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Abstract

Manin, Feynman, and Deutsch have viewed quantum computing as a kind of uni-
versal physical simulation procedure. Much of the writing about quantum logic
circuits and quantum Turing machines has shown how these machines can simulate
an arbitrary unitary transformation on a finite number of qubits. The problem of
universality has been addressed most famously in a paper by Deutsch, and later
by Bernstein and Vazirani as well as Kitaev and Solovay. The quantum logic cir-
cuit model, developed by Feynman and Deutsch, has been more prominent in the
research literature than Deutsch’s quantum Turing machines. Quantum Turing ma-
chines form a class closely related to deterministic and probabilistic Turing machines
and one might hope to find a universal machine in this class. A universal machine
is the basis of a notion of programmability. The extent to which universality has in
fact been established by the pioneers in the field is examined and this key notion in
theoretical computer science is scrutinised in quantum computing by distinguishing
various connotations and concomitant results and problems.
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1 Introduction

In its attempt to cast light on the concept of programmability in quantum
computing, this paper discusses two notions of “universality”, namely

• a universal set of generating “components” for a given class of machines,
and

• a universal machine in a class.

In his classic introduction [1] to the theory of recursive functions, Hans Hermes
devotes Chapter 2 to the “engineering” of Turing machines (defined below). He
introduces a finite set of elementary Turing machines and then describes how
to combine them to build more complex ones and proves that the elementary
machines constitute a universal generating set: any Turing machine whatso-
ever is equivalent (in terms of input-output behaviour) to a Turing machine
constructed by combining elementary machines. Then, in the last chapter of
the book, Hermes proves that there exists a universal Turing machine which
can simulate the input-output behaviour of any Turing machine if provided
with an appropriate program. These are instances of the two different notions
of universality. Confusing and conflating the existence of a universal generat-
ing set with the existence of a universal machine can engender some conceptual
perplexity, from which the literature on quantum computing does not seem to
escape completely. This contribution examines these issues in more detail.

2 Classical and probabilistic Turing machines

By the beginning of the twentieth century mathematicians had become quite
interested in establishing a formal model of computability. In 1936 Alan Turing
described an abstract device, now called a Turing machine, which follows a
simple, finite set of rules in a predictable fashion to transform finite strings
(input) into finite strings (output, where defined). The Turing machine (TM)
can be imagined to be a small device running on a two-way infinite tape with
discrete cells, each cell containing only the symbol 0 or 1 or a blank. The TM
has a finite set of possible internal states and a movable head that can read
the contents of the cell of the tape immediately under it. The head may also,
at each step, write a symbol to the cell over which it finds itself. There are
two special internal states: an initial state q0 and a halting state qH .

A TM has a finite list of instructions, or transition rules, describing its opera-
tion. There is at most one transition rule for each combination of cell content
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(under the head) and internal state. If the internal state is qi and the head is
over a cell with content Sj then the machine looks for a rule corresponding to
(qi, Sj). If no rule is found, the machine enters the halting state immediately. If
a rule corresponding to (qi, Sj) is found, it will tell the machine what to write
to the cell under the head, whether to move one cell left or right or to stay put
and which internal state to enter. There is no transition rule corresponding
to the halting state. Sometimes we refer to the entire collection of individual
rules for all the different (qi, Sj) as the transition rule of the machine.

A computation consists of starting the TM with the head over the first non-
blank cell (which we may label position 0 on the tape) from the left of the tape
(it is assumed that there is nothing but some finite input on the tape) and the
machine in internal state q0. Now the transition rules are simply applied until
the machine enters the halting state qH , at which point the content of the tape
will be the output of the computation. If, for some input, the machine never
halts then the output corresponding to that input is simply undefined. It is
clear how every TM defines a (possibly, partial) function f : N0 → N0 from
the set of counting numbers to itself.

Turing machines are the canonical models of computing devices. No deter-
ministic device, operating by finite (but possibly unbounded) means has been
shown to be able to compute functions not computable by a Turing machine.
In fact, one may view one’s desktop computer as a Turing machine with a
finite tape.

