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a b s t r a c t

This paper proposes an investigation of the global statistics of synthetic protein networks—
a step towards a systemic understanding of their design space. We derive a liquidity
index which describes the onset of the phase transition where an ensemble of agents
aggregates into a giant cluster. This index captures the influence of both the domain
distribution of agents and the binding strengths of their various domains in the limit of
infinite populations. In simple cases it is possible to derive an explicit analytical expression
of this index, which allows one to compare with simulations, and get a sense of how it
transfers to the concrete finite case.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Protein networks have been serving the information processing needs of eukaryotes for a billion years, and the modern
protein–protein interaction assortment offers a highly combinatorial and flexible toolkit operating on fast time scales [1].
Even so, today’s synthetic biology relies mostly on the much slower prokaryotic transcriptional logic. There are various
reasons for that. One is that the technology of synthetic protein networks if more efficient is also very demanding. For one
thing, eukaryotic cells have complex global structures and constraints one has to deal with (such as shuttling transcription
factors to the nucleus [2]). Besides and unlike transcriptionwhere a promoter can be considered to regulate the transcription
of the genes it is placed upstream of, whatever these genes are, the various domains of a protein interact in elaborate ways
that one has only begun to understand [3]; so one also has to deal with sophisticated local constraints on designs. But this
is not the only obstacle to the design of large synthetic protein networks. Indeed, even if one were granted a complete
operational knowledge of protein domains and their interactive capabilities, one would still lack a way to organize them
into an executable description. In fact, in the rare cases when the signal choreography is described in exquisite details with
its ballet of receptors, enzymes, adapters, and relays down to theminutest resolution of domains andmodifiable residues [4],
ordinarymodellingmethods cannot take on the representational challenge. One could say that protein networks lack a logic,
by which we mean an idealised model of protein networks with reasonable descriptive and predictive power. A model that
one could regard as a proper design space for synthetic networks is not there yet, or is it?
In an earlier work, we have proposed a stochastic calculus of domain binding and modification – called Kappa – which

could be a good start [5–8]. Therein proteins are idealised as sets of sites (aka domains, interfaces, etc.), possiblywith internal
states to account for post-translational modifications. The dynamics of networks is specified by rules which manipulate
domains and bindings explicitly, and as a result highly combinatorial pathways can be formalised, modified and analyzed
in numero with relative ease—that is to say with an ease that no traditional method affords. It is now well recognised that
the decomposition of proteins into domains is a key operator in the structure, plasticity and reprogramming of protein
networks [3], and makes the statistics of protein networks far more perspicuous [9] (eg the distinction between single- and
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multi-domain hubs reveals different structural, functional, and evolutionary characteristics). The idealisation we propose is
fully congruent with this finer-grained view on protein networks, and shares its concerns: how exclusive or concurrent are
bindings between agents, howmany different complexes can be formed, how large, for how long, and in howmanymodified
states, and does it matter for the transmission and processing of information? All issues which have clear relevance and
impact on the way one wants to design, simulate or otherwise analyze protein networks.
Such key theoretical questions about the global statistics of networks remainmostly unasked, and key physical properties

untested—which may be yet another reason, of a more theoretical nature, why synthetic biology today is still mainly
transcriptional. The goal of this paper is to progress on these issues. Specifically, we wish to investigate the statistics of
networks relating to global connectivity, and set out to derive criticality conditions for the dynamic assembly of protein
complexes to diverge into a giant aggregate—or to keep the largest object in the system of negligible relative size. We are
also interested in related properties such as the distribution of sizes and complexes. In essence, we are asking: how liquid
is biological signalling?
Numerical experiments hint at sharp phase transitions in Kappa rule sets, meaning all or none of the realizations of

the underlying stochastic process generate large clusters. Yet given the delicate interplay of protein domain distribution
and affinities that controls global connectivity it is unclear how to investigate the issue analytically. Here we are lucky
since advances in the study of heterogeneous random graphs due to Söderberg and others [10–13] allow us to define for
simple systems a good notion of a liquidity index that furnishes a compact description of the phase transition, and may
be a good proxy for the entropy of the limit distribution. In doing so we are following a physical style in exposition, not a
mathematically tight one. A further rigorous elaboration of these results might be possible following Ref. [14].
One can easily envision that such a liquidity index as we propose would be useful for the parametrisation and control

