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a b s t r a c t

The star network, which belongs to the class of Cayley graphs, is one of the most versatile
interconnection networks for parallel and distributed computing. In this paper, adopting
the conditional fault model in which each node is assumed to be incident with two ormore
fault-free links, we show that an n-dimensional star network can tolerate up to 2n− 7 link
faults, and be strongly (fault-free) Hamiltonian laceable, where n ≥ 4. In other words, we
can embed a fault-free linear array of length n!−1 (n!−2) in an n-dimensional star network
with up to 2n−7 link faults, if the two end nodes belong to different partite sets (the same
partite set). The result is optimal with respect to the number of link faults tolerated. It
is already known that under the random fault model, an n-dimensional star network can
tolerate up to n− 3 faulty links and be strongly Hamiltonian laceable, for n ≥ 3.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

The star network [1], which belongs to the class of Cayley graphs [2], has been recognized as an attractive alternative
to the hypercube. It possesses many favorable topological properties such as recursiveness, symmetry, maximal fault
tolerance, sublogarithmic degree and diameter, and strong resilience (see [1]). They are all desirable when we are building
an interconnection topology for a parallel and distributed system. Besides, the star network can embed rings [28], grids [18],
trees [5], and hypercubes [27]. Efficient communication algorithms for shortest-path routing [28], multiple-path routing [9],
broadcasting [26] and scattering [13] are also available.
A linear array, which is one of the most fundamental networks for parallel and distributed computation, is suitable for

developing simple and efficient algorithms. Numerous algorithms that were designed on linear arrays for solving various
algebraic problems and graph problems can be found in [21]. A linear array can be also used as a control/data flow structure
for distributed computation in a network (refer to [3] for an example).
Since node faults and/or link faults may occur in networks, it is important to consider faulty networks. Previously,

communication problems (e.g., routing [5,12], broadcasting [32], multicasting [25], and gossiping [10]), embedding
problems [4,6,16,17,24,30], and fault diameters [8,19,29] were studied on various faulty networks. Among them, two fault
models were adopted; one is the random fault model [5,8,10,12,16,17,24,25,32], and the other is the conditional fault model
[4,6,19,29,30].
The random fault model assumed that the faults might occur anywhere without any restriction, whereas the conditional

fault model assumed that the fault distribution must be subject to some constraint, e.g., that two or more fault-free links
are incident to each node. As a consequence of the constraint, it is in general more difficult to solve problems under the
conditional fault model than the random fault model.
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Fig. 1. S4 and four embedded S3 ’s.

In this paper, under the conditional fault model and with the assumption of at least two fault-free links incident to each
node, we show that an n-dimensional star network can tolerate up to 2n− 7 link faults, while retaining strongly (fault-free)
Hamiltonian laceability, where n ≥ 4. The result is optimal with respect to the number of link faults tolerated. For the same
problem, at most n − 3 link faults can be tolerated if the random fault model is adopted [24]. With our results, all parallel
algorithms developed on a linear array of length n! − 1 or n! − 2 can be executed as well on an n-dimensional star network
with up to 2n− 7 link faults.
Previous results under the conditional fault model are described as follows. With the same assumption as ours, an n-

dimensional hypercube (n-cube for short) with 2n − 5 link faults is strongly (fault-free) Hamiltonian laceable [30], and
an m-ary n-cube with 4n − 5 link faults has a fault-free Hamiltonian cycle [4]. On the other hand, with the assumption
of each node having at least k fault-free neighbors, the minimum number of node faults whose removal may disconnect
an n-cube is (n − k)2k, where 1 ≤ k ≤ bn/2c [20]. Such a minimum number was named the restricted-node-connectivity
and denoted by Rk-node-connectivity [20]. The node-connectivity of an n-cube is known to be n. There is a lower bound of
md((n− d− 1)(m− 1)(s+ 1)+ (m− s− 1)) on the Rk-node-connectivity of anm-ary n-cube [33], where d = bk/(m− 1)c
and s = kmod(m− 1).
When k = 1, the R1-node-connectivity of an n-cube (anm-ary n-cube) is 2n− 2 (4n− 2 ifm ≥ 4, and 4n− 3 ifm = 3)

[11] ([7]), and the R1-node-connectivities of cube-connected cycles, undirected binary de Bruijn networks and Kautz graphs
are all greater by one at most than their node-connectivities [23]. Besides, the maximal diameters of an n-cube with 2n− 3
node faults and an n-dimensional star networkwith 2n−5 node faults are n+2 [19] and b3(n−1)/2c+2 [29], respectively.
When they are fault-free, their diameters are n and b3(n− 1)/2c, respectively.
In the next section, the structure of the star network is reviewed. Some necessary definitions, notations and previous

results are also introduced. In Section 3, some new properties of the star network are derived in order to prove the main
result. The proof of the main result is shown in Section 4. Finally, this paper concludes with some remarks in Section 5.

2. Preliminaries

It is convenient to represent a network as a graph G, where each vertex (edge) of G uniquely represents a node (link) of
the network. We use V (G) and E(G) to denote the vertex set and edge set of G, respectively. Throughout this paper, we use
network and graph, node and vertex, link and edge, interchangeably. The following is a definition of star networks, in terms
of graph theory.

Definition 1 ([1]). An n-dimensional star network, denoted by Sn, has the node set V (Sn) = {a1a2 · · · an|a1a2 · · · an is a
permutation of 1, 2, . . . , n} and the link set E(Sn) = {(a1a2 · · · an, aia2 · · · ai−1a1ai+1 · · · an)|a1a2 · · · an ∈ V (Sn) and 2 ≤
i ≤ n}.

Sn has n! nodes, each of degree n − 1. S1 is a node, S2 is a link, and S3 is a cycle of length six. S4 is shown in Fig. 1. The
link (a1a2 · · · an, aia2 · · · ai−1a1ai+1 · · · an) is referred to as an i-dimensional link. We use e(i)(v) to denote the i-dimensional
link that is incident to node v, and let E(i)(Sn) ={e(i)(v)|v ∈ V (Sn)} be the set of all i-dimensional links in Sn. Sn is both node
symmetric and link symmetric (see [2]).
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It can be observed from Fig. 1 that S4 contains four embedded S3’s, denoted by 〈∗∗∗1〉3, 〈∗∗∗2〉3, 〈∗∗∗3〉3 and 〈∗∗∗4〉3,
respectively (∗∗∗1, for example, represents any permutation of 1, 2, 3, 4 ending with 1). In general, Sn contains n embedded
Sn−1’s.
For 1 ≤ r ≤ n−1, an embedded Sr in Sn is denoted by 〈s1s2 · · · sn〉r , where s1 = ∗ and there are exactly r−1 occurrences

of ∗ in s2s3 · · · sn. For example, 〈∗4 ∗ 2〉2 denotes an embedded S2 in S4. When Sn is partitioned into 〈∗d−11∗n−d〉n−1,
〈∗
d−12∗n−d〉n−1, . . ., 〈∗d−1n∗n−d〉n−1, Sn is said to be partitioned along dimension d, where 1 < d ≤ n and ∗d−1 (∗n−d)

represents d − 1 (n − d) consecutive ∗’s. These n embedded Sn−1’s are connected by d-dimensional links. When d = n,
we use Ẽ(n)p,q(Sn) to represent the set of those n-dimensional links in Sn that connect 〈∗n−1p〉n−1 and 〈∗n−1q〉n−1, where p 6= q.
Clearly, we have |Ẽ(n)p,q(Sn)| = (n− 2)!.
A path from vertex u (= v0) to vertex v (= vk) in a graph G, represented as 〈v0, v1, . . ., vk〉, is referred to as a u–v path. A

