation S1 has no factors with one attribute. We next choose the selection parameters (A, a1). The partition

Q 1
= σA=a1(S

1) and R1
= σA6=a1(S

1) is shown below.

Q 1 A B C D E
a1 b1 c1 d1 e1
a1 b1 c1 d1 e2
a1 b1 c1 d2 e1
a1 b1 c1 d2 e2

R1 A B C D E
a2 b1 c1 d1 e1
a2 b1 c1 d1 e2
a2 b1 c1 d2 e1
a2 b1 c1 d2 e2
a2 b2 c2 d1 e1
a2 b2 c2 d1 e2
a2 b2 c2 d2 e1
a2 b2 c2 d2 e2

We proceed to depth two with S2 = Q 1. We initially find the prime factors with one of the attributes A, B, and C . We further
choose the selection parameters (D, d1) and obtain Q 2 and R2 as follows

Q 2 D E
d1 e1
d1 e2

R2 D E
d2 e1
d2 e2

We proceed to depth three with S3 = Q 2. We initially find the prime factor with the attribute D. We further choose the
selection parameters (E, e1) and obtain Q 3 and R3 as follows:

Q 3 E
e1

R3 E
e2

We proceed to depth four with S4 = Q 3. We find the only prime factor πE(Q 3) = Q 3 with the attribute E and return the set
{Q 3

}.
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At depth three, we check whether Q 3 is also a factor of R3. It is not, and we infer that Q 3
∪ R3 is a prime factor of Q 2 (the

other prime factor πD(Q 2) was already detected). We thus return {πD(Q 2), πE(Q 2)}.
At depth two, we check the factors of Q 2 for being factors of R2 and find that πE(Q 2) is also a factor of R2, whereas πD(Q 2)

is not. The set of prime factors of Q 1 is thus {πE(Q 2), πA(Q 1), πB(Q 1), πC (Q 1), πD(Q 1)}, where πA(Q 1), πB(Q 1), and πC (Q 1)
were already detected as factors with one attribute and one value, and πD(Q 1)} is the rest of Q 1.

At depth one, we find that only πE(Q 2) and πD(Q 1)} are also factors of R1. Thus the prime factorization of S1 is
{πE(Q 2), πD(Q 1), πA,B,C (S1)}. The last factor is computed in line 7 by dividing S1 to the product of the factors πE(Q 2) and
πD(Q 1)}. �

Remark 4. It can be easily verified that choosing another sequence of selection parameters, e.g., (D, d1), (E, e1) and (A, a1),
does not change the output of the algorithm.

Because the prime factorization is unique, the choice of the attribute A and value v (line 3) cannot influence it. However,
choosing A and v such that |σA=v(S)| ≤ |σA6=v(S)| ensures that with each recursion step the input relation to work on gets
halved. This affects the worst-case complexity of our algorithm.

In general, there is no unique choice of A and v that halve the input relation. There are choices that lead to faster
factorizations by minimizing the number of recursive calls and also the sizes of the intermediary relations Q . �

Theorem 11. The algorithm of Fig. 11 computes the prime factorization of any relation.

Proof. The algorithm terminates, because (1) the input size at the recursion depth i is smaller (at least halved) than at the
recursion depth i − 1, and (2) the initial input is finite.

We first show by complete induction on the recursion depth that the algorithm is sound, i.e. it occasionally computes
the prime factorization of the input relation.

Consider d the maximal recursion depth. To ease the rest of the proof, we uniquely identify the values of variables at
recursion depth i (1 ≤ i ≤ d) by an exponent i.

Base Case.We show that atmaximal recursion depth d the algorithm computes the prime factorization. This factorization
corresponds to the case of a relation Sd with a single tuple (line 2), where each attribute induces a prime factor (line 1).

Induction Step. We know that Fsi+1 represents the prime factorization of S i+1
= Q i and show that Fsi represents the

prime factorization of S i.
Each factor F of Q i is first checked for being a factor of Ri (lines 5 and 6). This check uses the definition of relational

division: the product of F and the division of Ri with F must give back Ri. Using Proposition 11, each factor F common to Ri

and S i is also a factor of S i. Obviously, because F is prime in Q i, it is also prime in S i.
We next treat the case when the factors common to Q i and Ri do not entirely cover S i (line 7). Let P be the product of all

factors common to Q i and Ri, i.e. P = ΠFsi. Then there exists Q i
∗
and Ri

∗
such that Q i

= Q i
∗
× P and Ri

= Ri
∗
× P . It follows

that S i = Q i
∪ Ri

= (Q i
∗

∪ Ri
∗
) × P , thus (Q i

∗
∪ Ri

∗
) is a factor of S i. Because Q i

∗
and Ri

∗
are coprime (otherwise they would

have a common factor), Corollary 5 ensures that their union (Q i
∗
∪ Ri

∗
) is prime.

