
Fault-Tolerant Computation of

Distributed Regular Path Queries

Maryam Shoaran and Alex Thomo

University of Victoria, Canada
{maryam,thomo}@cs.uvic.ca

Abstract. Regular path queries are the building block of almost any mechanism for querying
semistructured data. Despite the fact that the main applications of such data are distributed,
there are only few works dealing with distributed evaluation of regular path queries. In this
paper we present a message-efficient and truly distributed algorithm for computing the answer
to regular path queries in a multi-source semistructured database setting. Our algorithm is
general as it works for the larger class of weighted regular path queries on weighted semistruc-
tured databases.
Also, we show how to make our algorithm fault-tolerant to smoothly work in environments
prone to process (or machine) failures. This is very desirable in a grid setting, which is today’s
new paradigm of distributed computing, and where one does not have full control over machines
that can unexpectedly leave in the middle of computation.

1 Introduction

Semistructured data is the foundation for a multitude of applications in many important areas such
as information integration, Web and communication networks, biological data management, etc. The
data in these applications is conceptualized as edge-labeled graphs, and there is an inherent need to
navigate these graphs by means of a recursive query language. As pointed out by seminal works in the
field (cf. [10, 19, 6–8]), regular path queries (RPQ’s) are the “winner” when it comes to expressing
navigational recursion over semistructured data. These queries are in essence regular expressions
over the database edge symbols, and in general, one is interested in finding query-matching database
paths, which spell words in the (regular) query language.

Taking an example from spatial network databases (such as [27]), suppose that the user wants to
find database paths consisting mainly of highway segments and tolerating up to k provincial roads
or city streets. Clearly, such paths can easily be captured by the regular path query

Q = highway∗ || (road + street + ǫ)k,

where || is the shuffle operator (see e.g. [16]).
In this paper, we consider generalized RPQ’s with weights as in [11, 12, 24, 13, 14]. For example,

the user can write
Q = (highway : 1)∗ || (road : 2 + street : 3 + ǫ)k,

to express that she ideally prefers highways, then roads, which she prefers less, and finally she can
tolerate streets, but with an even lesser preference.

Moreover, inherent database edge weights (or importance) can be naturally incorporated to scale
up or down query preferences. Thus, in our spatial example, the edge importance could simply be
the edge-length, and so, traversing a 100 kms highway would be less preferable than traversing a
49 kms provincial road, even though in general provincial roads are less preferable than highways.

Based on query-matching paths, there are two ways of defining the answer to an RPQ. The first
is the single-source variant [1, 3], where the answer is defined to be the set of objects reachable from

a given source by following some query-matching path. The second is the multi-source variant [19,
6–8, 14], where the answer is defined to be the set of pairs of objects that are connected by some
query-matching path.

For generalized RPQ’s, in the single-source variant, the answer is the set of (b, w) pairs, where
w is the weight of the cheapest query-matching path connecting the database source object with
object b.

On the other hand, in the multi-source variant, the answer is the set of (a, b, w) triples, where w

is the weight of the cheapest query-matching path connecting database objects a and b.

In this paper, we focus on the second variant of generalized RPQ’s. As the main applications
based on semistructured data are distributed, we look at RPQ’s from a distributed strategy angle.

Computing the answer to a generalized RPQ in the multi-source variant amounts to computing
the “all-pairs shortest paths” in the subgraph of database paths spelling words in the query language.
However, for each user query, there would be a new subgraph on which to compute all-pairs shortest
paths, and such a subgraph cannot be known in advance, but rather only after the query evaluation
finishes. This is “too late” for applying algorithms, which need global knowledge of the whole graph.
With such algorithms, the user cannot see partial answers while waiting for the query to finish, and
there is extra computation and communication overhead incurring after the subgraph [relevant to the
query] is determined. Thus, the well-known Floyd-Warshall algorithm and its distributed variants
are not appropriate to our database setting.

Regarding work on distributed shortest path computation, we remark here Haldar’s algorithm
in [15], which computes all-pairs shortest paths with the best known number of messages. In this pa-
per, we adapt and extend Haldar’s algorithm to compute instead answers to regular path queries and
to work in an environment where the relevant part of the database graph is not known beforehand,
but rather incrementally computed on the fly.

Our algorithm works under the assumption that the nodes of the relevant graph are computed
on demand and they have local [neighbor] knowledge only. The central idea of our algorithm is to
overlap computations starting from different database objects. We achieve this overlap in a careful
way in order to guarantee the expansion of the best path first, in a similar spirit with the Dijkstra’s
methodology. However, at the same time we allow multiple expansions at different processes, which
is what makes the algorithm truly distributed.1

Next, we extend our algorithm to account for process failures.2 Having a fault-tolerant algorithm
is very important especially in today’s new paradigm of grid computing. Notably, in a grid setting
the power comes from the synergy of many participating machines, whose main purpose might be
completely different from the “grid-community service” performed during their low intensity periods.
As such, grid machines are quite “unreliable” because they can withdraw at any time from a grid
computation in order to perform their main “duties” they primarily are intended for.

Our fault-tolerant algorithm can smoothly adapt and be resilient to any number of process fail-
ures. Furthermore, it guarantees finding at least all the query answers obtainable if the computation
were to be started from the scratch on the remaining live processes. Furthermore, we remark that,
since some of the computation used supersets of these remaining processes, in general, we get more
results than those strictly available if we were to restart the computation on the remaining processes
only.

Finally, we note that our fault-tolerant algorithm does not require additional messages apart
from the “ping”-like messages of the infrastructure for detecting process failures. We require for the
processes to monitor the health of their neighbors only.

Notably, all the above are important and desirable properties for distributed fault-tolerant algo-
rithms.

1 A short version of this algorithm is described in [22]. However, the description there is quite partial, with
a coarse-grained complexity analysis, and without proofs and useful observations.

2 This is not approached at all in [22].

2

Related Work. To the best of our knowledge, only very few works present a distributed evalu-
ation of regular path queries. In [24], a distributed algorithm is presented, which works based on
local knowledge only. However, it has a message complexity which is quadratically worse than the
complexity in this paper.

Besides [24], other works that have dealt with distributed RPQ’s are [3, 25, 23, 20]. All four
consider the single-source variant of RPQ’s.

Finally, two recent works, [5] and [9], have presented distributed methods for the XPath query
evaluation over XML trees using partial evaluation techniques. Their methods are not applicable
to our case due to the following reasons. First, the methods of [5] and [9] work on a tree structure
of XML documents, whereas databases in our context are general graphs and there are no “leaf”
designated nodes. Second, they consider unweighted tree databases, and thus, the problem they
deal with is in fact about reachability rather than shortest paths, which in turn is the case for our
algorithm.

Organization. The rest of the paper is organized as follows. In Section 2, we give the definitions
we are based on. In Section 3, we present our distributed algorithm. Next, in Section 4 and 5,
we discuss its termination and complexity, respectively. In Section 6, we show the soundness and
completeness of our algorithm. In Section 7, we extend our algorithm to be resilient against process
failures. Finally, Section 8 concludes the paper.

2 Databases and Weighted RPQ’s

We consider a database to be an edge-labeled graph with positive real values assigned to its edges.
Intuitively, the nodes of the database graph represent objects and the edges represent relationships
(and their importance) between the objects.

Formally, let ∆ be an alphabet. Elements of ∆ will be denoted R,S, As usual, ∆∗ denotes
the set of all finite words over ∆. We also assume that we have a universe of objects, and objects
will be denoted a, b, c, A database DB is then a weighted graph (V,E), where V is a finite set
of objects and E ⊆ V × ∆ × R

+ × V is a set of directed edges labeled with symbols from ∆ and
weighted with numbers from R

+.
Before talking about weighted preference path queries, it will help to first review the classical

path queries.
A regular path query (RPQ) is a regular language over ∆. Computationally, an RPQ is a finite

state automaton (FSA) A = (P,∆, τ, p0, F), where P is the set of states, ∆ is the alphabet, τ ⊆
P × ∆ × P is the transition relation, p0 is the initial state, and F is the set of final states. For the
ease of notation, we will blur the distinction between RPQ’s and FSA’s that represent them.

Let A be a query FSA and DB = (V,E) a database. Then, the answer to A on DB is defined as

Ans(A,DB) = {(a, b) ∈ V × V : a
w

−→ b in DB and w is accepted by A},

where a
w

−→ b denotes a path from a to b spelling w in the database.
Now, let N = {1, 2, . . .}. A weighted finite state automaton (WFSA) A is a quintuple (P,∆, τ, p0, F),

where P , p0, and F are similarly defined as for a classical FSA, while the transition relation τ is
now a subset of P × ∆ × N × P . Query WFSA’s are given by means of weighted regular expressions
(WRE’s). The reader is referred to [2] for efficient algorithms translating WRE’s into WFSA’s.

Given a weighted database DB = (V,E), and a query WFSA A = (P,∆, τ, p0, F), the preferen-
tially scaled weighted answer (SWAns) of A on DB is

3

SWAns(A,DB) = {(a, b, r) ∈ V × V × R
+ :

r = inf

{

n
∑

i=1

riki : n ∈ N, (ci−1, Ri, ri, ci) ∈ E, (pi−1, Ri, ki, pi) ∈ τ

c0 = a, cn = b, and pn ∈ F}}.