A probabilistic Turing machine (PTM) is identical to an ordinary Turing ma-
chine except for the fact that at each machine configuration (qi, Sj) there is
a finite set of transition rules (each with an associated probability) that ap-
ply and that a random choice determines which rule to apply. We fix some
threshold probability greater than even odds (say, 75%) and say that a specific
PTM computes f(x) on input x if and only if it halts with f(x) as output
with probability greater than 75%.

3 Quantum Turing Machines (QTMs)

A natural model for quantum computation is based on the classical Turing
machine. The quantum Turing machine (QTM) was first 1 described by David
Deutsch [3]. The basic idea is quite simple, a QTM being roughly a probabilis-
tic Turing machine (PTM) with complex transition amplitudes (the squared

1 Paul Benioff had related a similar idea somewhat earlier [2] but primarily in
connection with presenting a possible physical basis for reversible computing.
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moduli of which add up to one at each application) instead of real probabili-
ties.

Without loss of generality everything can be assumed to be coded in binary
so that each position on the tape of the QTM will correspond to a single
qubit (quantum bit). A unit of quantum information, the qubit is a two level
quantum mechanical system, whose state is described by a linear superposition
of two basis quantum states, often labelled |0〉 and |1〉. The actual (quantum)
state space of the machine will be a direct sum of n-qubit spaces (where n is an
indication of how much tape has been used, each n-qubit space being the n-fold
tensor of the single qubit space). The direct sum is, however, not a complete
inner-product space and therefore—by the postulates of quantum mechanics—
not a valid state space. However, the underlying Hilbert space can be taken
to be the completion of the direct sum and a unitary operator U on the direct
sum (see [4]) can be extended to a unitary operator Û on the Hilbert space.
This completed space and operator will correspond to the physical system
associated with the QTM, thereby taking care of the physicality of the QTM.

3.1 Operation of a QTM

In the following the classical machine is a machine with a two-way infinite
tape, starting over position 0 on the tape as described above, that we use
as a kind of template for the quantum Turing machine. The corresponding
quantum Turing machine (QTM) might work as follows (based on the Deutsch
description [3], Ozawa [5], Bernstein and Vazirani [4]).

I. The quantum state space of the machine is spanned by a basis (here
called the computation basis) consisting of states

|h〉|qC〉|TC〉|xC〉

where |h〉 is the halt qubit, h ∈ {0, 1} and (qC , TC , xC) is a configuration
of the corresponding classical machine, where xC denotes the position
of the head, qC the internal state of the machine and TC the non-blank
content of the tape.

II. Special initial and terminal internal states have been identified (corre-
sponding to the initial state and halting state of the classical machine).

III. The single transition rule is now a unitary operator U which, in each
step, maps each basic |h〉|q〉|T 〉|x〉 to a superposition of only finitely
many |h′〉|q′〉|T ′〉|x′〉, where
(a) the rule is identical for |h〉|q〉|T1〉|x〉 and |h〉|q〉|T2〉|y〉 when T1 in

position x and T2 in position y have the same content, i.e. the rule
depends only on the content of the tape under the head and the
internal state q and not on the position of the head or on the content
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of the rest of the tape;
(b) T ′ and T differ at most in position x;
(c) |x′ − x| ≤ 1 (depending on whether the corresponding classical ma-

chine moves one position to the left, to the right, or not at all);
(d) h′ = 1 if and only if q′ is the halting state of the classical machine;

and
(e) T ′ = T , q′ = q and h′ = h whenever h = 1.
Finitely many subrules

|h〉|q〉|T 〉|x〉 7−→
n∑

i=1

ci|hi〉|qi〉|Ti〉|xi〉 (1)

will determine U as there are, by the stipulations above, only finitely
many possible—given that the alphabet of the tape (binary in our case)
and the number of internal states are both finite. Note that the transi-
tional rule (“program”) will have a finite specification only if the tran-
sition amplitudes in the superposition of the |h′〉|q′〉|T ′〉|x′〉 are all com-
putable complex numbers, which we will of course assume to be the case
throughout. The transition rule can also, obviously, be extended (lin-
early) to finite superpositions of |h〉|q〉|T 〉|x〉.

