Fault-free longest paths in star networks with conditional link faults

Ping-Ying Tsai ${ }^{\text {a }}$, Jung-Sheng Fu ${ }^{\text {b }}$, Gen-Huey Chen ${ }^{\text {c,* }}$
${ }^{\text {a }}$ Department of Computer Science and Information Engineering, Hwa Hsia Institute of Technology, Taipei, Taiwan, ROC
${ }^{\text {b }}$ Department of Electronics Engineering, National United University, Miaoli, Taiwan, ROC
${ }^{\text {c }}$ Department of Computer Science and Information Engineering, National Taiwan University, Taipei, 10764, Taiwan, ROC

A R TICLE IN F O

Article history:

Received 26 May 2007
Received in revised form 15 July 2008
Accepted 6 November 2008
Communicated by D. Peleg

Keywords:

Conditional fault model
Embedding
Fault tolerance
Hamiltonian laceability
Random fault model
Star network

Abstract

The star network, which belongs to the class of Cayley graphs, is one of the most versatile interconnection networks for parallel and distributed computing. In this paper, adopting the conditional fault model in which each node is assumed to be incident with two or more fault-free links, we show that an n-dimensional star network can tolerate up to $2 n-7$ link faults, and be strongly (fault-free) Hamiltonian laceable, where $n \geq 4$. In other words, we can embed a fault-free linear array of length $n!-1(n!-2)$ in an n-dimensional star network with up to $2 n-7$ link faults, if the two end nodes belong to different partite sets (the same partite set). The result is optimal with respect to the number of link faults tolerated. It is already known that under the random fault model, an n-dimensional star network can tolerate up to $n-3$ faulty links and be strongly Hamiltonian laceable, for $n \geq 3$.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

The star network [1], which belongs to the class of Cayley graphs [2], has been recognized as an attractive alternative to the hypercube. It possesses many favorable topological properties such as recursiveness, symmetry, maximal fault tolerance, sublogarithmic degree and diameter, and strong resilience (see [1]). They are all desirable when we are building an interconnection topology for a parallel and distributed system. Besides, the star network can embed rings [28], grids [18], trees [5], and hypercubes [27]. Efficient communication algorithms for shortest-path routing [28], multiple-path routing [9], broadcasting [26] and scattering [13] are also available.

A linear array, which is one of the most fundamental networks for parallel and distributed computation, is suitable for developing simple and efficient algorithms. Numerous algorithms that were designed on linear arrays for solving various algebraic problems and graph problems can be found in [21]. A linear array can be also used as a control/data flow structure for distributed computation in a network (refer to [3] for an example).

Since node faults and/or link faults may occur in networks, it is important to consider faulty networks. Previously, communication problems (e.g., routing [5,12], broadcasting [32], multicasting [25], and gossiping [10]), embedding problems $[4,6,16,17,24,30]$, and fault diameters $[8,19,29]$ were studied on various faulty networks. Among them, two fault models were adopted; one is the random fault model [5,8,10,12,16,17,24,25,32], and the other is the conditional fault model [4,6,19,29,30].

The random fault model assumed that the faults might occur anywhere without any restriction, whereas the conditional fault model assumed that the fault distribution must be subject to some constraint, e.g., that two or more fault-free links are incident to each node. As a consequence of the constraint, it is in general more difficult to solve problems under the conditional fault model than the random fault model.

[^0]

Fig. 1. S_{4} and four embedded S_{3} 's.
In this paper, under the conditional fault model and with the assumption of at least two fault-free links incident to each node, we show that an n-dimensional star network can tolerate up to $2 n-7$ link faults, while retaining strongly (fault-free) Hamiltonian laceability, where $n \geq 4$. The result is optimal with respect to the number of link faults tolerated. For the same problem, at most $n-3$ link faults can be tolerated if the random fault model is adopted [24]. With our results, all parallel algorithms developed on a linear array of length $n!-1$ or $n!-2$ can be executed as well on an n-dimensional star network with up to $2 n-7$ link faults.

Previous results under the conditional fault model are described as follows. With the same assumption as ours, an n dimensional hypercube (n-cube for short) with $2 n-5$ link faults is strongly (fault-free) Hamiltonian laceable [30], and an m-ary n-cube with $4 n-5$ link faults has a fault-free Hamiltonian cycle [4]. On the other hand, with the assumption of each node having at least k fault-free neighbors, the minimum number of node faults whose removal may disconnect an n-cube is $(n-k) 2^{k}$, where $1 \leq k \leq\lfloor n / 2\rfloor[20]$. Such a minimum number was named the restricted-node-connectivity and denoted by R_{k}-node-connectivity [20]. The node-connectivity of an n-cube is known to be n. There is a lower bound of $m^{d}((n-d-1)(m-1)(s+1)+(m-s-1))$ on the R_{k}-node-connectivity of an m-ary n-cube [33], where $d=\lfloor k /(m-1)\rfloor$ and $s=k \bmod (m-1)$.

When $k=1$, the R_{1}-node-connectivity of an n-cube (an m-ary n-cube) is $2 n-2$ ($4 n-2$ if $m \geq 4$, and $4 n-3$ if $m=3$) [11] ([7]), and the R_{1}-node-connectivities of cube-connected cycles, undirected binary de Bruijn networks and Kautz graphs are all greater by one at most than their node-connectivities [23]. Besides, the maximal diameters of an n-cube with $2 n-3$ node faults and an n-dimensional star network with $2 n-5$ node faults are $n+2$ [19] and $\lfloor 3(n-1) / 2\rfloor+2$ [29], respectively. When they are fault-free, their diameters are n and $\lfloor 3(n-1) / 2\rfloor$, respectively.