Observe that, according to this definition, if (a, b, r) ∈ SWAns(A,DB), then there exists a path
(possibly a set of paths) from a to b in DB spelling some word(s) in the query language. Furthermore
r is the weight of the cheapest sequence of edge-transition matches corresponding to such paths.
Number n ∈ N denotes the length of a path and is (possibly) different for different paths.

As an example, consider the database DB and query automaton A in Fig. 1. There are three
paths going from object a to object c. The shortest path consisting of a single edge T of weight 1,
is not the cheapest path according to the query. Rather, the cheapest path is the one spelling RS.
The other path, spelling RT , does not match any query automaton path, so it is not considered at
all. Hence, we have that (a, c, 3) is the answer with respect to a and c.

Similarly, we find the other query answers and finally have SWAns(A,DB) = {(a, b, 1), (a, c, 3),
(a, d, 6), (a, a, 7), (b, c, 5), (b, d, 8), (b, a, 9)}.

d

S

R S

S

T
Ta

b

c,

,

1

1

1, ,2

,3

,1

0 1

R

T,5

,1

,1

p p

S

Fig. 1. A database DB and a query automaton A

In order to help understanding of our distributed algorithm, we will first review the well-known
method for the evaluation of classical RPQ’s (cf. [1]). The evaluation proceeds by creating object-
state pairs from the query automaton and the database. For this, let A be a query FSA. Starting
from an object a of a database DB , we first create the pair (a, p0), where p0 is the initial state in A.
Then, we create all the pairs (b, p) such that there exists an edge from a to b in DB and a transition
from p0 to p in A, and furthermore the labels of the edge and the transition match. In the same
way, we continue to create new pairs from existing ones, until we are not anymore able to do so. In
essence, what is happening is a lazy construction of a Cartesian product graph of the database with
the query automaton. Of course, only a small (hopefully) part of the Cartesian product is really
constructed. This ultimately depends on the selectivity of the query.

After obtaining the above Cartesian product graph, producing query answers becomes a question
of computing reachability of nodes (b, p), where p is a final state, from (a, p0), where p0 is the initial
state. Namely, if (b, p) is reachable from (a, p0), then (a, b) is a tuple in the query answer.

Now, when having instead a weighted query automaton and database, one can build a weighted
Cartesian product graph. We show that in order to compute weighted answers, we have to find, in
the Cartesian product graph, the cheapest paths from all (a, p0) to all (b, p), where p is a final state
in the query automaton A.

As we mentioned in the Introduction, in general there is a different Cartesian product graph for
each query. Thus, a useful distributed algorithm must not rely on having global knowledge about
this graph, since it will only be known after the completion of the query evaluation.

4

We formally define the Cartesian product C of a database DB = (V,E) and a query automaton
A = (P,∆, τ, p0, F) as the graph with

– nodes (b, p), where b is an object in V and p is a state in P , and
– edges ((b, p), R, rk, (c, q)), such that there exists an edge (b,R, r, c) in E and a transition (p,R, k, q)

in τ .

Based on this definition, we have that

Theorem 1 (a, b, r) ∈ SWAns(A,DB) if and only if there exists some path from (a, p0) to (b, py)
in C, with py being a final state in A and r the weight of a cheapest of such paths.

Proof. By the construction of C, we have that:

1. For every path π1 in DB matching some weighted transition path π2 in A, there exists some
path π in C spelling the same word as π1 (and π2) and annotated by the product of the weights
of the edges and transitions in π1 and π2, respectively.

2. For every path π in C there exist paths π1 in DB and π2 in A, which match and spell the same
word as π, and furthermore, the corresponding edges and transitions of π1 and π2, respectively,
have weights whose products give the weights of the edges in π.

Now, our claim is a direct consequence of the above, and the definition of SWAns(A,DB). ⊓⊔

3 Distributed Algorithm

The key feature of our algorithm is the overlapping of computations starting from different database
objects. We assume that each database object has only local knowledge about the database graph,
that is, it only knows the identities of its neighbors and the labels and weights of its outgoing edges.
Further, we assume that each object a, is being serviced by a dedicated process for that object Pa.
Our algorithm can be easily modified for the case when subgraphs of the database (as opposed to
single objects) are being serviced by the processes. In such a case, many of the basic computation
messages are sent and received locally by the processes from and to themselves.

First, the query automaton is sent to each process. Such a service is commonly achieved by
distributively creating a minimum spanning tree (MST) of the processes before any query starts to
be evaluated (cf. [4] for a message optimal MST algorithm).

We can note here that such an MST can be used by the processes to transmit their id’s and get
so to know each other. However, we do not require this coordination step. Even if such a step is
undertaken, the real challenge [which remains] is that the relevant subgraph of the [query–database]
Cartesian product cannot be known in advance for a new query. In other words, a shortest path
algorithm has to work with a target graph not known beforehand.

Continuing the description of our algorithm, a process, say Pa (which serves object a), starts
by creating an initial task for itself. The tasks are “keyed” (uniquely identified) by the automaton
states, with the initial tasks being keyed by the initial state p0. Each task has three components:

1. an automaton state,
2. a status flag that can switch between active, passive, and completed values, and
3. a table (or set) of tuples representing knowledge about “objects reached so far” along with

additional information (to be precisely described soon).

A typical task will be written as 〈px, status, {. . . }〉. We will refer to the table {. . .} as Pa.px.T or
px.T when Pa is clear from the context. The tuples in this table have four components, and will be
written as [(c, pz), (b, py),weight, status], where

5

1. (c, pz) states that the algorithm, starting from object a and state px, has reached (possibly
through multiple hops) object c and state pz,

2. (b, py) states that the best path (known so far) to reach (c, pz) is by passing via object b and
state py, where b and py are neighbors of a and px in the database and query automaton,
respectively,

3. weight is the weight of this best path (determined as in Section 2), and
4. status is a flag switching from prov to opt values telling whether weight is provisional and would

possibly be improved or optimal and permanently stay as is.

Initially, when a px-task is created, process Pa tries to find all the outgoing edges from a, which
match (w.r.t. the symbol label) outgoing transitions from px. Let (a,R, r, b) be such an edge which
matches transition (px, R, k, py). Then, Pa inserts tuple [(b, py), (b, py), k · r, prov] in table Pa.px.T .
If there are multiple (a, , , b) - (px, , , py) edge-transition matches, then only the match with the
cheapest weight product is considered.

Each process Pa starts by creating and initializing a passive p0-task, which is possibly selected
next for processing. We say “possibly” because a process might receive new tasks from neighboring
processes.

When a task is selected for processing, its provisional-status tuples (or provisional tuples in short)
will be “expanded” in a best-first order with respect to their weights. If there are no more provisional
tuples in the table of the p0-task, then the task attains a completed status, and the process reports
its local termination.

All (working) processes run in parallel exactly the same algorithm, which consists of four con-
current threads. These threads are as follows:

Expansion: A process Pa selects a passive task, say px–task, which still has provisional tuples in
its table.
Then, Pa makes the px–task active, and selects for expansion the cheapest provisional tuple in
its table Pa.px.T .
The active status for the px–task prevents the expansion of other provisional tuples in Pa.px.T .
Next, Pa sends a request message to its neighbor Pb asking it to: (1) create a task py, and (2)
send its “knowledge” regarding the [(c, pz), , ,] tuple.

Task Creation: When a process Pb receives a request message from Pa (w.r.t px) for the creation
of a task, say py, it creates a py-keyed task (if such does not exist) and properly initializes it.
Next, Pb establishes a virtual communication channel between its py-task and the px-task of
Pa. This communication channel is specialized for the relevant tuple (keyed by (c, pz)), whose
expansion caused the request message. The weight of the channel will be equal to the cost of
going from (a, px) to (b, py), which is in fact the weight of the (b, py)–keyed tuple in Pa.px.T .
Notably, overlapping of computations happens when process Pb receives another request message
for the same task from a different neighboring process. In such a case, the receiving process Pb

only establishes a communication channel with the sending process.
Reply: After creating the communication channel, process Pb will send table Pb.py.T backward to

task Pa.px. This backward message will be sent only when the (c, pz)-keyed tuple in Pb.py.T

attains an optimal status. The weight of the communication channel is added to the weights of
the tuples as they are bundled together to be sent. We refer to this modified (message) table as
Pb.py.T ∗.

Update: When a process Pa receives from some process Pb a backward reply message, which is
related to a tuple [(c, pz), , , prov] of task Pa.px, and contains the table Pb.py.T ∗, it will: (1) up-
date (relax) the provisional tuples in Pa.px.T as appropriate (if there are tuples with the same
keys in Pb.py.T ∗), (2) add to table Pa.px.T all tuples of Pb.py.T ∗, which do not have any “peer”
(tuple with the same key) in Pa.px.T , and (3) change the status of the px-task to passive.

Figure 2 illustrates the different possible statuses of a task during the execution of the algorithm.
As described above, at the moment of creation, each task has passive status. If a passive–status task

6

Pass. Act.

Comp.