of large synthetic protein networks—in that most of the time, one would expect such systems to remain in a liquid phase.
More generally understanding generic properties of the (idealised) medium delineates the constraints natural and synthetic
information processing constructs are working with. That is, to the extent that Kappa-like rule sets convey plausible models
of protein networks (natural or synthetic), it seems fundamental to understand the properties of their ‘complexomes’. Thus
our result should be set in a larger perspective where one wishes to elaborate a statistical vision of information processing
in protein networks—seen as a sui generis computational medium. The conclusion discusses this matter further.

1.1. Outline

We start the paperwith a description of the notion of graphswith siteswe are interested in, togetherwith their dynamics
as continuous time Markov chains. Since the rule sets that we are able to capture in this first statistical analysis are simple
unconditional ones, meaning bindings and unbindings happen regardless of the context in which the bond is created or
erased, we will not need a full description of our working language. The reader interested in general conditional rules may
wish to refer to Refs. [5,6] (or Ref. [8] for a more mathematical exposition).
With this description in place we obtain the equilibrium equations which express the ratio of bindings between

our domain types, and this is all one needs to describe the global connectivity structure, since bindings are assumed
(approximately) independent. Then we present an elaboration of Söderberg’s model and use it to derive the criticality
condition; we conclude with an analytic solution of a simple case where one has only two domain types and compare with
simulation.

2. The dynamic model

Let us first define the data thatwewill use to describe our idealised universe of binding agents and derive the equilibrium
equations that determine the asymptotic ratio of the various types of bindings.

2.1. Basic data

A random graph with sites consists of the following data:
- n the set of nodes
- K the (finite) set of colours
- Z the node random variable with values in NK
- for each a, b ∈ K a dissociation constant Γab ∈ [0,∞].
Let us comment on each element of the definition in turn. The first datum n is the number of nodes, and as the goal of this

paper is to understand some of the statistical properties of the random graphs defined by the above data (in a way which is
explained below) we will consider these properties in the limit of infinite n’s. In practice n is not infinite of course, so the
result presented here is only of heuristic value for concrete real networks (more about the concrete case later).
The second ingredient is the set K of types of domains an agent can expose. Sometimes domain types will also be called

colours, and domains will also be called sites, or stubs. Stubs of the same colour will be indistinguishable from the point of
view of the dynamics defined below, however it is important that the reader does not confuse stubs and colours (which are
types of stubs). For instance, we will see later that even a universe with two colours and many stubs of either colour can
generate interesting statistics.
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Fig. 1. An example of graph with sites: note that the pairing between stubs/sites may be partial; stub colours are indicated as letters a, b, c.

The next item in the list is a random variable Z which describes how agents are put together as collections of domains;
being a random variable it also describes their respective proportions, that is to say p(Z = m) is the probability that a
node exposes a collection of domains m. Since there is no mathematical reason to suppose that an agent cannot utilise a
same domain type many times, agents are taken to bemultisets of colours, not mere sets (as would be natural in a concrete
biological application). Therefore Z has values in NK the set of multisets of colours—seen as maps from colours to their
number of occurrences. As abovewewill usem to denote suchmultisets of colours, whichwe sometimes simply call degrees.
Finally the last item is the equilibrium dissociation rate (the ratio of an off-rate and an on-rate, see below) Γab which

measures the strength of the ab binding. Note that the higher the Γab theweaker the binding; in particular if Γab = ∞ then
one has no binding at all, and obversely if Γab = 0 binding is irreversible. The set of finite Γ s defines the contact map—that is
the set of domains that may bind to each other. Rates are key to the definition of the limit proportions of edges in our graph
as we will see in the next subsection.
We define a (Γ -) graph with sites as a finite set of nodes inNK together with a partial pairing of their sites which respects

