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Abstract

We consider the individual points on a Martin-Löf random path of
Brownian motion. We show (1) that Khintchine’s law of the iterated
logarithm holds at almost all points; and (2) there exist points (besides the
trivial example of the origin) having effective dimension < 1. The proof
of (1) shows that for almost all times t, the path f is Martin-Löf random
relative to t and so the effective dimension of (t, f(t)) is 2. Keywords:
Brownian motion, algorithmic randomness, effective randomness

1 Introduction

Algorithmic randomness for Brownian motion was introduced by Asarin and
Pokrovskii. They defined what they called, according to the English translation
[1], truly random continuous functions. Fouché [3] called these functions complex
oscillations.

In this article we answer a question of Fouché (see [5]) by showing that
for each complex oscillation, Khintchine’s law of the iterated logarithm holds at
almost every point. To that end, in Section 2 we borrow a construction from the
proof of the Wiener-Carathéodory measure algebra isomorphism theorem. For
the full statement of this theorem, the reader may consult for example Royden
[12], Theorem 15.3.4; we shall not need it.

We believe our method based on this isomorphism theorem can be used to
yield other results than the one presented here. Namely, algorithmic randomness
for the unit interval [0, 1] has been studied more extensively than algorithmic
randomness for the space C[0, 1] of continuous functions, and the isomorphism
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theorem allows a transfer of some results. For a general introduction to algo-
rithmic randomness on [0, 1], the reader may consult [8].

In algorithmic randomness and in computability theory generally, the Tur-
ing oracles considered are usually drawn from the space 2N of infinite binary
sequences. Since all non-computable real numbers have a unique binary ex-
pansion, it makes no difference if oracles are drawn from the unit interval [0, 1]
instead.

Definition 1.1. Suppose Ω is a set, F = {Ti : i ∈ N} a countable Boolean
algebra of subsets of Ω, µ a probability measure on the σ-algebra generated by
F . Let t ∈ [0, 1]. Suppose φ : N2 → N is a total function Turing reducible to t.
The sequence Un =

⋃

m Tφ(n,m), n ∈ N is called a t-uniform sequence of Σt
1(F )

sets. A t-effective F -null set is a set A ⊆ Ω such that for some such φ,

1. A ⊂ ⋂

n Un, and

2. µUn goes effectively to 0 as n → ∞. That is, there is a computable
function ψ such that whenever n ≥ ψ(k), we have µUn ≤ 2−k.

We review the Wiener probability measure W on Ω = C[0, 1]. It is such
that for ω ∈ Ω, and t0 < t1 < · · · < tn, the values of ω(t0) and ω(ti+1 − ti) are
independent random variables. Moreover, the probability that ω(s+ t)−ω(s) ∈
A, where A is some set of reals, is

∫

A
(2πt)−1/2 exp(−x2/2t)dx. This says that

ω(t) is normally distributed with standard deviation
√
t (variance t) and mean

0. Informally, a sufficiently random member of Ω with respect to W is called a
path of Brownian motion.

The precise definition of complex oscillations is immaterial to the present
paper, but we include it for completeness. The idea is to mimic the classical
characterization of Brownian motion as a limit of random walks with finer and
finer increments (Donsker’s Invariance Principle).

Definition 1.2. For n ≥ 1, we write Cn for the class of continuous functions
on [0, 1] that vanish at 0 and are linear with slope ±√n on the intervals [(i −
1)/n, i/n], i = 1, . . . , n.

To every x ∈ Cn one can associate a binary string in {1,−1}∗, a1 · · · an,
of length n by setting ai = 1 or ai = −1 according to whether x increases or
decreases on the interval [(i− 1)/n, i/n]. We call the word a1 · · ·an the code of
x and denote it by c(x).

A sequence {xn}n∈N in C[0, 1] is complex if xn ∈ Cn for each n and there
is some constant d ∈ N such that K(c(xn)) ≥ n− d for all n, where K denotes
prefix-free Kolmogorov complexity.

A function x ∈ C[0, 1] is a complex oscillation if there is a complex sequence
{xn}n∈N such that xn − x converges effectively to 0 as n → ∞, in the uniform
norm.

A number t ∈ [0, 1] is a dyadic rational if it is of the form p
2n , for p, n ∈ N;

otherwise, t is called a dyadic irrational.
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In the following, closure(G) is the closure of G, Gco is the complement of G,
and Oε(G) is the open ε-ball around G.

