N
N

N

HAL

open science

Uniformity and the Taylor expansion of ordinary
lambda-terms

Thomas Ehrhard, Laurent Regnier

» To cite this version:

Thomas Ehrhard, Laurent Regnier. Uniformity and the Taylor expansion of ordinary lambda-terms.
Theoretical Computer Science, 2008, 403 (2-3), pp.347-372. 10.1016/j.t¢s.2008.06.001 . hal-00150275

HAL Id: hal-00150275
https://hal.science/hal-00150275
Submitted on 30 May 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-00150275
https://hal.archives-ouvertes.fr

Uniformity and the Taylor expansion of ordinary lambda-terms

Thomas Ehrhard and Laurent Regnier*
Fédération de Recherche des Unités de Mathématiques de Marseille
CNRS FR 2291
Institut de Mathématiques de Luminy
CNRS and Université de la Méditerranée UMR 6206

Thomas.Ehrhard@iml.univ-mrs.fr and Laurent.Regnier@iml.univ-mrs.fr

March 22, 2005

Abstract

We define the complete Taylor expansion of an ordinary lambda-term as an infinite linear com-
bination — with rational coefficients — of terms of a resource calculus similar to Boudol’s resource
lambda-calculus. In this calculus, all applications are (multi-)linear in the algebraic sense, that is
commute with linear combination of the function or the argument. We study the beta-reduction of
the linear combination of resource terms associated to a lambda-term by Taylor expansion, using a
uniformity property that they enjoy.

Introduction

In [ER03], we introduced an extension of the lambda-calculus where terms can be differentiated with
respect to their arguments. Typically (in a simply typed version of this differential lambda-calculus), if
M is a term of type A — B and if N is a term of type A, we introduce! the term DM - N of type A — B,
to be understood as the derivative of the function M with respect to its argument, linearly applied to
the value N2.

Intuitively, in the term DM - N, the term M is provided with exactly one copy [V of its argument, and
this explains why A is still present as an argument type of DM - NV, for the other copies that M might need
in computing a result. We argued indeed in the introduction of [ER03] that the mathematical notion of
linearity, which is the key concept of differentiation (computing the best possible linear approximation
of a function), and the logical notion of linearity (a function is linear if it uses its argument exactly
once) are deeply related, as already strongly suggested by the notations, terminology and denotational
semantics of linear logic.

At the end of that paper, we proved a result relating the Taylor expansion of one application of a
lambda-term to another one in a special case: given two ordinary lambda-terms M and N such that
(M) N is (-equivalent to a variable , we studied the Taylor expansion of that application, namely

=1
> = (D'M-N")0
o n!

where we use D" M - N™ for the n-th derivative of M with respect to its first parameter (it corresponds
to an n-linear function) linearly applied n times to N, that is: D(---DM - N ---) - N. We showed that,

*This work has been supported by the ACI project GEOCAL.

1 Actually, the syntax of [ER03] is more complicated since we introduced an explicit notation D; M - N for the derivative of
M with respect to its ith argument. This has been shown useless by Lionel Vaux in his study of the differential lambda-mu
calculus [Vau05].

2In standard mathematical notations, the derivative of M is a function M’ associating to = € A a linear map M’(x)
from A to B, the differential of M at point x; thus M’ has type A — A —o B (where A —o B is the type of linear maps
from A to B). With these notations, our DM - N corresponds to Az M’(z)(N) so that DM may be considered as having
type A — A — B.

with our reduction rules for the differential lambda-calculus, in that sum, there is exactly one term which
does not reduce to 0, and that the order n of that term corresponds to the number of times N arrives in
head position during the linear head reduction® of (M) N to *.

Our aim here is, in some sense, to start generalizing that result in two directions:

e instead of Taylor expanding only one application, we want to Taylor expand all the applications of
an ordinary lambda-term;

e instead of considering terms which reduce to a variable, we want to consider all possible situations.

For that reason, we use here a “target language” which is much simpler than the full differential lambda-
calculus of [ER03]. Indeed, the general application of lambda-calculus will not be needed anymore, we
shall only need iterated “differential applications” followed by an application to 0, corresponding to dif-
ferential lambda-terms like (D™ M - (Ny, ..., N,))0. Keeping in mind that such a differential application
is “symmetric” in the sense that its value does not change when we permute the N;’s, in our object
language, we replace ordinary application by a multi-set-based notion of application: given a term s and
a finite multi-set 7' = ¢, ...t, of terms*, we allow the formation of a term (s)7 to be understood as
corresponding to the differential lambda-term (D"s - (t1,...,%,))0.

Interestingly, the calculus we arrive to by these considerations is very similar to Boudol’s resource
lambda-calculus [Bou93, BCL99| and Kfoury’s linearized lambda-calculus [Kfo00], but we insist on its
standard algebraic aspects, supported by the fact that it admits the already mentioned quite natural
vector space model of [Ehr04| (finiteness spaces).

This calculus has a notion of reduction, which corresponds to the differential beta-reduction of [ER03] :
standard substitution is replaced by a linear version of substitution which can be seen as a partial
derivative. For this reduction, the calculus enjoys confluence as well as strong normalization, even in the
untyped case (from the viewpoint of linear logic, this is due to the fact that the promotion rule is absent
from this calculus, see also [ER04]).

In this resource calculus, we are now able to define inductively the Taylor expansion M™* of an
ordinary lambda-term M: it will be an infinite formal linear combination of simple® resource terms
(with coefficients in a field), and should obey, in the case of an application:

(M)N) =3~ () N
n=0

in accordance with the intended meaning, and with the denotational semantics, of application in this
resource calculus. Of course we have to give meaning to the operations involved in that sum, and
especially to the expression N*", where N* will itself be an infinite linear combination of simple terms.
This can be done using the usual multinomial equation, and one obtains in that way a direct expression
of the Taylor expansion of M: .

M =Y ok

teT (M)

where 7 (M) is the set of all simple resource terms which have “the same shape” as M, and m(t) is a
positive integer called multiplicity coefficient (because it is larger when ¢ has more repeated patterns)
associated to each resource term ¢. Up to some minor variations, the resource terms which are in some
T (M) are those called well formed in [Kfo00]. We characterize these terms as those which are coherent
with themselves for a coherence relation on simple resource terms, and call them uniform (not “well
formed”, because we are very much interested by the other terms as well, and also because this usage of

3 A modified beta-reduction considered explicitly for the first time by De Bruijn and called by him mini-reduction [DB87];
it is the reduction implemented by Krivine’s abstract machine [Kri85, Kri05] and it has been extensively studied by Danos
and Regnier, see for instance [DR99].

4Written as a product, for reasons which should be clear if one has in mind the semantics outlined in the final section
of [ER03] and thoroughly presented in [Ehr04]|, where we insist on the fact that the space !X has not only a standard
co-algebraic structure which accounts for the structural rules of logic, but also an algebraic structure, accounting for this
multi-set construction.

5We call simple a resource term which is not a linear combination of resource terms. Since all the operations of the
resource lambda-calculus are linear, any term obtained by combining terms along the syntax of the resource lambda-calculus
can be written in an unique way as a linear combination of simple terms, exactly as for polynomials in algebra: simple
terms play the role of monomials.

the word “uniform” is reminiscent of a corresponding notion in denotational semantics, see the discussions
in [BEO1]).

The main purpose of the paper is then to study the behaviour of this Taylor expansion when one
reduces its simple summands, which are all strongly normalizing, even if M is not. Thanks to the
uniformity and coherence of these resource terms, the situation is quite simple:

e For two distinct simple terms ¢ and ¢’ in 7 (M), there is no normal simple term having a non-zero
coefficient in the normal forms of both ¢ and ¢'.

e For that reason, it makes sense to add the normal forms of all the elements ¢t of 7 (M), getting a
generally infinite sum s of simple terms with rational coefficients.

e Moreover, if t(is a normal simple term which has a non-zero coefficient in the normal form of some
t € T(M), this coefficient is just m(t)/m(¢o), and hence the coefficient of a normal simple term ¢,
occurring in s is just 1/m(to).

e Last, all these normal simple terms are coherent with each other (and in particular, uniform).

So this (generally) infinite sum s of normal simple terms looks like the Taylor expansion of an ordinary
lambda-term, and actually it is the Taylor expansion of the B6hm tree of M; this will be explained in a
forthcoming paper, using a decorated version of Krivine’s machine.

1 Syntax

1.1 Notation and terminology

If X is a finite set, we use | X| for its cardinality. For us the word integer means non-negative integer.

In this paper we deal with some kind of power series. This notion involves two kinds of numbers:
coefficients and exponents. Power series have a natural vector space (or more generally module) structure,
which requires an addition and a multiplication on coefficients, more precisely, a semi-ring structure.
Exponents have to be natural numbers.