IV. The machine is started with a finite superposition of inputs

|0〉|q0〉|T 〉|x〉.

Because of the form that the transition rule is allowed to take (and
the fact that there are only finitely many internal machine states) the
machine will be in the superposition of only finitely many basic states
|h〉|q〉|T 〉|x〉 at any step during the entire run 2 of computation.

The description of the machine given here differs from a classical reversible
Turing machine in two obvious respects.

(a) Transition rules are allowed to map a state of the machine to the superpo-
sition of several states. The crucial distinction with classical probabilistic
machines is that the QTM goes to a quantum superposition of states
whereas the classical PTM can be seen as either going to a classical prob-
ability distribution over states or to a specific state with some classical
probability. Quantum computing, of course, uses superposition in an es-
sential way 3 —as in the algorithms of Shor or Grover.

2 A more hazy concept than for classical Turing machines, as a QTM only really
stops when one has observed the halt qubit and the content of the tape, so one
may think of the transition rule being applied ad infinitum, step-by-step, unless the
operator (physically, classically and externally) stops the machine.
3 A very readable and accessible explanation of how and why this works can be
found in [6].
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(b) The input is allowed to be a superposition of a finite number of “classical”
inputs.

It is not immediately obvious why a finite collection of specifications of the
form (1) should necessarily define a unitary U , however, just as it might not
be apparent why a finite collection of rules

|h〉|q〉|T 〉|x〉 7−→ |h′〉|q′〉|T ′〉|x′〉

for a classical machine would necessarily specify a reversible machine. Unitar-
ity is, of course, a precondition for the quantum device to be feasible.

We demonstrate that the specification of what QTMs are, is at least consistent,
that such beasties exist mathematically. Let the underlying classical template
be a reversible TM, which, after reaching its halting state, keeps moving its
head stepwise in one direction without ever changing anything on its tape.
(Note that III.(e) does not stipulate that x′ = x whenever h = 1; to be
reversible, something must change at every step.) The corresponding QTM is
now constructed by linearly generating its U according to the corresponding
transition rules of the simple form above — with no superpositions. Then this
U is determined by a permutation of the computation basis of the QTM, and
hence is unitary. Should the rules involve superpositions (as happens in all
interesting cases), a proof of the unitarity of the induced U is called for.

3.2 Time evolution of the QTM and halting

If U is the operator that describes one application of the transition rule (i.e.
one step in the operation) of the machine, then the evolution of an unobserved
machine (where not even the halt bit is measured) for n steps is simply de-
scribed by V = Un. If the first measurement occurs after n1 steps, and the
measurement is described by an operator J1, then the evolution of the machine
for the first n1 + j steps is described by

U jJ1U
n1

which is in general no longer unitary since the operator J1 is a measurement
(always in the computational basis). It is important to note that the machine
evolves unitarily only when no measurement takes place at all.

The output of the machine is on the tape as a superposition of basis states
and should be read off after having measured the content of the halt bit and
finding it in the state 1. The operator may at any time measure the halt bit 4

in order to decide whether to read the tape content (and collapse the state of

4 The halt qubit, of course, until we measure it.
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the machine to one of the basis states). The halt bit is intended to give the
operator of the machine an indication of when an output may be read off from
the tape (and by observation collapsing the system to an eigenstate) without
interfering excessively with the computation. It seems that Deutsch’s original
idea was that there would be no entanglement at all between the halt bit and
the rest of the machine, but this cannot be guaranteed. The output of a QTM
for some specific input x (which may be a superposition of classical inputs) is
a probability distribution Px over all possible contents of the tape at the time
of observing the halt bit to have been activated. Note that the observation of
an activated halt bit may in itself be a random event, but it has been argued
by Ozawa [5] and others, that Px does not depend on the random observation
events.