Fig. 2. Task Status Diagram.

does not have any provisional tuple in its table, the status is changed to completed. Otherwise, the
process can start the expansion of provisional tuples in the task table. Starting the expansion of a
tuple, the task status is changed to active which, as mentioned in the Expansion thread, prevents the
expansion of other provisional tuples until receiving the reply to the last request message. When an
active–status task receives a reply message for the recent expansion, it starts the Update thread, at
the end of which the task status is changed to passive making the task ready for another expansion.
So, the passive and active statuses can interleave several times during the execution of the algorithm,
but the completed status does not change once it has been reached.

Formally our algorithm is as follows.

Algorithm 1

Input:

1. A database DB . For simplicity we assume that each database object, say a, is being serviced
by a dedicated process for that object Pa.

2. A query WFSA A = (P,∆, τ, p0, F).
Output: SWAns(A,DB).
Method:

1. Initialization: Each process Pa creates a task 〈p0, passive, {. . .}〉 for itself. The table {. . .}
(referred to as Pa.p0.T) is initialized as follows:
(a) insert tuple [(a, p0), (a, p0), 0, opt], and
(b) For each edge-transition match,

(a,R, r, b) in DB and
(p0, R, k, p) in A,

insert tuple [(b, p), (b, p), k · r, prov]
(if there are multiple (a, , , b) – (p0, , , p) edge-transition matches, then the cheapest
weight product is considered.)

If at point (b) there is no edge-transition match, then make the status of the p0-task com-
pleted.

2. Concurrently execute all the four following threads at each process in parallel until termi-
nation is detected. [For clarity, we describe the threads at two processes, Pa and Pb.]

3. Expansion: [At process Pa]
(a) Select a passive px-task for processing. Make the status of the task active.
(b) Select the cheapest provisional-status tuple, say [(c, pz), (b, py),w,prov] from table Pa.px.T .
(c) Request Pb, with respect to state py, to provide information about (c, pz).

For this, send a message 〈py, [px, (c, pz), wab]〉 to Pb, where wab is the cost of going from
(a, px) to (b, py), which is equal to the weight of the (b, py)–keyed tuple in Pa.px.T .

(d) Sleep, with regard to px-task, until the reply message for (c, pz) comes from Pb.

4. Task Creation: [At process Pb]
Upon receiving a message 〈py, [px, (c, pz), wab]〉 from Pa:

7

if there is not yet a py-task
then create a task 〈py, passive, {. . .}〉 and initialize its table similarly as in the first phase.

That is,
(a) insert tuple [(b, py), (b, py), 0, opt], and
(b) For each edge-transition match,

(b,R, r, d) in DB and
(py, R, k, pu) in A,

insert tuple [(d, pu), (d, pu), k · r, prov]
(if there are multiple (b, , , d)–(py, , , pu) edge-transition matches, then the cheap-
est weight product is considered.)

Also, establish a virtual communication channel with Pa. This channel relates the py-
task of Pb with the px-task of Pa. Further, it is indexed by (c, pz) and is weighted by wab

(the weight included in the received message).
else [Pb has already a py-task.] Do not create a new task, but only establish a communica-

tion channel with Pa as described above.

5. Reply: [At process Pb]
When in the py-task, the tuple [(c, pz), (,), ,] is or becomes optimally weighted, reply back
to all the neighbor processes, which had sent a task requesting message 〈py, [, (c, pz),]〉 to
Pb.
For example, Pb sends to such a neighbor, say Pa, through the corresponding communication
channel, the message 〈Pb.py.T ∗〉, which is table Pb.py.T after adding the channel weight to
the weight of each tuple.

6. Update: [At process Pa]
Upon receiving a reply message 〈Pb.py.T ∗〉 from a neighbor Pb w.r.t. the expansion of a
(c, pz)-keyed tuple in table Pa.px.T do:
(a) Change the status of (c, pz)-keyed tuple to the status of the same keyed tuple in Pb.py.T ∗

3.
(b) For each tuple [(d, pu), (,), v, prov] in Pb.py.T ∗, which has a smaller weight (v) than a

same-key tuple [(d, pu), (,), , prov] in Pa.px.T , replace the latter by [(d, pu), (b, py), v,

prov].
(c) Add to Pa.px.T all the rest of the Pb.py.T ∗ tuples, i.e., those which do not have corre-

sponding same-key tuples in Pa.px.T .
Also, change the via component of these tuples to be (b, py).

(d) if the px-task does not have anymore provisional tuples,
then make its status completed.

If px = p0, then report that all query answers from Pa have been computed.
else make the status of the px-task passive.

Finally upon termination, which happens when all the tasks in every process have attained
completed status, set

eval(A,DB) = {(a, b, r) : [(b, py), (,), r, opt)] ∈ Pa.p0.T and py ∈ F}.

In the next section, we show the soundness and completeness of our algorithm. Based on them, the
following theorem can be stated.

Theorem 2 Upon termination of the above algorithm, we have that

eval(A,DB) = SWAns(A,DB).

3 This status is optimal.

8

The algorithm can report answers as soon as their corresponding tuples become optimal.
We define a partial answer set to be a subset of SWAns(A,DB).
Now, instead of creating eval(A, DB) upon termination of the algorithm, we can incrementally

grow it each time that a tuple becomes optimal. Because the weight of an optimal tuple does not
change any further, any snapshot of eval(A, DB) at any time during the execution of the above
algorithm is a partial answer set. Upon termination, all the answers would have been reported. While
the user waits for the query evaluation to finish, new answers will eventually arrive. However, the
ones already reported preserve their weights, which are optimal. This is in contrast to [24] in which
the user might see the already reported answers to possibly get their weights lowered.

Now, we illustrate Algorithm 1 by the following example. Consider the database and query
automaton in Fig. 3, left and right respectively.

d

,1

R,2

R,3

S,1

S,1

�
�
�
�

��
��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

a

b c

R

p
0 p

1

R

S

,1

,1

Fig. 3. A database and a query automaton

A possible sequence of actions for Algorithm 1 is given in Table 4. In the first column labeled
“T” we number the hypothetical time points in which we observe the system. An explanation of the
actions at each time point follows.

1. All processes create a task 〈p0, passive, {. . .}〉 for themselves and initialize their tables.

2. (a) Pa and Pd do have provisional tuples in the tables of their p0–tasks, and thus, make their
p0-tasks active and expand their cheapest provisional tuples.
For this, they send a request message to Pb for the creation of a p1–task.
On the other hand, processes Pb and Pc do not have provisional tuples in their p0-tasks.
Hence, they make their p0–tasks completed. That is, there are no (b, ,) and (c, ,) query
answers to be expected.

(b) Pb receives the request messages from Pa and Pd, and creates the p1–task. Also, Pb initializes
this task as described in the algorithm. Of course, Pb creates only one such task to serve
both Pa and Pd, and thus, we see here an effective computation overlap.
Then, Pb establishes the appropriate communication channels between its p1–task and the
p0–tasks in Pa and Pd.
Pb is not only asked to create the p1–task, but also to provide information about the (b, p1)-
keyed tuple. Since the status of this tuple in the p1–task of Pb is optimal, Pb sends its p1.T

knowledge to Pa.p0 and Pd.p0 adding along the way the weights of the related channels.

3. Upon receiving the reply message from Pb, processes Pa and Pd update the tables of their p0–
tasks. Note that the statuses of the (b, p1)–keyed tuples in Pa.p0.T and Pd.p0.T become optimal.
Pa relaxes the (c, p1)-keyed tuple in p0.T and changes its via to (b, p1).
Pd adds to Pd.p0.T the rest of the Pb.p1.T

∗ tuples setting their via component to (b, p1).
Then, Pa and Pd change the status of their p0–tasks to passive becoming thus ready for the next
expansion.

9

T Pa Pb Pc Pd
1 〈p0, passive,

{[(a, p0), (a, p0), 0, o],
 [(b, p1), (b, p1), 1, p],
 [(c, p1), (c, p1), 3, p]}〉

〈p0, passive,
{[(b, p0), (b, p0), 0, o]}〉

〈p0, passive,
{[(c, p0), (c, p0), 0, o]}〉

〈p0, passive,
{[(d, p0), (d, p0), 0, o],
 [(b, p1), (b, p1), 2, p]}〉

2 〈p0, active,
{[(a, p0), (a, p0), 0, o],

[(b, p1), (b, p1), 1, p],
 [(c, p1), (c, p1), 3, p]}〉

〈p0, completed,
{[(b, p0), (b, p0), 0, o]}〉

〈p1, passive,
{[(b, p1), (b, p1), 0, o],
 [(c, p1), (c, p1), 1, p]}〉

〈p0, completed,
{[(c, p0), (c, p0), 0, o]}〉

〈p0, active,
{[(d, p0), (d, p0), 0, o],

[(b, p1), (b, p1), 2, p]}〉

3 〈p0, passive,
{[(a, p0), (a, p0), 0, o],
 [(b, p1), (b, p1), 1, o],
 [(c, p1), (b, p1), 2, p]}〉