I-indexed families. Let R and I be sets; we use R’ for the set of I-indexed families of elements of
R, or equivalently the set of applications from I to R. An I-indexed family is denoted as (x,).ecr or as
amap x : I — R, depending on the context.

Free modules. Suppose R is a commutative semi-ring: R has a commutative addition with a zero,
and a commutative multiplication that is distributive over addition. Given an I-indexed family z, we
use supp(z) for the support of x, that is, the set {u € I, z, # 0}.

We use R(I) for the subset of R consisting of families with a finite support, that is the free R-
module on the set I. Concretely we view R(I) as the set of finite linear combinations of elements of I
with coefficients in R. We therefore denote the family (z,) in R(I) as the sum }_ _; z,u which has only
finitely many nonzero terms.

Multi-sets. In the particular case where R = N, we may alternatively view R(I) as the free commu-
tative monoid over I. When this is the case we use Mg, () for R(I) and call its elements the finite
multi-sets over I. Finite multisets are ranged over by the letters S, T'...

Let S be a finite multi-set over I. We call multiplicity of w in S the number S(u). The cardinality
of S is the number |S| =", .; S(u) and its underlying set is set(S) = {u € I | S(u) # 0} (set(S) is just
another notation for supp(.9), dedicated to multi-sets; we use sometimes the notation u € S instead of
u € set(S)). Let T be another finite multi-set. The multi-set union of S and T is the multi-set U defined
by U(u) = S(u) + T(u). This is of course the monoid operation on Mg, (I) and its neutral is the empty
multi-set. Depending on the context we use one of two notations for this operation.

Multi-sets as monomials. We mostly use multi-sets for denoting some kind of coefficient free mono-
mials. Suppose [is a set of formal indeterminates and pick for example two indeterminates v and v
in I; then we will write uPv? for the multi-set where u has multiplicity p, v has multiplicity ¢, all the
multiplicities of the other indeterminates in I being 0. If S and T are two multi-sets/monomials on I,
then it is natural to use the product notation ST for the multi-set union of S and 7" and to use 1 for the
empty multi-set.

Multi-sets as multi-exponents. Let now z be a function from I to any commutative monoid R.
Then we denote by = the value [],.; z(u)°) € R of the monomial S under the valuation z. In this
context we consider S as a multi-exponent. If T is another monomial on I then we have z%z7 = 2V
where U is, again, the multi-set union of S and T so we are driven to use an additive notation in order
to get the usual equation %27 = 57,

We also extend to finite multi-sets some notations which are standard for integers. We define the
factorial of S as S! =[], S(u)! (this product having only finitely many factors different from 1). We
define the multinomial coefficient

S! [L.er S(uw)!

which is the number of distinct enumerations of the elements of S (taking repetitions into account). For

instance, if u and v are two distinct elements of I, then [u" PoP] = (Z) More generally, if uy, ..., u; are
pairwise distinct elements of I and n4,...,n; € N with ny +---+ny = n, then [u]" ... u}*] = nl,”ilnk, =
(m"nk) is the coefficient of the monomial u}" ... u;* in the expansion of (u1 +---+uy)" in the algebra
of polynomials with indeterminates uq, ..., ug, over any field of characteristic 0.

All these notations are compatible with standard mathematical practice, for instance, given two
valuations x and y from I to some commutative semi-ring, the binomial equation generalizes to

@)=Y <*;)xTyST

T<S

where T' < S and S — T are defined in the obvious pointwise way, and (;) = % =luer (?EZ%)

1.2 Syntax of the resource calculus

Let V be a countable set of variables.

Simple terms and simple poly-terms. They are defined by mutual induction, as follows.

Variable: if x is a variable, then z is a simple term.

Linear application: if s is a simple term and T is a simple poly-term, then (s)7T is a simple term, the
application of s to 7.

Abstraction: if x is a variable and ¢ is a simple term, then Azt is a simple term in which, as usual, the
variable x is bound.

Poly-terms: any finite multi-set of simple terms is a simple poly-term viewed as a monomial of simple
terms. The intuition is that each of the elements of such a monomial must be used multi-linearly,
that is, exactly as many times as its multiplicity in the monomial.

Let A be the set of all simple terms; they will be ranged over by the letters s,¢,.... Let A' = Mg, (A)
be the collection of all simple poly-terms, which will be ranged over by the letters S, T’,.... We use A(")
for A or A' when we do not want to be specific and then we use the letters o,7... to range over
individuals.

As in lambda-calculus, we have bound and free variables in simple (poly-)terms. Standard lambda-
calculus technics may be applied to this system to define a-equivalence and substitution of a term to a
variable into a term.

A (poly-)term o can contain various subterms which are equivalent up to a-equivalence, but neverthe-
less syntactically distinct. We say that o is a-canonical if this is not the case. Clearly, any (poly-)term

admits an a-equivalent a-canonical (poly-)term. We assume all the (poly-)terms we deal with to be in
a-canonical form. For instance, an a-canonical form of the simple poly-term (Az z)(Ayy) is (Az x)2.

If o is a simple (poly-)term, we use V(o) for the set of all free variables of o.

We define the size of a simple (poly-)term by the following induction:

In particular, observe that in the last clause if n = 0 then we get S(1) = 0, where 1 is the empty
poly-term.

Finite terms and poly-terms. Let R be a semiring with multiplicative unit® 1 and let I be a set.
Recall that we use R(I) for the free R-module generated by I, the set of finite linear combinations with
coefficients in R of elements of I. If f is a function from I to some R-module F, we use ffor the function
R(I) — FE which is defined in the obvious way, extending f by linearity.

We call finite terms and finite poly-terms the elements of R(A) and R(A') respectively. We extend
by multi-linearity all the constructions of the syntax above to finite terms and poly-terms. For instance,
if U= genasS and V = > a0 brT are elements of R(A'), the product UV € R(A') is defined as
UV = ZS’TEN asbrST =3 yen cwW where ey = Y gy asbr € R vanishes for almost all values
of W.

Similarly Azt is linear in ¢ and (¢) T is linear in ¢ and in 7. This last property justifies the terminology
“linear application” for this construction. Standard lambda-calculus application is definitely not linear
in the argument (see the introduction of [ER03]).

Partial derivatives. We define now formally the finite (poly-)term g—;’ -t where o is a finite (poly-)term,
x is a variable and t is a finite term. This will be called the partial derivative of o with respect to x in
the direction ¢. We first give the definition for ¢ simple:

9y . t fy==x
ox o 0 otherwise

o\ 0

% o= Ay 8—8 -t with the usual proviso that x # y and y is not free in ¢
i x

T (e ()
%.t ;sl...si1(?;‘t)8i+1~~3n°

Therefore we have the following properties:

A, _
85(?1];“ 0S5 oT
Tt = (5)Tes(5).

The definition is extended to the case where o is a finite (poly-)term by linearity. Partial derivation
should be understood as a linear substitution operation. Indeed one shows easily that it is linear in t.
Moreover, it is clear that % -t =0 as soon as x does not occur free in o.

One can also define a substitution operation of a term ¢ for a variable « in a simple (poly)-term o,
written o [t/z], to be extended by linearity on o to arbitrary (poly-)terms o. However, just as ordinary

lambda-calculus application is not linear in the argument, this notion of substitution is not linear in ¢,

6 At some point, we shall require that each element of the shape n - 1 (with n € NT) has an inverse, as for instance in
the semiring of positive rational numbers.

in sharp contrast with the partial derivative operation defined above. This operation will be only used
when ¢ = 0, in which case it is a simple occur-check of z in o: 0 [0/x] is equal to 0 if 2 occurs free in o
and to o otherwise.

The following lemma is easily proved by induction on the (poly-)term o and actually boils down to
the commutativity of poly-term multiplication.

Lemma 1 Let o be a finite (poly-)term and let s and t be finite terms. Let x and y be variables such
that x does not occur free in t. Then we have

Sl e (B

and in particular, when y does not occur free in s,

0 2) =)

So we introduce the standard notation

L (t t)_ i(870 t) t
dry -0z, T T B, N 9y "
when no z; occurs free in any of the simple terms ¢;. For any permutation f of {1,...,n}, we have
"o oo
T (et = (trays et n 1
Oxy - Oz, (t1,. tn) D (1) - - O () (tr) (1)

Degree in a variable. If ¢ is a simple (poly-)term and z is a variable, the degree of z in o is the
number of free occurrences of x in o, taking multiplicities into account. This number is denoted by d, (o).
For instance, in the simple term () ((z) y*)3, the degree of x is 4 and the degree of y is 6. Due to the fact
that all the syntactic constructions of this calculus are linear, this notion of degree coincides with the
standard algebraic one. Typically, if o is a simple (poly-)term and if a € R, we have ¢ [az/z] = a%(?)0.
Also, d;(ST) = d;(S) + dx(T") when S and T are simple poly-terms.