path (cycle) in G is a Hamiltonian path (Hamiltonian cycle) if it contains every vertex of G exactly once. G is bipartite if there is
a partition of V (G) into V0(G) and V1(G) such that every (u, v) ∈ E(G) has either u ∈ V0(G) and v ∈ V1(G) or u ∈ V1(G) and
v ∈ V0(G). The two subsets V0(G) and V1(G) are referred to as partite sets of G. Star networks are known to be bipartite [1].
A bipartite graphGwith |V0(G)| = |V1(G)| isHamiltonian laceable if it has a u–v Hamiltonian path for every u ∈ V0(G) and

every v ∈ V1(G) [31], and strongly Hamiltonian laceable if it additionally has a longest u–v path of length |V0(G)|+|V1(G)|−2
for all u, v ∈ V0(G) or u, v ∈ V1(G) [15]. A Hamiltonian laceable graph G is hyper Hamiltonian laceable if for every
w ∈ V0(G)(w ∈ V1(G)), G–w contains a u–v Hamiltonian path for all u, v ∈ V1(G) (u, v ∈ V0(G)) [22]. Clearly, a hyper
Hamiltonian laceable graph is strongly Hamiltonian laceable.
Given a vertex u in G, we define N(u) = {v|(u, v) ∈ E(G)} to be the neighborhood of u, which is the set of vertices

that are adjacent to u in G. The size of N(u), i.e., |N(u)|, is the degree of u. The minimum vertex degree of G is denoted by
δ(G) = min {|N(u)||u ∈ V (G)}. Let V ′ be a vertex subset of G. We define N(V ′) =

⋃
u∈V ′ N(u) − V

′ to be the neighborhood
of V ′. Besides, we use G[V ′] to denote the subgraph of G induced by V ′. Throughout this paper, we use F (⊆ E(Sn)) to denote
the set of link faults in Sn.

Lemma 1 ([24]). Sn − F is strongly Hamiltonian laceable if |F | ≤ n− 3, and hyper Hamiltonian laceable if |F | ≤ n− 4, where
n ≥ 4.

Lemma 2 ([14]). If |F | ≤ 2n − 7 and δ(Sn − F) ≥ 2, then there exists 1 < d ≤ n such that |E(d)(Sn) ∩ F | ≥ 1 and
δ(〈∗d−1q∗n−d〉n−1 − F) ≥ 2 for all 1 ≤ q ≤ n, where n ≥ 4.

3. Properties and main result

In this section, we first introduce some properties of Sn. Then we present our main result.

Lemma 3. Suppose u = u1u2 · · · un ∈ V (〈∗n−1q〉n−1), where un = q and n ≥ 3. For every r ∈ {1, 2, . . . , n} − {u1, q}, there
existsw ∈ V (〈∗n−1r〉n−1) and v ∈ N(u) ∩ V (〈∗n−1q〉n−1) such that (w, v) = e(n)(v).

Proof. We assume uc = r , where 1 < c < n. Select v = ucu2 · · · uc−1u1uc+1 · · · un(∈ N(u) ∩ V (〈∗n−1q〉n−1)) and
w = unu2 · · · uc−1u1uc+1 · · · uc(∈ V (〈∗n−1r〉n−1)). Clearly, (w, v) = e(n)(v). �

Lemma 4. Suppose that P is a path in 〈∗n−1q〉n−1 − F , where n ≥ 4 and 1 ≤ q ≤ n. If |F | ≤ 2n− 7 and P is Hamiltonian or of
length (n− 1)! − 2, then P has a link (u, v) with e(n)(u), e(n)(v) /∈ F .

Proof. Suppose conversely that no such (u, v) can be found in P . Then, |E(n)(Sn) ∩ F | ≥ ((n − 1)! − 2)/2, which is greater
than 2n− 7 as n ≥ 4, a contradiction. �

In subsequent discussion, we let VA =
⋃
r∈A V (〈∗

n−1r〉n−1), where A ⊆ {1, 2, . . . , n}.

Lemma 5. Suppose that A ⊆ {1, 2, . . . , n} and n ≥ 5. For any s ∈ V (〈∗n−1p〉n−1) and t ∈ V (〈∗n−1q〉n−1), there exists a longest
s–t path of length |A| × (n− 1)! − 1 or |A| × (n− 1)! − 2 in Sn[VA] − F , where p, q ∈ A and p 6= q, provided the following two
conditions hold:

(1) |Ẽ(n)i,j (Sn) ∩ F | < (n− 2)!/2 for all i, j ∈ A and i 6= j;
(2) 〈∗n−1r〉n−1 − F is strongly Hamiltonian laceable for every r ∈ A.

Proof. Since the distance between node ja2∗n−4an−1i and node jan−1∗n−4a2i is three, they belong to different partite
sets of 〈∗n−1i〉n−1. For each link (ja2∗n−4an−1i, ia2∗n−4an−1j) connecting 〈∗n−1i〉n−1 with 〈∗n−1j〉n−1, there exists another
link (jan−1∗n−4a2i, ian−1∗n−4a2j) connecting 〈∗n−1i〉n−1 with 〈∗n−1j〉n−1. It is implied that there are an equal number (i.e.,
(n− 2)!/2) of nodes in V0(〈∗n−1i〉n−1) and V1(〈∗n−1i〉n−1), respectively, that are connected to 〈∗n−1j〉n−1.
Suppose A = {a1, a2, . . . , a|A|}. A longest s–t path in Sn[VA] − F is shown in Fig. 2, where a1 = p and a|A| = q are

assumed. Since |Ẽ(n)a1,a2(Sn)| = (n − 2)!, two links in Ẽ
(n)
a1,a2(Sn) − F , one incident to V0(〈∗

n−1a1〉n−1) and the other incident
to V1(〈∗n−1a1〉n−1), can be found, as a consequence of (1). Hence, a link (x1, y2) ∈ Ẽ

(n)
a1,a2(Sn) − F can be determined such

that x1 and s belong to different partite sets of 〈∗n−1a1〉n−1 and y2 ∈ V (〈∗n−1a2〉n−1). As a consequence of (2), there exists a
Hamiltonian s–x1 path in 〈∗n−1a1〉n−1 − F .
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Fig. 2. A longest s–t path in Sn[VA] − F .

Fig. 3. A longest s–t path in Sn that contains (u, v), where s, t ∈ V (〈∗kq〉k).

Similarly, by the aid of (1) and (2), links (xk, yk+1) ∈ Ẽ
(n)
ak,ak+1(Sn)− F and Hamiltonian yk–xk paths in 〈∗

n−1ak〉n−1− F can
be obtained, where 2 ≤ k ≤ |A| − 1. All these Hamiltonian paths together with a longest y|A|–t path in 〈∗n−1a|A|〉n−1 − F
constitute a longest s–t path in Sn[VA] − F . If the longest y|A|–t path has length (n − 1)! − 1, the length of the longest s–t
path is computed as (|A| − 1)× ((n− 1)! − 1)+ (|A| − 1)+ ((n− 1)! − 1) = |A| × (n− 1)! − 1. Similarly, if the longest
y|A|–t path has length (n− 1)! − 2, the longest s–t path has length |A| × (n− 1)! − 2. �

Lemma 6. Suppose that s, t are two distinct nodes of Sn and (u, v) ∈ E(Sn), where n ≥ 4. If {s, t} 6= {u, v}, then there exists a
Hamiltonian s-t path or an s-t path of length (n− 1)! − 2 in Sn that contains (u, v).