Γ , meaning for all pairs of sites x, y of colours a, b, one has Γab <∞.
Fig. 1 presents a simple example where n = 7, K = {a, b, c}, and can be drawn according to any node distribution where

multisets a+ c and 2a+ b have non-zero probability; one also needs Γab, Γac , Γbc <∞.
To simplify our notations we will suppose from now on that no site is self-binding ie Γaa = ∞—obviously, this is only a

convenience.
For X a set, we write X (2) for the set of unordered pairs of elements of X (equivalently the set of subsets of X with 2

elements), and adhere to the following typographic convention: when an equation is in fact a definition we use the symbol
:= or=: depending on which side of the equation is defined.

2.2. Evolution

Given n nodes drawn according to Z , we can now define a continuous stochastic process with values in graphs with sites
and of which the dynamics unfolds as follows.
An event can be of two sorts:

- [binding] two free sites x, y of respective colours a, b bind each other with a probability proportional to γ+ab ;
- [unbinding] two sites x, y of respective colours a, b, and already bound together, unbind with a probability proportional
to γ−ab .
The constants γ+ab , γ

−

ab are respectively called the ab on- and off-rate.
Write nfa for the number of free a sites, and eab with a, b ∈ K (2) for the number of edges with ends of colours a, b. The

above defines a continuous time Markov chain where the activity (or expected frequency) of the system is:∑
a,b∈K (2)

γ+abn
f
an
f
b +

∑
a,b∈K (2)

γ−abeab.

Specifically the activity is the parameter of an exponential distribution which determines the time advance subsequent to
an event chosen as explained above. We do not linger toomuch on the definition of the continuous timeMarkov chain since
this is not useful for the rest (the reader can consult Ref. [15] for definiteness).
One can express the equilibrium dissociation rate Γab (see Section 2.1) as γ−ab/γ

+

ab .
As said the above Markov process has in principle the set of Γ -graphs with sites as a state space. But in actuality to

describe the system in the limit of large ns, onemay forget nodes and only keep track of the number of free sites (nfa; a ∈ K),
and edges (eab; a, b ∈ K (2)). This is because the probability of binding and unbinding events does not depend on the node
structure – which is why we have called such systems unconditional earlier – and neither does the activity of the system as
one can see in the expression above.
So the two views are statistically equivalent andwe choose the latter since it is simpler. To recover the former, ie the limit

random graph probability distribution, it is enough to ‘glue back’ sites according to the degree distribution Z . This will be
done implicitly when we define the branching process that explores the size of a connected component to asses criticality
(see below).
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Writing na for the total number of a sites, we get the invariance equation (always true if the initial state is in the invariant):

na = nfa +
∑
b

eab (1)

where:
- nfa ≤ na
- eab ≤ min(na, nb) is the number of ab bindings.
Note that equivalently eab is the number of as binding to a b, becausewe have supposed above that eab > 0 implies a 6= b.

When stubs of the same colour are allowed to bind one needs to add symmetry factors, a case which we have avoided with
our assumption.

2.3. Equilibrium

We can now write the equilibrium equation which expresses a stochastic ‘equilibrium’ (so true for large times and large
populations), namely that the dissociation and association activities on ab bindings are the same:

Γabeab = nfan
f
b. (2)

Note that this equation is a property that defines the steady state of the deterministic interpretation of the chain as an
ordinary differential equation. We will not do it here, but one may want to relate it formally to the stationary probability
distribution of the chain.
We can rewrite the above obtaining a quadratic polynomial system predicting the eabs as functions of the parameters

Γab, na:

Γab · eab =

(
na −

∑
c

eac

)(
nb −

∑
d

edb

)
. (3)

It is convenient to perform a simple rescaling of the above equations by defining the new parameters 〈ma〉 = na/n,
Kab = Γab/n, and the new unknowns εab = eab/n.
Note that 〈ma〉 is the average number of a sites per node according to Z (this is an approximation which is valid only for

large ns obviously), and Kab is the scale-less dissociation constant. One can think of the division of Γ s by n as a division by
a volume term, as is customary when one translates individual-based rates to intensive units (densities or concentrations);
likewise one can think of εab as an edge density.
This gives us an equivalent system over the K (2)-indexed variables εab:

Kab · εab =

(
〈ma〉 −

∑
c

εac

)(
〈mb〉 −

∑
d

εbd

)
(4)

so that a scale-less version of the original data including the colour set K , the node random variable Z , and the Kabs is enough
to describe the steady state densities of each edge type.
The former constraint on eab now translates as 0 ≤ εab ≤ 〈ma〉, 〈mb〉. This constraint will reappear at the end of the

paper, when we solve the equilibrium explicitly in the bicolor case.
We will use the solutions of Eq. (4) to parameterise the static random graph model which we present now. Incidentally,

one may wish to prove that this static model defines the limit probability distribution associated to the Markov process just
defined. This is an interesting question but we do not need to solve it to proceed—as we shall see.

3. The static model

The data needed to define a coloured degree model (adapted from Ref. [16, p.6]) is the same as in the dynamic model
above, except one replaces the dissociation rates Γab with a new ingredient Ya, where p(Ya = b) is the probability that a
stub of colour a binds some stub of colour b.
So one has:

- n the set of nodes
- K the set of colours together with ∗ a special value not in K
- Z the node random variable with values in NK
- for each a ∈ K , Ya the edge random variable with values in K + {∗}.
This new random graph model is static, as one no longer describes a stochastic (rewriting) process, but directly defines

a probability on a population of graphs with sites. This is the role of the Ya’s. Importantly, we are not supposing that∑
b∈K p(Ya = b) = 1, which amounts to saying that a site may be left free (or unpaired), a fact that we represent by Ya

taking the exceptional value ∗; so p(Ya = ∗)may be strictly positive. As dynamic models usually have reversible bindings,
one needs to have free sites.
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Below we write ma for the number of stubs of colour a in m (aka the multiplicity of a in m), and m − b for the multiset
where there is one less copy of b supposingmb > 0; we also sometimes write simply pm for p(Z = m).

3.1. The dynamic to static mapping

For the static graph defined by the Ya’s to correspond to the limit behaviour of a dynamic graph as defined in the preceding
section (Section 2.3) we need to set the probability that a stub of colour a binds some stub of colour b as:

p(Ya = b) := εab/〈ma〉 (5)

where the edge density εab := eab/n is given by equilibrium equations (2). The probability that a stub of colour a is connected
to one of colour b belonging to a node of degree m is given by εab/〈ma〉 · mbpm/〈mb〉—since the probability to bind to a b
is εab/〈ma〉, and the probability that this b belongs to an m is proportional to mbpm, the probability of m itself and the
multiplicity of b inm (in particular ifmb = 0 then this is zero as it should).
If we write (note that Tab is symmetric in a and b):

Tab := εab/〈ma〉〈mb〉 (6)

the above probability is simply Tabmbpm an expression which we will use in the next subsection.

3.2. The size generating function

We wish now to evaluate the size of the components in our random graphs. Specifically we are looking for an inductive
expression of the random variable Sap describing the size of the connected component discovered during an exploration of
depth p—which starts exiting from some node by a stub of colour a. That stub couldwell be free inwhich case the exploration
process stops right away and the discovered size is 0. For a good and customary approximation (see eg Ref. [13]) we will
look at this exploration as a branching process which uses alternatively the Ya’s for following an edge to enter a new node,
and Z for picking a new exit stub out of the said node. We will study this process using its generating function as well as
that of Z:

Sap(z) :=
∑
n

p(Sap = n)z
n

Z(xc; c ∈ K) :=
∑
m∈NK

p(Z = m)
∏
c∈K

xmcc .