Big step differentiation. Given a simple term o, a variable x and a simple poly-term T = ¢;...t,
where the variable x does not appear free, we define
%o 0

0u(0.T) = (Goz (b1,)) [0/a] € R(AD)
which does not depend on the enumeration t1,...,t, of T thanks to Equation (1). Observe that this
expression is non zero iff n = d, (o). Also note that if x does not occur free in the ¢;’s, then = does not
occur free in gm;’, (b1, tn).

We use 0y,,... 4, (0,4, ...,T,) for the iterated big step differentiation

Oy (...8931(071’1)... ’Tn).

The value of this expression does not depend on the order we put on the pairwise distinct variables
T1y---3Tn.

Partial derivation wvs. substitution. Partial derivation can be understood as a linear substitution.

Let o be a simple (poly-)term and let x be a variable. Let n = d, (o) and let x1,...,2, be pairwise
distinct variables which do not occur free in ¢ or in ¢t. Let ¢’ be a simple (poly-)term obtained by
replacing the n occurrences of x in ¢ by the pairwise distinct variables z1,...,x,. Such a ¢’ will be
called an x-linearization of o in x4, ..., x,. For any simple ¢, we have

0 3 o b/ |)

—t= o [t/x;)[x/x1, ..., 20 .

a,fC P K3 1 Pl 12
Let T'=t; ...t, be a simple poly-term of cardinality n. Iterating the formula above, we get

0z (0, T) = Z o’ [tf(l)/xl,...,tf(n)/xn] (3)
f€Gn

where &, is the group of all permutations of {1,...,n}.

Leibniz law and partial derivation. Let o be a simple (poly-)term and let ¢ be a simple term. Let
x,r1 and xo be variables, with 1 # x5 and x not free in ¢. The Leibniz law concerns the interaction
between differentiation and contraction, and can be written as follows:

W = (88_; .t) [x/21, 2] + (3—; -t) 221, x2] .

The proof is a simple induction on o. Iterating, we obtain the following formula.

Lemma 2 Let o be a simple (poly-)term and let T be a simple poly-term. Let x,x1 and x2 be variables,
with x1 # x5 and x not free in o. Then

Ou(0 [z/z1,2) , T) = Y (g) Oy 0y (0, U V).

Uv="
Proof. The proof is by induction on n = d, (o [z/21,22]) = dz, () + ds,(0), assuming that |T'| = n,
since otherwise both sides of the equation vanish. The case n = 0 is trivial, so assume n > 0, we can

write T' = tS for some simple term ¢ and we have

8, (0 [x/x1,x2) ,£S) = am<8” [#/21, 2] t,S)

= <(8x1) [w/w1,23],8) + 0, ((502 1) [a/a1, @],)
- ; ()(zx tUV)+8Z1,I2(§U tUV))
o

= < Z1,22 0 tU V) 83617182 (Uv Uv tV))
Uv=

S () (e

U'v'=r
teu’, teVv’
T—1 T—1t
+ Z (U, - t)azl,m @ U VY+ > (-)am(a, UV’
U'v'= U'v'=r
teu’, thV/ teu’, teVv’

and we conclude, applying Pascal’s binomial identity for the first of these three sums, and observing
that, in the two last sums, the binomial coefficients are equal to (5,) O

1.3 Reduction and normal forms

Linear relations. If F and F are two R-modules, we say that a relation p C E x F'is linear if it is a
linear subspace of the direct product F x F' (in other words, if u p v’ and v p v’ then au + bv p au’ 4+ bv’
for any a,b € R).

Let I be a set. Given a relation p C I x R(I), we define a linear relation R{p) C R(I) x R(I) as
the linear span of p in this product space and call R{p) the linear extension of p. Spelling out this
definition, we have u R(p) v iff we can find uq,...,u, € I, a1,...,a, € R and vq,...,v, € R(I) such
that u =", a;u;, v=>y ., a;v; and u; p v; for each i.

Small step reduction. A redex is a simple term of the shape (Az s) S. The reduction of such a redex
is defined by cases, according to whether S is empty or not. The second case is non-deterministic as it
consists in choosing an element u in S and then in computing a partial derivative of s in the direction
u. The result of such a reduction is a linear combination of simple terms, with integer coefficients.

(Ars)1 BL s[0/z]

Az s)yuT pBL <)\x%~u>T

By extending this reduction to all contexts, we define the one step reduction relation BZ C AxR(A),
together with a corresponding auxiliary relation on (poly-)terms for which we use the same symbol. More
precisely, we say that o 3} ¢’ in one of the following situations:

(Redez) o B\ o’;
(Abs) o = A\t and o/ = Az t’ with t B} t';
(App) o = (t) S and

(t') S with ¢t BX t' or
(t) S" with S gL S;

o o'
[] OJ
(Prod) o is the poly-term uS and ¢’ = u'S with u 3} u'.

We use Ba for the reflexive and transitive closure of R(3}), a relation from terms to terms which
is contextual (in the natural sense) by construction. We use the same notation for the corresponding
relation on poly-terms.

Theorem 3 The relation 3a is Church-Rosser. Moreover, if R = N then B is strongly normalizing’ .

Proof. The confluence property is proved as in [ER03] (and is simpler in the present context). For the
normalization property, observe by inspection of the reduction rules that if o is simple and o 8} ¢, then
the size of each element of supp(c’) is strictly smaller than the size of o. O

Remark: This untyped calculus is strongly normalizing, and so cannot represent general recursive
computations as lambda-calculus does. Later we shall introduce infinite sums which will allow us to
encode ordinary lambda-terms, making explicit the potential infinite of lambda-calculus.

If 0 € AY, we use NF(o) for the unique normal form of o, which is an element of N(A()) (and so
can be considered as an element of any R(AM)).

Big step reduction. We define now a big step reduction relation SR which is more convenient for
dealing with the problems at hand. The definition is the same as the definition of 3%, replacing the small
step redex reduction 34 by the following one:

Mes)T BR 0u(s,T).

This reduction is very similar to the S-reduction of ordinary A-calculus — (A M) N 8 M [N/x] — and
for that reason, it is the good notion of reduction on simple terms for studying the Taylor expansion of
ordinary lambda-terms. Observe that this reduction is deterministic.

The relation 3R C A x R(A) is included in the transitive closure of 3%, and has the same normal
forms. Therefore, we can compute NF(o) by iteratively applying the reduction BZ to o.

An explicit formula for normal forms. As in the ordinary lambda-calculus, any simple term s can
be written (in a unique way) as follows:

s=Axy. e, (O Ty . Ty

where t is a simple term which is either a variable possibly equal to one of the x;’s, and in that case we
say that s is in head normal form, or a redex, and in that case we say that ¢ (or rather, this particular
occurrence of t) is the head redez of s.

Lemma 4 Let o be a simple (poly-)term.

"This very strong hypothesis can be weakened a little bit as explained in [ER03], but not really significantly.

e Ifo=MXxy... A, () Ty ... Tp witht = (A\ys)S, then

NF(o) = NF(Azy...Az, (3,(s,9)) Ty ... Ty)
= > 0y(5,8)u(Ar1 .. Az, NF((u) Ty ... T)) (4)
uEA

(Remember that we use NF for the linear extension of NF to arbitrary finite (poly-)terms and that
0y(8,S)u, the coefficient of u in the linear combination of simple terms 0y (s, S), is an integer.)

e Ifo=Xxy.. A, () Ty ... Ty, witht =y €V, then NF(o) = Ax1... Az, (y) NF(Ty)...NF(T}).
[] IfO' = tl .. tn then NF(O‘) = H?:l NF(tz)

The proof is straightforward, once observed that for each u € supp(9y(s,.S)), one has S(u) < S((A\ys) S).
For that reason, and by the confluence property, the lemma above can be considered as an inductive
definition of NF and will be used as such.

2 The Taylor expansion of ordinary lambda-terms

We show now how to represent ordinary lambda-terms in this calculus by recursively Taylor expanding
all ordinary applications. As remarked above, this requires dealing with infinite linear combinations of
(poly-)terms.

Infinite terms and poly-terms. If I is a set, we use R([). for the R-module of all formal linear
combinations x =) _; x,u where (z,) is an arbitrary I-indexed family of scalars taken in R (so that
R{I)ao = R!). Let J be a countable set. We say that a family (z(j));es of elements of R(I)., is
summable if, for each w € I, the family (x(j),);es vanishes for almost all values of j. We then define
its sum o = >, ; x(j) by setting x, = > ; 2(j)u, a finite sum in R by assumption. This is just usual
convergence for the product topology, R being endowed with the discrete topology. If J = N, observe
that for this topology, the convergence of a series is equivalent to the convergence to 0 of its general
term. Observe also that all the module operations on R(I)., are continuous (R being endowed with the
discrete topology).