〈p0, completed,
{[(b, p0), (b, p0), 0, o]}〉

〈p1, passive,
{[(b, p1), (b, p1), 0, o],
 [(c, p1), (c, p1), 1, p]}〉

〈p0, completed,
{[(c, p0), (c, p0), 0, o]}〉

〈p0, passive,
{[(d, p0), (d, p0), 0, o],
 [(b, p1), (b, p1), 2, o],
 [(c, p1), (b, p1), 3, p]}〉

4 〈p0, active,
{[(a, p0), (a, p0), 0, o],
 [(b, p1), (b, p1), 1, o],

[(c, p1), (b, p1), 2, p]}〉

〈p0, completed,
{[(b, p0), (b, p0), 0, o]}〉

〈p1, active,
{[(b, p1), (b, p1), 0, o],

[(c, p1), (c, p1), 1, p]}〉

〈p0, completed,
{[(c, p0), (c, p0), 0, o]}〉

〈p1, passive,
{[(c, p1), (c, p1), 0, o],
 [(d, p1), (d, p1), 1, p]}〉

〈p0, active,
{[(d, p0), (d, p0), 0, o],
 [(b, p1), (b, p1), 2, o],

[(c, p1), (b, p1), 3, p]}〉

5 〈p0, passive,
{[(a, p0), (a, p0), 0, o],
 [(b, p1), (b, p1), 1, o],
 [(c, p1), (b, p1), 2, o],
 [(d, p1), (b, p1), 3, p]}〉

〈p0, completed,
{[(b, p0), (b, p0), 0, o]}〉

〈p1, passive,
{[(b, p1), (b, p1), 0, o],
 [(c, p1), (c, p1), 1, o],
 [(d, p1), (c, p1), 2, p]}〉

〈p0, completed,
{[(c, p0), (c, p0), 0, o]}〉

〈p1, passive,
{[(c, p1), (c, p1), 0, o],
 [(d, p1), (d, p1), 1, p]}〉

〈p0, passive,
{[(d, p0), (d, p0), 0, o],
 [(b, p1), (b, p1), 2, o],
 [(c, p1), (b, p1), 3, o],
 [(d, p1), (b, p1), 4, p]}〉

6 〈p0, active,
{[(a, p0), (a, p0), 0, o],
 [(b, p1), (b, p1), 1, o],
 [(c, p1), (b, p1), 2, o],

[(d, p1), (b, p1), 3, p]}〉

〈p0, completed,
{[(b, p0), (b, p0), 0, o]}〉

〈p1, active,
{[(b, p1), (b, p1), 0, o],
 [(c, p1), (c, p1), 1, o],

[(d, p1), (c, p1), 2, p]}〉

〈p0, completed,
{[(c, p0), (c, p0), 0, o]}〉

〈p1, active,
{[(c, p1), (c, p1), 0, o],

[(d, p1), (d, p1), 1, p]}〉

〈p0, active,
{[(d, p0), (d, p0), 0, o],
 [(b, p1), (b, p1), 2, o],
 [(c, p1), (b, p1), 3, o],

[(d, p1), (b, p1), 4, p]}〉

〈p1, completed,
{[(d, p1), (d, p1), 0, o]}〉

7 〈p0, passive,
{[(a, p0), (a, p0), 0, o],
 [(b, p1), (b, p1), 1, o],
 [(c, p1), (b, p1), 2, o],
 [(d, p1), (b, p1), 3, o]}〉

〈p0, completed,
{[(b, p0), (b, p0), 0, o]}〉

〈p1, passive,
{[(b, p1), (b, p1), 0, o],
 [(c, p1), (c, p1), 1, o],
 [(d, p1), (c, p1), 2, o]}〉

〈p0, completed,
{[(c, p0), (c, p0), 0, o]}〉

〈p1, passive,
{[(c, p1), (c, p1), 0, o],
 [(d, p1), (d, p1), 1, o]}〉

〈p0, passive,
{[(d, p0), (d, p0), 0, o],
 [(b, p1), (b, p1), 2, o],
 [(c, p1), (b, p1), 3, o],
 [(d, p1), (b, p1), 4, o]}〉

〈p1, completed,
{[(d, p1), (d, p1), 0, o]}〉

8 〈p0, completed,
{[(a, p0), (a, p0), 0, o],
 [(b, p1), (b, p1), 1, o],
 [(c, p1), (b, p1), 2, o],
 [(d, p1), (b, p1), 3, o]}〉

〈p0, completed,
{[(b, p0), (b, p0), 0, o]}〉

〈p1, completed,
{[(b, p1), (b, p1), 0, o],
 [(c, p1), (c, p1), 1, o],
 [(d, p1), (c, p1), 2, o]}〉

〈p0, completed,
{[(c, p0), (c, p0), 0, o]}〉

〈p1, completed,
{[(c, p1), (c, p1), 0, o],
 [(d, p1), (d, p1), 1, o]}〉

〈p0, completed,
{[(d, p0), (d, p0), 0, o],
 [(b, p1), (b, p1), 2, o],
 [(c, p1), (b, p1), 3, o],
 [(d, p1), (b, p1), 4, o]}〉

〈p1, completed,
{[(d, p1), (d, p1), 0, o]}〉

Fig. 4. A possible execution of Algorithm 1. Due to space constraints, we have abbreviated prov by p, and
opt by o. We show in bold the tuples under expansion.

10

4. (a) Pa and Pd make the status of their p0–tasks active, and expand the tuples [(c, p1), (b, p1), 2, prov]
and [(c, p1), (b, p1), 3, prov] respectively by sending request messages to process Pb.

(b) Pb has already a p1–task, and thus, it just establishes communication channels with Pa and
Pd specialized for (c, p1).
As the status of the (c, p1)-keyed tuple in Pb.p1.T is provisional, Pb cannot yet reply back
to Pa or Pd.
Instead, Pb makes the status of task p1 active and starts its processing. That is, Pb selects
the cheapest provisional tuple, i.e., the tuple [(c, p1), (c, p1), 1, prov], and sends a request
message to Pc to create task p1.

(c) Upon receiving the request message from Pb, process Pc creates and initializes a p1–task.
Also, Pc establishes a communication channel with Pb, which is specialized for (c, p1). Since
the status of the (c, p1)-keyed tuple is optimal, Pc replies back to Pb with the message
〈Pc.p1.T

∗〉.

[The rest of the steps will be described more briefly.]

5. (a) Upon receiving the reply message from Pc, Pb updates its p1.T table as appropriate.
(b) Now, Pb has an optimal status for the (c, p1)–keyed tuple in p1.T , and thus, replies back to

Pa and Pd with the message 〈Pb.p1.T
∗〉.

(c) Upon receiving the reply message from Pb, Pa and Pd update their p0.T tables as appropriate.

6. (a) Pa and Pd expand the tuples [(d, p1), (b, p1), 3, prov] and [(d, p1), (b, p1), 4, prov] respectively.
(b) In effect, Pb expands [(d, p1), (c, p1), 2, prov], and then Pc expands [(d, p1), (d, p1), 1, prov].

Pc requests from Pd to create a p1–task and provide information about (d, p1).
(c) Pd creates and initializes the p1–task and replies back to Pc with the message 〈Pd.p1.T

∗〉.

7. (a) Upon receiving the reply message from Pd, Pc updates its p1.T table as appropriate.
Then, Pc replies back to Pb with the message 〈Pc.p1.T

∗〉.
(b) Upon receiving the reply message from Pc, Pb updates its p1.T table as appropriate.

Then, Pb replies back to Pa and Pd.
(c) Upon receiving the reply message from Pb, Pa and Pd update their p0.T tables as appropriate.

8. Finally, as there are no more provisional tuples in any of the tasks, they attain a completed
status.

Observe that we can terminate as soon as the p0-tasks become completed in all the processes.
There is no need to continue with the completion of the rest of the tasks. Their completion would
not bring any new query answers, thus we can safely abort them.

Note that, we can incrementally report the query answers as soon as their corresponding tuple
appears in the table of a p0–task in some process. For example, (a, b, 1) and (d, b, 2) can be reported
at time point 3, (a, c, 2) and (d, c, 3) can be reported at time point 5, and so on.

At time point 4, when Pa and Pd expand the (c, p1)-keyed tuples requesting Pb to provide infor-
mation about such a tuple in Pb.p1.T , it happens that this tuple is the cheapest provisional tuple
in Pb.p1.T . Another instance of such a situation is at time point 6, in which again, the requested
information is about a tuple that is the cheapest provisional tuple in Pb.p1.T . These are not coinci-
dental and by the following theorem, we show that this is indeed a property of the algorithm which
guarantees the soundness (in Section 6). Of course, the request might be for an optimal tuple, and
there is no need for further expansion in order to reply back. Note, that the following theorem is
about the case when the request is for a provisional tuple.

Theorem 3 If a process, through a task request message, is asked to provide information about a
provisional tuple, then this tuple is the cheapest one among such tuples in the requested task.

Proof. Suppose process Pa asks process Pb for a tuple in its py-task. Let the expanded tuple in
Pa be [(c, pz), (b, py), wac, prov]. This expansion will ask from Pb to provide information about the

11

(c, pz)-keyed tuple in its py-task. Let this tuple be [(c, pz), (,), wbc, prov]. We want to show that
this tuple is the cheapest among the provisional tuples in Pb.py.T .