Proof. We prove this lemma by induction on n. This lemma holds for S4, which can be verified by exhaustive search (see
[34]). So, we assume that this lemma holds for Sk, and then consider Sk+1 below, where k ≥ 4.
Without loss of generality, suppose u, v ∈ V (〈∗kq〉k) for some 1 ≤ q ≤ k+ 1. We also assume (u, v) ∈ E(l)(Sk+1), where

2 ≤ l ≤ k. With the following three cases, we show a longest s–t path of length (k + 1)! − 1 or (k + 1)! − 2 in Sk+1 that
contains (u, v).
Case 1. s ∈ V (〈∗kq〉k) and t /∈ V (〈∗kq〉k) or s /∈ V (〈∗kq〉k) and t ∈ V (〈∗kq〉k). We consider the situation of s ∈ V (〈∗kq〉k)
and t /∈ V (〈∗kq〉k). The discussion for the situation of s /∈ V (〈∗kq〉k) and t ∈ V (〈∗kq〉k) is very similar. A desired s–t path can
be obtained using the construction method of Fig. 2. We only need to change n − 1 to k and |A| to k + 1, and set a1 = q.
Besides, the node x1 is selected with {s, x1} 6= {u, v}. The induction hypothesis assures a Hamiltonian s–x1 path in 〈∗ka1〉k
that contains (u, v). The desired s–t path has length (k+ 1)× k! − 1 = (k+ 1)! − 1 or (k+ 1)× k! − 2 = (k+ 1)! − 2.
Case 2. s, t ∈ V (〈∗kq〉k). A desired s–t path can be obtained as shown in Fig. 3, where a1 = q is assumed. The induction
hypothesis assures a longest s–t path in 〈∗ka1〉k that contains (u, v). A link (w, w′) 6= (u, v) can be selected from the path.
Let z = e(k+1)(w) and z ′ = e(k+1)(w′). A Hamiltonian z–z ′ path in Sk+1 − 〈∗ka1〉k can be obtained using the construction
method of Fig. 2 (changing s to z, t to z ′, n−1 to k, |A| to k, and 〈∗n−1ar〉n−1 to 〈∗kar+1〉k for all 1 ≤ r ≤ |A|). The Hamiltonian
z–z ′ path, combiningwith (w, z), (w′, z ′), and the s–w andw′–t paths in 〈∗ka1〉k, forms a desired s–t path in Sk+1. The desired
s–t path has length (k× k! − 1)+ 2+ ((k! − 1)− 1) = (k+ 1)! − 1 or (k× k! − 1)+ 2+ ((k! − 2)− 1) = (k+ 1)! − 2.
Case 3. s, t /∈ V (〈∗kq〉k). Suppose s ∈ V (〈∗kg〉k) and t ∈ V (〈∗kh〉k), where g , h ∈ {1, 2, . . . , k + 1} − {q}. First we assume
g 6= h. A desired s–t path can be obtained using the construction method of Fig. 2 (changing n− 1 to k and |A| to k+ 1, and
letting a1 = g , a2 = q, and ak+1 = h). The node x2 is selected with {x2, y2} 6= {u, v}. The induction hypothesis assures a
Hamiltonian y2–x2 path in 〈∗ka2〉k that contains (u, v). The desired s–t path has length (k + 1) × k! − 1 = (k + 1)! − 1 or
(k+ 1)× k! − 2 = (k+ 1)! − 2.
Next we assume g = h. A desired s–t path can be obtained by slightly modifying the construction method of Fig. 3. We

only need to set a1 = g = h and a2 = q. The node x2 is selected with {z, x2} 6= {u, v}. The induction hypothesis assures a
Hamiltonian z–x2 path in 〈∗ka2〉k that contains (u, v). A Hamiltonian y3–z ′ path in Sk+1 − 〈∗ka1〉k − 〈∗ka2〉k can be obtained,
similarly, using the construction method of Fig. 2. The desired s–t path, which consists of the s–w andw′–t paths in 〈∗ka1〉k,
the Hamiltonian z–x2 path, the Hamiltonian y3–z ′ path, and three links (w, z), (w′, z ′), (x2, y3), has length (k + 1)! − 1 or
(k+ 1)! − 2. �

Lemma 7. For any two distinct links (s, t), (u, v) in Sn, there exists a Hamiltonian cycle in Sn that contains both of them, where
n ≥ 3.

Proof. Since S3 is a cycle of length 6, this lemma holds for S3. When n ≥ 4, since s and t belong to different partite sets of
Sn, this lemma holds for Sn, as a consequence of Lemma 6. �
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Fig. 4. A distribution of 2n− 6 link faults over Sn .

The main result of this paper is presented in the following theorem whose proof is shown in the next section.

Theorem 1. With the assumption of two ormore fault-free links incident to each node, an n-dimensional star network can tolerate
up to 2n− 7 link faults, and be strongly (fault-free) Hamiltonian laceable, where n ≥ 4.

Theorem 1 is optimal with respect to the number of link faults tolerated. Fig. 4 shows a distribution of 2n− 6 link faults
over Sn, where 〈s, u, v, t〉 is an s–t path and (s, u), (u, v) ((u, v), (v, t)) are the only two fault-free links incident to u (v). It is
easy to see that no fault-free Hamiltonian s–t path exists in the faulty Sn.

4. Proof of Theorem 1

With |F | ≤ 2n− 7 and δ(Sn− F) ≥ 2, we show by induction that there exists a longest s–t path of length n! − 1 or n! − 2
between every two distinct nodes s, t of Sn − F . By Lemma 1 (n − 3 = 2n − 7 as n = 4), the theorem holds for S4. So, we
assume that this theorem holds for Sk, and then consider Sk+1 in the rest of this section, where k ≥ 4.
By Lemma 2, we can partition Sk+1 along some dimension d such that |E(d)(Sk+1)∩F | ≥ 1 and δ(〈∗d−1q∗k+1−d〉k−F) ≥ 2

for all 1 ≤ q ≤ k+1, where 1 < d ≤ k+1.Without loss of generality, we assume d = k+1. Now that |E(k+1)(Sk+1)∩F | ≥ 1,
we have |E(〈∗kq〉k) ∩ F | ≤ 2k − 6 for all 1 ≤ q ≤ k + 1. A desired s–t path in Sk+1 − F is constructed in Section 4.1 if
|E(〈∗kq〉k) ∩ F | ≤ 2k− 7 for all 1 ≤ q ≤ k+ 1, and constructed in Section 4.2 else.