Definition 1.3 (Fouché [3]). A sequence F0 = (Fi : i ∈ N) of Borel subsets of
Ω is a t-effective generating sequence if

(1) for F ∈ F0 and ε > 0, if

G ∈ {{Oε(F ), Oε(F
co), F, F co},

then W (closure(G)) =W (G);

(2) there is a t-effective procedure that yields, for each sequence 0 ≤ i1 < · · · <
in ∈ N and k ∈ N, a dyadic rational number βk such that |W (

⋂

1≤k≤n Fik)−
βk| < 2−k; and

(3) for n, i ∈ N, for rational numbers ε > 0 and for x ∈ Cn, both the relations
x ∈ Oε(Fi) and x ∈ Oε(F

co
i ) are t-recursive in x, ε, i and n.

If there exists a t such that F0 is a t-effective generating sequence, then
F0 is called a generating sequence. The algebra it generates is similarly called
a generated algebra. A t-effectively generated algebra is the Boolean algebra
generated from an t-effective generating sequence. If F is a generated algebra
and ω belongs to no t-effective F -null set, then we say that ω is t-F -random or
F -random relative to t. If t is computable then we may omit mention of t. A
set A ⊂ C[0, 1] is of t-constructive measure 0 if, for some t-effectively generated
algebra F , A is a t-effective F -null set.

Theorem 1.4 (Fouché [3]; see also [4]). No complex oscillation belongs to any
set of constructive measure 0.

Let LIL(ω, t) be the statement that

lim sup
h→0

|ω(t+ h)− ω(t)|
√

2|h| log log(1/|h|)
= 1.

Thus LIL(ω, t) says that Khintchine’s Law of the Iterated Logarithm holds for
ω at t.

Theorem 1.5 (following Fouché [5]). If t ∈ [0, 1], and f is t-F -random for
each t-effectively generated algebra F , then the Law of the Iterated Logarithm
holds for f at t.

The proof is a straightforward relativization to t of Fouché’s argument (which
covers the case where t is computable).
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2 Isomorphism Theorem

Let A0 be a generating sequence. Write A0 = {An}n∈N.

• Let An be the Boolean algebra generated by {A1, . . . , An}.

• Let A = A∞ =
⋃

n An, the Boolean algebra generated by A0.

• Let I be the Boolean algebra of finite unions of half-open intervals [a, b)
in [0, 1).

A Boolean measure algebra homomorphism is a map that preserves measure,
unions, and complements.

Theorem 2.1 (Wiener, Carathéodory). There is a Boolean measure algebra
homomorphism Φ : A → I.

Proof. In this proof we will denote Wiener measure W by µ. We first consider
the case n = 1. Since A1 = {∅, A1, A

co
1 ,Ω} and µA1 + µAco

1 = µΩ = 1, we let
Φ(A1) = [0, µA1), Φ(A

co
1 ) = [µA1, 1), Φ(∅) = ∅, and Φ(Ω) = [0, 1). Then Φ is

clearly a Boolean measure algebra homomorphism from A1 into I.

Suppose now that Φ has been defined on An−1 so that it is a Boolean measure
algebra homomorphism from An−1 onto the algebra generated by k ∈ N many
half open intervals [x0, x1), [x1, x2), . . . , [xk−1, xk), where x0 = 0 and xk = 1.

We wish to extend the mapping Φ to An. Let Bi be the set in An−1 which is
mapped onto the interval [xj , xj+1), for j < k. Then An−1 consists of all finite
unions of the sets Bj , j < k, and An consists of all finite unions from the 2k
sets An ∩Bj , A

co
n ∩Bj , j < k. Let

Φ(An ∩Bj) = [xj , xj + µ(An ∩Bj))

Φ(Aco
n ∩Bj) = [xj + µ(An ∩Bj), xj+1)

This might define Φ of some sets to be of the form [xj , xj) = ∅.
Clearly Φ as so defined preserves Lebesgue measure on [0, 1). Moreover

Φ(An∩Bj)∪Φ(Aco
n ∩Bj) = [xj , xj+1) = Φ(Bj), and µ(An∩Bj)+µ(A

co
n ∩Bj) =

µ(Bj) = xj+1 − xj . From this it follows that we can extend Φ to all of An so
that it is a Boolean measure algebra homomorphism. Since A∞ =

⋃

n An, we
have thus defined Φ on all of A∞.