4 Universality and programmability in the machine model

The notion of a universal computing device in a specific class is crucial for
the development of a complexity theory and—more basically—establishes the
notion of programmability. Naturally, we will start the discussion by reviewing
the well-established notions of universality in classical deterministic and prob-
abilistic computing before moving on to examine the concept of a “universal
QTM” introduced by Deutsch.

4.1 Classical universality and programmability

Consider a general countable class of machines, say Manchester machines
(MMs), that compute partial functions, i.e. functions that are not necessarily
defined for all inputs (since the machine might not halt, for example, as in
the case of a Turing machine). Since there are only countably many machine
descriptions, let us assume that each Manchester 5 machine is fully described
by a natural number. It should be possible to recover the full description of
the machine’s functioning from the natural number in an effective way, so it
should not simply be any enumeration of the countable set. Let Φn denote the
partial function computed by machine n and fix an MM-computable bijective

5 Alan Turing worked on building and programming one of the first electronic
computers in the city of Manchester after the Second World War.
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function 6 h : N0 × N0 → N0, assuming such a function exists 7 .

Definition 1 If there exists a number N such that

ΦN (h(n,m)) = Φn(m)

which means that the functions are either equal and both defined or both unde-
fined, for all n and m, then the machine described by N is called a Universal
Manchester Machine (UMM).

Programmability is firmly linked to the concept of universality and is, of
course, a necessary condition for universality. Is it a sufficient condition? A
particular Turing machine is usually thought of as dedicated to a particular
task, defined by a set of quintuples describing the operations to be carried out
in sequence. Every Turing machine has thus a finite description (of internal
states, tape entries and operation rules—which are unbounded but finitely
many) which could be used as input to another Turing machine.

A universal Turing machine, (of which there are infinitely many), can simulate
all the Turing machines, and is thus programmable for the entire class of
Turing machines. If a machine is programmable for any device in its class,
then it is universal. Not all programmable computer devices are universal in
any sense. In fact, one could use the term programmable to describe any device
taking input of the form 〈p, x〉 where p is the “program” and x the “data”
and where the action of the machine on x depends on p. Such machines are
universal (for their class) only if they can—through the suitable choice of
p—mimic the operation of any other machine in the class.

4.2 Probabilistic Turing machine universality

Since halting is a probabilistic notion for a QTM, the notion of universality
for quantum devices should be akin to that for probabilistic machines. For
probabilistic machines, however, Definition 1 does not directly apply and it is
necessary to generalise it as follows.

6 It will strike the attentive reader that h is the first (and last) function of two
variables to appear here but that we have implicitly considered Manchester machines
with one natural number input only. This is illogical, but the problem can be fixed
in a well-established way. Suffice it to say that one should be able to consider h

MM-computable in an obvious and logical way. One only needs one such function
h and we will therefore not elaborate here.
7 If it does not, the class of machines would really be very poor. It would not make
a big difference if we took, for example, h : (x, y) 7→ 2x3y instead of an onto function
but the convention that h be onto is harmless and convenient.
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Definition 2 If there exists a number N such that

ΦN (h(n,m)) = Φn(m)

which means that the functions are either equal and both defined or both un-
defined (if deterministic) and if not deterministic then the values
have the same distribution, for all n and m, then the machine described
by N is called a Universal Manchester Machine (UMM).

In the case, for example, of deterministic Turing machines (which are a strict
subset of the probabilistic machines) the two notions of universality coincide,
of course. The main aim of this section is to discuss this (second) notion of
universality for quantum Turing machines (QTMs).

One can easily show, incidentally, that every function f which can be computed
in this sense by a PTM, is also computable by some ordinary TM in the usual
sense. Nevertheless PTMs have always been of interest because probabilistic
algorithms can often be found that are quite fast by comparison to the best
known classical procedure. The class of PTMs is often defined by restricting
the probabilities to 1

2
or 1 only. In this case the class can also be obtained

by taking the ordinary TMs and adding a special write instruction to write
one random bit to the tape. The PTMs are often described, in this model, as
“TMs with access to a fair coin toss”. It is easy to see how a universal machine
might be described in this class: it would simply be a universal TM equipped
with the random output instruction. Such a universal PTM (UPTM) could
obviously simulate any other “coin toss” PTM perfectly, by which is meant
that the output of the UPTM would have exactly the same distribution as the
output of a PTM for which it is executing a program.