If I has a structure of commutative monoid (with multiplicative notation) with the property that for
each u € I there are only finitely many pairs (v,w) € I? such that u = vw, then R(I)., is an algebra,

with multiplication given by
2y = Z(3 zvyw>u.

wel Mww=u

Moreover, it is easily checked that this multiplication is continuous with respect to the product topology
on R{I)so X R{I)co.

This is the case in particular of R(A')s. Let (7(j))jes be a summable family in this algebra
and let n € N. If u € Mg,(J), then remember that we write T# = HJEJT(j)“(j) € R (this is a
finite product since p is a finite multi-set). We use M, (J) for the set of all multi-sets over J whose
cardinality is n and if u € M, (J), remember also that we have defined a multinomial coefficient as

follows: [u] =n!/[[;c;u(j)! € N. The family ([,u] T”) is summable in the algebra R(A'),, and
HEM R (T)
we have the following “multinomial identity”

Y1) = Y ®)
<'€J) Mo ()

The constructions of the syntax of our resource calculus can now be extended to these infinite linear
combinations of simple (poly-)terms in an obvious way, by linearity (and “continuity” since we require
the constructs to commute to arbitrary linear combinations, not only to finite ones).

Differentiation of infinite terms. We want first to make sense of the expression g—g -t when o €
R(AM) o, t € R(A)o and z is not free in ¢.

Lemma 5 Let 7 € A", let x be a variable and let t € A. There are only finitely many o € AY) such
o)

that T € supp(3Z - t).

Proof. Assume that 7 € N, supp(%‘;" -t) for a finite family (o;);=1, .., of pairwise distinct simple

(poly-)terms. Then, examining Equation (2), observe that there exists a simple (poly-)term o and

pairwise distinct variables x1,...,x, such that:

e d,. (o) =1 for each i, that is ¢ is linear in z;;

o T=0[t/Tilicy s

o 0, =0[x/x [t/xj]j;éi'

From this one clearly sees that n is upper bounded by the size of 7. 0O

Lemma 6 Let = be a variable and let 7 € AY). There are only finitely many o € AV and t € A such
that T € supp(g—g -1).

Proof. 1If (0,t;)icr is a family of pairwise distinct pairs of simple (poly-)terms and terms and if 7 €
Nicr supp(%‘;i - t;) then each simple term ¢; must appear as a sub-term of 7 and therefore there can be
only a finite number of distinct ¢;’s. If I is infinite, this leads to a contradiction with Lemma 5. Therefore
I is finite and the lemma is proved. |

For that reason the whole family of finite (poly-)terms (6—”

ox t)aeM),teA
R(AM), and t € R(A),, it always make sense to define

is summable. So, if o €

do dp
peAM) ueA

‘We can derive a bit more from Lemma 6.

Lemma 7 The map (0,t) — 22 -t from R(AY)o x R(A)s to R(AY) is continuous (these spaces
being endowed with the product topology). In particular, if (0;)icr and (t;);cs are summable families
in RIAM) o and R(A) o respgctively (with respective sums o and t), then the family (% “tj)ier jeg 1S
< . t.

summable, with sum equal to 5

Proof. By linearity, it suffices to prove continuity at the origin (0,0) of R(AM) x R(A)s. We
take a neighborhood of 0 in R(A(")_: it is induced by a finite subset W of A" (the corresponding
neighborhood of 0 in R(A®"), is the collection Vyy (0) of all # € R(AM), such that W N supp(6) = 0).
Then by Lemma 6, for each ¢ € W, we can find two finite sets U, C A® and Ve, € A such that
o & supp(g—g -t) for each (0,t) & Uy x V,,. Then taking U = |, ey Uy and V = ey Vi, We have
92 .+ € Vi (0) for each o € Vy(0) and t € Vy(0). O

So 92 .t € R(AY) is well defined for all 0 € R(A"),, and t € R(A)« and has all the required
linearity and continuity properties. We can of course iterate this construction and define awa"g

(t1,...,t,) for arbitrary t1,...,t, of R{(A)s. Again, this operation is linear in each of its parémgzgrs
o,t1,...,tn, and is continuous in these parameters (for the product topology).

For that reason, for each given n € N, we can extend the construction 9, (o, T) to ¢ € R(AM), and
T € R(M,(A))s, and this operation is bilinear and continuous in ¢ and 7. Observing that, for o € A()
and T € M,,(A), the size of any element of the support of 9, (o, T) must be greater than n, we see that,
for any 0 € R(AM) and any T € R(A"), the sequence (9,(c, T™)),en converges to 0 in R(AM)
(where we use T(™) for the restriction of 7' to M,,(A), that is T(™) = 2sem,(a) I'sS). So the series

32 5 9x(0, T™) converges. Its sum is denoted by 0, (o, T); this operation is bilinear and continuous in
(0,T).

10

So all the differentiation operations we have considered for finite (poly-)terms make sense in the
infinite case as well, without any restriction on the infinite linear combinations we consider. This obser-
vation will be used at the end of the present paper, when we shall give a “substitution-oriented” version
of Taylor’s formula in Theorem 19 and shows that the infinitary resource lambda-calculus is a sound
extension of the finitary one.

The exponential and the promotion. Any t € R(A), can canonically be seen as an element of
R(A"Y (identifying ¢t € A with ¢ € A', the multi-set whose only element is ¢, with multiplicity 1). It is
clear that t" — 0 when n — oo so that the following sum converges:

oo

1
expt = Z Et" € R(A!)Oo

n=0

where the exponents correspond to multiplication in the algebra R(A').,. Using formula (5), one can

check that actually
T

expt = Z %T

TeA!'

(remember that, with our notations, 7! =[], . T'(u)! € N* and that t© =[], A A= R).
Without surprises, we have exp0 = 1 and exp(s +t) = exps expt. This operation ¢ — expt
corresponds to promotion in linear logic.

Remark: this exponential operation could be defined not only for ¢t € R(A),, but for arbitrary S €
R(A") ., as soon as S; = 0. When S; # 0, computing exp S involves an infinite sum of scalars, or maybe
the use of an “exponential map” er on the semi-ring R, setting exp S = eg(S7)exp(S — S1 - 1).

2.1 Complete Taylor expansion of an ordinary lambda-term

Multiplicity coefficients. Given a simple term ¢, we define a positive integer m(t), the multiplicity
coefficient of t by the following inductive definition.

m(z) = 1
m(Azs) = m(s)

m(s) [] 7(t)! m(t)"™® = m(s) T! m”
teA

m((s) T

with our concise notations for arithmetic operations on multi-sets. For a poly-term T, we define ac-
cordingly m(T) = T! mT, so that m((s)T) = m(s)m(7T). In Section 4, we shall give a combinatorial
interpretation of these coefficients.

The expansion. Given an ordinary lambda-term M, we define a subset 7 (M) of A which is the
collection of all simple terms having the same shape as M. This set is defined as follows, by induction
on M.

T(z) = {«}
T(\z M) Dzt |teT(M)}
T(M)N) = {{T|teT(M)and T € Mg,(T(N))}.

We define the complete Taylor expansion of an ordinary lambda-term M:

M = > mt)'t € R(A)u.
teT (M)

This expansion satisfies the following lemma, whose last statement means that M * can be obtained by
recursiveley Taylor expanding all applications in M. This motivates our terminology for this operation.

Lemma 8 If x is a variable and if M and N are terms of the standard lambda-calculus, one has

11

e A\ M)" =Xz M* and
e (M)N)" = (M*yexp N* =520 L (M*) N*".

n=0 n!

Proof. The only interesting case is the last one. We have

N N | 1 1 \n
ZOWMWH = Zoﬁ< 2. m(s)8>(2 WQ
n= n= s€T (M) teT (N)
=1 1 1
= Yl = m(s)8>(> M)
n=0 se€T (M) TEMn(T(N))
1 1
= — [T —————= ()T
TeMin(T(N))
B 1 . AL
= SE;M) W<S>T since [T]—ﬁ
TeMin(T(N))
= (M)N)".

The question. Our main goal is to understand the behaviour of this Taylor expansion with respect to
beta-reduction. The first thing to observe is that the resource terms occurring in the Taylor expansion
of an ordinary lambda-term are coherent with each other and with themselves (we shall say “uniform”),
in a sense we define below. Then we shall see that the normal form operator is stable (in the sense
of [Ber78] and [Gir86]) with respect to this coherence relation. This is a qualitative property whose main
consequence will be a “non-interference” effect: the supports of the normal forms of two distinct terms of
the Taylor expansion are disjoint. Then we shall see that the multiplicity coefficients of uniform terms
evolve very simply during big step differential reduction —a quantitative property—.
These two main observations will lead to our final Theorem 21.