Remark 1. The function Φ is effective in the following sense: if F = {Tk :
k ∈ N} is a t-effectively generated algebra, then the measure of Φ(Tk) can be
computed t-effectively, uniformly in k.

Lemma 2.2. Suppose In = (an, bn), n ∈ N, is a sequence of open intervals
with (an+1, bn+1) ⊆ (an, bn). Suppose

⋂

n(an, bn) = ∅. Then either {an}n∈N or
{bn}n∈N is an eventually constant sequence.

4



The proof is routine. The set of Martin-Löf real numbers in [0, 1] is denoted
RAND, and relativized to t, RANDt.

An effectively generated algebra F = {Tk : k ∈ N} is non-atomic if for any

b : N→ {0, 1}, we have W (
⋂

k T
b(k)
k ) = 0, where T 1

k := Tk and T 0
k := T co

k .

Lemma 2.3. Let t ∈ [0, 1] and let F = {Tk : k ∈ N} be a non-atomic, t-
effectively generated algebra. Let a function ϕ from C[0, 1] to [0, 1] be defined
by: ϕ(ω) = the unique member of ∩{Φ(Tk) : ω ∈ Tk}, if it exists.

(1) The domain of ϕ includes all t-F -randoms.

(2) If ϕ(ω) is defined then for each k,

ω ∈ Tk ⇐⇒ ϕ(ω) ∈ Φ(Tk).

Proof. (1): Suppose ω is not in the domain of ϕ. That is, S = ∩{Φ(Tk) : ω ∈ Tk}
does not have a unique element. It is clear that S is an interval. Since F is
non-atomic, this interval must have measure zero. Thus, since S does not have
exactly one element, S must be empty.

By Remark 1 and Lemma 2.2, there is a t-computable point a or b such that
an → a or bn → b, where (an, bn) = ∩k≤nΦ(Tk). Using this point a or b one
can t-effectively determine whether ω ∈ Tk, given any k ∈ N. Thus ω is not
t-F -random.

(2)→: By definition of ϕ.

(2)←: Since {Tk}k∈N is a Boolean algebra and so closed under complements,

ω 6∈ Tk → ω ∈ T co
k = Tℓ → ϕ(ω) ∈ Φ(Tℓ) = Φ(Tk)

co.

2.1 Effectiveness Lemmas

A presentation of a real number a is a sequence of open intervals In with rational
endpoints, containing a, such that In has diameter ≤ 2−n.

Lemma 2.4. There is a Turing machine which, given a presentation of a =
a0 ⊕ a1 as oracle, terminates iff a0 < a1.

Proof. Let In, Jn, be open intervals containing a0, a1, respectively, as in the
definition of “presentation”. Search for n, m such that In ∩ Jm = ∅, and the
right endpoint of In is < the left endpoint of Jm. Such n, m will be found if
and only if a0 < a1.

On the other hand, it is well known that if a0 = a1 then no algorithm will be able
to verify this in general. For intervals (a, b), (c, d), we say (a, b) is bi-properly
contained in (c, d) if c < a ≤ b < d.
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Remark 2. The set of dyadic irrationals can be identified with a full-measure
subset of 2N via the map ι such that ι(

∑

i≥1 bi2
−i) = {bi}i≥1. This also gives

an identification of cones [σ] = {A ∈ 2N : ∀n < |σ| A(n) = σ(n)} for σ ∈ {0, 1}∗
with intervals in the dyadic irrationals. Formally, we can let ι(2N) = [0, 1] and
if ι([σ]) = [a, b] then ι([σ0]) = [a, a+ (b − a)/2] and ι([σ1] = [a+ (b− a)/2, b].

Lemma 2.5. The set of pairs σ ∈ {0, 1}∗, k ∈ N such that Φ(Tk) is bi-properly
contained in ι([σ]), is computably enumerable.

Proof. The endpoints of Φ(Tk) and ι([σ]) have computable presentations. Thus
the result follows from Lemma 2.4.

Lemma 2.6. Let t ∈ [0, 1] and let F = {Tk : k ∈ N} be a t-effectively generated
algebra.

(1) If F is non-atomic, then for each t-ML-test {Un}n∈N there is a t-computable
function f : N2 → N such that

Un ∩ RAND =
⋃

m

Φ(Tf(n,m)) ∩ RAND.