In the next section, the structure of the star network is reviewed. Some necessary definitions, notations and previous results are also introduced. In Section 3, some new properties of the star network are derived in order to prove the main result. The proof of the main result is shown in Section 4. Finally, this paper concludes with some remarks in Section 5.

2. Preliminaries

It is convenient to represent a network as a graph G, where each vertex (edge) of G uniquely represents a node (link) of the network. We use $V(G)$ and $E(G)$ to denote the vertex set and edge set of G, respectively. Throughout this paper, we use network and graph, node and vertex, link and edge, interchangeably. The following is a definition of star networks, in terms of graph theory.

Definition 1 ([1]). An n-dimensional star network, denoted by S_{n}, has the node set $V\left(S_{n}\right)=\left\{a_{1} a_{2} \cdots a_{n} \mid a_{1} a_{2} \cdots a_{n}\right.$ is a permutation of $1,2, \ldots, n\}$ and the link set $E\left(S_{n}\right)=\left\{\left(a_{1} a_{2} \cdots a_{n}, a_{i} a_{2} \cdots a_{i-1} a_{1} a_{i+1} \cdots a_{n}\right) \mid a_{1} a_{2} \cdots a_{n} \in V\left(S_{n}\right)\right.$ and $2 \leq$ $i \leq n\}$.
S_{n} has n ! nodes, each of degree $n-1 . S_{1}$ is a node, S_{2} is a link, and S_{3} is a cycle of length six. S_{4} is shown in Fig. 1. The link ($a_{1} a_{2} \cdots a_{n}, a_{i} a_{2} \cdots a_{i-1} a_{1} a_{i+1} \cdots a_{n}$) is referred to as an i-dimensional link. We use $e^{(i)}(v)$ to denote the i-dimensional link that is incident to node v, and let $E^{(i)}\left(S_{n}\right)=\left\{e^{(i)}(v) \mid v \in V\left(S_{n}\right)\right\}$ be the set of all i-dimensional links in S_{n}. S_{n} is both node symmetric and link symmetric (see [2]).

It can be observed from Fig. 1 that S_{4} contains four embedded S_{3} 's, denoted by $\langle * * * 1\rangle_{3},\langle * * * 2\rangle_{3},\langle * * * 3\rangle_{3}$ and $\langle * * * 4\rangle_{3}$, respectively $(* * * 1$, for example, represents any permutation of $1,2,3,4$ ending with 1$)$. In general, S_{n} contains n embedded S_{n-1} 's.

For $1 \leq r \leq n-1$, an embedded S_{r} in S_{n} is denoted by $\left\langle s_{1} s_{2} \cdots s_{n}\right\rangle_{r}$, where $s_{1}=*$ and there are exactly $r-1$ occurrences of $*$ in $s_{2} S_{3} \cdots s_{n}$. For example, $\langle * 4 * 2\rangle_{2}$ denotes an embedded S_{2} in S_{4}. When S_{n} is partitioned into $\left\langle *^{d-1} 1 *^{n-d}\right\rangle_{n-1}$, $\left\langle *^{d-1} 2 *^{n-d}\right\rangle_{n-1}, \ldots,\left\langle *^{d-1} n *^{n-d}\right\rangle_{n-1}, S_{n}$ is said to be partitioned along dimension d, where $1<d \leq n$ and $*^{d-1}\left(*^{n-d}\right)$ represents $d-1(n-d)$ consecutive $*$'s. These n embedded S_{n-1} 's are connected by d-dimensional links. When $d=n$, we use $\tilde{E}_{p, q}^{(n)}\left(S_{n}\right)$ to represent the set of those n-dimensional links in S_{n} that connect $\left\langle *^{n-1} p\right\rangle_{n-1}$ and $\left\langle *^{n-1} q\right\rangle_{n-1}$, where $p \neq q$. Clearly, we have $\left|\tilde{E}_{p, q}^{(n)}\left(S_{n}\right)\right|=(n-2)$!.

A path from vertex $u\left(=v_{0}\right)$ to vertex $v\left(=v_{k}\right)$ in a graph G, represented as $\left\langle v_{0}, v_{1}, \ldots, v_{k}\right\rangle$, is referred to as a $u-v$ path. A path (cycle) in G is a Hamiltonian path (Hamiltonian cycle) if it contains every vertex of G exactly once. G is bipartite if there is a partition of $V(G)$ into $V_{0}(G)$ and $V_{1}(G)$ such that every $(u, v) \in E(G)$ has either $u \in V_{0}(G)$ and $v \in V_{1}(G)$ or $u \in V_{1}(G)$ and $v \in V_{0}(G)$. The two subsets $V_{0}(G)$ and $V_{1}(G)$ are referred to as partite sets of G. Star networks are known to be bipartite [1].

A bipartite graph G with $\left|V_{0}(G)\right|=\left|V_{1}(G)\right|$ is Hamiltonian laceable if it has a $u-v$ Hamiltonian path for every $u \in V_{0}(G)$ and every $v \in V_{1}(G)$ [31], and strongly Hamiltonian laceable if it additionally has a longest $u-v$ path of length $\left|V_{0}(G)\right|+\left|V_{1}(G)\right|-2$ for all $u, v \in V_{0}(G)$ or $u, v \in V_{1}(G)$ [15]. A Hamiltonian laceable graph G is hyper Hamiltonian laceable if for every $w \in V_{0}(G)\left(w \in V_{1}(G)\right), G-w$ contains a $u-v$ Hamiltonian path for all $u, v \in V_{1}(G)\left(u, v \in V_{0}(G)\right)$ [22]. Clearly, a hyper Hamiltonian laceable graph is strongly Hamiltonian laceable.