3 Qualitative properties: the coherence relation on simple terms
and poly-terms

We define a binary coherence relation < on simple terms and on simple poly-terms, which is easily
seen to be symmetric (but neither reflexive nor anti-reflexive). We use the notation —~ for the largest
anti-reflexive sub-relation of <. The definition is by induction on simple terms.

ez Otift =

e \xscCt'ift! = Az s’ with s © s';

e (Tt ift! =(sYT' withs s and T < T".
® 51...5, C Spt1...5m if 55 & 55 for all ¢, 7.

This is not a (partial) equivalence relation, due to the potential presence of empty poly-terms 1 as
arguments. Typically, (z)y —~ (x) 1 —~ () z, but we have not (z)y < (x) z if y and z are two distinct
variables.

We say that a simple (poly-)term o is uniform if o < o. This corresponds to the notion of well-
formed term in [Kfo00] (however, in that paper, the relation corresponding to < is a partial equivalence
relation because empty multi-sets are not accepted as arguments).

A clique for this coherence relation is a subset U of A(") such that 7 < 7/ whenever 7,7/ € U.
In particular, each element of a clique must be uniform. Observe by the way that it results from the
definition that if 0 < ¢’ for two simple terms o and ¢’, then automatically o and ¢’ are uniform.

12

Lemma 9 If M is a lambda-term, then T (M) is a mazimal clique in (A,).

The proof is straightforward. However, not all maximal cliques of A are of the shape 7 (M) for some
lambda-term M. For instance, a maximal extension of the clique {(z) 1, (z) (z) 1,...} cannot be of that
shape.

Coherence and differentiation. Coherence is not preserved by partial differentiation. For instance,

. . . . 2 . . .
2 is uniform and y is a uniform term, but %im -y = 2xy is not uniform if x and y are

the poly-term x
distinct variables.

However, big step differentiation satisfies a “stability” property with respect to the coherence relation
we have defined on (poly-)terms, similar to the characterization of the trace of stable linear functions

between coherence spaces in [Gir87, GLT89].

Theorem 10 Let = be a variable. Let 0,0’ € AY) and S,5" € A'. Let ¢ € supp(0.(0,S)) and ¢’ €
supp(0.(0',5")). If c © o’ and S <= S’, then ¢ < ¢’ and if moreover ¢ = ¢', then o0 = o’ and S = S".

Proof. We assume that o © ¢’ and S < S’. We proceed by induction on the sum of the sizes of o and
o', for o and ¢’ in AO),

Assume that o is a variable y. Then ¢’ = y. If y # z, we must have S = S’ = 1 since ¢ €
supp(9;(o,S)) and ¢' € supp(d;(o’,S’)) (otherwise at least one of these sets would be empty). So
¢ = ¢’ =y and we conclude trivially. If y = 2 then S and S’ must be singleton multi-sets (otherwise
again at least one of the two sets supp(9,(c’,5’)) and supp(9,(o,S)) would be empty). Say S = ¢ and
S' =t (with t,t' € A, t ©t'). Then we have ¢ =t and ¢’ = ¢ and we conclude straightforwardly.

The case where o is an abstraction is trivial.

Assume that o = (t)T (with t € A and T' € A'). Then by definition of coherence we must have
o' =({')T" witht =t and T < T’. Since ¢ € supp(9; (0, S)), we must have ¢ = (u) U and there must
exist 51,52 € A' such that S = S155, u € supp(0.(t,S1)), U € supp(9.(T, So)). Similarly, ' = (u') U’
and there exist S}, 5% € A' such that S' = 5155, u' € supp(0.(t',S})), U" € supp(d.(T",S5)). But by
definition of coherence we have S; < S| and Sy < S5 and hence by inductive hypothesis v < v’ and
UcU',so ¢ ¢ If furthermore p = ¢, then v =« and U = U’ and the inductive hypothesis yields
t=1t,5; =51 and Sy = 54 and we conclude.

Assume last that o and ¢’ are poly-terms. If 0 = 1, we must have S = 1 (as otherwise supp(9,(c, S))
would be empty) and there are two sub-cases: the case o/ = 1 is straightforward. Let us assume that
o’ # 1 so that we can write 0’ = v/U’. In that case we have ¢ = 1 and ¢’ = o'V’ with v’ € supp(9, (v, S}))
and V' € supp(9.(U’,S5)) for some S}, S, € Mg,(A) satisfying 5755 = S’. We have to show that
1 © v'V’, or equivalently that {v'} Uset(V’) is a clique. That set(V’) is a clique results from the
inductive hypothesis. So let w’ € set(V’) and let us show that v © w’. Then w’ € supp(d.(w}, S%))
where wj, € set(U’) and S} is a factor of S;. We have v/ © w(and S < S%, hence the inductive
hypothesis yields v < w’ as desired. In the present case we know that ¢ # ¢’ so there is nothing more
to prove.

The last sub-case to consider is the case where o and ¢’ are simple poly-terms both distinct from
1. Then we can write ¢ = vV and ¢’ = v'V’ where v € supp(9:(t,S1)), V € supp(9.(U, S2)), v' €
supp(0,(t',S})) and V' € supp(d,(U’,S%)) with tU = ¢ and t'U’ = o', for some Si, S5, 5},55 € AL
satisfying S1.52 = S and 5155 = S’. One shows exactly as above that ¢ < ¢'. If moreover ¢ = ¢/,
then we can take v = v’ and V = V'’ and again we conclude straightforwardly by inductive hypothesis,
since we know that ¢t © ¢/ and S; © S} (and hence ¢ = ¢’ and S; = S}) on one hand, and U < U’ and
S2 < 5% (and hence U = U’ and Se = S%) on the other hand. This concludes the proof. O

Stability of the normal form operator. As a consequence of Theorem 10 and Lemma 4, the NF
operator satisfies also a stability property with respect to the coherence relation we have defined on
(poly-)terms.

Theorem 11 Let 0,0’ € A" and assume that ¢ < o'. Then for all ¢ € supp(NF(o)) and ¢’ €
supp(NF(o")) we have ¢ < ', and if furthermore ¢ = ¢', then o = o’.

13

Proof. 'We proceed by induction on the sum of the sizes of the simple (poly-)terms o and o', using
Lemma 4.
If S(¢) + S(¢’) = 0 then ¢ and ¢’ are poly-terms and o = ¢’ = 1; one concludes straightforwardly.
Otherwise, assume first that o is a simple term, we consider the following cases.

o If 0 = Az (x)S1...5, then ¢/ = Az (x)S]...S], with S; < S] for i = 1,...,n. Since ¢ €
supp(NF (o)) and ¢’ € supp(NF(o’)), these simple terms are of the shape ¢ = Az (x) Ty ... T, and
¢ =Xz (x)T]...T) with T; € supp(NF(S;)) and T} € supp(NF(S})) for each i. Then we apply the
inductive hypothesis for each 7 (since S; < S}) and we conclude.

o Ifo = AT ((Axt)U) S ...S, then ¢/ must be of the shape ¢’ = A\Z ((Axt) U’} S} ... S) with of course
tct',Uc U and S; © S for each i. There exists u € supp(9,(t,U)) and u' € supp(9,(t',U"))
such that ¢ € supp(NF(AZ (u) Sy ...S,)) and ¢’ € supp(NF(AZ (u') S} ... S))). By Theorem 10 we
have u © v’ and hence, since the size of AZ (u) Sy ... S, is strictly smaller than the size of o (and
similarly for AZ (u’) S} ...S)), we have ¢ < ¢’ by inductive hypothesis. If moreover ¢ = ¢’, then
the inductive hypothesis implies that v = «' and S; = S} for each i and hence (applying again
Theorem 10), we obtain that o = ¢’.

Assume last that 0 = S and ¢’ = S’ are poly-terms. Let T' € supp(NF(S)) and T € supp(NF(S")),
we must show that T < T, so let ¢,t' € set(T) Uset(T”). We are reduced to showing that ¢ < ¢'. There
exists s, s’ € set(S) Uset(S’) such that ¢t € NF(s) and ¢’ € NF(s’). We know that s © s’ (by definition of
coherence for poly-terms) and moreover, with our definition of the size, we have S(s)+S(s’") < S(S)+S(S5").
Therefore the inductive hypothesis applies and yields ¢ < ' and hence T < T’. Assume moreover
that T = T = t;...t;. Then S and S’ must be of the shape S = s1...s; and S’ = s} ...s) with
t; € supp(NF(s;)) Nsupp(NF(s})) for each i, and hence s; = s} for each 4 (by inductive hypothesis again).
Hence S = 5. O

Let M be an ordinary lambda-term. The theorem above expresses a “non-interference” property: if
s and t are two distinct simple terms which appear in the complete Taylor expansion of M, then the
normal forms of s and ¢ will have non overlapping supports (and, by the way, these supports will contain
only uniform simple terms).