(2) If for a t-computable function f : N2 → N, we have Un =
⋃

m Φ(Tf(n,m))
then Un has a subset U ′

n such that Un∩RAND = U ′
n∩RAND and {U ′

n}n∈N

is uniformly Σ0
1(t).

Proof. (1): We can enumerate the cones [σ] contained in Un. Once we see
some [σ] get enumerated and then see (using Lemma 2.5) that some Φ(Tk) is
bi-properly contained in [σ], we can enumerate Φ(Tk). Since F is non-atomic,
we will gradually enumerate all of [σ] except for possibly one or more of its
endpoints. These endpoints are computable by Definition 1.3(2).

(2): Let interior(C) denote the interior of a set C ⊆ [0, 1]. We let

Un =
⋃

m

interior(Φ(Tf(n,m))).

Thus Un and
⋃

m Φ(Tf(n,m)) agree except on the left endpoints of the half-open
intervals Φ(Tf(n,m)). Since these endpoints are all computable numbers, we are
done.

The only result of this section that will be used in the next is the following:

Theorem 2.7. Let ω ∈ Ω, t ∈ [0, 1], and let F0 = {Tk : k ∈ N} be a non-atomic
t-effective generating sequence, and F its generated algebra. The following are
equivalent:

(1) ω is t-F -random;
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(2) ϕ(ω) ∈ RANDt.

Proof. Let µ denote Lebesgue measure on [0, 1].

(2) implies (1): Suppose ω is not t-F -random, so ω ∈ ⋂

n Vn, a t-F -null set.
Then Vn =

⋃

m Tf(n,m) for some t-computable f .

Let Un =
⋃

m Φ(Tf(n,m)). Note

(a) Un is uniformly Σ0
1(t) by Lemma 2.6(2).

(b) Since Φ is measure preserving on F and is a Boolean algebra homomorphism
by Theorem 2.1,

µ(∪ni=1Φ(Tai
)) = µ(Φ(∪ni=1Tai

)) =W (∪ni=1Tai
)

Since the measure of a countable union is the limit of the measures of finite
unions, µUn =W (Vn) ≤ 2−n.

By (a) and (b), {Un}n∈N is a t-ML-test.

If ω is not in the domain of ϕ then ω is not F -random, by Lemma 2.3(1);
so we may assume ϕ(ω) exists. Hence, since ω ∈ ⋂

n Vn, by definition of ϕ, we
have ϕ(ω) ∈ ⋂

n Un. Thus ϕ(ω) 6∈ RANDt.

(1) implies (2): Suppose ϕ(ω) is not 1-t-random, so ϕ(ω) ∈ ⋂

n Un, for some
t-Martin-Löf test {Un}n∈N. Let Vn := ∪mTf(n,m) with f as in Lemma 2.6(1). So
by its definition, Vn is uniformly Σt

1(F0). As in the proof that (2) implies (1),
µ(Un) =W (Vn). Since ϕ(ω) ∈

⋂

n Un, by Lemma 2.3(2) we have ω ∈ ⋂

n Vn.

3 Khintchine’s Law for Complex Oscillations

It is common in probability theory to write, for ω ∈ Ω and x ∈ [0, 1], Bx(ω) =
ω(x). This allows us to refer to the set {ω ∈ Ω : ω(x) < y}, for example (where
x, y are fixed rational numbers) as the event that Bx < y, and as a set this is
written {Bx < y}. In words, the value of the Brownian motion at time x is less
than y.

Let, for each t ∈ [0, 1], Ft be an t-effectively generated algebra that contains
the one used in Theorem 1.5, and that moreover is non-atomic. The latter is
achieved by including all events of the form {Bx < y} for rational x ∈ [0, 1] and
arbitrary rational y. Note that if F and F ′ are effectively generated algebras,
and F ⊆ F ′, then each F ′-random function ω ∈ Ω is also F -random, since
adding elements to an effective generating sequence only adds new effective null
sets.

Lemma 3.1. For each t ∈ [0, 1] and each ω with ϕ(ω) ∈ RANDt, we have
LIL(ω, t). In particular, for each t ∈ RAND and each ω with ϕ(ω) ∈ RANDt,
we have LIL(ω, t).

Proof. Suppose t ∈ [0, 1] and ϕ(ω) ∈ RANDt. By Theorem 2.7, ω belongs to no
t-effective Ft-null set. Hence by Theorem 1.5, LIL(ω, t).