(To keep the notations light wewrite the generating function of a random variable as the random variable itself.) Generating
functions are a way to display a probability on a countable set that comes particularly handy to study branching processes
(see eg Ref. [17]). Note that Z ’s generating function is a formal power series with a K -indexed set of unknowns, reflecting
the fact that the set of values of Z is itself a K -indexed Cartesian product.
Reasoning by cases on the type of node discovered by following the edge (if any) out of a stub of type a, we can express

the size generating function Sap inductively as:

Sap(z)− p(Y
a
= ∗) = z

∑
n>0

p(Sap = n)z
n−1

= z
∑
n>0,m

∑
b∈K

Tabmbpm p

( ∑
c∈m−b

Scp−1 = n− 1

)
zn−1

= z
∑
b∈K

Tab
∑
m

mbpm

(∑
n>0

p

( ∑
c∈m−b

Scp−1 = n− 1

)
zn−1

)
= z

∑
b∈K

Tab
∑
m

mbpm
∏
c∈m−b

Scp−1(z)

= z
∑
b∈K

Tab∂bZ(Scp−1(z); c ∈ K).

On the first line, we have factored out the only case where the size is zero which is obtained when the starting stub of colour
a is free with probability:

p(Y a = ∗) = 1−
∑
b∈K

εab/〈ma〉 = 1−
∑
b∈K

Tab〈mb〉. (7)

On the second line, we use the probability Tabmbpm to connect an a to a b belonging to a node of degree m (computed in
Section 3.1). The fourth line uses the fact that the generating function of a sum of independent random variables (here the
Scp−1’s) is the product of their respective generating functions. The derivation concludes with the introduction of the partial
derivative ∂bZ of the generating function associated to Z (which also has its formal parameters indexed by K ).
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3.3. Criticality

Define 1 := (1a; a ∈ K) the node with one stub of each colour.
By inductionwe canprove that Sap(1) = 1: firstly, one has S

a
0(x) = 1 since in zero jumps one gets zero sizewith probability

1; secondly, ∂bZ(1) = 〈mb〉, so by Eq. (7) one obtains Sap(1) = p(Y
a
= ∗) +

∑
b∈K Tab〈mb〉 = 1. This is expected since in

general a generating function evaluates to 1 at 1.
Now by taking the limit for large ps in the inductive expression for Sap derived above, and fixing z, one obtains a K -indexed

system of equations determining the unknowns (Sa(z); a ∈ K):

Sa(z)− p(Y a = ∗) = z
∑
b∈K

Tab∂bZ(Sc(z); c ∈ K). (8)

In fact only the particular value z = 1 interests us, in which case 1 is a solution since as said above Sap(1) = 1 for all a ∈ K ;
in other words 1 is a fixed point of the function ψ from RK to RK defined as:

ψa(xc; c ∈ K) := p(Y a = ∗)+
∑
b∈K

Tab∂bZ(xc; c ∈ K).

The spectral radius – by definition the maximum of the absolute values of its eigenvalues – ofψ ’s Jacobian at 1 controls (the
convergence of its power sequence, and hence) the stability of 1 as a fixed point.
Specifically, if that spectral radius is larger than 1, the fixed point is unstable and there must be a smaller stable fixed

point η < 1. The complement probability 1 − η is to be understood as the probability that the size of our explored cluster
is infinite, i.e. criticality. Note that this linear stability analysis will not tell what the relative (infinite) size of the infinite
cluster is.
We compute ψ ’s Jacobian at 1:

∂cψa(x) =
∑
b∈K

Tab∂c∂bZ(x)

∂cψa(1) =
∑
b∈K

TabEbc = (TE)ac

where we have written Ebc := ∂b∂cZ(1) = 〈mbmc − δbcmb〉 for the combinatorial variance of Z . Hence ψ ’s Jacobian at 1 is
simply TE, and 1 is stable if the spectral radius of TE, written λ(TE) is smaller than 1.
This gives the following criticality condition [12]:

Criticality condition: An unconditional rule set is critical if λ(TE) > 1, subcritical if λ(TE) < 1.