4.1. |E(〈∗kq〉k) ∩ F | ≤ 2k− 7 for all 1 ≤ q ≤ k+ 1

Suppose that |E(〈∗kq〉k) ∩ F | ≤ 2k − 7 for all 1 ≤ q ≤ k + 1. Since |F | ≤ 2k − 5, we have∑
i,j∈{1,2,...,k+1} and i6=j |Ẽ

(k+1)
i,j (Sk+1) ∩ F | ≤ 2k − 5, where k ≥ 4. Notice that 2k − 5 = ((k + 1) − 2)!/2 when k = 4,

and 2k− 5 < ((k+ 1)− 2)!/2 when k > 4. Two cases are discussed below.
Case 1. k > 4.We have |Ẽ(k+1)i,j (Sk+1)∩F | < ((k+1)−2)!/2 for all i, j ∈ {1, 2, . . . , k+1} and i 6= j. The induction hypothesis
assures that 〈∗kq〉k − F is strongly Hamiltonian laceable for all 1 ≤ q ≤ k+ 1. If s ∈ V (〈∗kg〉k) and t ∈ V (〈∗kh〉k) for some
g , h ∈ {1, 2, . . . , k+ 1} and g 6= h, then by Lemma 5, Sk+1 − F is strongly Hamiltonian laceable. If s, t ∈ V (〈∗kg〉k) for some
1 ≤ g ≤ k+ 1, then a desired s–t path in Sk+1 − F can be obtained by slightly modifying the construction method of Fig. 3.
We only need to set a1 = g . The induction hypothesis assures a longest s–t path in 〈∗ka1〉k − F . By Lemma 4, a link (w, w′)
with (w, z) ∈ Ẽ(k+1)a1,a2 − F and (w

′, z ′) ∈ Ẽ(k+1)a1,ak+1 − F can be selected from the path. By Lemma 5, a Hamiltonian z–z
′ path in

Sk+1 − 〈∗ka1〉k − F can be obtained. The resulting longest s–t path in Sk+1 − F has length (k+ 1)! − 1 or (k+ 1)! − 2.
Case 2. k = 4. If |Ẽ(5)i,j (S5) ∩ F | < ((4 + 1) − 2)!/2 = 3 for all i, j ∈ {1, 2, . . . , 5} and i 6= j, then the discussion is the same
as Case 1. So, we consider |Ẽ(5)i′,j′(S5) ∩ F | = 3 for i

′, j′ ∈ {1, 2, . . . , 5} and i′ 6= j′. Since |F | ≤ 3 as k = 4, all link faults are

in Ẽ(5)i′,j′(S5). Assume that s ∈ V (〈∗
4g〉4) and t ∈ V (〈∗4h〉4), where g , h ∈ {1, 2, . . . , 5}. When g 6= h, a desired s–t path in

S5 − F can be obtained using the construction method of Fig. 2. We only need to change n− 1 to 4 and |A| to 5, set a1 = g
and a5 = h, and set a2, a3, a4 with {i′, j′} 6= {ar , ar+1} for all 1 ≤ r ≤ 4. The induction hypothesis assures a Hamiltonian
s–x1 path in 〈∗4a1〉4 − F , a Hamiltonian yr–xr path in 〈∗4ar〉4 − F for all 2 ≤ r ≤ 4, and a longest y5–t path in 〈∗4a5〉4 − F .
The desired s–t path has length 5! − 1 or 5! − 2.
When g = h, a desired s–t path in S5−F can be obtained using the constructionmethod of Fig. 3.We only need to change

k + 1 to 5, set a1 = g = h, and set a2, a3, a4, a5 with {i′, j′} 6= {ar , a(rmod5)+1} for all 1 ≤ r ≤ 5. The induction hypothesis
assures a longest s–t path in 〈∗4a1〉4− F . By Lemma 4, a link (w,w′) with (w, z) ∈ Ẽ

(5)
a1,a2 − F and (w

′, z ′) ∈ Ẽ(5)a1,a5 − F can be
selected from the path. The induction hypothesis assures a Hamiltonian yr–xr path in 〈∗4ar〉4 − F for all 2 ≤ r ≤ 5, where
y2 = z and x5 = z ′. The desired s–t path has length 5! − 1 or 5! − 2.

4.2. |E(〈∗kα〉k) ∩ F | = 2k− 6 for some 1 ≤ α ≤ k+ 1

Suppose that |E(〈∗kα〉k) ∩ F | = 2k − 6, where 1 ≤ α ≤ k + 1. Now that |F | ≤ 2k − 5 and |E(k+1)(Sk+1) ∩ F | ≥ 1,
we have |E(k+1)(Sk+1) ∩ F | = 1. Besides, we have |E(〈∗kq′〉k) ∩ F | = 0 for all q′ ∈ {1, 2, . . . , k + 1} − {α}, and
|Ẽ(k+1)i,j (Sk+1) ∩ F | ≤ 1(< ((k+ 1)− 2)!/2) for any i, j ∈ {1, 2, . . . , k+ 1} and i 6= j, where k ≥ 4.
If s, t ∈ V (〈∗kα〉k), then a link fault, say (h, h′), is chosen from E(〈∗kα〉k) ∩ F such that {s, t} 6= {h, h′} and e(k+1)(h),

e(k+1)(h′) /∈ F . Imagine that (h, h′) is fault-free. Then, by the induction hypothesis, there is a longest s–t path, denoted by P ,
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Fig. 5. A longest s–t path in Sk+1 − F when h, h′ /∈ N(V (〈∗kak+1〉k)).

of length k! − 1 or k! − 2 in 〈∗kα〉k − (F − {(h, h′)}). A desired s–t path in Sk+1 − F can be obtained using the construction
method of Fig. 3. We only need to set a1 = α, and (w,w′) = (h, h′) if P contains (h, h′). The desired s–t path has length
(k+ 1)! − 1 or (k+ 1)! − 2.
If s /∈ V (〈∗kα〉k) or t /∈ V (〈∗kα〉k), then a desired s–t path in Sk+1 − F is constructed in Sections 4.2.1 and 4.2.2, where

we use a1, a2, . . . , ak+1 to denote the k+ 1 distinct integers from 1 to k+ 1 (i.e., {a1, a2, . . . , ak+1} = {1, 2, . . . , k+ 1}).

4.2.1. s ∈ V (〈∗kα〉k) and t /∈ V (〈∗kα〉k) or s /∈ V (〈∗kα〉k) and t ∈ V (〈∗kα〉k)
Suppose that s ∈ V (〈∗kα〉k) and t /∈ V (〈∗kα〉k). The discussion for s /∈ V (〈∗kα〉k) and t ∈ V (〈∗kα〉k) is similar. We

assume t ∈ V (〈∗kβ〉k), where β 6= α. A link fault (h, h′) is chosen from E(〈∗kα〉k) ∩ F such that s /∈ {h, h′} and e(k+1)(h),
e(k+1)(h′) /∈ F . Set a1 = α and ak+1 = β .
We first consider the situation of h, h′ /∈ N(V (〈∗kak+1〉k)). Imagine that (h, h′) is fault-free. A vertex v1 ∈ V (〈∗ka1〉k) is

determined such that v1 and s belong to different partite sets of Sk+1, e(k+1)(v1) /∈ F , and v1 /∈ N(V (〈∗kak+1〉k). The induction
hypothesis assures a longest s–v1 path of length k! − 1 in 〈∗ka1〉k − (F − {(h, h′)}). If the longest s–v1 path does not contain
(h, h′), then a desired s–t path of length (k + 1)! − 1 or (k + 1)! − 2 in Sk+1 − F can be obtained using the construction
method of Fig. 2. We only need to set x1 = v1, and change n− 1 and |A| to k and k+ 1, respectively.
If the longest s–v1 path contains (h, h′), then a desired s–t path in Sk+1 − F can be obtained as shown in Fig. 5. We set a2