7



The point now is that in the image of ϕ, we already know more of what
is going on. Let A ⊕ B = {2n : n ∈ A} ∪ {2n + 1 : n ∈ B}, for reals A, B
(equivalently, A,B ⊆ N).

Theorem 3.2 (van Lambalgen’s Theorem). Let A, B be reals. The following
are equivalent.

• A ∈ RAND and B ∈ RANDA;

• A⊕B ∈ RAND;

• B ∈ RAND and A ∈ RANDB.

We can now approach our desired result:

Lemma 3.3. If ϕ(ω) ∈ RAND and t ∈ RANDϕ(ω) then LIL(ω, t).

Proof. Suppose ϕ(ω) ∈ RAND and t ∈ RANDϕ(ω). By Theorem 3.2 with
A = ϕ(ω) and B = t, we have that t ∈ RAND and ϕ(ω) ∈ RANDt. Hence by
Lemma 3.1, we have LIL(ω, t).

Theorem 3.4. If ω is a complex oscillation, then for almost all t, LIL(ω, t).

Proof. Suppose ω is a complex oscillation. By Theorem 2.7, ϕ(ω) ∈ RAND.

By Lemma 3.3, LIL(ω, t) holds for each t ∈ RANDϕ(ω). Since RANDA has
measure 1 for each A ∈ 2N, we are done.

We remark that our main result can be extended from Martin-Löf randomness
to Schnorr randomness. To prove this one would use a weak version of van
Lambalgen’s theorem that holds for Schnorr randomness; see Merkle et al [9])
or Yu [13].

4 Points of dimension < 1

We now show that almost surely, there are points of effective Hausdorff dimen-
sion < 1 on the graph of 1-dimensional Brownian motion, other than the trivial
example (0, 0). The question whether this is so was raised by J. S. Miller (per-
sonal communication) in connection with a more general question: Does there
exists a continuous planar curve all of whose points have effective dimension
exactly 1? S. Lempp and J. Lutz have announced a proof that such a curve
could not be a straight line. Although our result deals with a notion of effectiv-
ity, it is also a question about almost sure behavior and in that sense classical
probability theory.

From now on we will denote the Wiener probability measure W by P, to
facilitate probabilistic thinking. The sample path of 1-dimensional Brownian
motion has value Bt = Bt(ω) ∈ R at time t ∈ [0,∞), where ω is a randomly
chosen member of the sample space of continuous functions C(R).

8



For E ⊆ [0,∞), let B[E] = {Bt : t ∈ E} be the range of Bt on E. The
following two results are well-known, see for example [2].

Theorem 4.1 (Blumenthal’s 0-1 Law). If C is a property of Brownian motion
that only depends on the germ at time t = 0 of the Brownian path (that is, only
depends on values for t arbitrarily close to 0) then P(C) ∈ {0, 1}.

Proposition 4.2. 1√
a
Bat and Bt are identically distributed for a > 0.

Theorem 4.3. [from Theorem 16.5 of [7]] Let E1 and E2 be disjoint closed
subsets of [0,∞). If dim(E1 × E2) > 1/2, then P{B[E1] ∩B[E2] 6= ∅} > 0.

Theorem 4.3 cannot be strengthened to probability one; for a counterexam-
ple we can take E2 = {0} and E1 = [a, b], where 0 < a < b.

Definition 4.4. For α ∈ [0, 1] and R ∈ 2N, let DR
α = {x : ∀c∃nKR(x ↾ n) <

αn−c}, where KR denotes prefix-free Kolmogorov complexity relative to R (see
[8]). Let Dα = D∅

α and D = D3/4. The α-dimensional Hausdorff measure is
denoted by Hα.

Lemma 4.5. For any X ⊆ 2N, Hα(X) = 0 iff ∃R, X ⊆ DR
α .

Proof. Let X ⊆ 2N and let Hh(X) be the h-dimensional Hausdorff measure of
X, where h : R → R. By Theorem 1.14 of [11], Hh(X) = 0 iff ∃R ∈ 2N ∀A ∈
X ∀c ∈ N ∃n

2−KR(A↾n) ≥ ch(2−n),

i.e.
KR(A ↾ n) ≤ − log h(2−n)− log c.