One could regard generally λ(TE) as a form of liquidity index for a system of interest, in that the closer it gets to 1, the
larger the clusters one is likely to observe; when it passes the threshold, one will observe infinite ones in the limit, which
in practice means large ones. Of course this is only of heuristic value since the statement above only holds in the limit of
infinite systems.
The condition on λ(TE) shows clearly the interaction between:

- the node structure, specifically Z ’s second order moments given by E;
- and the connexion structure given by T .
The dependency in E hints at the fact that node distributions with long tails (typically large hubs) will favour criticality.

The contribution of T on the other hand only depends on Z ’s first order moment and the edge densities εab. To get a better
sense of how this interaction plays out we will explore next the behaviour of our liquidity index in the bicolor case where
one can solve the equilibrium equations in closed form. We also finish discussing why our static model must accommodate
partial pairings (free sites).

4. Bicolor systems

Let us consider bicolor systems with colours a, b where one only allows to pair stubs of opposite colours—meaning
T =

(0 t
t 0

)
for some t > 0.

4.1. Numerically

We proceed numerically first and consider the following node distribution:
- p(Z = 2a) = p(Z = 3b) := 1

2 ;
- with averages: 〈ma〉 = 1, 〈mb〉 = 3

2 ;
- and combinatorial moments: Eaa = 1, Ebb = 3 and Eab = Eba = 0.
In order to determine the value of t measuring the a, b binding strength from an underlying dynamic random graph

model, we first need to fix the corresponding dynamic parameter Kab. Suppose we choose Kab = 1
4 . By Eq. (6) all we need to
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Fig. 2. A run with 100 of each agent types 2a, 3b and Kab = 1
4 . The y axis tracks the number eab of ab edges over time—for one realization of the continuous

timeMarkov chain (sampled at frequency 103 per time unit). The estimated average steady state value 150 –which corresponds to εab = 3
4 – is represented

as a dotted line.

Fig. 3. Histogram of the size distribution of a snapshot at t = 0.02 of one realization with 5000 of each agent types 2a, 3b and Kab = 1
4 (same Kab as in

Fig. 2); all clusters are smaller than 1% of the node population.

know is the value of εab at steady state. This can be obtained either by solving the equilibrium equation (which we do later),
or simply by using a simulation (which is an analogous way of solving the equation).We start with the latter. The simulation
uses a generic Kappa engine based on an algorithm that extends Gillespie’s [18] and is insensitive to the size of the species
generated by the system [19].1
Looking at the steady state of the simulation for n = 200, Γab = 50 = nKab we see that on average eab = 150, so

εab/〈ma〉 = 3
4 (fraction of bound as), εab/〈mb〉 =

1
2 (fraction of bound bs), and t =

150
200 ·

2
3 =

1
2 (Fig. 2). (Of course only the

analytic derivation below will show that we read back correctly our parametrisation from the data.)
It is easy to see that (TE)2 = 3

4 I , so λ =
√
3
2 and the system is subcritical. The size distributions observed by simulation

are consistent with this; when the population becomes larger (n = 10 000) the size of the largest cluster does not increase
in proportion to the population (Fig. 3).

4.2. Aside about partial pairings

This numerical example is a good opportunity to discuss why pairings should be partial, ie why sites in general have to
have a non-zero probability to be free. We see that our chosen Z introduces a deficit in as compared to bs, and since T is
bicolor this translates in the fact that on average (at steady state) about 12 of the bs are bound whereas

3
4 of the as are bound.

Indeed 2× 3
4 × 100 = 3×

1
2 × 100.

No total pairing has non-zero probability in the sense of Ref. [16] where the probability of a pairing θ is proportional to∏
x,y∈θ

Tκ(x),κ(y)

with κ the function mapping each stub to its colour. This is because the diagonal coefficients of T are set to zero, and any
total pairing would have to bind two stubs of the same colour. As a matter of fact, it is not possible in general to restrict to

1 The implementation can be obtained at support@plectix.com.

support@plectix.com
support@plectix.com
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Fig. 4. The front axis is the ratio 0.2 ≤ p ≤ 0.6 of ternary agents in the population; the lateral one is the value of the equilibrium dissociation rate K ; for
K ≤ 0.15 (strong binding) and p = 2

5 , one has λ > 1; not so for the values used previously K = 0.25, p =
1
2 (Section 4.1).

total pairings. Fortunately, that poses no problem, as we have seen above, since the criticality analysis carries over as is to
the partial case.
On the other hand, partial pairings however do have an impact on T which gets smaller coefficients:∑

b

Tab〈mb〉 =
∑
b

εab/〈ma〉 =: 1− fa ≤ 1.