and a3 such that h ∈ N(V (〈∗ka2〉k)) and h′ ∈ N(V (〈∗ka3〉k)). There is an additional restriction to v1 : v1 /∈ N(V (〈∗ka2〉k))
and v1 /∈ N(V (〈∗ka3〉k)). Also we set a4 such that v1 ∈ N(V (〈∗ka4〉k)). Then, three vertices u2 ∈ V (〈∗ka2〉k), v3 ∈ V (〈∗ka3〉k),
and u4 ∈ V (〈∗ka4〉k) are determined such that (u2, h) = e(k+1)(h), (v3, h′) = e(k+1)(h′), and (u4, v1) = e(k+1)(v1).
By Lemma 5, there is a longest u4–t path of length (k − 2) × k! − 1 or (k − 2) × k! − 2 in Sk+1[VA] − F , where
A = {1, 2, . . . , k+ 1} − {a1, a2, a3}. Again, by Lemma 5, there is a longest u2–v3 path of length 2× k! − 1 in Sk+1[VA] − F ,
where A = {a2, a3}. The desired s–t path has length ((k! − 1)− 1)+ (2× k! − 1)+ ((k− 2)× k! − 1)+ 3 = (k+ 1)! − 1
or ((k! − 1)− 1)+ (2× k! − 1)+ ((k− 2)× k! − 2)+ 3 = (k+ 1)! − 2.
Then we consider the situation of h ∈ N(V (〈∗kak+1〉k)), without loss of generality. Notice that at most one of h and h′

belongs to N(V (〈∗kak+1〉k)). Imagine that (h, h′) is fault-free. A vertex u1 ∈ V (〈∗ka1〉k) is determined such that u1 and s
belong to different partite sets of Sk+1, e(k+1)(u1) /∈ F , and u1 /∈ N(V (〈∗kak+1〉k). The induction hypothesis assures a longest
s–u1 path of length k! − 1 in 〈∗ka1〉k − (F − {(h, h′)}). If the longest s–u1 path does not contain (h, h′), a desired s–t path in
Sk+1 − F can be obtained using the construction method of Fig. 2. We only need to set x1 = u1, and change n− 1 and |A| to
k and k+ 1, respectively. If the longest s–u1 path contains (h, h′), two cases: h ∈ N(t) or h /∈ N(t), are discussed below.
Case 1. h ∈ N(t). A desired s–t path in Sk+1−F can be obtained as shown in Fig. 6(a).We set a2with h′ ∈ N(V (〈∗ka2〉k)). There
is an additional restriction to u1 : u1 /∈ N(V (〈∗ka2〉k)) and u1 /∈ N(V (〈∗kak+1〉k)). Also we set ak with u1 ∈ N(V (〈∗kak〉k)).
Then, six vertices u2, v2 ∈ V (〈∗ka2〉k), u3 ∈ V (〈∗ka3〉k), vk ∈ V (〈∗kak〉k), and uk+1, vk+1 ∈ V (〈∗kak+1〉k) are determined
such that (u2, h′) = e(k+1)(h′), v2 and u2 belong to different partite sets of Sk+1, e(k+1)(v2) /∈ F , (uk+1, v2) = e(k+1)(v2),
vk+1 and uk+1 belong to the same partite set of Sk+1, e(k+1)(vk+1) /∈ F , (u3, vk+1) = e(k+1)(vk+1), and (vk, u1) = e(k+1)(u1).
By Lemma 1, there are a longest u2–v2 path of length k! − 1 in 〈∗ka2〉k and a longest uk+1–vk+1 path of length k! − 2 in
〈∗
kak+1〉k−{t}. By Lemma 5, there is a longest u3–vk path of length (k−2)×k!−1 or (k−2)×k!−2 in Sk+1[VA]− F , where

A = {1, 2, . . . , k+1}−{a1, a2, ak+1}. The desired s–t path has length ((k!−1)−1)+(k!−1)+(k!−2)+((k−2)×k!−1)+4 =
(k+ 1)! − 1 or ((k! − 1)− 1)+ (k! − 1)+ (k! − 2)+ ((k− 2)× k! − 2)+ 4 = (k+ 1)! − 2.
Case 2. h /∈ N(t). A desired s–t path in Sk+1−F is shown in Fig. 6(b)whenw′ 6= t and (v2, w′) /∈ F , and shown in Fig. 6(c)when
w′ = t or (v2, w′) ∈ F . We set a2 such that h′ ∈ N(V (〈∗ka2〉k)). There is an additional restriction to u1 : u1 /∈ N(V (〈∗ka2〉k))
and u1 /∈ N(V (〈∗kak+1〉k)). Also we set ak with u1 ∈ N(V (〈∗kak〉k)). Then, three vertices u2 ∈ V (〈∗ka2〉k), vk ∈ V (〈∗kak〉k),
and w ∈ V (〈∗kak+1〉k) are first determined such that (u2, h′) = e(k+1)(h′), (w, h) = e(k+1)(h), and (vk, u1) = e(k+1)(u1). By
Lemma 3, there exist v2 ∈ V (〈∗ka2〉k) andw′ ∈ N(w) ∩ V (〈∗kak+1〉k) such that (v2, w′) = e(k+1)(w′) (see Fig. 6(b)).
Ifw′ 6= t and (v2, w′) /∈ F , then, again by Lemma 3, there exist u3 ∈ V (〈∗ka3〉k) and vk+1 ∈ N(t)∩V (〈∗kak+1〉k) such that

(u3, vk+1) = e(k+1)(vk+1). Besides, (u3, vk+1) /∈ F can be satisfied, because |E(k+1)(Sk+1)∩ F | = 1. By Lemma 7, there exists a
Hamiltonian cycle in 〈∗kak+1〉k that contains (t , vk+1) and (w,w′). By Lemma 1, there is a longest u2–v2 path of length k! − 1
in 〈∗ka2〉k. By Lemma 5, there is a longest u3–vk path of length (k− 2)× k! − 1 or (k− 2)× k! − 2 in Sk+1[VA] − F , where
A = {1, 2, . . . , k+1}−{a1, a2, ak+1}. The desired s–t path has length ((k!−1)−1)+(k!−1)+(k!−2)+((k−2)×k!−1)+4 =
(k+ 1)! − 1 or ((k! − 1)− 1)+ (k! − 1)+ (k! − 2)+ ((k− 2)× k! − 2)+ 4 = (k+ 1)! − 2.
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Fig. 6. A longest s–t path in Sk+1 − F when h ∈ N(V (〈∗kak+1〉k)). (a) h ∈ N(t). (b) h /∈ N(t) and (w′ 6= t and (v2, w′) /∈ F ). (c) h /∈ N(t) and (w′ = t or (v2 ,
w′) ∈ F ).

If w′ = t or (v2, w′) ∈ F , then by Lemma 3, there exist v3 ∈ V (〈∗ka3〉k) and w′′ ∈ N(w) ∩ V (〈∗kak+1〉k) such
that (v3, w′′) = e(k+1)(w′′). Again by Lemma 3, there exist u4 ∈ V (〈∗ka4〉k) and vk+1 ∈ N(t) ∩ V (〈∗kak+1〉k) with
(u4, vk+1) = e(k+1)(vk+1). Besides, (v3, w′′), (u4, vk+1) /∈ F and w′′ 6= t can be satisfied. By Lemma 7, there exists a
Hamiltonian cycle in 〈∗kak+1〉k that contains (t , vk+1) and (w, w′′). By Lemma 5, there is a longest u2–v3 path of length
2× k! − 1 in Sk+1[VA] − F , where A = {a2, a3}. If k = 4, Lemma 1 assures a longest u4–v4 path of length 4! − 1 or 4! − 2 in
〈∗
4a4〉4. If k > 4, Lemma 5 assures a longest u4–vk path of length (k− 3)× k! − 1 or (k− 3)× k! − 2 in Sk+1[VA] − F , where

A = {1, 2, . . . , k+ 1} − {a1, a2, a3, ak+1}. The desired s–t path has length (k+ 1)! − 1 or (k+ 1)! − 2.