Since (b, py) is the via component of the (c, pz)-keyed tuple in Pa.px.T , we conclude that this
tuple has got its weight, during an update phase, from the tuple [(c, pz), (,), wbc, prov] in Pb.py.T

after adding the weight of the corresponding communication channel.
Along with the [(c, pz), (,), wbc, prov] tuple, Pa got from Pb all the other tuples in Pb.py.T , on

whose weights the same channel weight wab was added. Now, since [(c, pz), (b, py), wac, prov] is the
cheapest provisional tuple in Pa.px.T , and its weight wac is in fact equal to wab + wbc, we have that
[(c, pz), (,), wbc, prov] is the cheapest tuple in Pb.py.T . ⊓⊔

Based on the above, we show now the following theorem which is needed in the proofs for the
soundness and completeness of our algorithm (Section 6).

Theorem 4 Let [(c, pz), (b, py), w, prov] be a tuple in Pa.px.T selected for expansion, and
[(c, pz), (b, py), w′, opt] be this tuple with optimal status after the expansion. Then, w = w′.

Proof. When [(c, pz), (b, py), w, prov] gets expanded, a request message asking information about
(c, pz) is propagated through a path π with nodes (a, px), (b, py), . . . , (c, pz) until reaching a process
with an optimal (c, pz)-keyed tuple (Pc.pz.T , at least, will have such an optimal tuple). Let π′ be
the subpath of π (starting from (a, px)) that is in fact traversed. Of course, π′ might be the whole
π when the only optimal (c, pz)-keyed tuple along π is the one in Pc.pz.T (which is surely optimal
due to the initialization).

According to Theorem 3, in the task tables of the processes along π′ there is no provisional tuple
with a weight less than the weight of the (c, pz)-keyed tuple. Thus, all the processes along π′ expand
in turn their (c, pz)-keyed tuples. Since there is no other expansion during the processing of the
(c, pz)-keyed tuples along π′, there is no change in the weight of these (c, pz)-keyed tuples including
the weight of tuple [(c, pz), (b, py), w, prov] in Pa.px.T . Thus, we have w = w′. ⊓⊔

4 Termination

In the following theorem we show that the algorithm terminates and it does not enter an infinite
loop. That is, eventually there will be no more provisional tuples in the tables of the p0 tasks, which
is the condition for termination of the algorithm at each process.

Theorem 5 Algorithm 1 (positively) terminates.

Proof. Suppose there is a deadlock. Without loss of generality and for better clarity, assume there
are only three processes involved in a deadlock.

Such deadlock can assumedly be created in the following scenario.

1. Process Pa expands tuple [(d, pu), (b, py), wad, prov] in its px-task. Thus, it sends a corresponding
message to Pb requesting a py-task and asking information about the (d, pu)-keyed tuple in this
py-task.

2. Process Pb already has a py-task, but cannot reply back at the moment since there is some tuple
[(e, pv), (c, pz), wbe, prov] in the py-task, whose wbe weight is smaller than the weight of the
(d, pu)-keyed tuple.
Thus, Pb sends a message to Pc requesting a pz-task and asking information about the (e, pv)-
keyed tuple in this pz-task.

3. Process Pc already has a pz-task, but cannot reply back at the moment since there is some tuple
[(f, pw), (a, px), wcf , prov] in the pz-task, whose wcf weight is smaller than the weight of the
(e, pv)-keyed tuple.
Thus, Pc sends a message to Pa requesting a px-task and asking information about the (f, pw)-
keyed tuple in this px-task.

12

4. Process Pa has an (f, pw)-keyed tuple in the table of its px-task, and this tuple has a provisional
status. Note that an (f, pw)-keyed tuple certainly exists in the px-task of Pa. This is because
otherwise, the via object-state pair of the (f, pw)-keyed tuple in Pc.pz would not be (a, px).
On the other hand, process Pa has the px-task in active status waiting for a reply to the expansion
of the (d, pu)-keyed tuple. This prevents Pa to expand any other tuple including the (f, pw)-keyed
tuple. Hence, it cannot reply back to Pc and the deadlock assumedly occurs.

Now, we show that such a situation cannot happen during the execution of our algorithm.
Since Pa expands tuple [(d, pu), (b, py), wad, prov] (in the table of the px-task), we have that wad

is the smallest weight among the provisional tuples of the px-task. In particular, waf ≥ wad, where
waf is the weight of the (f, pw)-keyed tuple in Pa.px.T .

Process Pa has to get information about the (d, pu)-keyed tuple through its neighbor process Pb,
which is the via process for that tuple.

By the Update thread, we have that
wad = w[(a, px), (b, py)] + wbd, where w[(a, px), (b, py)] is the cheapest weight product of a matching
automaton transition from px to py with a database edge from a to b, and wbd is the weight of the
(d, pu)-keyed tuple in Pb.py.T .

Hence, waf ≥ wad = w[(a, px), (b, py)] + wbd. As Pb selects the tuple keyed by (e, pv) to ex-
pand, we have wbd ≥ wbe. Therefore, it can be concluded that waf ≥ w[(a, px), (b, py)] + wbe =
w[(a, px), (b, py)] + w[(b, py), (c, pz)] + wce.

According to the deadlock scenario outlined in the beginning of this proof, Pc tries to expand
tuple [(f, pw), (a, px), wcf , prov] of the pz-task when it is asked for information on the (e, pv)-keyed
tuple. So, wce ≥ wcf , and hence,

waf ≥ w[(a, px), (b, py)] + w[(b, py), (c, pz)] + wcf

= w[(a, px), (b, py)] + w[(b, py), (c, pz)]

+ w[(c, pz), (a, px)] + waf .

However, recall from Section 2 that the edge weights are positive numbers, and thus the above
cannot happen, reaching so a contradiction. ⊓⊔

As mentioned earlier, the algorithm should terminate when each process has a completed p0-task.
However, there is the question of how to detect the global termination of our algorithm. This can be
done using an algorithm for distributed termination detection. There are many of such algorithms
(see [18] for a thorough review) and they can be superimposed into any other distributed algorithm.

5 Complexity

Theorem 6 The number of messages required for a query evaluation is 2|E|, where E is the set of
edges in the lazy database-query Cartesian product graph.

Proof. We base our claim on the following facts:

1. Each (traversed) edge in the Cartesian product graph indicates a communication channel between
two tasks of two processes which also is indexed by an object-state pair.

2. Only one forward message is needed to cause the creation of a communication channel.
3. Each communication channel is traversed only once, which happens when the tuple keyed by

the object-state pair of the channel becomes optimally weighted.
⊓⊔

The real number of messages ultimately depends on the query selectivity, and in practice one
hopes that the lazy Cartesian product size is much smaller than the size of the database (cf. [1]).

13

Note that if a set of database objects is serviced by a process as opposed to having only one
object serviced by a process, then the message complexity will be 2|E′|, where E′ (E′ ⊂ E) is the
set of inter–process edges of the lazy Cartesian product.

We note that the above upper bound coincides with the message lower bound of Ramarao and
Venkatesan in [26] for the distributed computation of single-source shortest paths. However, the
messages in [26] have a constant size, while our messages have an O(|V |) size, where V is the set
of object-state pairs in the lazy Cartesian product graph. Thus, in terms of O(1) size messages, our
algorithm can be considered as having O(|E| · |V |) such messages. On the other hand, our problem
is more difficult than the classical single-source shortest paths problem of [26].

Remark. One might be tempted to apply instead of our fully distributed algorithm the following
semi-distributed approach.

First, collect the whole database in one process only. Then, apply a centralized shortest path
algorithm on the Cartesian product of the database and query automaton.

This semi-distributed approach has several shortcomings. First, depending on the selectivity of
the queries, large parts of the transmitted database might not be used at all during evaluation, thus
resulting in unnecessary communication traffic.

Second, this solution asks from a single process to perform a huge computation which needs also
to store the complete database. In other words, the memory requirement for the process performing
the computation is at least |EDB |, where EDB is the set of edges in database DB .

On the other hand, the memory requirement for each process in our fully distributed algorithm
is only O(|V |), where V is the set of object-state pairs in the lazy Cartesian product graph.

6 Soundness and Completeness

In this section, we show the soundness and completeness of Algorithm 1. For the former, we show
that each reported query answer is optimally weighted. For the latter, we show that all the query
answers are indeed reported. In the following, we present two lemmas and then the main theorem
of the section.

Lemma 1. If there exists a path from (a, p0) to (c, pz) in C, then there will be some (c, pz)-keyed
tuple that will be eventually inserted into Pa.p0.T .

Proof. Suppose that there exists a path π from (a, p0) to (c, pz) in C, but the algorithm, during its exe-
cution, never inserts some (c, pz)-keyed tuple into Pa.p0.T . Let π be the sequence (c0, p0), (c1, p1), . . . ,
(cn, pn), where n ≥ 1, c0 = a, cn = c, and pn = pz. Clearly, [(c0, p0), (c0, p0), 0, opt] will be inserted
into Pa.p0.T by the Initialization thread.

Let k ∈ [1, n − 1] be the number for which we have that for all h ∈ [0, k − 1] there is some
(ch, ph)-keyed tuple inserted at some point into Pa.p0.T , but there is never a (ck, pk)-keyed tuple
inserted into Pa.p0.T .