4 Quantitative properties: combinatorial considerations

We want now to understand the behaviour of the mutiplicity coefficients of a simple (poly-)term along
its big step reduction. In the present paper, we want to solve this question when the simple (poly-)term
under consideration appears in the complete Taylor expansion of an ordinary lambda-term, and hence is
uniform. This hypothesis will be extremely useful.

For this purpose, the basic fact to observe is that m(o) is the number of permutations of the free or
bound variable occurrences in o which respect the variables associated to these occurrences and leave o
unchanged. These permutations form a subgroup of a symmetric group, the isotropy group of o. This
group is generally non trivial because the multi-set construction used in the syntax of poly-terms is
commutative. For instance, the term Az ((z) %) y* has multiplicity coefficient 3! x 2!.

Doing that, we have transformed our problem into a group-theoretic one: relate the isotropy groups
of a term to the isotropy group of the same term where a big step differential substitution has been
performed. This is what we do in this section for proving the Uniform Plugging Equation.

4.1 A group equation

Let G be a finite group and let L and R be subgroups of G. Then LR = {lr |l € Land r € R} C G
is not a subgroup of GG in general. Nevertheless, the cardinality of this set satisfies the following well
known equation which is essential in the forthcoming considerations.

Lemma 12 If L and R are subgroups of a finite group G, then

_ LIR]

LR| = .
LRI = AR

14

Proof. The set LR is the union of the left cosets IR (for | € L), and these cosets are either disjoint or
equal and have |R| as cardinality. Let [,I’ € L, one has [R = I'R exactly when [='’ € LN R and so LR
is the disjoint union of exactly |L|/|L N R| disjoint sets of cardinality |R|, whence the equation.]

We shall also use the fact that if h : G — H is a group homomorphism and G is finite, then
(G| = |G/ ker h|.

4.2 The uniform plugging equation

In order to give a precise definition of the group of permutations of variable occurrences in a simple
(poly-)term o which leave o unchanged, we need to separate the various occurrences of all variable
appearing, free or bound, in . This is exactly the purpose of the notion of multilinear-free (poly-)term
we introduce now. The idea is to separate the occurrences in o by using pairwise distinct variables,
producing a term ¢, and then recovering the original names of variables through a “naming function”
(we will use letters p, q...for these functions from variables to variables). Such a pair (¢,p) will be
called a multilinear-free representation of o. Because the permutations we consider should act also on
the bound occurrences of o, all the variables occurring in ¢ will be required to be free.

Multilinear-free representation of a (poly-)term. Let us say that a simple (poly-)term ¢ is
multilinear-free if each variable occurring in ¢ occurs exactly once, and occurs free in . Let us say
that a partial function (substitution) ® from V to multilinear-free terms is multilinear-free if V(®(z)) N
V(®(z')) = 0 when z and 2" are two distinct elements of Dom @ (the domain of ®). We use V(®) for the
disjoint union |, cpom o V(®(7)).

Given a multilinear-free (poly-)term ¢ and a multilinear-free substitution ®, we say that the pair
(p, ®) is adapted if V(p) C Dom @, and no element of V(®) is bound in ¢. In that situation, we can
apply the substitution ® to the term ¢, getting a (poly-)term ®¢ which is clearly also multilinear-free.

Let ¢ be a multilinear-free (poly-)term and let p : V(p) — V be a function. We use pp for the
(poly-)term obtained by substituting each variable y occurring in ¢ with p(y), in the most naive way
(that is, without renaming captured variables).

Let o be a (poly-)term, we say that (¢,p) represents o if pp = o, a situation which can be pictured
as follows:

%) o
represents
I 1T [
T1 T2 Y1 Yn Tm r Ty y x
functionp\\\&/
z Y

Example. The simple term o = (z) (2(\yy)?) is represented by the pair (¢, p) where

p(21) = p(22)

v = (21) (22(Ay y1)(My y2)) and { p(yr) =ply2) =y

Clearly, if both (¢, p) and (v, q) represent o, there is a (generally not unique) bijection f : V(¢) —
V(1) such that ¢f = p and f = 1. This can be proved by induction on o. If & is the simple term of
the example above, there are two such bijections f.

If p: V — V is a partial function, we use &,, for the subgroup of Gpem, of all bijections f on Dom p
such that pf = p: it is a finite product of symmetric groups. If ¢ is a multilinear-free (poly-)term and
p: V(p) — V, we use Iso(p,p) for the subgroup of &, whose elements f satisfy f¢ = ¢, since it is the
isotropy group of ¢ for the action of &, on the multilinear-free simple (poly-)terms having the same free
variables as ¢.

15

Example. Consider the following closed simple term:

o =X (2) Oy (2)y)2.

We represent this terms by the pair (¢, p) where

I
=
8
w
S~—
I
8

p(z1) = p(x2

o = Ax(x1) Ay (x2) y1y2)(Ay (23) y3ya) and o >
p(y1) = =pys) =y

We have &) ~ Gy, 20,051 X Oy y0,0s,94} (& group with 144 elements). Then Iso(y, p) is the subgroup
generated by the two transpositions which swap respectively vy, yo and ys3, y4, and by the permutation f

given by f(z1) = 1, f(22) = 3, f(x3) = x2, f(y1) = y3, f(y2) = ya, f(ys) = y1 and f(ys) = yo. This
subgroup has 8 elements, as easily checked. Observe by the way that m(c) = 2 x 22 = 8.

Combinatorial interpretation. Here is the announced combinatorial interpretation of the multiplic-
ity coefficients.

Lemma 13 Let o be a (poly-)term, let ¢ be a multilinear-free (poly-)term and p : V(¢) — V be a
function such that (¢, p) represents o. Then |lso(p,p)| = m(o).

This is a simple proof by induction on o. This formula for the cardinality of Iso(y,p) is completely
standard if we observe that this group is a wreath product of symmetric groups.

Isotropy group of a substitution. More generally, if ® is a multilinear-free substitution and if
p:Dom® — V and ¢ : V(®) — V are functions, we define the group

Iso(p, ®,q) = {g € &, | If € &), g = Of}.

Observe that this is simply the isotropy group in &, of the following tuple of multilinear-free poly-

terms:
[1 °w)
i=1,...,1
yEp~1(2i)
where (21, ..., 2) is an enumeration without repetitions of the range of p.

Due to the injectivity of ® as a function, the bijection f associated to ¢ in the definition above is
uniquely determined, and clearly the map g — f is a group homomorphism. In other words, Iso(p, @, q)
comes equipped with a group homomorphism 7 such that

Vg € lso(p, ®,q) g = P7(g).

T Tk

) ’oo
Y1 Y2 21 Zn Ym Y1 Y2 =21 Zn Ym

16

Assume that we are given ¢, ®, p and g as above, with (p, ®) adapted. Then there is yet another set
of permutations which will play an important role in the sequel, and this set is not a group in general,
namely:

Iso(p,p, ®,q) ={f € 6, [3g € &4 gPp = Df}.

The following inclusion always holds.

m(Iso(p, @, q)) Iso(p, p) € Iso(w, p, ®,q) . (6)

Indeed, let g € lIso(p, ®,q) and let f € Iso(p,p). Then ®7(g)fe = gPyp and so 7(g)f € Iso(p,p, P, q).
We shall see that when the pair (¢, p) is “uniform”, the converse inclusion holds as well. The crucial step
for proving this is the forthcoming factorization property, Lemma 14.

Uniform pairs. We define when a pair (F,p) is uniform, F being a multilinear-free poly-term and
p : V(F) — V a naming function. We shall see in Lemma 15 that this notion is equivalent to the
concept of uniformity we have already defined using the coherence relation on poly-terms, but we give
first the following self-contained definition, very suitable to our present combinatorial considerations.
The definition is by induction. The pair (F,p) is uniform in one of the following situations:

e F'=x;...x, where the z;’s are variable and p(x;) = p(z,) for all 7, j;

o F=(Ayp1)...(Ayen) and (p1 ... ¢n,p) is uniform;

o FF=(p1)G1)...({¢n)Gp) and (¢1...¢n,1) and (Gy ...Gy,r) are uniform, where [and r are the
obvious restrictions of p.

When ¢ is a multilinear-free simple term, we say that (o, p) is uniform if (¢, p) is uniform, ¢ being
considered as a singleton poly-term.
The main property of uniform pairs is the following factorization lemma.

Lemma 14 (factorization) Let (¢,p) be a uniform pair and let ® and ' be two multilinear-free sub-
stitutions of domain V(). If ®p = @', then there exists f € Iso(p,p) such that ' = Of.