We can replace log c by c. Hence taking h(t) = tα, this says

∃R ∈ 2N ∀A ∈ X ∀c ∈ N ∃n KR(A ↾ n) ≤ αn− c,

or
∃R ∈ 2N X ⊆ DR

α .

Lemma 4.6. α ≤ β ⇔ ∃R Dα ⊆ DR
β .

Proof. If α ≤ β then we can take R = ∅ and the inclusion is trivial. If β < α,
β ∈ Q, then this is not the case. Indeed, consider a join B = A ⊕Z ∅ where
A is R-random and Z is chosen to have density equal to the rational number
1 − β = p/q. That is Z = {n : n mod q < p, n ∈ N}. Here A ⊕Z B is
such that the bits in Z look like B, the others like A. For example, the usual
A ⊕ B from computability theory is A ⊕{2n+1:n∈N} B. Then B ∈ Dα\DR

β .

Namely, KR(A ↾ n) ≥+ n and so KR(B ↾ n) ≥+ βn, or else we could describe
A ↾ n by describing B ↾ (n/β) and then chopping off zeroes, giving ∃d∀c∃n,
KR(A ↾ n) ≤ KR(B ↾ n/β) + d ≤ β(n/β)− c+ d .

9



The effective Hausdorff dimension of a given x ∈ 2N is a notion that we
need only indirectly. For completeness, we point out that it is defined to be the
supremum of those s ∈ [0, 1] such that x belongs to no set ∩nUn, where each
Un is a Σ0

1 class, uniformly in n, and Un =
⋃

p∈N
[σn,p],

∑

p 2
−|σ|s ≤ 2−n.

Lemma 4.7. (a) dimD = 3/4.

(b) If x ∈ D then x has effective Hausdorff dimension ≤ 3/4.

Proof. (a) By Lemma 4.5, Hα(Dα) = 0 and hence dimDα ≤ α, and by Lemmas
4.5 and 4.6, dimDα ≥ α. Part (b) follows from Theorem 2.6 of [11].

To show that D has suitable closed subsets of large dimension, we describe
and then use the potential theoretic method [6][10]. We include some proofs
from [10] for completeness, and to bring these ideas closer to a computability
theoretical audience.

A measure µ on the Borel sets of a metric space E is called a mass dis-
tribution if 0 < µ(E) < ∞. Let the ultrametric υ be defined by υ(x, y) =
2−min{n:x(n) 6=y(n)}.

Definition 4.8. Suppose µ is a mass distribution on a metric space (E, ρ) and
α ≥ 0. The α-potential of a point x ∈ E with respect to µ is defined as

φα(x) =

∫

dµ(y)

ρ(x, y)α
.

The α-energy of µ is

Iα(µ) =

∫

φα(x)dµ(x) =

∫∫

dµ(x)dµ(y)

ρ(x, y)α
.

Suppose µ is a mass distribution on 2N, and suppose α ≥ 0. Then, for every
x ∈ 2N, let B(x, r) be the closed ball centered in x of radius r and define the
value

dα(µ, x) = lim sup
r↓0

µ(B(x, r))
rα

,

the upper α-density of µ at x.

Proposition 4.9 (Local mass distribution principle). If µ is a mass distribution
on 2N, and A ⊆ 2N is a Borel set with

dα(µ, x) < C for all x ∈ A,

then Hα(A) ≥ µ(A)
C , and, in particular, if µ(A) > 0 then dimA ≥ α.

Proof. We first claim that x 7→ µ(B(x, r)) is continuous for any r. Indeed pick
n such that 2−(n+1) ≤ r < 2−n. Then B(x, r) = [x ↾ (n+ 1)] for any x. Thus if
[y ↾ n+ 1] = [x ↾ n+ 1] then µB(x, r) = µB(y, r).

10



Now if δ > 0, let

Aδ = {x ∈ A : ∀r ∈ (0, δ) µB(x, r) ≤ Crα} .

Then Aδ is a Borel set, in fact closed if A is closed.

We claim that µ(Aδ) ≤ CHα
δ (A).

Indeed, letting diam denote diameter induced by the standard metric on
[0, 1], Hα

δ is the infimum of all sums
∑

i∈N
diam([σi])

α where A ⊆ ⋃

i∈N
[σi] and

each diam([σi]) < δ.