Given a vertex u in G, we define $N(u)=\{v \mid(u, v) \in E(G)\}$ to be the neighborhood of u, which is the set of vertices that are adjacent to u in G. The size of $N(u)$, i.e., $|N(u)|$, is the degree of u. The minimum vertex degree of G is denoted by $\delta(G)=\min \{\mid N(u) \| u \in V(G)\}$. Let V^{\prime} be a vertex subset of G. We define $N\left(V^{\prime}\right)=\bigcup_{u \in V^{\prime}} N(u)-V^{\prime}$ to be the neighborhood of V^{\prime}. Besides, we use $G\left[V^{\prime}\right]$ to denote the subgraph of G induced by V^{\prime}. Throughout this paper, we use $F\left(\subseteq E\left(S_{n}\right)\right)$ to denote the set of link faults in S_{n}.
Lemma 1 ([24]). $S_{n}-F$ is strongly Hamiltonian laceable if $|F| \leq n-3$, and hyper Hamiltonian laceable if $|F| \leq n-4$, where $n \geq 4$.
Lemma 2 ([14]). If $|F| \leq 2 n-7$ and $\delta\left(S_{n}-F\right) \geq 2$, then there exists $1<d \leq n$ such that $\left|E^{(d)}\left(S_{n}\right) \cap F\right| \geq 1$ and $\delta\left(\left\langle *^{d-1} q *^{n-d}\right\rangle_{n-1}-F\right) \geq 2$ for all $1 \leq q \leq n$, where $n \geq 4$.

3. Properties and main result

In this section, we first introduce some properties of S_{n}. Then we present our main result.
Lemma 3. Suppose $u=u_{1} u_{2} \cdots u_{n} \in V\left(\left\langle *^{n-1} q\right\rangle_{n-1}\right)$, where $u_{n}=q$ and $n \geq 3$. For every $r \in\{1,2, \ldots, n\}-\left\{u_{1}\right.$, $\left.q\right\}$, there exists $w \in V\left(\left\langle *^{n-1} r\right\rangle_{n-1}\right)$ and $v \in N(u) \cap V\left(\left\langle *^{n-1} q\right\rangle_{n-1}\right)$ such that $(w, v)=e^{(n)}(v)$.

Proof. We assume $u_{c}=r$, where $1<c<n$. Select $v=u_{c} u_{2} \cdots u_{c-1} u_{1} u_{c+1} \cdots u_{n}\left(\in N(u) \cap V\left(\left\langle *^{n-1} q\right\rangle_{n-1}\right)\right)$ and $w=u_{n} u_{2} \cdots u_{c-1} u_{1} u_{c+1} \cdots u_{c}\left(\in V\left(\left\langle *^{n-1} r\right\rangle_{n-1}\right)\right)$. Clearly, $(w, v)=e^{(n)}(v)$.
Lemma 4. Suppose that P is a path in $\left\langle *^{n-1} q\right\rangle_{n-1}-F$, where $n \geq 4$ and $1 \leq q \leq n$. If $|F| \leq 2 n-7$ and P is Hamiltonian or of length $(n-1)!-2$, then P has a link (u, v) with $e^{(n)}(u), e^{(n)}(v) \notin F$.

Proof. Suppose conversely that no such (u, v) can be found in P. Then, $\left|E^{(n)}\left(S_{n}\right) \cap F\right| \geq((n-1)!-2) / 2$, which is greater than $2 n-7$ as $n \geq 4$, a contradiction.

In subsequent discussion, we let $V_{A}=\bigcup_{r \in A} V\left(\left\langle *^{n-1} r\right\rangle_{n-1}\right)$, where $A \subseteq\{1,2, \ldots, n\}$.
Lemma 5. Suppose that $A \subseteq\{1,2, \ldots, n\}$ and $n \geq 5$. For any $s \in V\left(\left\langle *^{n-1} p\right\rangle_{n-1}\right)$ and $t \in V\left(\left\langle *^{n-1} q\right\rangle_{n-1}\right)$, there exists a longest s-t path of length $|A| \times(n-1)$! -1 or $|A| \times(n-1)!-2$ in $S_{n}\left[V_{A}\right]-F$, where $p, q \in A$ and $p \neq q$, provided the following two conditions hold:
(1) $\left|\tilde{E}_{i, j}^{(n)}\left(S_{n}\right) \cap F\right|<(n-2)!/ 2$ for all $i, j \in A$ and $i \neq j$;
(2) $\left\langle *^{n-1} r\right\rangle_{n-1}-F$ is strongly Hamiltonian laceable for every $r \in A$.

Proof. Since the distance between node $j a_{2} *^{n-4} a_{n-1} i$ and node $j a_{n-1} *^{n-4} a_{2} i$ is three, they belong to different partite sets of $\left\langle *^{n-1} i\right\rangle_{n-1}$. For each link $\left(j a_{2} *^{n-4} a_{n-1} i\right.$, $\left.i a_{2} *^{n-4} a_{n-1} j\right)$ connecting $\left\langle *^{n-1} i\right\rangle_{n-1}$ with $\left\langle *^{n-1} j\right\rangle_{n-1}$, there exists another link $\left(j a_{n-1} *^{n-4} a_{2} i, i a_{n-1} *^{n-4} a_{2} j\right.$) connecting $\left\langle *^{n-1} i\right\rangle_{n-1}$ with $\left\langle *^{n-1} j\right\rangle_{n-1}$. It is implied that there are an equal number (i.e., $(n-2)!/ 2)$ of nodes in $V_{0}\left(\left\langle *^{n-1} i\right\rangle_{n-1}\right)$ and $V_{1}\left(\left\langle *^{n-1} i\right\rangle_{n-1}\right)$, respectively, that are connected to $\left\langle *^{n-1} j\right\rangle_{n-1}$.