Clearly, there will be some expansion (in fact only one) of tuple [(ck−1, pk−1), (,), , prov]. Now,
as (ck−1, pk−1) and (ck, pk) are consecutive nodes in π, there exists at least one edge connecting
them; (at least) the edge in π.

The expansion of [(ck−1, pk−1), (,), , prov] will trigger a series of request messages all the way
to process Pck−1

for task pk−1. Process Pck−1
will in turn create (if it has not already done so) a pk−1-

task and insert an optimal (ck−1, pk−1)-keyed tuple into Pck−1
.pk−1.T . Also, by the task creation,

since (ck−1, pk−1) and (ck, pk) are connected in C, we have that a [(ck, pk), (,), , prov] tuple is as
well inserted into Pck−1

.pk−1.T (see step 4.b in Algorithm 1). Now, through the back-reply messages,
tuple [(ck, pk), (,), , prov] will travel and reach process Pa where it is inserted into Pa.p0.T . But
this, contradicts our initial supposition.

14

Thus, for all the nodes (ci, pi) in π, where i ∈ [0, n], we have that some (ci, pi)-keyed tuple will
be certainly inserted (at some point) in Pa.p0.T . This applies to (cn, pn) = (c, pz) as well, and so,
some tuple keyed by (c, pz) will be eventually inserted into Pa.p0.T . ⊓⊔

From the above lemma and the specification of the Expansion and Update threads, we have that

Corollary 1. If there exists a path from (a, p0) to (c, pz) in C, then there will be eventually a tuple
[(c, pz), (,), , opt] in Pa.p0.T .

Clearly, there is only one such tuple in Pa.p0.T . Now we show that

Lemma 2. Let [(c, pz), (,), w, opt] be a tuple in Pa.p0.T . Then, w is the weight of a cheapest path
going from (a, p0) to (c, pz) in C.

Proof. Let [(c, pz), (,), w, prov] be the (c, pz)-keyed tuple in Pa.px.T that gets expanded. By the
specification of the Update thread, after receiving the back-reply message corresponding to the
expansion, the (c, pz)-keyed tuple gets an optimal status and by Theorem 4 its weight is w.

Now, let π, with a weight z, be a cheapest path from (a, p0) to (c, pz) in C. Then, we claim that
[(c, pz), (,), z, prov] will exist at some point in Pa.p0.T , eventually expanded, and finally attain an
optimal status. From this, our claim will follow as there can be only one (c, pz)-keyed tuple in Pa.p0,
i.e. w will have to be equal to z.

Suppose π has the following nodes: (c0, p0), (c1, p1), . . . , (cn, pn), where n ≥ 1, c0 = a, cn = c,
pn = pz. Let wh, where h ∈ [1, n], be the weight of the subpath of π from (c0, p0) to (ch, ph).

Clearly, [(c0, p0), (c0, p0), 0, opt] will be inserted into Pa.p0.T by the Initialization thread. Suppose
now that [(ch−1, ph−1), (,), wh−1, opt], for some h ∈ [1, n], is in Pa.p0.T . By the specification of
the Expansion and Update threads, and Theorem 4, we have that (the provisional variant) [(ch−1,

ph−1), (,), wh−1, prov] has been in Pa.p0.T and at some point has been expanded.
Since (ch−1, ph−1) and (ch, ph) are neighbors, reasoning similarly as in the proof of Lemma 1, we

have that the expansion of the (ch−1, ph−1)-keyed tuple causes, through the corresponding back-reply
message, the arrival (in Pa.p0) of tuple [(ch, ph), (,), wh, prov].

If there is no (ch, ph)-keyed tuple in Pa.p0.T , then [(ch, ph), (,), wh, prov] will be inserted in this
table, and preserve weight wh till the end (becoming eventually an optimal tuple with weight wh).
This is because π and its subpaths are cheapest paths, and thus, there does not exist a cheaper way
going from (c0, p0) to (ch, ph) in C.

On the other hand, if there is already a (ch, ph)-keyed tuple in Pa.p0.T , then its weight cannot be
less than wh because, otherwise, we could go from (c0, p0) to (ch, ph) through a cheaper way than the
subpath of π between these two nodes, and this would imply that π is not a cheapest path. Thus, in
this case, the arriving tuple [(ch, ph), (,), wh, prov] will lower the weight of the (ch, ph)-keyed tuple
in Pa.p0.T to wh (if it is not already so).

Concluding, in both cases, Pa.p0.T will have at some point a [(ch, ph), (,), wh, prov] tuple, whose
weight cannot be lowered any further. Since the algorithm continues until there is no provisional
tuple in Pa.p0.T , there will be a moment when the (ch, ph)-keyed tuple will get expanded and then
attain an optimal status while preserving weight wh (by Theorem 4).

Inductively, Pa.p0.T will have at some point a [(cn, pn), (,), wn, prov] = [(c, pz), (,), z, prov]
tuple, whose weight cannot be lowered any further. Upon expansion, based on Theorem 4, we will
have [(c, pz), (,), z, opt] in Pa.p0.T , and this completes our proof. ⊓⊔

Based on all the above, we have that

Theorem 7 Algorithm 1 is sound and complete.

Proof.
“soundness.” From the definition of eval(A,DB) we have that the output produced by the

algorithm is

{(a, b, r) : [(b, py), (,), r, opt] ∈ Pa.p0.T and py ∈ F}.

15

Now, let [(b, py), (,), r, opt] be a tuple in Pa.p0.T and (a, b, r) be the corresponding produced answer
to the given query. From Lemma 2, we have that r is the weight of a cheapest path in C connecting
(a, p0) to (b, py). From Theorem 1, (a, b, r) is an answer to the given query.

“completeness.” Let (a, b, r) be an answer to the given query. From Theorem 1, there exists some
path from (a, p0) to (b, py) in C, and r is the weight of a cheapest of such paths. From Corollary 1,
the existence of some path from (a, p0) to (b, py) in C means that a tuple [(b, py), (,), , opt] will be
eventually inserted into Pa.p0.T . From Lemma 2, the exact weight of this tuple will be equal to the
weight of a cheapest path from (a, p0) to (b, py) in C, i.e. r. Thus, (a, b, r) will be produced as an
answer by the algorithm. ⊓⊔

7 Fault Tolerance

Having a fault-tolerant algorithm is very important in distributed settings that are prone to process
failures. Although defunct hardware is rare, fault-tolerance is very prevalent today due to the popular
geographically distributed grid systems (see PlanetLab [21]). In such systems, extreme power comes
from the participation of numerous machines, whose service in a grid is usually offered during their
low intensity periods. As such, grid machines are quite “unreliable” because they can withdraw at
any time from a grid computation in order to perform other “duties” they are primarily intended
for.

In this section, we show how to extend Algorithm 1 in order to be resilient against process
failures. We assume that even if a process fails, the corresponding database object still exists. This
assumption is the norm in database applications, where the data lives longer than the processes that
access it.

Let DB ′ be the subset of database DB serviced by the remaining alive processes at the end of
the query evaluation. After each failure, we will have a smaller database being serviced by the alive
processes. Since the query evaluation is not started from the scratch on DB ′, but is continually
evaluated on a series of databases which are supersets of DB ′, we can obtain more and better-
weighted answers than what we would get on DB ′ only.

To make formal the description of the query answers returned by our fault-tolerant algorithm,
we first present the following definition.

Let A and B be sets of object-object-weight triples, i.e. A,B ⊆ V × V × R
+. Then, we say that

A is superior to B, denoted by A ⊒ B, if (a, b, r) ∈ B implies that (a, b, r′) ∈ A, and r′ ≤ r.
Now, our fault-tolerant algorithm will compute a set eval(A,DB) of triples. After the description

of the algorithm, we will show that

SWAns(A,DB) ⊒ eval(A,DB) ⊒ SWAns(A,DB ′).

Thus, our algorithm produces better answers than restarting the computation from the scratch
on DB ′, while saving time by not wasting the computation done so far.

Furthemore, we are able to clearly identify the answers which happen to be optimal with respect
to DB , i.e. belong to SWAns(A,DB).

In the following we provide a description of our fault-tolerant algorithm.
We assume that the network infrastructure provides a fault-detection service, in which any process

can subscribe in order to be informed of the failure of the processes of interest. Such fault-detection
service might be as simple as a ping command, and its existence is the common assumption in con-
structing fault-tolerant algorithms (cf. [17]). We make each process subscribe to the fault-detection
service and be informed of the health of its neighbors only.

Now, we are ready to present our fault-tolerant algorithm. First, we introduce an additional status
value for the tuples. This new value is gone, and is given to a tuple when the process of its key or
via component has failed. Thus, the algorithm deals now with tuples whose status can be optimal,

16

prov. gone

opt.

Fig. 5. Tuple Status Diagram.

provisional, or gone. Figure 5 illustrates these three different status values and the transitions among
them.

A tuple might start with one of the three possible status values. If a tuple is (or becomes) optimal
it preserves this status till the end of the algorithm. On the other hand, a tuple with a provisional
status may later have a status change to optimal or gone. Similarly, a tuple with a gone status may
later have a status change to optimal or provisional. In the end, only tuples with an optimal or gone
status will be in the tables of the p0-tasks across processes.