Let σ′
i be the subsequence of the σi chosen so that µ[σ′

i] ≤ Cdiam([σ′
i])

α.
This may no longer cover A, but it covers Aδ. Thus µ(Aδ) ≤

∑

i∈N
µ([σ′

i]) ≤
∑

i∈N
Cdiam([σ′

i])
α ≤ C

∑

i∈N
diam([σi])

α. Since this is true for an arbitrary
δ-cover of A, we are done.

Now dα(µ, x) < C for all x ∈ A which means that

lim sup
r↓0

µ(B(x, r))
rα

< C

i.e.

∃ε > 0 ∃δ ∀r ∈ (0, δ)
µ(B(x, r))

rα
≤ C − ε

∃ε > 0 ∃δ ∀r ∈ (0, δ) µ(B(x, r)) ≤ (C − ε)rα < Crα

which implies

∃δ ∀r ∈ (0, δ) µ(B(x, r)) < Crα

and
∃δ ∀r ∈ (0, δ) µ(B(x, r)) ≤ Crα

i.e. ∃δ x ∈ Aδ. So we have shown A ⊆ ⋃

δ>0Aδ.

Since δ ≤ δ′ ⇒ Aδ ⊇ Aδ′ ,

µ(A) ≤ µ
⋃

δ> 0

Aδ = lim
δ↓0

µAδ ≤ lim
δ↓0

CHα
δ (A) = CHα(A).

Theorem 4.10 (Potential Theoretic Method). Let α ≥ 0 and let µ be a mass
distribution on a Borel set E ⊆ 2N with Iα(µ) < ∞. Then Hα(E) = ∞ and
hence dimE ≥ α.

Proof. Note that since Iα(µ) <∞, we have µ{x} = 0 for all x ∈ E. Let

E1 =
{

x ∈ E : dα(µ, x) > 0
}
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=

{

x ∈ E : lim sup
r↓0

µ(B(x, r))
rα

> 0

}

=

{

x ∈ E : ∃ε > 0 ∀η ∈ (0, ε)∀δ > 0∃r ∈ (0, δ)
µ(B(x, r))

rα
≥ ε− η

}

.

This is the intersection of E with a Σ0
4 set, hence Borel. By taking η = ε/2 and

then replacing ε/2 by ε, we see that

E1 ⊆
{

x ∈ E : ∃ε > 0 ∀δ > 0∃r ∈ (0, δ)
µ(B(x, r))

rα
≥ ε

}

,

in fact these sets are equal. Thus by “Skolemizing”,

E1 =

{

x ∈ E : ∃ε > 0 ∃{ri ↓ 0}i∈N

µ(B(x, ri))
rαi

≥ ε
}

.

Now µ{x} = 0 and {x} = ∩n∈NB(x, 2−n), so µB(x, 2−n) ↓ 0. Hence a
sufficiently much smaller ball around x will have at most 3/4 of a larger one’s
µ-measure. In other words, there exist 0 < qi < ri, Bi := B(x, ri)\B(x, qi), with
µBi ≥ µB(x, ri)/4 ≥ εrαi /4.

We can arrange that ri+1 < qi by alternately choosing ri, qi, ri+1, qi+1. The
annulus Bi corresponds to the interval (qi, ri] and hence the annuli are then
pairwise disjoint. If y ∈ Bi then υ(x, y) ≤ ri so 1

υ(x,y)α ≥ r−α
i . So we have

φα(x) =

∫

dµ(y)

υ(x, y)α
≥

∞
∑

i=1

∫

Bi

dµ(y)

υ(x, y)α
≥ ε

4

∞
∑

i=1

rαi r
−α
i =∞

whenever x ∈ E1. But by assumption Iα(µ) =
∫

φα(x)dµ(x) < ∞, so the only
possibility is that µ(E1) = 0. On the other hand, if x ∈ E\E1 then dα(µ, x) = 0
and so ∀C > 0, dα(µ, x) < C which means that the Local Mass Distribution
Principle applies. Since E ⊇ E\E1,

Hα(E) ≥ Hα(E\E1) ≥ C−1µ(E\E1) = C−1µ(E)

which means Hα(E) =∞.

Given any set Z ⊆ N we can form the tree

TZ = {σ : (∀n < |σ|)(Z(n) = 0→ σ(n) = 0}.

For example, TN = {0, 1}∗ (the set of all finite binary strings) and T∅ = {0n :
n ∈ N}.