Suppose $A=\left\{a_{1}, a_{2}, \ldots, a_{|A|}\right\}$. A longest $s-t$ path in $S_{n}\left[V_{A}\right]-F$ is shown in Fig. 2, where $a_{1}=p$ and $a_{|A|}=q$ are assumed. Since $\left|\tilde{E}_{a_{1}, a_{2}}^{(n)}\left(S_{n}\right)\right|=(n-2)$!, two links in $\tilde{E}_{a_{1}, a_{2}}^{(n)}\left(S_{n}\right)-F$, one incident to $V_{0}\left(\left\langle *^{n-1} a_{1}\right\rangle_{n-1}\right)$ and the other incident to $V_{1}\left(\left\langle *^{n-1} a_{1}\right\rangle_{n-1}\right)$, can be found, as a consequence of (1). Hence, a link $\left(x_{1}, y_{2}\right) \in \tilde{E}_{a_{1}, a_{2}}^{(n)}\left(S_{n}\right)-F$ can be determined such that x_{1} and s belong to different partite sets of $\left\langle *^{n-1} a_{1}\right\rangle_{n-1}$ and $y_{2} \in V\left(\left\langle *^{n-1} a_{2}\right\rangle_{n-1}\right)$. As a consequence of (2), there exists a Hamiltonian $s-x_{1}$ path in $\left\langle *^{n-1} a_{1}\right\rangle_{n-1}-F$.

Fig. 2. A longest $s-t$ path in $S_{n}\left[V_{A}\right]-F$.

Fig. 3. A longest $s-t$ path in S_{n} that contains (u, v), where $s, t \in V\left(\left\langle *^{k} q\right\rangle_{k}\right)$.
Similarly, by the aid of (1) and (2), links $\left(x_{k}, y_{k+1}\right) \in \tilde{E}_{a_{k}, a_{k+1}}^{(n)}\left(S_{n}\right)-F$ and Hamiltonian $y_{k}-x_{k}$ paths in $\left\langle *^{n-1} a_{k}\right\rangle_{n-1}-F$ can be obtained, where $2 \leq k \leq|A|-1$. All these Hamiltonian paths together with a longest $y_{|A|}-t$ path in $\left\langle *^{n-1} a_{|A|}\right\rangle_{n-1}-F$ constitute a longest $s-t$ path in $S_{n}\left[V_{A}\right]-F$. If the longest $y_{|A|}-t$ path has length $(n-1)$! -1 , the length of the longest $s-t$ path is computed as $(|A|-1) \times((n-1)!-1)+(|A|-1)+((n-1)!-1)=|A| \times(n-1)!-1$. Similarly, if the longest $y_{|A|}-t$ path has length $(n-1)!-2$, the longest $s-t$ path has length $|A| \times(n-1)!-2$.

Lemma 6. Suppose that s, t are two distinct nodes of S_{n} and $(u, v) \in E\left(S_{n}\right)$, where $n \geq 4$. If $\{s, t\} \neq\{u$, v\}, then there exists a Hamiltonian s-t path or an s-t path of length $(n-1)!-2$ in S_{n} that contains (u, v).
Proof. We prove this lemma by induction on n. This lemma holds for S_{4}, which can be verified by exhaustive search (see [34]). So, we assume that this lemma holds for S_{k}, and then consider S_{k+1} below, where $k \geq 4$.