Each process keeps track of its failed neighbors in a list. Suppose that a process Pa detects a
failed neighbor, say Pb. Thus, Pa first adds a failure record for process Pb in its failed-neighbor list.
Then, Pa changes the status of all provisional tuples having b in their key or via component to gone
in all of its tasks. In our fault tolerant algorithm, we assign these jobs to a new thread called Failure

Detection.

Regarding the other threads, they change as follows.

In the Initialization thread, we set to a gone status all the tuples having their key component
refer to a failed process. Since in this thread, the process of the key is a neighbor process, we can
easily determine its health by consulting the list of failed neighbors. The same is also done in the
Task Creation thread when the table of a new task is being initialized.

The Expansion thread remains unchanged and continues to expand only provisional tuples.

In the Reply thread, we make the process send replies also in the case when it is asked to provide
information about tuples with a gone status.

In the Update thread, the tuple under expansion might get an optimal or gone status. Also in
this thread, a provisional or gone tuple carried in the reply message can relax a provisional or gone
tuple with the same key in the table of the receiver task. We note that, the incoming provisional
tuples can relax provisional or gone tuples. Similarly, the incoming gone tuples can relax provisional
or gone tuples. Thus, as shown in Figure 5, we have transitions from a provisional status to a gone
status and vice-versa.

In the modified Reply and Update threads, the gone-status tuples are treated as being optimal
ones. These tuples are backpropagated in a similar way in reply messages causing along the way,
through the Update threads, other tuples (in other processes) to attain a gone status. For example,
suppose as above that Pa detects the failure of its neighbor Pb. The neighbor processes of Pa, having
a (b,)-keyed provisional tuple with an (a,) as their via component, will eventually assign a gone
status to this tuple. Specifically, this will happen when such tuples are expanded and Pa is asked
for its (b,)-keyed tuple.

We emphasize that a gone status prevents tuples from being expanded by the process. Neverthe-
less, the weight and via of a gone status tuple might be updated to some lower values as an effect
of the expansion of some provisional tuple in the same task. Such an update might also change the
status of the tuple, as we explained above, from gone to provisional, thus making the expansion of

17

the tuple possible again. Also, through such updates, a gone status tuple can even attain an optimal
status.

Finally, we note that the message complexity of our extended algorithm is the same as that of
Algorithm 1.4

Formally, our fault tolerant algorithm is given in the following, where we emphasize only the
changes and extensions to Algorithm 1. The parts that remain unchanged are shown in gray.

Algorithm 2

Input:

1. A database DB . For simplicity we assume that each database object, say a, is being serviced
by a dedicated process for that object Pa.

2. A query WFSA A = (P,∆, τ, p0, F).

Output: Set eval(A,DB) which will be characterized in Theorem 8.
Method:

1. Each process subscribes to the fault-detection service.

2. Each process Pa creates a list, called FailLista, and initializes it to ∅.

3. Initialization: Each process Pa creates a task 〈p0, passive, {. . .}〉 for itself. The table {. . .}
(referred to as Pa.p0.T) is initialized as follows:

(a) insert tuple [(a, p0), (a, p0), 0, opt], and
(b) For each edge-transition match,

(a,R, r, b) in DB and
(p0, R, k, p) in A,

insert tuple [(b, p), (b, p), k · r, prov]
(if there are multiple (a, , , b) – (p0, , , p) edge-transition matches, then the cheapest
weight product is considered.)

(c) For each tuple in the task,
if the process of its key component is found in FailLista,
then change the status of the tuple to gone.

If at point (b) there is no edge-transition match, then make the status of the p0-task com-
pleted.

4. Concurrently execute all the five following threads at each process in parallel until termina-
tion is detected. [For clarity, we describe the threads at two processes, Pa and Pb.]

5. Expansion: [At process Pa]

(a) Select a passive px-task for processing. Make the status of the task active.
(b) Select the cheapest provisional-status tuple, say [(c, pz), (b, py),w,prov] from table Pa.px.T .
(c) Request Pb, with respect to state py, to provide information about (c, pz).

For this, send a message 〈py, [px, (c, pz), wab]〉 to Pb, where wab is the cost of going from
(a, px) to (b, py), which is equal to the weight of the (b, py)–keyed tuple in Pa.px.T .

(d) Sleep, with regard to px-task, until the reply message for (c, pz) comes from Pb.

6. Task Creation: [At process Pb]
Upon receiving a message 〈py, [px, (c, pz), wab]〉 from Pa:

if there is not yet a py-task,
then create a task 〈py, passive, {. . .}〉 and initialize its table similarly as in the first phase.

That is,
(a) insert tuple [(b, py), (b, py), 0, opt], and

4 We do not consider the elementary messages of the fault-detection infrastructure.

18

(b) For each edge-transition match,
(b,R, r, d) in DB and
(py, R, k, pu) in A,

insert tuple [(d, pu), (d, pu), k · r, prov]
(if there are multiple (b, , , d)–(py, , , pu) edge-transition matches, then the cheap-
est weight product is considered.)

(c) For each tuple in the task,
if the process of the key component is in FailListb,
then change the status of the tuple to gone.

Also, establish a virtual communication channel with Pa. This channel relates the py-
task of Pb with the px-task of Pa. Further, it is indexed by (c, pz) and is weighted by wab

(the weight included in the received message).
else [Pb has already a py-task.] Do not create a new task, but only establish a communication

channel with Pa as described above.

7. Reply: [At process Pb]
When in the py-task, the tuple [(c, pz), (,), ,] is or becomes optimally weighted, or if it
has gone status, reply back to all the neighbor processes, which have sent a task requesting
message 〈py, [, (c, pz),]〉 to Pb.
For example, Pb sends to such a neighbor, say Pa, through the corresponding communication
channel, the message 〈Pb.py.T ∗〉, which is table Pb.py.T after adding the channel weight to
the weight of each tuple.

8. Update: [At process Pa] Upon receiving a reply message 〈Pb.py.T ∗〉 from a neighbor Pb

w.r.t. the expansion of a (c, pz)-keyed tuple in table Pa.px.T do:
(a) Change the status of (c, pz)-keyed tuple to the status of the same keyed tuple in Pb.py.T ∗

5.
(b) For each tuple [(d, pu), (,), v, s]6 in Pb.py.T ∗, which has a smaller weight (v) than a same

keyed tuple [(d, pu), (,), , s′]7 in Pa.px.T , replace the latter by [(d, pu), (b, py), v, s].
(c) Add to Pa.px.T all the rest of the Pb.py.T ∗ tuples, i.e., those which do not have corre-

sponding same-key tuples in Pa.px.T .
Also, change the via component of these tuples to be (b, py).

(d) if the px-task does not have anymore provisional tuples,
then make its status completed.

If px = p0, then report that all query answers from Pa have been computed.
else make the status of the px-task passive.

9. Failure Detection: [At process Pa upon detecting failure of a neighbor process Pb]
(a) Add an entry in FailLista for process Pb.
(b) For each provisional tuple in each task of Pa,

if the key or via component is (b,),
then change the status of the tuple to gone.

⊓⊔

As for Algorithm 1, the termination happens when each process has a completed p0-task. Detect-
ing this can be done by using an algorithm for fault-tolerant distributed termination detection (cf.
[17]). Finally upon termination, we set

eval(A,DB) = {(a, b, r) : [(b, py), (,), r, s)] ∈ Pa.p0.T, py ∈ F and s ∈ {opt , gone}}.

5 This status is either optimal or gone.
6

s can be prov or gone.
7

s
′ can be prov or gone.

19

Let C and C′ be the Cartesian products of databases DB and DB ′ with query automaton A. We
show the following two lemmas.

Lemma 3. If there exists (a, b, r) ∈ eval(A,DB) then there exists a path, in C, from (a, p0) to
(b, py), where py is a final state of A.

Proof. By the definition of eval(A,DB), if (a, b, r) ∈ eval(A,DB), then there will exist a tuple
[(b, py), (,), r, s], where s ∈ {opt , gone}, in Pa.p0.T .

Now, by the specification of the Intialization, Expansion and Update threads, it is clear that if
there is no path from (a, p0) to (b, py) in C, then a [(b, py), (,), r, s] tuple would never be in Pa.p0.T ,
and this would be a contradiction. ⊓⊔

Lemma 4. Let (a, p0) and (b, py) be connected in C′, and let r be the weight of a cheapest path
between these two nodes (in C′). Then, there exists a triple (a, b, r′) in eval(A,DB), and r′ ≤ r.

Proof. Since (a, p0) and (b, py) are connected in C′, they were never disconnected during the execution
of the algorithm, and thus, Lemma 1 holds (with respect to Algorithm 2). Similar to Corollary 1,
we have that eventually there will exist tuple [(b, py), (,), r′, s] in Pa.p0.T , where s ∈ {opt , gone}.
Value r′ is the weight of the cheapest paths that Algorithm 2 could explore, and clearly this set of
paths is a superset of paths from (a, p0) to (b, py) in C′. Hence, r′ ≤ r. ⊓⊔

Now, we show that

Theorem 8 SWAns(A,DB) ⊒ eval(A,DB) ⊒ SWAns(A,DB ′).