With F := ((1− fa); a ∈ K), T ′ := F−1T satisfies
∑
b T
′

ab〈mb〉 = 1 which expresses the totality of the pairings, so in a way F
is a discount that measures the loss of connectivity, hence criticality, incurred by working with partial pairings; and clearly
λ(TE) = λ(FT ′E) ≤ λ(T ′E).

4.3. Analytically

Let us now turn to the analytic solution which in the bicolor case is rather easy to obtain and interesting to comment on.
The bicolor equilibrium equation is:

P(ε) := ε2 − ε(〈ma〉 + 〈mb〉 + K)+ 〈ma〉〈mb〉 = 0

where we have simply written K for Kab, ε for εab.
Suppose 〈ma〉 ≤ 〈mb〉; since P(〈ma〉) = −K〈ma〉, P(〈mb〉) = −K〈mb〉, and P(±∞) > 0, the roots ε− ≤ ε+ of the above

equation must be such that:

[〈ma〉, 〈mb〉] ⊆ [ε−, ε+]

which implies in particular that the roots are equal iff ε− = 〈ma〉 = 〈mb〉 = ε+ (which also implies K = 0).
Because as said earlier eab/n ≤ 〈ma〉 ≤ 〈mb〉, only the smallest root, which we now simply write ε, is a meaningful

equilibrium:

ε :=
〈ma〉 + 〈mb〉 + K −

√
(〈ma〉 + 〈mb〉 + K)2 − 4〈ma〉〈mb〉

2
. (9)

If in addition we define the following ‘noise’ term:

N :=
〈mamb〉 +

√
〈ma(ma − 1)〉〈mb(mb − 1)〉
〈ma〉〈mb〉

(10)

it is easy to see that the system liquidity index is λ = εN .
In the simple bicolor case we see how the edge density ε and the degree correlation dependent term N separate

neatly. Both have a monotone effect on criticality. The higher the density of edges and/or the longer the tail of the degree
distribution, the less liquid the system.
One can observe that ε only depends on the average coloured degrees 〈ma〉, 〈mb〉 and the ‘pull’ K , and that it is clearly a

decreasing function of K . When K = 0, ie when binding is irreversible, ε peaks at the infimum of 〈ma〉, stubs of type a are
saturated and λ = N〈ma〉.2
So to drive the system over the transition boundary one can bring K down, but another subtler way to achieve the same

is to bring 〈ma〉 closer or equal to 〈mb〉; which in our numerical example means choosing p(Z = 3b) = 2
5 to balance on

average the number of stubs of each type (more about this in Fig. 4).

2 When K becomes large λ ∼ N 〈m〉
2

4K where 〈m〉 := 〈ma〉 + 〈mb〉.



V. Danos, L.J. Schumacher / Theoretical Computer Science 410 (2009) 1003–1012 1011

If we return to the numerical example (Section 4.1), we get:

〈ma〉 + 〈mb〉 + K =
11
4
, ε =

1
2

11
4
−

√(
11
4

)2
− 4 ·

3
2

 = 3
4

so eab = 150—indeed the value read for the average steady state in the simulation above. And since N = 2
3

√
3, Nε =

1
2

√
3 < 1 and the system is subcritical in accordance with the numerical simulations (Fig. 3) where component sizes stay

small relative to the node population.