Without loss of generality, suppose $u, v \in V\left(\left\langle *^{k} q\right\rangle_{k}\right)$ for some $1 \leq q \leq k+1$. We also assume $(u, v) \in E^{(l)}\left(S_{k+1}\right)$, where $2 \leq l \leq k$. With the following three cases, we show a longest $s-t$ path of length $(k+1)!-1$ or $(k+1)!-2$ in S_{k+1} that contains (u, v).
Case 1. $s \in V\left(\left\langle *^{k} q\right\rangle_{k}\right)$ and $t \notin V\left(\left\langle *^{k} q\right\rangle_{k}\right)$ or $s \notin V\left(\left\langle *^{k} q\right\rangle_{k}\right)$ and $t \in V\left(\left\langle *^{k} q\right\rangle_{k}\right)$. We consider the situation of $s \in V\left(\left\langle *^{k} q\right\rangle_{k}\right)$ and $t \notin V\left(\left\langle *^{k} q\right\rangle_{k}\right)$. The discussion for the situation of $s \notin V\left(\left\langle *^{k} q\right\rangle_{k}\right)$ and $t \in V\left(\left\langle *^{k} q\right\rangle_{k}\right)$ is very similar. A desired $s-t$ path can be obtained using the construction method of Fig. 2. We only need to change $n-1$ to k and $|A|$ to $k+1$, and set $a_{1}=q$. Besides, the node x_{1} is selected with $\left\{s, x_{1}\right\} \neq\{u, v\}$. The induction hypothesis assures a Hamiltonian $s-x_{1}$ path in $\left\langle *^{k} a_{1}\right\rangle_{k}$ that contains (u, v). The desired $s-t$ path has length $(k+1) \times k!-1=(k+1)!-1$ or $(k+1) \times k!-2=(k+1)!-2$.
Case 2. $s, t \in V\left(\left\langle *^{k} q\right\rangle_{k}\right)$. A desired $s-t$ path can be obtained as shown in Fig. 3, where $a_{1}=q$ is assumed. The induction hypothesis assures a longest $s-t$ path in $\left\langle *^{k} a_{1}\right\rangle_{k}$ that contains (u, v). A link $\left(w, w^{\prime}\right) \neq(u, v)$ can be selected from the path. Let $z=e^{(k+1)}(w)$ and $z^{\prime}=e^{(k+1)}\left(w^{\prime}\right)$. A Hamiltonian $z-z^{\prime}$ path in $S_{k+1}-\left\langle *^{k} a_{1}\right\rangle_{k}$ can be obtained using the construction method of Fig. 2 (changing s to z, t to $z^{\prime}, n-1$ to $k,|A|$ to k, and $\left\langle *^{n-1} a_{r}\right\rangle_{n-1}$ to $\left\langle *^{k} a_{r+1}\right\rangle_{k}$ for all $1 \leq r \leq|A|$). The Hamiltonian $z-z^{\prime}$ path, combining with $(w, z),\left(w^{\prime}, z^{\prime}\right)$, and the $s-w$ and $w^{\prime}-t$ paths in $\left\langle *^{k} a_{1}\right\rangle_{k}$, forms a desired $s-t$ path in S_{k+1}. The desired $s-t$ path has length $(k \times k!-1)+2+((k!-1)-1)=(k+1)!-1$ or $(k \times k!-1)+2+((k!-2)-1)=(k+1)!-2$. Case 3. s, $t \notin V\left(\left\langle *^{k} q\right\rangle_{k}\right)$. Suppose $s \in V\left(\left\langle *^{k} g\right\rangle_{k}\right)$ and $t \in V\left(\left\langle *^{k} h\right\rangle_{k}\right)$, where $g, h \in\{1,2, \ldots, k+1\}-\{q\}$. First we assume $g \neq h$. A desired $s-t$ path can be obtained using the construction method of Fig. 2 (changing $n-1$ to k and $|A|$ to $k+1$, and letting $a_{1}=g, a_{2}=q$, and $a_{k+1}=h$). The node x_{2} is selected with $\left\{x_{2}, y_{2}\right\} \neq\{u, v\}$. The induction hypothesis assures a Hamiltonian $y_{2}-x_{2}$ path in $\left\langle *^{k} a_{2}\right\rangle_{k}$ that contains (u, v). The desired $s-t$ path has length $(k+1) \times k!-1=(k+1)!-1$ or $(k+1) \times k!-2=(k+1)!-2$.

Next we assume $g=h$. A desired $s-t$ path can be obtained by slightly modifying the construction method of Fig. 3. We only need to set $a_{1}=g=h$ and $a_{2}=q$. The node x_{2} is selected with $\left\{z, x_{2}\right\} \neq\{u, v\}$. The induction hypothesis assures a Hamiltonian $z-x_{2}$ path in $\left\langle *^{k} a_{2}\right\rangle_{k}$ that contains (u, v). A Hamiltonian $y_{3}-z^{\prime}$ path in $S_{k+1}-\left\langle *^{k} a_{1}\right\rangle_{k}-\left\langle *^{k} a_{2}\right\rangle_{k}$ can be obtained, similarly, using the construction method of Fig. 2. The desired $s-t$ path, which consists of the $s-w$ and $w^{\prime}-t$ paths in $\left\langle *^{k} a_{1}\right\rangle_{k}$, the Hamiltonian $z-x_{2}$ path, the Hamiltonian $y_{3}-z^{\prime}$ path, and three links $(w, z),\left(w^{\prime}, z^{\prime}\right),\left(x_{2}, y_{3}\right)$, has length $(k+1)!-1$ or $(k+1)!-2$.

Lemma 7. For any two distinct links $(s, t),(u, v)$ in S_{n}, there exists a Hamiltonian cycle in S_{n} that contains both of them, where $n \geq 3$.
Proof. Since S_{3} is a cycle of length 6 , this lemma holds for S_{3}. When $n \geq 4$, since s and t belong to different partite sets of S_{n}, this lemma holds for S_{n}, as a consequence of Lemma 6 .

Fig. 4. A distribution of $2 n-6$ link faults over S_{n}.
The main result of this paper is presented in the following theorem whose proof is shown in the next section.
Theorem 1. With the assumption of two or more fault-free links incident to each node, an n-dimensional star network can tolerate up to $2 n-7$ link faults, and be strongly (fault-free) Hamiltonian laceable, where $n \geq 4$.

Theorem 1 is optimal with respect to the number of link faults tolerated. Fig. 4 shows a distribution of $2 n-6$ link faults over S_{n}, where $\langle s, u, v, t\rangle$ is an s - t path and $(s, u),(u, v)((u, v),(v, t))$ are the only two fault-free links incident to $u(v)$. It is easy to see that no fault-free Hamiltonian $s-t$ path exists in the faulty S_{n}.

4. Proof of Theorem 1

With $|F| \leq 2 n-7$ and $\delta\left(S_{n}-F\right) \geq 2$, we show by induction that there exists a longest $s-t$ path of length $n!-1$ or $n!-2$ between every two distinct nodes s, t of $S_{n}-F$. By Lemma $1\left(n-3=2 n-7\right.$ as $n=4$), the theorem holds for S_{4}. So, we assume that this theorem holds for S_{k}, and then consider S_{k+1} in the rest of this section, where $k \geq 4$.