Proof.
“SWAns(A,DB) ⊒ eval(A,DB).” Let (a, b, r) ∈ eval(A,DB). By Lemma 3, this means that

there exists a path π (in C) from (a, p0) to (b, py), where py is a final state in A. Since there are
process failures, path π might not be a cheapest one in C going from (a, p0) to (b, py). Let π′ be
a cheapest path in C with a weight of r′. Clearly, r′ ≤ r, and by the definition of SWAns(A,DB),
(a, b, r′) ∈ SWAns(A,DB).

“eval(A,DB) ⊒ SWAns(A,DB ′).” Let (a, b, r) ∈ SWAns(A,DB ′). By Theorem 1, (a, p0) is
connected to (b, py) in C′, and the weight of the cheapest paths between these two nodes is r.

By Lemma 4, there exists a tuple (a, b, r′) in eval(A,DB), and r′ ≤ r, and this concludes our
proof. ⊓⊔

Now, we further characterize the produced query answers. Suppose that upon termination, in the
table of Pa.p0, we have some tuples with a gone status. Let [(c, pz), (,), wa, gone] be the cheapest
of those tuples.

We classify the tuples in Pa.p0.T as

1. tuples with smaller (or equal) weight than wa, and
2. tuples with greater weight than wa.

We can show that the tuples in the first set have weights which are optimal with respect to the
original database DB , i.e. they belong to SWAns(A,DB).

For this, observe that at the end of the algorithm, since tuple [(c, pz), (,), wa, gone] is the
cheapest of the tuples with a gone status, the tuples with weight less than wa are all optimal. They
have obtained this status by the expansion of provisional tuples, which at the time of expansion have
been the cheapest ones among provisional and gone tuples. Since there is no gone status tuple with
a weight smaller than the weight of these tuples, all the cheaper paths possibly reaching the nodes
corresponding to these tuples have been already explored. Thus, reasoning similarly as in Section 6,
these tuples attain the cheapest weight obtainable in the original DB .

20

We can also observe that weight wa of the cheapest gone status tuple in Pa.p0.T is optimal
considering the original database DB . This is because a gone status tuple has been a provisional one
earlier, and thus, the cheapest gone tuple would have been the next tuple to be expanded if there
had been no failure in the corresponding path. By Theorem 4, the weight of this tuple is optimal
with respect to the original database.

Clearly, the wa values, for a ∈ V , can be produced as additional output in order to characterize
the query answers as the above discussion suggests.

7.1 Intermittent Process Failures

Here, we discuss how Algorithm 2 can be extended to handle a dynamic scenario, where the failed
processes can come back to the computation.

Let us assume that when a failed process, say Pb, comes back to the computation it has no
information from the past. Therefore, it creates task p0, initializes its failed-neighbor list, and starts
expanding tuples in its p0-task.

Each neighbor of process Pb, say Pa, realizing that Pb is back, continues processing as follows:

1. Pa deletes the Pb-entry in FailLista and then changes, in all its tasks, the gone status of the
tuples having b in their key or via component to provisional.

2. Pa will possibly cancel the current expansion should some smaller weighted provisional tuple
become available due to a status change from gone to provisional. The eventual back-reply
message corresponding to the cancelled expansion is ignored.

3. Upon receival of some back-reply message, due to expansion of a tuple, say [(c, p), (,), wac, prov],
Pa will not only update provisional tuples as before, but it will also update (if applicable) the
optimal tuples having weights greater than wac. This is because these optimal tuples have an
optimal weight in a subset of original DB . By having Pb back to the computation, we can
(possibly) lower the weight of such optimal tuples.

4. Pa propagates the news about Pb becoming alive again through neighboring relationships. In
turn, all processes receiving the news about Pb behave exactly as Pa.

Finally, we remark that the behavior of the Pb’s neighbors remains the same as described above
even if Pb does have information from the past. The only difference is that, in this case, Pb will
continue processing using its stored information.

8 Conclusions

We have presented a fully distributed algorithm for answering generalized regular path queries on
database graphs. We have discussed in detail the complexity of our algorithm and shown that the
number of messages is proportional to the number of inter-process edges in the lazy Cartesian
product graph of the database and query.

Then, we presented a resilient algorithm against process failures. This algorithm can tolerate any
number of process losses and possesses two desirable properties:

1. It produces answers which are at least as good as those obtainable on the remaining live processes.
2. It does not need additional, algorithm-specific, messages to achieve resilience against process

losses.

Given that RPQs are an important building block of virtually all the query languages for
semistructured graph-data, we believe that our work is an important step towards effective and
efficient solutions for distributed and resilient computation of queries on semistructured data.

Acknowledgment. We would like to thank an anonymous reviewer for providing very constructive
comments.

21

References

1. Abiteboul S., P. Buneman, and D. Suciu. Data on the Web: From Relations to Semistructured Data and

XML. Morgan Kaufmann, San Francisco, CA, 1999.
2. Allauzen C., M. Mohri. A Unified Construction of the Glushkov, Follow, and Antimirov Automata. Proc.

of MFCS’06.
3. Abiteboul S., V. Vianu. Regular Path Queries with Constraints. J. of Computing and System Sciences

58 (3), pp. 428–452, 1999.
4. Awerbuch B. Optimal distributed algorithms for minimum-weight spanning tree, counting, leader election

and related problems. Proc. of STOC’87.
5. Buneman P., G. Cong, W. Fan, and A. kementsietsidis. Using partial evaluation in distributed query

evaluation. VLDB’06.
6. Calvanese D., G. Giacomo, M. Lenzerini, and M. Y. Vardi. Answering Regular Path Queries Using Views.

Proc. of ICDE’00.
7. Calvanese D., G. Giacomo, M. Lenzerini, and M. Y. Vardi. Reasoning on Regular Path Queries. SIGMOD

Record 32 (4), pp. 83–92, 2003.
8. Calvanese D., G. Giacomo, M. Lenzerini, and M. Y. Vardi. View-based Query Processing: On the Rela-

tionship between Rewriting, Answering and Losslessness. Proc. of ICDT ’05.
9. Cong G., W. Fan, and A. Kementsietsidis. Distributed query evaluation with performance guarantees.

Proc. of SIGMOD’07.
10. Consens M. P, A. O. Mendelzon. GraphLog: A Visual Formalism for Real Life Recursion. Proc of

PODS’90.
11. Flesca S., F. Furfaro, and S. Greco. Weighted Path Queries on Web Data. Proc. of WebDB ’01.
12. Flesca S., F. Furfaro, and S. Greco. Weighted Path Queries on Semistructured Databases. Inf. Comput.

204 (5), pp. 679–696, 2006.
13. Grahne G., and A. Thomo. Regular Path Queries Under Approximate Semantics. Ann. Math. Artif.

Intell. 46 (1–2), pp. 165–190, 2006.
14. Grahne G., A. Thomo, and W. Wadge. Preferentially Annotated Regular Path Queries. Proc. of

ICDT’07.
15. Haldar S. An “All Pairs Shortest Paths” Distributed Algorithm Using 2n

2 Messages. J. of Algorithms,

24 (1), pp. 20–36, 1997.
16. Hopcroft J. E., and J. D. Ullman. Introduction to Automata Theory, Languages, and Computation.

Addison-Wesley, Reading, MA, 1979.
17. Lai H. T., and F. L. Wu. An (N-1)-Resilient Algorithm for Distributed Termination Detection. IEEE

Trans. Parallel Distrib. Syst., 6 (1), pp. 63–78, 1995.
18. Matocha J., and T. Camp. A Taxonomy of Distributed Termination Detection Algorithms. J. of Systems

and Software, 43 (3), pp. 207–221, 1998.
19. Mendelzon A. O., and P. T. Wood, Finding Regular Simple Paths in Graph Databases. SIAM J. Comp.

24 (6), pp. 1235–1258, 1995.
20. Miao Z., D. Stefanescu, A. Thomo. Grid-Aware Evaluation of Regular Path Queries on Spatial Networks.

Proc. of AINA’07.

21. Planet–Lab: www.planet-lab.org
22. Shoaran M., A. Thomo. Distributed Multi-source Regular Path Queries Proc. of ISPA’07 Workshops.
23. Stefanescu D., A. Thomo, and L. Thomo. Distributed Evaluation of Generalized Path Queries Proc. of

SAC’05.
24. Stefanescu D., A. Thomo. Enhanced Regular Path Queries on Semistructured Databases. Proc. of

QLQP’06.
25. Suciu D., Distributed Query Evaluation on Semistructured Data. ACM Trans. on Database Systems, 27

(1), pp. 1–62, 2002.
26. Ramarao S. V. K., S. Venkatesan. The Lower Bounds on Distributed Shortest Paths. Inf. Process. Lett.,

48 (3), pp. 145–149, 1993.
27. TIGER: Topologically Integrated Geographic Encoding and Referencing system, US Census Bureau

http://www.census.gov/geo/www/tiger
28. Vardi M. Y. A Call to Regularity. Proc. PCK50 - Principles of Computing & Knowledge, Paris C.

Kanellakis Memorial Workshop ’03, pp. 11.

22