This concludes the proof that the algorithm is sound. The completeness follows from Proposition 11, which ensures that
the factors of S i, which do not have the chosen attribute A, are necessarily factors of both Q i and Ri at any recursion depth i.
Additionally, this holds independently of the choice of the selection parameters. �

Our relational factorization is a special case of algebraic factorization of Boolean functions, as used in multilevel logic
synthesis [11]. In this light, our algorithm can be used to algebraically factorize disjunctions of conjunctions of literals. A
factorization is then a conjunction of factors, which are disjunctions of conjunctions of literals. This factorization is only
algebraic, because Boolean identities (e.g., x · x = x) do not make sense in our context and thus are not considered (Note
that Boolean factorization is NP-hard, see e.g., [11]).

The algorithm of Fig. 11 computes prime factorizations in polynomial time and linear space, as stated by the following
theorem.

Theorem 12. The prime factorization of a relation S with arity m and size n is computable in time O(m · n · log n) and space
O(n + m · log n).

Proof. The complexity results consider the input and the temporary relations available in secondary storage.
The computations in lines 1, 3, 4, and 7 require a constant amount of scans over S. The number of prime factors of a

relation is bounded in its arity. The division test in line 6 can be also implemented as

πsch(P)(R) = P and |P| · |πsch(R)−sch(P)(R)| = |R|.

(Here sch maps relations to their schemata). This requires to sort P and πsch(P)(R) and to scan R two times and P one time.
The size of P is logarithmic in the size of Q , whereas Q and R have sizes linear in the size of S. The recursive call in line 5 is
done on Q , whose size is at most a half of the size of S.
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The recurrence relation for the time complexity is then (for sufficiently large constant a; n is the size of S and m is the
arity of S)

T (n) = 7n + m · n · log n + T
(n
2

)
≤ T ′(n) = a · m · n · log n + T ′

(n
2

)
= a · m ·

dlog ne∑
i=1

n
2i

· log
( n
2i

)
≤ a · m ·

∞∑
i=1

n
2i

· log
( n
2i

)
= a · m · n · log n = O(m · n · log n).

Each factor of S requires space logarithmic in the size of S. The sum of the sizes of the relations Q and R is the size of S.
Then, the recurrence relation for the space complexity is (n is the size of S andm is the arity of S)

S(n) = n + m · log n + S
(n
2

)
=

dlog ne∑
i=1

( n
2i

+ m · log
( n
2i

))
≤ m ·

∞∑
i=1

( n
2i

+ m · log
( n
2i

))
= O(n + m · log n). �

We can further trade the space used to explicitly store the temporary relations Q , R, and the factors for the time needed
to recompute them. For this, the temporary relations computed at any recursion depth i are defined intentionally as queries
constructed using the chosen selection parameters. This leads to a sublinear space complexity at the expense of an additional
logarithmic factor for the time complexity.

Proposition 12. The prime factorization of a relation S with arity m and size n is computable in time O(m · n · log2 n) and space
O(m · log n).

Proof. We can improve the space complexity result of Theorem 12 in the followingway. The temporary relations computed
at any recursion depth i are defined intentionally as queries constructed using their schema, say U i, and the chosen selection
parameters (Ai, vi).

The relation Q j at recursion depth j ≤ i is Q j
= πU j(σ

φ
Q
j
(S)), φQ

j =
∧

1≤l≤j
(Al

= vl).

The relation Rj is defined similarly and their factors additionally require to only store their schema. Such queries have the
size bounded in the maximal recursion depth, thus in the logarithm of the input relation size. At each recursion depth, only
an attribute-value pair needs to be stored. Thus the space complexity becomes (n is the size of S andm is the arity of S)

S(n,m) = m · log n + S
(n
2
,m − 1

)
≤

dlog ne∑
i=1

m · log
n
2i

≤

∞∑
i=1

m · log
n
2i

= m · log n.