By Lemma 2, we can partition S_{k+1} along some dimension d such that $\left|E^{(d)}\left(S_{k+1}\right) \cap F\right| \geq 1$ and $\bar{\delta}\left(\left\langle *^{d-1} q *^{k+1-d}\right\rangle_{k}-F\right) \geq 2$ for all $1 \leq q \leq k+1$, where $1<d \leq k+1$. Without loss of generality, we assume $d=k+1$. Now that $\left|E^{(k+1)}\left(S_{k+1}\right) \cap F\right| \geq 1$, we have $\left|E\left(\left\langle *^{k} q\right\rangle_{k}\right) \cap F\right| \leq 2 k-6$ for all $1 \leq q \leq k+1$. A desired $s-t$ path in $S_{k+1}-F$ is constructed in Section 4.1 if $\left|E\left(\left\langle *^{k} q\right\rangle_{k}\right) \cap F\right| \leq 2 k-7$ for all $1 \leq q \leq k+1$, and constructed in Section 4.2 else.
4.1. $\left|E\left(\left\langle *^{k} q\right\rangle_{k}\right) \cap F\right| \leq 2 k-7$ for all $1 \leq q \leq k+1$

Suppose that $\left|E\left(\left\langle *^{k} q\right\rangle_{k}\right) \cap F\right| \leq 2 k-7$ for all $1 \leq q \leq k+1$. Since $|F| \leq 2 k-5$, we have $\sum_{i, j \in\{1,2, \ldots, k+1\}}$ and $i \neq j\left|\tilde{E}_{i, j}^{(k+1)}\left(S_{k+1}\right) \cap \bar{F}\right| \leq 2 k-5$, where $k \geq 4$. Notice that $2 k-5=((k+1)-2)!/ 2$ when $k=4$, and $2 k-5<((k+1)-2)!/ 2$ when $k>4$. Two cases are discussed below.
Case 1. $k>4$. We have $\left|\tilde{E}_{i, j}^{(k+1)}\left(S_{k+1}\right) \cap F\right|<((k+1)-2)!/ 2$ for all $i, j \in\{1,2, \ldots, k+1\}$ and $i \neq j$. The induction hypothesis assures that $\left\langle *^{k} q\right\rangle_{k}-F$ is strongly Hamiltonian laceable for all $1 \leq q \leq k+1$. If $s \in V\left(\left\langle *^{k} g\right\rangle_{k}\right)$ and $t \in V\left(\left\langle *^{k} h\right\rangle_{k}\right)$ for some $g, h \in\{1,2, \ldots, k+1\}$ and $g \neq h$, then by Lemma $5, S_{k+1}-F$ is strongly Hamiltonian laceable. If $s, t \in V\left(\left\langle *^{k} g\right\rangle_{k}\right)$ for some $1 \leq g \leq k+1$, then a desired $s-t$ path in $S_{k+1}-F$ can be obtained by slightly modifying the construction method of Fig. 3. We only need to set $a_{1}=g$. The induction hypothesis assures a longest $s-t$ path in $\left\langle *^{k} a_{1}\right\rangle_{k}-F$. By Lemma 4 , a link $\left(w, w^{\prime}\right)$ with $(w, z) \in \tilde{E}_{a_{1}, a_{2}}^{(k+1)}-F$ and $\left(w^{\prime}, z^{\prime}\right) \in \tilde{E}_{a_{1}, a_{k+1}}^{(k+1)}-F$ can be selected from the path. By Lemma 5 , a Hamiltonian $z-z^{\prime}$ path in $S_{k+1}-\left\langle *^{k} a_{1}\right\rangle_{k}-F$ can be obtained. The resulting longest $s-t$ path in $S_{k+1}-F$ has length $(k+1)!-1$ or $(k+1)!-2$.
Case 2. $k=4$. If $\left|\tilde{E}_{i, j}^{(5)}\left(S_{5}\right) \cap F\right|<((4+1)-2)!/ 2=3$ for all $i, j \in\{1,2, \ldots, 5\}$ and $i \neq j$, then the discussion is the same as Case 1. So, we consider $\left|\tilde{E}_{i^{\prime}, j^{\prime}}^{(5)}\left(S_{5}\right) \cap F\right|=3$ for $i^{\prime}, j^{\prime} \in\{1,2, \ldots, 5\}$ and $i^{\prime} \neq j^{\prime}$. Since $|F| \leq 3$ as $k=4$, all link faults are in $\tilde{E}_{i^{\prime}, j^{\prime}}^{(5)}\left(S_{5}\right)$. Assume that $s \in V\left(\left\langle *^{4} g\right\rangle_{4}\right)$ and $t \in V\left(\left\langle *^{4} h\right\rangle_{4}\right)$, where $g, h \in\{1,2, \ldots, 5\}$. When $g \neq h$, a desired $s-t$ path in $S_{5}-F$ can be obtained using the construction method of Fig. 2. We only need to change $n-1$ to 4 and $|A|$ to 5 , set $a_{1}=g$ and $a_{5}=h$, and set a_{2}, a_{3}, a_{4} with $\left\{i^{\prime}, j^{\prime}\right\} \neq\left\{a_{r}, a_{r+1}\right\}$ for all $1 \leq r \leq 4$. The induction hypothesis assures a Hamiltonian $s-x_{1}$ path in $\left\langle *^{4} a_{1}\right\rangle_{4}-F$, a Hamiltonian $y_{r}-x_{r}$ path in $\left\langle *^{4} a_{r}\right\rangle_{4}-F$ for all $2 \leq r \leq 4$, and a longest $y_{5}-t$ path in $\left\langle *^{4} a_{5}\right\rangle_{4}-F$. The desired $s-t$ path has length 5 ! -1 or 5 ! -2 .