4.2.2. s, t /∈ V (〈∗kα〉k)
Suppose that s ∈ V (〈∗kβ〉k) and t ∈ V (〈∗kγ 〉k), where β, γ ∈ {1, 2, . . . , k+ 1} − {α}. We first consider the situation of

β = γ . A link fault (h, h′) is chosen from E(〈∗kα〉k) ∩ F such that e(k+1)(h), e(k+1)(h′) /∈ F . Set a1 = β = γ , and set a3 = α if
h, h′ /∈ N(V (〈∗ka1〉k)), and a2 = α else. A desired s–t path in Sk+1 − F can be constructed in a way similar to Fig. 3. We only
explain below the construction for α = a3. The construction for α = a2 is similar.
Refer to Fig. 3 again. For the purpose of our construction, we let A = {1, 2, . . . , k + 1}, (x3, y3) = (h, h′)(∈ E(〈∗ka3〉k)),

and select (w,w′)(∈ E(〈∗ka1〉k)) such that {w,w′} 6= {s, t}, w, w′ /∈ N(V (〈∗ka3〉k)), w and y3 belong to different partite
sets of Sk+1, and e(k+1)(w), e(k+1)(w′) /∈ F . Four vertices z, x2 ∈ V (〈∗ka2〉k), y4 ∈ V (〈∗ka4〉k), and z ′ ∈ V (〈∗kak+1〉k) are
determined such that (z, w) = e(k+1)(w), (x2, y3) = e(k+1)(y3), (y4, x3) = e(k+1)(x3), and (z ′, w′) = e(k+1)(w′).
There is a longest z–x2 path of length k! − 1 in 〈∗ka2〉k. By Lemma 6, there exists a longest s–t path of length k! − 1 or

k! − 2 in 〈∗ka1〉k that contains (w, w′). Imagine that (x3, y3) is fault-free. The induction hypothesis assures a longest y3–x3
path of length k! − 1 in 〈∗ka3〉k − (F − {(x3, y3)}). By Lemma 5, there is a longest y4–z ′ path of length (k − 2) × k! − 1 in
Sk+1[VA] − F , where A = {1, 2, . . . , k+ 1} − {a1, a2, a3}. The desired s–t path has length (k! − 1)+ ((k! − 1)− 1)+ (k! −
1)+ ((k− 2)× k! − 1)+ 4 = (k+ 1)! − 1 or (k! − 1)+ ((k! − 1)− 2)+ (k! − 1)+ ((k− 2)× k! − 1)+ 4 = (k+ 1)! − 2.
Then we consider the situation of β 6= γ . Set a1 = β and ak+1 = γ . A link fault (h, h′) is chosen from E(〈∗kα〉k) ∩ F such

that e(k+1)(h), e(k+1)(h′) /∈ F . Three cases are further discussed below.
Case 1. Neither of h and h′ belongs to N(V (〈∗ka1〉k)) ∪ N(V (〈∗kak+1〉k)). Set a3 = α. A desired s–t path in Sk+1 − F can be
constructed in a way similar to Fig. 2. Refer to Fig. 2 again. For the purpose of our construction, we let A = {1, 2, . . . , k+ 1}
and (x3, y3) = (h, h′)(∈ E(〈∗ka3〉k)). We assume that s and y3 belong to the same partite set of Sk+1. In case s and y3 belong
to different partite sets of Sk+1, we have s and x3 in the same partite set of Sk+1 and exchange x3 and y3 in Fig. 2.
Four vertices x1 ∈ V (〈∗ka1〉k) − {s}, y2, x2 ∈ V (〈∗ka2〉k), and y4 ∈ V (〈∗ka4〉k) are determined such that (x2, y3) =

e(k+1)(y3), y2 and x2 belong to different partite sets of Sk+1, e(k+1)(y2) /∈ F , (x1, y2) = e(k+1)(y2), and (y4, x3) = e(k+1)(x3).
There are a longest s–x1 path in 〈∗ka1〉k and a longest y2–x2 path in 〈∗ka2〉k, each of length k!−1. Imagine that (x3, y3) is fault-
free. The induction hypothesis assures a longest y3–x3 path of length k!−1 in 〈∗ka3〉k− (F−{(x3, y3)}). By Lemma 5, there is
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Fig. 7. A longest s–t path in Sk+1 − F when β 6= γ , h ∈ N(V (〈∗ka1〉k)), and h′ /∈ N(V (〈∗ka1〉k)) ∪ N(V (〈∗kak+1〉k)).

Fig. 8. A longest s–t path in Sk+1 − F when β 6= γ , h ∈ N(V (〈∗ka1〉k)), and h′ ∈ N(V (〈∗kak+1〉k)). (a) z 6= t . (b) z = t .

a longest y4−t path of length (k−2)×k!−1 or (k−2)×k!−2 in Sk+1[VA]−F , where A = {1, 2, . . . , k+1}−{a1, a2, a3}. The
desired s–t path has length 3×(k!−1)+((k−2)×k!−1)+3 = (k+1)!−1 or 3×(k!−1)+((k−2)×k!−2)+3 = (k+1)!−2.
Case 2. One of h and h′ belongs to N(V (〈∗ka1〉k)) ∪ N(V (〈∗kak+1〉k)). Without loss of generality, we assume that h ∈
N(V (〈∗ka1〉k)) and h′ /∈ N(V (〈∗ka1〉k))∪N(V (〈∗kak+1〉k)). A desired s–t path in Sk+1−F can be constructed as shown in Fig. 7.
Set a2 = α and (u2, v2) = (h, h′) ∈ E(〈∗ka2〉k). Six vertices v1 ∈ V (〈∗ka1〉k), u1 ∈ N(v1)∩V (〈∗ka1〉k)−{s},w ∈ V (〈∗ka1〉k),
u3 ∈ V (〈∗ka3〉k), vk ∈ V (〈∗kak〉k), and uk+1 ∈ V (〈∗kak+1〉k) − {t} are determined such that (v1, u2) = e(k+1)(u2),
(u3, v2) = e(k+1)(v2), e(k+1)(u1) /∈ F , (vk, u1) = e(k+1)(u1), w and s belong to different partite sets of Sk+1, e(k+1)(w) /∈ F ,
and (uk+1, w) = e(k+1)(w).
Imagine that (u2, v2) is fault-free. The induction hypothesis assures a longest u2–v2 path of length k!−1 in 〈∗ka2〉k− (F−