The time complexity increases, however. All temporary relations need to be recomputed from the original relation S seven
times at each recursion depth. Thus, in contrast to T (n,m) from the proof of Theorem 12, the factor 1

2i
does not appear in

the new formula of T (n′). The new recurrence function for T (n′) (for sufficiently large a > 0; n is the size of the initial S and
m is the arity of the initial S; n′ is initially n) is

T (n′) = 7n + m · n · log n + T
(n′

2

)
≤ T ′(n′) = a · m · n · log n + T ′

(n′

2

)
=

dlog ne∑
i=1

a · m · n · log n

= a · m · n · log2 n = O(m · n · log2 n). �

Remark 5. An important property of our algorithm is that it is polynomial in both the arity and the size of the input relation
S. If the arity is considered constant, then a trivial prime factorization algorithm (yet exponential in the arity of S) can be
devised as follows: First compute the powerset PS(U) over the set U of attributes of S. Then, test for each set U ′

∈ PS(U)
whether πU ′(S) × πU−U ′(S) = S holds. In the positive case, a factorization is found with factors πU ′(S) and πU−U ′(S), and
the same procedure is now applied to these factors until all prime factors are found. Note that this algorithm requires time
exponential in the arity of the input relation (due to the powerset construction). Additionally, if the arity of the input relation
is constant, then the question whether a relation S is prime (or factorizable) becomes FO-expressible (also supported by the
space complexity given in Proposition 12). �

6.3. Optimization flavors

The algorithm for relational prime factorization can be applied to find maximal decompositions of (g)WSD components,
i.e. minimal representations of (g)WSDs. Differently from the relational case, however, the presence of the ⊥ symbol and
of variables may lead to non-uniqueness and even to non-primality of the (g)WSDs factors produced by our algorithm. As
Fig. 12 shows, the ⊥ symbol is one reason for non-unique maximal decompositions of attribute-level WSDs.

Fortunately, the tuple-levelWSDs havemaximal decompositions that are uniquemodulo the representation of t⊥-tuples
and can be efficiently computed by a trivial extension of our algorithmwith the tuple-level constraint. Recall that any tuple
〈A1 : a1, . . . , An : an〉, where at least one ai is ⊥, is a t⊥-tuple.
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Fig. 12. Non-unique decompositions of attribute-level WSDs with ⊥ symbols.

Fig. 13. Equivalent maximal decompositions of tuple-level gWSDs (x and y are variables, the global condition is true).

Proposition 13. Any tuple-level WSD has a unique maximal decomposition.

Proof. Let W = {C1, . . . , Cn} be a tuple-level WSD over schema (R1[U1], . . ., Rk[Uk]), where Uj = (A1
j , . . . , A

nj
j ).

Construction. We define a translation f that maps each component Ci of W to an ordinary relation SCi by compactifying
each tuple t of schema Rj.d.Uj defined by Ci into one value (t) of schema Rj.d.(Uj), where (Uj) is an attribute. We map all
t⊥-tuples defined by Ci, to the⊥ symbol.We can now apply the algorithm prime-factorization, where the⊥ symbol is treated
as constant.

Correctness. We show that there is an equivalence modulo our translation between maximal decompositions of SCi and
of Ci. Let {P1, . . . , Pl} and {P ′

1, . . . , P
′

l′} be maximal decompositions of Ci and SCi , respectively. Because of our tuple-level
constraint, each tuple identifier occurs in the schema of exactly one Pj and P ′

j . We show that l = l′ and f (Pj) is in P ′

1, . . . , P
′

j
modulo the representation of t⊥-tuples (which does not change the semantics of W ).

Assume l′ > l. Then, there exist two identifiers d1 and d2, whose tuples are defined in different components of SCi and the
same component of Ci. If d1 and d2 have no ⊥-values, then we are in the case of ordinary relations and the algorithm would
have found the same decomposition for Ci and SCi . A ⊥-value for one of them cannot influence the values for the other and
thus by treating ⊥ as a constant, our algorithm would have found again the same decomposition. Contradiction. We thus
have l ≥ l′ and the tuples t of an identifier d are defined by a component Pj of Ci iff f (t) is defined by a P ′

j of SCi . The case of
l > l′ can be shown similarly. �

The variables are a source of hardness in finding maximal decompositions of tuple-level gWSDs. By freezing variables
and considering them constant, the three decompositions given in Fig. 13 cannot be found by our algorithm.

The gWSD optimization discussed here is a facet of the more general problem of finding minimal representations for a
given g-tabset or world-set. To find aminimal representation for a given g-tabset A, one has to take into account all possible
inlinings for the g-tables of A in g-tabset tables. Recall from Section 3 that we consider a fixed arbitrary inlining order of the
tuples of the g-tables in A. Such an order is supported by common identifiers of tuples from different worlds, as maintained
in virtually all representation systems [19,3,17,8] and exploited in practitioner’s representation systems such as [8,4]. We
note that when no correspondence between tuples from different worlds has to be preserved, smaller representations of
the same world-set may be possible.
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