When $g=h$, a desired $s-t$ path in $S_{5}-F$ can be obtained using the construction method of Fig. 3. We only need to change $k+1$ to 5 , set $a_{1}=g=h$, and set $a_{2}, a_{3}, a_{4}, a_{5}$ with $\left\{i^{\prime}, j^{\prime}\right\} \neq\left\{a_{r}, a_{(r \bmod 5)+1}\right\}$ for all $1 \leq r \leq 5$. The induction hypothesis assures a longest $s-t$ path in $\left\langle *^{4} a_{1}\right\rangle_{4}-F$. By Lemma 4 , a $\operatorname{link}\left(w, w^{\prime}\right)$ with $(w, z) \in \tilde{E}_{a_{1}, a_{2}}^{(5)}-F$ and $\left(w^{\prime}, z^{\prime}\right) \in \tilde{E}_{a_{1}, a_{5}}^{(5)}-F$ can be selected from the path. The induction hypothesis assures a Hamiltonian $y_{r}-x_{r}$ path in $\left\langle *^{4} a_{r}\right\rangle_{4}-F$ for all $2 \leq r \leq 5$, where $y_{2}=z$ and $x_{5}=z^{\prime}$. The desired $s-t$ path has length $5!-1$ or $5!-2$.
4.2. $\left|E\left(\left\langle *^{k} \alpha\right\rangle_{k}\right) \cap F\right|=2 k-6$ for some $1 \leq \alpha \leq k+1$

Suppose that $\left|E\left(\left\langle *^{k} \alpha\right\rangle_{k}\right) \cap F\right|=2 k-6$, where $1 \leq \alpha \leq k+1$. Now that $|F| \leq 2 k-5$ and $\left|E^{(k+1)}\left(S_{k+1}\right) \cap F\right| \geq 1$, we have $\left|E^{(k+1)}\left(S_{k+1}\right) \cap F\right|=1$. Besides, we have $\left|E\left(\left\langle *^{k} q^{\prime}\right\rangle_{k}\right) \cap F\right|=0$ for all $q^{\prime} \in\{1,2, \ldots, k+1\}-\{\alpha\}$, and $\left|\tilde{E}_{i, j}^{(k+1)}\left(S_{k+1}\right) \cap F\right| \leq 1(<((k+1)-2)!/ 2)$ for any $i, j \in\{1,2, \ldots, k+1\}$ and $i \neq j$, where $k \geq 4$.

If $s, t \in V\left(\left\langle *^{k} \alpha\right\rangle_{k}\right)$, then a link fault, say $\left(h, h^{\prime}\right)$, is chosen from $E\left(\left\langle *^{k} \alpha\right\rangle_{k}\right) \cap F$ such that $\{s, t\} \neq\left\{h, h^{\prime}\right\}$ and $e^{(k+1)}(h)$, $e^{(k+1)}\left(h^{\prime}\right) \notin F$. Imagine that $\left(h, h^{\prime}\right)$ is fault-free. Then, by the induction hypothesis, there is a longest $s-t$ path, denoted by P,

Fig. 5. A longest $s-t$ path in $S_{k+1}-F$ when $h, h^{\prime} \notin N\left(V\left(\left\langle *^{k} a_{k+1}\right\rangle_{k}\right)\right)$.
of length $k!-1$ or $k!-2$ in $\left\langle *^{k} \alpha\right\rangle_{k}-\left(F-\left\{\left(h, h^{\prime}\right)\right\}\right)$. A desired $s-t$ path in $S_{k+1}-F$ can be obtained using the construction method of Fig. 3. We only need to set $a_{1}=\alpha$, and $\left(w, w^{\prime}\right)=\left(h, h^{\prime}\right)$ if P contains $\left(h, h^{\prime}\right)$. The desired $s-t$ path has length $(k+1)!-1$ or $(k+1)!-2$.

If $s \notin V\left(\left\langle *^{k} \alpha\right\rangle_{k}\right)$ or $t \notin V\left(\left\langle *^{k} \alpha\right\rangle_{k}\right)$, then a desired $s-t$ path in $S_{k+1}-F$ is constructed in Sections 4.2.1 and 4.2.2, where we use $a_{1}, a_{2}, \ldots, a_{k+1}$ to denote the $k+1$ distinct integers from 1 to $k+1$ (i.e., $\left\{a_{1}, a_{2}, \ldots, a_{k+1}\right\}=\{1,2, \ldots, k+1\}$).

4.2.1. $s \in V\left(\left\langle *^{k} \alpha\right\rangle_{k}\right)$ and $t \notin V\left(\left\langle *^{k} \alpha\right\rangle_{k}\right)$ or $s \notin V\left(\left\langle *^{k} \alpha\right\rangle_{k}\right)$ and $t \in V\left(\left\langle *^{k} \alpha\right\rangle_{k}\right)$

Suppose that $s \in V\left(\left\langle *^{k} \alpha\right\rangle_{k}\right)$ and $t \notin V\left(\left\langle *^{k} \alpha\right\rangle_{k}\right)$. The discussion for $s \notin V\left(\left\langle *^{k} \alpha\right\rangle_{k}\right)$ and $t \in V\left(\left\langle *^{k} \alpha\right\rangle_{k}\right)$ is similar. We assume $t \in V\left(\left\langle *^{k} \beta\right\rangle_{k}\right)$, where $\beta \neq \alpha$. A link fault $\left(h, h^{\prime}\right)$ is chosen from $E\left(\left\langle *^{k} \alpha\right\rangle_{k}\right) \cap F$ such that $s \notin\left\{h, h^{\prime}\right\}$ and $e^{(k+1)}(h)$, $e^{(k+1)}\left(h^{\prime}\right) \notin F$. Set $a_{1}=\alpha$ and $a_{k+1}=\beta$.