4.4. Subcritical bicolor systems

A particular, and particularly simple case of bicolor systems is when one has a single agent type bearing one stub of each
colour a, b. Connected components are chains, 〈ma〉 = 〈mb〉 = 1, N = 1, and λ = ε ≤ 1 which is only critical if K = 0.
Clearly the probability that a given chain has length kwill vary as εk and decrease rapidlywith k. This is in fact amore general
phenomenon. If all nodes contain exactly one stub of type a, then the underlying system is subcritical—unless K = 0. Indeed,
the assumption forces 〈ma(ma − 1)〉 = 0 and N = 1, so:

λ = ε =
1+ 〈mb〉 + K −

√
(1+ 〈mb〉 + K)2 − 4〈mb〉
2

≤ 1.

One sees that the noise term N plays a key role in criticality. Intriguingly, this suggests that large scale polymers made of
divalent monomers, because they cannot use too low a K (that would lead to irreversible behaviours), need helper agents
which are trivalent or more. Of course this must be taken with a pinch of salt, because biological polymers usually grow in
a directed way (and therefore should be idealised by conditional rules which our analytic approach cannot cope with at the
moment), and because we are dealing with an idealisation in the first place.
Note that this does not apply to our original 2a, 3b example (Section 4.1), and indeed, by choosing carefully the parameters

Z , and K , it is possible to obtain critical behaviours; the liquidity index is given by:

λ(p, K) :=
2+ p+ K −

√
(2+ p+ K)2 − 24p(1− p)
2
√
3p(1− p)

with p := p(Z = 3b) the ratio of 3b agents. Plotting λ (Fig. 4) shows where critical behaviour happens.

5. Conclusion

In general a Kappa rule set determines a notion of random graph, namely its stationary probability distribution (under
mild assumptions of ergodicity of the underlying Markov chain). Sometimes the state space accessible to a rule set is so
large, and the dynamics driving the system spread so thinly on the said state space (i.e. the stationary entropy is so large)
that it cannot be approximated in any meaningful way by a particular average state. When this is the case—one has to look
at a particular state, at least to some extent, as a truly random graph. However if the dissociation rates are large enough the
number of significant reachables should be kept low (as a function of the number of agents), and then so will be the limit
entropy. In which case, the random graph approach is not useful. It seems key to probe the dividing line in parameter space
in between a ‘liquid’ low-entropy network and a ‘solid’ high-entropy one—as we have done here in a simple case.
More generally the reason one is interested in such questions is that generic properties of the (idealised) medium make

us progress in the understanding of the constraints under which natural and synthetic information processing constructs
operate. Besides, and perhaps less ambitiously, the criticality constraint offers a useful sanity check on the dissociation rates
of to-be-liquid rule sets. Furthermore and inasmuch as our liquidity index is a good estimate of the dispersion of the set
of complexes generated by a simulation, it will give an indication of whether it makes sense to try to enumerate these
species, and consequently which simulation technique would fit better the case at hand. Note that not all real networks
need be liquid, as there are known examples of solid information processing structures such as Escherichia Coli’s chemotaxis
receptor cluster which seem to undergo a phase transition [20].
Tomake way in our question and obtain an analysis of criticality, we have used an important restriction to unconditional

rule sets. But are unconditional rule sets not too simple to be of any use, the reader will ask. May be they are, but it may
also be that the criticality condition will turn out to be a good heuristics for more general rules. One way to understand this
would be to extend the treatment to local rule sets in the sense of Ref. [7]. One would also be interested in understanding
how conflict, that is the fact that a site type can bind several other types, influences liquidity, or how robust liquidity is
(continuity of the condition in the parameters) and which rates will contribute more to its demise (sensitivity). The same
question holds for robustness against evolutionary perturbations of a system; that is to say, is it possible to describe plausible
transformations for rule sets – perhaps using the notion of rule refinement as in Ref. [8] – and analyze how the criticality
condition behaves under such transformations?
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Finally it must be said that all the calculations offered within the confines of this note are only about a reasonable yet
idealised notion of biological agent, an idealisation which in particular cannot express any serious spatial effects such as
molecular crowding, geometric rigidities and steric hindrances. Whether actual synthetic protein networks will mesh well
with this idealisation remains to be seen.
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