{(u2, v2)}). By Lemma 6, there exists a longest s–w path of length k! − 1 in 〈∗ka1〉k that contains (u1, v1). By Lemma 1,
there is a longest uk+1–t path of length k! − 1 or k! − 2 in 〈∗kak+1〉k. By Lemma 5, there is a longest u3–vk path of
length (k − 2) × k! − 1 in Sk+1[VA] − F , where A = {1, 2, . . . , k + 1} − {a1, a2, ak+1}. The desired s–t path has length
(k!−1)+((k!−1)−1)+(k!−1)+((k−2)×k!−1)+4 = (k+1)!−1 or (k!−1)+((k!−1)−1)+(k!−2)+((k−2)×k!−1)+4 =
(k+ 1)! − 2.
Case 3. Both of h′ and h belong to N(V (〈∗ka1〉k)) ∪ N(V (〈∗kak+1〉k)). If h ∈ N(V (〈∗ka1〉k))(∈ N(V (〈∗kak+1〉k))), then h′ ∈
N(V (〈∗kak+1〉k))(∈ N(V (〈∗ka1〉k))).Without loss of generality,we assume thath ∈ N(V (〈∗ka1〉k)) andh′ ∈ N(V (〈∗kak+1〉k)).
Set a2 = α. Two vertices w ∈ V (〈∗ka1〉k) and z ∈ V (〈∗kak+1〉k) are determined such that (w, h) = e(k+1)(h) and
(z, h′) = e(k+1)(h′). A desired s–t path in Sk+1 − F can be constructed as shown in Fig. 8(a) if z 6= t , and as shown in
Fig. 8(b) if z = t .
If z 6= t , then ten vertices u1 ∈ N(w) ∩ V (〈∗ka1〉k)− {s}, v1 ∈ V (〈∗ka1〉k)− {s}, u2, v2 ∈ V (〈∗ka2〉k), u3, v3 ∈ V (〈∗ka3〉k),

u4 ∈ V (〈∗ka4〉k), vk ∈ V (〈∗kak〉k), uk+1 ∈ V (〈∗kak+1〉k), and vk+1 ∈ N(z) ∩ V (〈∗kak+1〉k) − {t} are further determined
such that e(k+1)(u1) /∈ F , (v3, u1) = e(k+1)(u1), u3 and v3 belong to different partite sets of Sk+1, e(k+1)(u3) /∈ F ,
(v2, u3) = e(k+1)(u3), u2 and v2 belong to different partite sets of Sk+1, e(k+1)(u2) /∈ F , (vk, u2) = e(k+1)(u2), v1 and t belong
to the same partite set of Sk+1, e(k+1)(v1) /∈ F , (uk+1, v1) = e(k+1)(v1), e(k+1)(vk+1) /∈ F , and (u4, vk+1) = e(k+1)(vk+1).
There is a longest u3–v3 path of length k!−1 in 〈∗ka3〉k. Imagine that (h, h′) is fault-free. The induction hypothesis assures a

longest u2–v2 path of length k!−1 in 〈∗ka2〉k−(F−{(h, h′)}). By Lemma 6, there exist a longest uk+1–t path of length k!−1 in
〈∗
kak+1〉k that contains (z, vk+1) and a longest s–v1 path of length k!−1 or k!−2 in 〈∗ka1〉k that contains (u1,w). Since u4 and vk
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belong to different partite sets of Sk+1, Lemma 1 assures a longest u4–v4 path of length 4!−1 in 〈∗4a4〉4 if k = 4, and Lemma 5
assures a longest u4–vk path of length (k−3)×k!−1 in Sk+1[VA]−F if k > 4, where A = {1, 2, . . . , k+1}−{a1, a2, a3, ak+1}.
The desired s–t path has length (k! − 1)+ 2× ((k! − 1)− 1)+ ((k! − 1)− 1)+ ((k− 3)× k! − 1)+ 7 = (k+ 1)! − 1 or
(k! − 1)+ 2× ((k! − 1)− 1)+ ((k! − 2)− 1)+ ((k− 3)× k! − 1)+ 7 = (k+ 1)! − 2.
If z = t , then vertices u1, v1, u2, v2, u3, v3, vk, and uk+1 are determined all the same as above. Differently, vk+1 ∈

V (〈∗kak+1〉k) and u4 ∈ V (〈∗ka4〉k) are determined such that vk+1 and uk+1 belong to the same partite set of Sk+1,
e(k+1)(vk+1) /∈ F , and (u4, vk+1) = e(k+1)(vk+1). With the same arguments as the situation of z 6= t , there are a longest
u3–v3 path of length k!−1 in 〈∗ka3〉k, a longest u2–v2 path of length k!−1 in 〈∗ka2〉k− (F −{(h, h′)}), a longest s–v1 path of
length k!−1 or k!−2 in 〈∗ka1〉k that contains (u1,w), and a longest u4–vk path of length (k−3)×k!−1 in Sk+1[VA]−F , where
A = {1, 2, . . . , k+1}−{a1, a2, a3, ak+1}. By Lemma1, there is a longest uk+1–vk+1 path of length k!−2 in 〈∗kak+1〉k−{t} (uk+1
and t belong to different partite sets of Sk+1). The desired s–t path has length (k!−1)+((k!−1)−1)+((k!−1)−1)+((k−
3)×k!−1)+(k!−2)+7 = (k+1)!−1 or (k!−1)+((k!−1)−1)+((k!−2)−1)+((k−3)×k!−1)+(k!−2)+7 = (k+1)!−2.

5. Concluding remarks

Since processor faults and/or link faults may occur to multiprocessor systems, it is both practically significant and
theoretically interesting to study the fault tolerance of multiprocessor systems. Most of previous works used the random
fault model, which assumed that the faults might occur everywhere without any restriction. There was another fault model,
i.e., the conditional fault model, which assumed that the fault distribution must be subject to some constraint.
In this paper, adopting the conditional fault model and assuming that there were two or more fault-free links incident

to each node, we constructed a longest fault-free path between two arbitrary nodes of an n-dimensional star network with
up to 2n− 7 link faults. The result is optimal with respect to the number of link faults tolerated. The longest path has length
n!−1 (n!−2) if the two end nodes belong to different partite sets (the same partite set) of the star network. Two fundamental
constructionmethodswere demonstrated in Figs. 2 and 3.When additional restrictions were imposed, the two construction
methods must be adapted. The modified construction methods were demonstrated in Figs. 5–8.
Usually, the problem of embedding fault-free paths in faulty networks under the conditional fault model is more difficult

than the same problem under the random fault model. Although the problem of embedding fault-free paths in faulty
star networks were solved in [24] under the random fault model, the properties derived in [24] were not sufficient for
our purpose. Instead, we need to develop more properties, i.e., Lemmas 3–7, when the conditional fault model is used.
These lemmas are useful to those people who are interested in star networks and/or fault-tolerant embedding under the
conditional fault model.
Apparently, as a consequence of this paper, there is a fault-free Hamiltonian cycle in an n-dimensional star network with

up to 2n− 7 link faults under the conditional fault model and our assumption. For a faulty star network, finding a fault-free
Hamiltonian cycle is much easier than finding a longest fault-free path between every two distinct nodes. It is very likely
that embedding a fault-free Hamiltonian cycle in a faulty star network may tolerate more than 2n− 7 link faults under the
conditional fault model and the same assumption.
Finally, it should bementioned that the assumptionwemade in this paper about the conditional faultmodel ismeaningful

in practice. Let pn be the probability that each node of an n-dimensional star network with 2n − 7 link faults is incident
with two or more fault-free links. The value of pn is very close to 1, even if n is small. A formula for estimating a lower
bound on pn was derived in [14]. Based on this formula, we have, for example, p5 > 0.999736296, p10 > 1 − 3 × 10−43,
p15 > 1− 4× 10−140, and p20 > 1− 9× 10−305.