Lemma 4.11. Suppose given a real number γ ∈ (0, 1), and ε > 0 such that
γ + ε ∈ Q; say γ + ε = p/q, p, q ∈ N. If A = [TZ ] with Z = {n : n mod q < p},
then there is a probability measure µ on A such that Iγ(µ) <∞.
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Proof. Let µ distribute the weight 1 on A in the natural way, i.e. splitting
the measure in half at each branching of TZ . Fix x. Then µ{y : υ(x, y) =
2−m/(γ+ε)} = 2−m. Writing α = ε

γ+ε ,

∫

dµ(y)

υ(x, y)γ
=

∑

2−m2mγ/(γ+ε)

=
∑

2−(
ε

γ+ε)m =
1

1− 2−α
= β,

where β is independent of x, and hence Iγ(µ) =
∫

βdµ(x) = β <∞.

Lemma 4.12. Fix 1 > ε > 0. D∩ [ε, 1] has a closed subset of dimension ≥ 2/3.

Proof. Let Z = {n : n mod 3 < 2}. Then [TZ ] ⊆ D, as is easily seen (we can
predict every third bit of any path in [TZ ].) By the proof of Lemma 4.11 and by
Theorem 4.10, the dimension of [TZ ] ∩ [σ] is ≥ 2/3 whenever σ ∈ TZ ; choosing
σ ∈ TZ with [σ] ⊆ [ε, 1], we are done.

5 Brownian motion

Lemma 5.1. Let Z = Z(ω) = {t : Bt(ω) = 0} be the set of zeroes of a path
of Brownian motion ω. Let X be any set of reals such that X/2 = {x/2 : x ∈
X} ⊆ X. Then for any n,

P{Z ∩ [2−(n+1), 2−n] ∩X 6= ∅} ≥ P{Z ∩ [2−n, 2−(n−1)] ∩X 6= ∅}.

Proof.
P{Z ∩ [2−n, 2−(n−1)] ∩X 6= ∅} =

P

{

∃t ∈
[

2−n, 2−(n−1)
]

∩X, Bt = 0
}

=

P

{

∃s ∈
[

2−(n+1), 2−n
]

∩ X
2
, B2s = 0

}

≤

P

{

∃s ∈
[

2−(n+1), 2−n
]

∩X, 1√
2
B2s = 0

}

=Prop.4.2

P

{

∃s ∈
[

2−(n+1), 2−n
]

∩X, Bs = 0
}

=

P{Z ∩ [2−(n+1), 2−n] ∩X 6= ∅}.

Proposition 5.2. Almost surely, there are points other than (0, 0) of effective
Hausdorff dimension < 1 on the graph of Brownian motion GB = {(t, Bt) : t ≥
0}.
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Proof. Let E1 be a closed subset of D of dimension ≥ 2/3 as in Lemma 4.12,
and let E2 = {0}. Note E1 ∩ E2 = ∅ and dimE1 × E2 ≥ 2/3 > 1/2. Hence by
Theorem 4.3,

P{B[E1] ∩B[E2] 6= ∅} > 0.

By definition of Brownian motion, B0 = 0 almost surely, so B[E2] = {0}
and B[E1] ∩B[E2] 6= ∅⇔ Z ∩E1 6= ∅. Since E1 ⊆ D (D as in Definition 4.4),
P{Z ∩D 6= ∅} ≥ P{Z ∩ E1 6= ∅} > 0. By countable additivity there exists n0

such that P{Z ∩D ∩ [2−n0 , 2−(n0−1)] 6= ∅} > 0.

Clearly D/2 ⊆ D. Hence by Lemma 5.1, for any n ≥ n0 − 1 we have

0 < P{Z ∩ [2−n0 , 2−(n0−1)] ∩D 6= ∅}

≤ P{Z ∩ [2−(n+1), 2−n] ∩D 6= ∅}
≤ P

{

Z ∩
[

0, 2−n
]

∩D 6= ∅
}

Let C = {ω : Z ∩D ∩ [0, 2−n] 6= ∅, ∀n ≥ 1}. Then

P(C) = lim
n→∞

P{Z ∩ [0, 2−n] ∩D 6= ∅} > 0.

By Blumenthal’s 0-1 Law, P(C) = 1 and so P{Z ∩D 6= ∅} = 1. If t ∈ Z ∩D
then by Lemma 4.7(b), (t, 0) ∈ GB has effective Hausdorff dimension ≤ 3/4 < 1,
and we are done.
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