Proof. We can restrict our attention to the case where ¢ is a poly-term, and the only interesting
case in the inductive definition above of uniformity is obviously the last one. With the notations of that
definition, we can find g € Iso(y1 . .. ¢n, 1) such that A’ = Ag and h € Iso(G; ... Gy,) such that P’ = Ph
where A, A’ and P, P’ are the restrictions of ®, &’ to V(1 ...¢,) and V(G ... G,,) respectively. Taking
the union f of these two bijections g and h, we obtain an element f of &,, and it remains to show that
fF = F. For this, it will be sufficient to show that there is an index i such that gp1 = ¢; and hG; = G;.
We know that there is an 4 such that gy = ¢; since g € Iso(¢1 ... ¢n,1)) (and this ¢ is unique since
each ¢; contains at least one variable, and all these variables are distinct). We know moreover that
(1) G1 ... (pn) Grn) = ¥ ({p1) Gy ... {pn) G,) and hence there is a (uniquely determined) j such that
@’ (1) G1 = @ (p;) Gj, hence AN'¢1 = Ap;, that is Agp1 = Ap;. This implies that gp1 = ¢; (because A
is an injective partial function from variables to simple terms), hence ¢; = ¢; and so we must have j = i.
Therefore @' {p1) G1 = @ (p;) G;, hence P'Gy; = PG;, that is PhG; = PG;. If G; = 1 then G; = 1 and
hG1 = G; holds trivially. Otherwise we conclude again using the injectivity of P. o

The uniformity hypothesis is essential: take for ¢ the poly-term zy, for p the identity map on {z,y},
and define ® and ' by ®(z) =z, P(y) = y and ®'(x) =y, '(y) = z. Then Py = &' = ¢ but ¢ # P’
and the only element of Iso(y,p) is the identity. The problem is of course that the pair (¢, p) is not
uniform.

We state now the equivalence between the two notions of uniformity introduced so far.

Lemma 15 Let o be a (poly-)term. Let ¢ be a multilinear-free (poly-)term and p : V(p) — V be a
function such that o = pp. Then o is uniform (that is o < o) iff the pair (@, p) is uniform.

The proof is a straightforward induction on o.

17

The equation. Let ¢ be a multilinear-free simple term, ¢ be a multilinear-free substitution with
Dom® = V(p), p: V(p) — V and q : V(®) — V be functions. Assume that the pair (¢, ®) is adapted
and that the pair (i, p) is uniform.

Let us first check that

7(Iso(p, @, q)) Iso(, p) = Iso(¢, p, ®,q) .
Let f € Iso(p,p, ®,q), that is f € &, and there exists g € &, such that g@fp = Pyp. Since the pair
(¢, p) is uniform, we can apply Lemma 14 and hence there exists f’ € Iso(p, p) such that g@f = &f'.
This means that g € Iso(p, ®,q) and 7(g) = f'f~!. Hence f = w(g~')f" € n(Iso(p, ®,q)) Iso(,p). We
have already seen that the converse inclusion holds (inclusion (6)).
Since |7 (Iso(p, @, q))| = |lso(p, @, q)| / |ker 7|, applying Lemma 12 we obtain

_ |Iso(p, @, q)| [Iso(¢, p)|
|ker 7| | (Iso(p, @, q)) N Iso(p, p)|

|Iso(, p, @, q)]

To conclude, we need to evaluate the expression |7 (Iso(p, @, q)) N Iso(p, p)|.

Let g € Iso(®yp, ¢). Since the pair (p, p) is uniform, by Lemma 14 again, there exists f € Iso(p, p) such
that ¢® = ®f. In other words Iso(Py, q) C Iso(p, D, q) and 7 (Iso(Pyp, q)) C Iso(v,p). So w(Iso(Pyp,q)) C
m(lso(p, @, q)) Nlso(p, p). But the converse implication holds as well. Indeed, let g € Iso(p, @, ¢) be such
that 7(g) € Iso(p,p). Then g®p = &7 (g)p = Py hence g € Iso(Py, q).

Last observe that obviously ker 7 C Iso(®¢, ¢). So

| (Iso(p, @, q)) Nlso(p,p)| = |r(Iso(Dyp, q))| = % _

So we have proved the following result which will be essential in the sequel.
Theorem 16 (Uniform plugging equation) If ¢ is a multilinear-free simple term, ® a multilinear-

free substitution with (¢, ®) adapted, if p : V(o) — V and q : V(®) — V are functions and if the pair
(¢, p) is uniform, then the following equation holds:

= lIso(p, @, q)] [Iso(sp, p)|

Iso(p,p, ®,q)| =
o) lso(@p,q)

The uniformity hypothesis is necessary. Take indeed for ¢ the non uniform poly-term ¢ = z1({z2) 1) (p
being the constant function x; — x where x is a fixed element of V). Then |lso(p,p)| = 1. Define ® by
®(z1) = (y1) 1 and ®(z2) = y» and take for ¢ a constant function ¢(y;) = y. Then |Iso(p, ®,q)| = 1,
but ®¢ = ({y1) 1)({y2) 1) so that |Iso(Py, ¢)| = 2 and the equation above cannot hold since its left hand
member must be an integer.

5 Reducing the Taylor expansion of an ordinary lambda-term

With the qualitative Theorems 10 and 11 and the quantitative Theorem 16, we have the main tools for
studying the beta-reduction of the Taylor expansion of an ordinary lambda-term.

If o =3 ycac agb is an element of R(AM) . which has a clique as support (that is, the set supp(c) =
{6 | ag # 0} is a clique for the coherence relation defined on simple terms and on simple poly-terms

in Section 3), then it makes sense to defines NF(o) = >, Ay ao NF(0) € R(A(()!)>oo (where Aé!) is the

set of normal simple (poly-)terms) since indeed by Theorem 11, for each 6y € A((J!) there is at most one
6 € supp(o) such that 6 € supp(NF(#)). We know moreover that supp(NF(c)) is a clique®.

In particular, when M is an ordinary lambda-term, NF(M*) is a well defined, generally infinite, linear
combination of normal simple terms with rational coefficients whose support is a clique. We shall see
that each term 6 occurring in this sum occurs with 1/m(6) as coefficient.

We need first to consider the case of a single big step differentiation: for dealing with this case, we
apply the uniform plugging equation straightforwardly.

8The set C of all o0 € R(A("), such that supp(c) is a clique is closed for the product topology, but is not a linear
subspace as it is not stable under addition of (poly-)terms. We can see NF as a continuous operator from this set to itself.

18

Lemma 17 Let 0 € A" be uniform, let x be a variable and let T € A'. Let 0 € supp(9.(c,T)). Then

m(o)m(T)

0z(0,T)g = ()

Proof. Observe first that our hypotheses imply that |T| = d,o since otherwise the set supp(9;(c,T))
would be empty. Let ¢ be a multilinear-free (poly-)term and p : V(¢) — V be a function such that
pe = o. Then, by Lemma 15, the pair (¢, p) is uniform since o is. By Formula (3), we can choose a

multilinear-free substitution ® and a function ¢ : V(®) — V in such a way that the following requirements
be fulfilled:

e the pair (p, @) is adapted;
o q(II, = (@) =T (that is “(®, q), when restricted to p~1({z}), represents T7);

o if p(z') # x then ®(z') = 2’ and ¢(2') = p(2’) (that is, the substitution ® acts trivially on all
occurrences of variables distinct from z);

o 0 =qdyp.

By Formula (3), the coefficient 9,(c,T)e is the number of permutations f € &,, such that

o' [try/T1, gy Ea] =0,

where ¢ ...t, = T, the variables 1, . .., x,, are fresh and ¢ is an z-linearization in z1, ..., z, of o (it can
be chosen such that ¢’ [t1/21,...,t,/z,] = 0 and in that case the above mentioned set of permutations
is a group). So 9,(0,T)g = |Iso(w, p, @, q)|- The equation follows then from Lemma 13 and Theorem 16.

O

Again, the uniformity condition is absolutely essential.

Two corollaries. We derive two easy corollaries of this formula, before applying it to our main concern,
which is the study of the normal forms of the terms occurring in the Taylor expansion of an ordinary
lambda-term.

First, we generalize the formula to iterated big step differentiation.

Proposition 18 Let o € A" be uniform, let 1, ..., x, be pairwise distinct variables and let Ty, ..., T, €
A" be uniform. Let 0 € supp(dy, .., (0, T, ..., T,)). Then

a:rl,.“,a:n (U7 T17 cee 7Tn)0 =

Proof. 1t will be enough to deal with the case n = 2. We have

6$1,I2(Ua T17T2)9 812(6961 (0—7 T1)7T2)9

Z aﬂh (07 Tl)paﬂm (p7 T2)9)

peA®

but since ¢ and Ty are uniform, supp(9,,(o,T1)) is a clique by Theorem 10 and hence there is at
most one p € supp(0y, (0,T1)) such that 6 € supp(dy,(p,T2)). Hence, since we have assumed that
0 € supp(0y, 4, (0,T1,T2)), there is exactly one such p and we know that this p is uniform, so we get,
applying twice Lemma 17,

m(o)m(Ty) m(p)m(Tz) _ m(o)m(Ty)m(T3)

ax1,1’2 (0-7 T17T2)0 = m(p) ' m(9) - m(e) .