Acknowledgement

The authors would like to thank the National Science Council of the Republic of China, Taiwan for financially supporting
this research under Contract No. NSC 95-2221-E-239-002-.

References

[1] S.B. Akers, D. Horel, B. Krishnamurthy, The star graph: An attractive alternative to the n-cube, in: Proc. Int. Conference on Parallel Processing, 1987,
pp. 393–400.

[2] S.B. Akers, B. Krishnamurthy, A group-theoretic model for symmetric interconnection networks, IEEE Transactions on Computers 38 (4) (1989)
555–566.

[3] N. Ascheuer, Hamiltonian path problems in the on-line optimization of flexible manufacturing systems, Ph.D. Thesis, University of Technology, Berlin,
Germany, 1995. Also available at: ftp://ftp.zib.de/pub/zib-publications/reports/TR-96-03.ps.

[4] Y.A. Ashir, I.A. Stewart, Fault-tolerant embedding ofHamiltonian circuits in k-aryn-cube, SIAM Journal onDiscreteMathematics 15 (3) (2002) 317–328.
[5] N. Bagherzadeh,N.Nassif, S. Latifi, A routing andbroadcasting schemeon faulty star graphs, IEEE Transactions onComputers 42 (11) (1993) 1398–1403.
[6] M.Y. Chan, S.J. Lee, On the existence of Hamiltonian circuits in faulty hypercubes, SIAM Journal on Discrete Mathematics 4 (4) (1991) 511–527.
[7] K. Day, The conditional node connectivity of the k-ary n-cube, Journal of Interconnection Networks 5 (1) (2004) 13–26.
[8] K. Day, A.E. Al-Ayyoub, Fault diameter of k-ary n-cube networks, IEEE Transactions on Parallel and Distributed Systems 8 (9) (1997) 903–907.
[9] K. Day, A.R. Tripathi, A comparative study of topological properties of hypercubes and star graphs, IEEE Transactions on Parallel and Distributed
Systems 5 (1) (1994) 31–38.

[10] K. Diks, A. Pele, Efficient gossiping by packets in networks with random faults, SIAM Journal on Discrete Mathematics 9 (1) (1996) 7–18.

ftp://ftp.zib.de/pub/zib-publications/reports/TR-96-03.ps


P.-Y. Tsai et al. / Theoretical Computer Science 410 (2009) 766–775 775

[11] A.H. Esfahanian, Generalized measures of fault tolerance with application to N-cube networks, IEEE Transactions on Computers 38 (11) (1989)
1586–1591.

[12] A.H. Esfahanian, S.L. Hakimi, Fault-tolerant routing in de Bruijn communication networks, IEEE Transactions on Computers C-34 (9) (1985) 777–788.
[13] P. Fragopoulou, S.G. Akl, Optimal communication algorithms on star graphs using spanning tree constructions, Journal of Parallel and Distributed

Computing 24 (1) (1995) 55–71.
[14] J.S. Fu, Conditional fault-tolerant hamiltonicity of star graphs, Parallel Computing 33 (7–8) (2007) 488–496.
[15] S.Y. Hsieh, G.H. Chen, C.W. Ho, Hamiltonian-laceability of star graphs, Networks 36 (4) (2000) 225–232.
[16] S.Y. Hsieh, G.H. Chen, C.W. Ho, Longest fault-free paths in star graphs with vertex faults, Theoretical Computer Science 262 (1–2) (2001) 215–227.
[17] H.C. Hsu, T.K. Li, J.M. Tan, L.H. Hsu, Fault hamiltonicity and fault Hamiltonian connectivity of the arrangement graphs, IEEE Transactions on Computers

53 (1) (2004) 39–53.
[18] J.S. Jwo, S. Lakshmivarahan, S.K. Dhall, Embedding of cycles and grids in star graphs, Journal of Circuits, Systems, and Computers 1 (1) (1991) 43–74.
[19] S. Latifi, Combinatorial analysis of the fault-diameter of the n-cube, IEEE Transactions on Computers 42 (1) (1993) 27–33.
[20] S. Latifi, M. Hegde, M. Naraghi-Pour, Conditional connectivity measures for large multiprocessor systems, IEEE Transactions on Computers 43 (2)

(1994) 218–222.
[21] F.T. Leighton, Introduction to Parallel Algorithms and Architectures: Arrays, Trees, Hypercubes, Morgan Kaufmann, CA, 1991.
[22] M. Lewinter, W. Widulski, Hyper-hamilton laceable and caterpillar-spannable product graphs, Computers & Mathematics with Applications 34 (11)

(1997) 99–104.
[23] L. Qiao, Z. Yi, Restricted connectivity and restricted fault diameter of some interconnection networks, DIMACS Series in Discrete Mathematics and

Theoretical Computer Science 21 (1995) 267–273.
[24] T.K. Li, J.M. Tan, L.H. Hsu, Hyper Hamiltonian laceability on the edge fault star graph, Information Sciences 165 (2004) 59–71.
[25] A.C. Liang, S. Bhattacharya, W.T. Tsai, Fault-tolerant multicasting on hypercubes, Journal of Parallel and Distributed Computing 23 (1994) 418–428.
[26] V.E. Mendia, D. Sarkar, Optimal broadcasting on the star graph, IEEE Transactions on Parallel and Distributed Systems 3 (4) (1992) 389–396.
[27] Z. Miller, D. Pritikin, I.H. Sudborough, Near embeddings of hypercubes into Cayley graphs on the symmetrical group, IEEE Transactions on Computers

43 (1) (1994) 13–22.
[28] K. Qiu, S.G. Akl, H. Meijer, On some properties and algorithms for the star and pancake interconnection networks, Journal of Parallel and Distributed

Computing 22 (1) (1994) 16–25.
[29] Y. Rouskov, S. Latifi, P.K. Srimani, Conditional fault diameter of star graph networks, Journal of Parallel andDistributed Computing 33 (1) (1996) 91–97.
[30] C.H. Tsai, Linear array and ring embeddings in conditional faulty hypercubes, Theoretical Computer Science 314 (2004) 431–443.
[31] S.A. Wong, Hamiltonian cycles and paths in butterfly graphs, Networks 26 (1995) 145–150.
[32] J.Wu, Safety levels—anefficientmechanism for achieving reliable broadcasting in hypercubes, IEEE Transactions onComputers 44 (5) (1995) 702–706.
[33] J. Wu, Fault tolerance measures for m-ary n-dimensional hypercubes based on forbidden faulty sets, IEEE Transactions on Computers 47 (8) (1998)

888–893.
[34] http://inrg.csie.ntu.edu.tw/~bytsai/.

http://inrg.csie.ntu.edu.tw/~bytsai/

	Fault-free longest paths in star networks with conditional link faults
	Introduction
	Preliminaries
	Properties and main result
	Proof of Theorem 1
	|E(langle*k q ranglek) F|leq 2 k - 7 for all 1 leq q leq k+ 1 
	|E(langle*kα ranglek ) F |= 2 k - 6 for some 1leq α leq k +1
	 s in V (langle *kα ranglek) and t -.25ex-.25ex-.25ex-.25exV (langle*kα ranglek ) or s -.25ex-.25ex-.25ex-.25exV (langle *k α ranglek ) and  t in V (langle *kα ranglek )
	 s, t -.25ex-.25ex-.25ex-.25exV (langle*kα ranglek) 


	Concluding remarks
	Acknowledgement
	References