Now, which PTMs should our UPTM be able to simulate exactly? Well, since
each PTM should have a finite description, the UPTM need only be able
to simulate a countable collection of PTMs. Let us restrict the set of PTMs
to those with computable transition probabilities. Each such machine is fully
described by the finite set of transition rules and programs for computing
each of the associated probabilities. This description is finite—thanks to the
restriction of the probabilities to computable numbers.

Since there is no reasonable way of giving a finite description of PTMs with
non-computable transition probabilities, apart from the usual paradoxical def-
initions of the type “one more than the largest number which can be described
in thirteen words”, this concludes the discussion for PTMs. Introducing ar-
bitrary real transition probabilities makes no sense as it would immediately
make any subset of the natural numbers decidable by a probabilistic machine.
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4.3 A universal QTM?

Deutsch introduced a “universal quantum computer” (uQC, where u has not
been capitalised in order to emphasise the difference between this universality
concept and the preceding) in [3]. The Deutsch uQC is in effect a QTM as
in Section 3, based on a classical UTM with some additional (8 in [3]) opera-
tions that allow any unitary transformation on one qubit to be approximated
arbitrarily closely. Deutsch showed in the paper that for any given L, ε > 0
and quantum device U operating on L qubits, there exists a program pL (a
classical finite string of bits) for the uQC that (with input |pL〉 followed by
any finite superposition of L-qubit basic states) approximates the operation
of U on the finite superposition of L-qubit basic states with accuracy at least
ε (in the inner-product norm). This is not the same kind of universality that
we have for probabilistic and for deterministic Turing machines and even the
concatenation scheme used by Deutsch has been questioned (for example, by
Shi [7]).

Now, if we consider the earlier (second) definition of universality, then there
can be no universal machine for the simple reason that in Deutsch’s scheme
there are uncountably many (transition rules for) QTMs. For broadly the same
reasons as outlined above for PTMs, we shall restrict ourselves henceforth to
QTMs with computable transition amplitudes, i.e. transition amplitudes for
which both the real and imaginary parts are computable numbers. We now
fix a scheme for encoding the QTMs and associate any machine M with the
smallest 8 natural number that encodes it. Note that we say that a QTM
outputs y with probability p if the probability of ever observing the machine
to be in the halt state with the tape in state |y〉 is p. Does a universal machine
for the (restricted) class of QTMs in the sense of Definition 2 exist?

Deutsch provided the rather incomplete solution mentioned above. Bernstein
and Vazirani [4] have given another partial solution. They showed that there
exists a quantum Turing machine U (they actually wrote M) such that [4]

“for any well-formed 9 QTM M , any ε > 0, and any T , U can simulate M
with accuracy ε for T steps with slowdown polynomial in T and 1

ε
.”

The slowdown and the program for U both depend here on the length of the in-
put. The full Bernstein-Vazirani result could be summarised by the statement
that

there exists a QTM U such that for each QTM M with finite description M̄ ,

8 Two distinct natural numbers may, of course, encode physically identical ma-
chines.
9 Meaning that the time evolution operator is unitary.
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n, ε and T there is a program P(M̄, n, ε, T ) and a function fM̄(T, n, 1

ε
) (both

recursive in their inputs) such that running U on input |P(M̄, n, ε, T )〉⊗|x〉
where |x| = n for fM̄(T, n, 1

ε
) steps results—within accuracy ε—in the same

distribution over observable states as running M on input |x〉 for T steps.