O

The second corollary is another version of the Taylor formula, which is now substitution-oriented
instead of being application-oriented as in Lemma 8.

19

Theorem 19 Let M and N be ordinary lambda-terms and let z be a variable. One has O, (M*, N*™) — 0
as n — 00, and the following equation holds:

MIN/z]" =>" %8I(M*7N*").

n=0

Proof. The convergence statement results from the fact that M*™ — 0 and from the continuity of 9.
Just as in the proof of Lemma 8, we have

1 1
n=0 se€ET (M)
TEMiin (T (N))

To conclude, observe that the family of sets (supp(9:(s,T)))(s,1)eT(M)xMun(T(N)) 18 a partition of
T (M [N/z]) (disjointness results from Theorem 10, and the equality of sets is proved by an easy in-

duction on M, using the Leibniz law in the case where M is an application), and then apply Lemma 17.
O

Proposition 20 Let 0 € AY) be uniform and let 0 € supp(NF(c)). Then m(6) divides m(c), and more

precisely
m(o)
= NF(0)y.
m(0) (9)o
Consequently, if M is an ordinary lambda-term, then for each 0 € supp(NF(M*)) one has NF(M*)y =

1/m(6).

Proof. We proceed by induction on the size of the simple (poly-)term o, using Lemma 4. Indeed
observe that when o is uniform, the terms to which NF is applied in the “recursive calls” of that lemma
are themselves uniform (the only non-trivial case is the first one, and in that case our claim results from
Theorem 10 and from the fact that any (poly-)subterm of a uniform (poly-)term is uniform).

If o = Axy...xn(x)Th... T then 6 = Axy...x, (x) Uy ... Uy with U; € supp(NF(T})) for j
1,...,k. By inductive hypothesis, m(T};)/m(U;) = NF(T})y,, but m(c) = m(T1)---m(T}) and m(0) =
m(Uy) - - - m(Uy) and we conclude because, by multilinearity of application,

NF(o) = Y NF(Ty)y, - NF(Th)y Az .2 (2) Vi .. Vi

Assume now that o = Axy...2, (r) Ty ... Ty where r = (Ax s)T. Then there exists a unique s’ €
supp(9.(s,T)) such that 6 € supp(NF(Azy ...z, (s')T1...T))). By inductive hypothesis,

mAxy ... 2, ($)T1 ... T)

m(a) = NF()\l‘l.’L'n <S/> T]---Tk:)Q'

But NF(o) = NF(Az1 ...z (0x(s,T)) Th ... T)) and so NF(o)g = 0,(s,T)s NF(Az1 ... 2 (s") Th ... Tk)o
(see Equation (4)). Therefore by Lemma 17 we get

m(s)m(T)Ym(Azy ... zp (s)T1 ... Tk)

NF(U)Q =

m(s")m(6)
_ m(s)m(T)m(Ty) - - -m(T})
m(6)
m(o)
= SOk
As a last case, consider the situation where o = s ... s}* is a uniform poly-term, with s; < s; for

all 4, j, and s; and s; not a-equivalent when ¢ # j, so that

k
m(o) = Hpj! m(s;)" .

20

Then, by Theorem 11, supp(NF(s1)),...,supp(NF(sy)) are pairwise disjoint cliques and 6 is of the shape
0 = U, ...Uy with U; € supp(NF(s;)?7) for j = 1,...,k, and so the multi-sets U; are pairwise disjoint,
so that

m(G) =m(Uy)---m(Uy) .

Let j € {1,...,k}, we have m(U;) = U;! mYi so that

~—

m(o b P!l m(s;)P
H]
m(6) U mUs

but for each j,

pj
NF(s;)Pi = (Z NF(s;)
(VASYAN
(),,)"
= (Z ML u) by inductive hypothesis
uEAg m(u)
= Z U] m(s;) U by the multinomial identity,
UEMPJ(AO)
S0
k
NF(o)s = JINF(s)7,
j=1
k
m(s;)Pi
= Hl[Uj] 5= Uj
j=
_ m(o)
- m(0)
and we are done. m|

So we can summarize the situation by the following statement.

Theorem 21 If M is an ordinary lambda-term and w is a normal simple term, there is at most one

t € T(M) such that u € supp(NF(t)) and the following relation holds: m(t)/m(u) = NF(t),,.

The unicity results from Theorem 11, and the expression for NF(t),, results from Proposition 20.
We can wonder for which u such a t does exist, and how to compute it. The answer involves B6hm
trees and the Krivine’s machine and will be given in a forthcoming paper.

Example. Let M be the ordinary lambda-term
M = (Af (f) Az (f) Adx) Az (2) (2)

where x is a distinguished variable. It is easily seen that M reduces to x. By the theorem above, there
is at most one simple term ¢t € 7 (M) such that x € supp(NF(¢)). One checks easily that

t= (M) O () Ad2)?) (Az (2) (2) ©) (A2 (=) 1)?

is such a term, and more precisely that ¢ reduces to 4x, in accordance with the fact that m(¢) = 4. This
simple term can be seen as a “decoration” of M giving an exact quantitative account of how much each
subterm of M is used during the run of the Krivine’s machine starting with term M (empty environment
and empty stack) and leading to the final value *.

21

Conclusion

The main result of this paper, Theorem 21, shows that the situation is as simple and natural as one could
expect. The striking fact, maybe, is not the result itself but its proof, which is based on Theorems 11
and 16, and so uses uniformity twice, and each time in a crucial way. So an essential step in the
understanding of the differential extension of the functional paradigm proposed in [ER03] will be to
examine the behaviour of Taylor expansions in this more general and non uniform setting.

References

[BCL99)

[BEO1]

[Ber78]

[Bou93]

[DB87]

[DR9Y]

[Ehr04]

[ERO3]

[ERO4]

[Gir86]

[Gir87]
[GLTS9]

[Kfo00]

[Kri85]
[Kri05]

[Vau0s]

Gérard Boudol, Pierre-Louis Curien, and Carolina Lavatelli. A semantics for lambda calculi
with resource. Mathematical Structures in Computer Science, 9(4):437-482, 1999.

Antonio Bucciarelli and Thomas Ehrhard. On phase semantics and denotational semantics:
the exponentials. Annals of Pure and Applied Logic, 109(3):205-241, 2001.

Gérard Berry. Stable models of typed lambda-calculi. In Proceedings of the 5th International
Colloquium on Automata, Languages and Programming, number 62 in Lecture Notes in Com-
puter Science. Springer-Verlag, 1978.

Gérard Boudol. The lambda calculus with multiplicities. Technical Report 2025, INRIA Sophia-
Antipolis, 1993.

N.G. De Bruijn. Generalizing Automath by means of a lambda-typed lambda calculus. In
D.W. Kueker, E.G.K. Lopez-Escobar, and C.H. Smith, editors, Mathematical Logic and Theo-
retical Computer Science, Lecture Notes in Pure and Applied Mathematics, pages 71-92. Marcel
Dekker, 1987. Reprinted in: Selected papers on Automath, Studies in Logic, volume 133, pages
313-337, North-Holland, 1994.

Vincent Danos and Laurent Regnier. Reversible, irreversible and optimal lambda-machines.
Theoretical Computer Science, 227(1-2):273-291, 1999.

Thomas Ehrhard. Finiteness spaces. Mathematical Structures in Computer Science, 2004. To
appear.

Thomas Ehrhard and Laurent Regnier. The differential lambda-calculus. Theoretical Computer
Science, 309(1-3):1-41, 2003.

Thomas Ehrhard and Laurent Regnier. Differential interaction nets. In Proceedings of WoL-
LIC’04, Electronic Notes in Theoretical Computer Science. Elsevier Science, 2004. To appear.

Jean-Yves Girard. The system F of variable types, fifteen years later. Theoretical Computer
Science, 45:159-192, 1986.

Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50:1-102, 1987.

Jean-Yves Girard, Yves Lafont, and Paul Taylor. Proofs and types, volume 7 of Cambridge
Tracts in Theoretical Computer Science. Cambridge University Press, 1989.

Assaf J. Kfoury. A linearization of the lambda-calculus. Journal of Logic and Computation,
10(3):411-436, 2000.

Jean-Louis Krivine. Un interpréteur du lambda-calcul. Unpublished note, 1985.

Jean-Louis Krivine. A call-by-name lambda-calculus machine. Higher-Order and Symbolic
Computation, 2005. To appear.

Lionel Vaux. The differential lambda-mu calculus. Technical report, Institut de Mathématiques
de Luminy, 2005. To appear.

22