The simulation is clearly only approximate. What Bernstein and Vazirani mean
“with accuracy ε” is that if P is the probability distribution over all observ-
able states of U after fM̄(T, n, 1

ε
) steps with the given input and Q is the

corresponding probability distribution of M after T steps then

1

2

∑

x

|P (x)−Q(x)| ≤ ε

where the summation is over all possible observable states x. Again, approx-
imate simulation is quite different from the universality concept for ordinary
and for probabilistic Turing machines (with computable probabilities) as in
the latter cases the universal machine’s simulation was exact. Running U for
exactly fM̄(T, n, 1

ε
) steps on any input |P(M̄, n, ε, T )〉 ⊗ |x〉 will have simu-

lated the running of M on |x〉 for T steps. We may not let U run for any
more steps as the state of the machine might then drift away from the to-be-
simulated state of M after T steps. This behaviour is rather different from
that of the UTM or UPTM—where there is no need to restrict the number of
steps executed!

What about the input to the machine? In general, the input to a QTM is
allowed to be a (finite) superposition of basis states of the tape but the
Bernstein-Vazirani theorem quoted here applies to a single state only. This
is not a problem: it is straightforward to see that it also applies to a superpo-
sition of m basic states (just replacing ε by 1

m
ε).

Now, the Bernstein-Vazirani machine U immediately suggests the following
semi-universal hybrid device (SUHD). The device takes the description M̄ of
a QTM M as well as x and ε (which may be taken to be rational) as input.
The machine operates as follows.

T:= 1;

n:= |x|;
do

compute P := P(M̄, n, ε
T
, T );

compute S := fM̄(T, n, T
ε
);

run U on |P 〉 ⊗ |x〉 for S steps;

signal that quantum part of device may be observed;

wait a little;

reset quantum part of device;

T:=T+1;
while true;

11



Note that by replacing ε by ε
T

we have ensured that by simply letting the
SUHD run, we will not only be able to observe the simulated behaviour of
M for ever longer times, but also with ever-increasing accuracy. However, the
SUHD is still not universal for the class of QTMs in the sense of Definition
1 or Definition 2. This is true not only for the very obvious reason that its
simulation is only approximate, but for the much more fundamental reason
that we do not know whether it is a QTM itself!

The SUHD is a real hybrid device which consists of a classical Turing-type
machine and a quantum part. The SUHD is—in a sense—a robot capable
of operating a quantum device (which forms part of itself) and there is no
reason to think that such a robot cannot be built. The problem lies therein
that the robot only gives a signal when we might observe the quantum part
of the device. It cannot know whether we have observed the quantum part or
not—otherwise the observer would become part of the device...

Now, any quantum device operates reversibly. In the case of the SUHD the
step “reset quantum part of device” is the part which can be problematic in
this regard. If the quantum part was not observed during the step “wait a lit-
tle” then the inverse of the evolution operator of U can be used to effect such
a reset. But, what if the observer(s) did make an observation of the quantum
part during “wait a little”? Now, the inverse of the evolution operator of U
will not “reset quantum part of device”. This is really a serious problem. In
an ordinary QTM the evolution of the machine continues even when the halt
bit has been observed, but for the SUHD even the observation of the halt bit
(which may be in a superposed state, although not necessarily entangled with
the rest of the machine) renders the operation of the device non-reversible.
This is simply because for the ordinary QTM, the evolution operator can
continue after the halt bit has been observed without perturbing the proba-
bility distribution that has been defined to be the QTM’s output (according
to Ozawa [5]) since the observation projects one, in a certain sense, only into
a specific (h = 0 or h = 1) branch of the computation. For the hybrid device
it is not that simple since the resetting step requires an undisturbed quan-
tum part. If the quantum part has been disturbed at T = k, the operation
described above will not be able to correctly reset the quantum part of the
device and will not execute the loop faithfully for T = k + 1. Of course, it is
always possible for the operator to be instructed to restart the hybrid device
after observation, but then we will be dealing with a new kind of bio-hybrid
device and not a universal machine at all. In classical computing this would
be the equivalent of the user strictly having to reboot the computer each time
after looking at the screen, i.e. there would be no autonomy of operation. Pure
quantum computing devices are prevented by the No Cloning Theorem from
copying initial configurations of substems, which precludes the realisation of
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such a näıve hybrid operation by a quantum device.

Conjecture 1 The SUHD derived from Bernstein and Vazirani’s U cannot
be made to operate reversibly and is therefore not a QTM.

The immediate consequence of the conjecture is that (as yet) no universal
machine has been shown to exist in quantum computing and that the no-
tion of universal programmability has not really been established for quantum
computing in the QTM model.

5 Quantum gates

Quantum gates provide another (and more practical) engineering paradigm for
quantum computation initiated by Richard Feynman [8] and David Deutsch
[9]. The classical analogue is a logic circuit. In principle, in the quantum gate
model, a quantum computation works as follows.

(1) The first step typically involves the preprocessing of the input data on a
classical computer. For example, in the Shor algorithm for the factoring
problem we must ensure in a classical way that the input number is not
a prime power.

(2) Based on these preprocessed data, we have to prepare the quantum reg-
ister. This means, in the simplest case, to prepare classical data e.g. a
binary string x of length d, say, as the state |x〉 in 2d-dimensional Hilbert
space. In most cases, however, one would be required to prepare a super-
position of states |x〉.

(3) Next we apply the quantum circuit C, which is a sequence of local quan-
tum operators, to the input state |φ〉 and after the calculation we get the
output state U |φ〉 where U is the unitary operator corresponding to C.

(4) To read out the data we perform a von Neumann measurement in the
computational basis.

(5) Finally we may have to post-process the value on a classical computer. In
general we obtain a correct result with probability less than one, which
means we have to check the validity of the result with a polynomial time
algorithm and if wrong, we have to go back to step 2.

Hence, in this model, a quantum computation is a hybrid of classical and
probabilistic algorithms coupled with quantum evolutions of prepared quan-
tum states.

Suppose V is a unitary operator acting on H⊗f . For d ≥ f , we call a unitary
operator on H⊗d an instance of V if it is any operator acting like V on a
fixed f of the possible d qubits and as the identity on the remaining qubits.

13



In order to discuss programmability in this context, we introduce the idea of
instruction sets. An instruction set G for a multiqubit of a fixed length d is a
finite set of quantum gates satisfying the following conditions.

• All gates V ∈ G are in SU(2d), that is, they are unitary operators on the
2d-dimensional Hilbert space H⊗d where H is 2-dimensional over C and each
operator has determinant one.

• For each V ∈ G the inverse operation V † also belongs to G.
• The group generated by G is topologically dense in SU(2d). This means
that for any given quantum gate U ∈ SU(2d) and any degree of accuracy
ǫ > 0, there exists a finite product V = V1V2 . . . Vk of instances of gates
from G which is an ǫ-approximation to U , that is to say, such that

||U − V1V2 . . . Vk|| < ǫ.

Suppose U and V are two unitary operators on the same state space with U
the target unitary operator that we wish to implement and V = V1V2 · · ·Vk

being the unitary operator that is actually implemented from an instruction
set as above. Let M be a positive operator valued measure (POVM) element
associated with the measurement and let PU (or PV ) be the probability of
obtaining the corresponding measurement outcome if the operation U (or V )
is performed with a starting state |φ〉. Then it can be shown that (see [10],
p195)

|PU − PV | = |〈φ|U †MU |φ〉 − 〈φ|V †MV |φ〉| ≤ 2||U − V ||.

This inequality gives quantitative expression to the idea that when the er-
ror ||U − V || is small, the difference in probabilities between measurement
outcomes is also small.

An example of a set of universal gates is that “generated” by instances of T , the
Toffoli gate, H , the Hadamard gate, and the phase gates. It is “generated” in
the following sense: We consider all unitary operators for d-multiqubits which
is a product of instances of H , T , the phase gates together with their inverses.
Then this set G is an instruction set for multiqubits of length d.

6 Universal sets of gates: the Solovay-Kitaev Theorem

The problem of quantum compilation is the following: Given an instruction
set G, how can we approximate an arbitrary quantum gate by means of a
finite sequence of instructions from G in a manner which is both effective (i.e.,
computable in the classical sense), and efficient as far as both the time and
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space complexity are concerned. The Solovay-Kitaev theorem [11] is a truly
remarkable contribution to this problem:

Theorem 1 Let G be an instruction set for SU(2d), and let a desired measure
of accuracy ǫ > 0 be given. There is a universal constant c such that for
any U in SU(2d), there exists a finite sequence S of gates from G of length
Od (log

c(1/ǫ)) such that the product of the sequence S is within ǫ of U with
respect to the operator norm.

More precisely, an arbitrary unitary operator U on d qubits can be approxi-
mated to within a distance ǫ in the operator norm by using O

(
d24d logc(d24d/ǫ)

)

instances of gates from G. This can be shown 10 to be close to optimal in
the following sense: For a given instruction set G and a measure of accu-
racy ǫ > 0, there are unitary transformations U on d qubits which take
Ω(2d log(1/ǫ)/ log(d)) instances of gates from G to implement an approxi-
mation V such that ||U − V || < ǫ.

Many authors state that this can be done in an effective and efficient manner.
This must be read with some care! We call a unitary operation recursive with
respect to the chosen measurement basis if all its matrix entries relative to
this basis are recursive complex numbers. Recall that a complex number is
a recursive complex number provided both its real and imaginary parts are
recursive real numbers. A real number x is recursive if there is an algorithmic
procedure which with input a natural number n will yield a binary rational
number of the form ℓ/2n such that |x − ℓ/2n| < 1/2n. Suppose now that all
the matrix entries of the gates in G with respect to the orthonormal basis
in which the measurement is performed are recursive complex numbers, but
that U is not recursive relative to this basis. Suppose we have an effective
procedure that will yield for any given natural n descriptions of instances
V1, . . . , Vk of gates from G such that ||U − V1 · · ·Vk|| < 1/n. Then it is clear
that all the matrix coefficients of U with respect to the measurement basis are
recursive complex numbers—a contradiction. Our impression is that it may
be possible to effectively compute U provided U is recursive with respect to
the measurement basis. Then, the time complexity of finding the sequence S
of gates will depend on the complexity of determining the elements of U and
of doing the required algebraic operations. The claim is that this accuracy can
be obtained using Od

(
log2.71(1/ǫ)

)
computational steps. As we understand

matters at this stage, this is correct if the computation is relative to an oracle
that has complete information about U with respect to the measurement basis.
It remains to be investigated how the recursive complexity of U affects this
claim. It is also ambiguous to state that the approximation can be done in an
efficient manner, for as stated above, the worst case approximation will always

10 The proof in [10], pp199–200, is believed to contain an error. An upcoming paper,
On the Solovay-Kitaev theorem, by W.L. Fouché contains a full proof.
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be at least exponential in the length of the multiqubit on which the unitary
transformations operate.

7 Conclusion

Research into quantum computation over the past 20 years has been very
successful in stimulating the development of quantum cryptography (already
in industrial application), the study of quantum information and the discovery
of novel algorithms for traditionally hard and interesting problems such as
prime factorisation. One would be wise, however, to heed the words of Andrew
Steane [12]:

The title quantum computer will remain a misnomer for any experimental
device realised in the next twenty years. It is an abuse of language to call
even a pocket calculator a computer, because the word has come to be
reserved for general-purpose machines which more or less realise Turing’s
concept of the universal machine. The same ought to be true for QCs if we
do not want to mislead people.

This paper has attempted to explain why certain (strong and interesting)
results in quantum computation still fall short of establishing universality
(and programmability) for quantum computing. At the very least, researchers
in the field should attempt to explain how the results of Deutsch, Bernstein
and Vazirani, Solovay, Kitaev and others can be used or expanded to construct
a fully programmable universal quantum device. In the worst case, one needs
to prove that such a fully universal quantum computer does not exist. We
conjecture that, like the QTMs and quantum circuits, other approaches to
quantum computation which boast “universal resources” (e.g. measurement-
based quantum computation [13]) may confront similar conceptual problems
in the quest for a universal programmable machine.
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