We first consider the situation of $h, h^{\prime} \notin N\left(V\left(\left\langle *^{k} a_{k+1}\right\rangle_{k}\right)\right)$. Imagine that $\left(h, h^{\prime}\right)$ is fault-free. A vertex $v_{1} \in V\left(\left\langle *^{k} a_{1}\right\rangle_{k}\right)$ is determined such that v_{1} and s belong to different partite sets of $S_{k+1}, e^{(k+1)}\left(v_{1}\right) \notin F$, and $v_{1} \notin N\left(V\left(\left\langle *^{k} a_{k+1}\right\rangle_{k}\right)\right.$. The induction hypothesis assures a longest $s-v_{1}$ path of length $k!-1$ in $\left\langle *^{k} a_{1}\right\rangle_{k}-\left(F-\left\{\left(h, h^{\prime}\right)\right\}\right)$. If the longest $s-v_{1}$ path does not contain (h, h^{\prime}), then a desired $s-t$ path of length $(k+1)!-1$ or $(k+1)!-2$ in $S_{k+1}-F$ can be obtained using the construction method of Fig. 2. We only need to set $x_{1}=v_{1}$, and change $n-1$ and $|A|$ to k and $k+1$, respectively.

If the longest $s-v_{1}$ path contains (h, h^{\prime}), then a desired $s-t$ path in $S_{k+1}-F$ can be obtained as shown in Fig. 5 . We set a_{2} and a_{3} such that $h \in N\left(V\left(\left\langle *^{k} a_{2}\right\rangle_{k}\right)\right)$ and $h^{\prime} \in N\left(V\left(\left\langle *^{k} a_{3}\right\rangle_{k}\right)\right)$. There is an additional restriction to $v_{1}: v_{1} \notin N\left(V\left(\left\langle *^{k} a_{2}\right\rangle_{k}\right)\right)$ and $v_{1} \notin N\left(V\left(\left\langle *^{k} a_{3}\right\rangle_{k}\right)\right)$. Also we set a_{4} such that $v_{1} \in N\left(V\left(\left\langle *^{k} a_{4}\right\rangle_{k}\right)\right)$. Then, three vertices $u_{2} \in V\left(\left\langle *^{k} a_{2}\right\rangle_{k}\right), v_{3} \in V\left(\left\langle *^{k} a_{3}\right\rangle_{k}\right)$, and $u_{4} \in V\left(\left\langle *^{k} a_{4}\right\rangle_{k}\right)$ are determined such that $\left(u_{2}, h\right)=e^{(k+1)}(h),\left(v_{3}, h^{\prime}\right)=e^{(k+1)}\left(h^{\prime}\right)$, and $\left(u_{4}, v_{1}\right)=e^{(k+1)}\left(v_{1}\right)$. By Lemma 5, there is a longest $u_{4}-t$ path of length $(k-2) \times k!-1$ or $(k-2) \times k!-2$ in $S_{k+1}\left[V_{A}\right]-F$, where $A=\{1,2, \ldots, k+1\}-\left\{a_{1}, a_{2}, a_{3}\right\}$. Again, by Lemma 5 , there is a longest $u_{2}-v_{3}$ path of length $2 \times k!-1$ in $S_{k+1}\left[V_{A}\right]-F$, where $A=\left\{a_{2}, a_{3}\right\}$. The desired $s-t$ path has length $((k!-1)-1)+(2 \times k!-1)+((k-2) \times k!-1)+3=(k+1)!-1$ or $((k!-1)-1)+(2 \times k!-1)+((k-2) \times k!-2)+3=(k+1)!-2$.

Then we consider the situation of $h \in N\left(V\left(\left\langle *^{k} a_{k+1}\right\rangle_{k}\right)\right)$, without loss of generality. Notice that at most one of h and h^{\prime} belongs to $N\left(V\left(\left\langle *^{k} a_{k+1}\right\rangle_{k}\right)\right)$. Imagine that $\left(h, h^{\prime}\right)$ is fault-free. A vertex $u_{1} \in V\left(\left\langle *^{k} a_{1}\right\rangle_{k}\right)$ is determined such that u_{1} and s belong to different partite sets of $S_{k+1}, e^{(k+1)}\left(u_{1}\right) \notin F$, and $u_{1} \notin N\left(V\left(\left\langle *^{k} a_{k+1}\right\rangle_{k}\right)\right.$. The induction hypothesis assures a longest $s-u_{1}$ path of length $k!-1$ in $\left\langle *^{k} a_{1}\right\rangle_{k}-\left(F-\left\{\left(h, h^{\prime}\right)\right\}\right)$. If the longest $s-u_{1}$ path does not contain $\left(h, h^{\prime}\right)$, a desired $s-t$ path in $S_{k+1}-F$ can be obtained using the construction method of Fig. 2 . We only need to set $x_{1}=u_{1}$, and change $n-1$ and $|A|$ to k and $k+1$, respectively. If the longest $s-u_{1}$ path contains (h, h^{\prime}), two cases: $h \in N(t)$ or $h \notin N(t)$, are discussed below. Case 1. $h \in N(t)$. A desired $s-t$ path in $S_{k+1}-F$ can be obtained as shown in Fig. 6(a). We set a_{2} with $h^{\prime} \in N\left(V\left(\left\langle *^{k} a_{2}\right\rangle_{k}\right)\right)$. There is an additional restriction to $u_{1}: u_{1} \notin N\left(V\left(\left\langle *^{k} a_{2}\right\rangle_{k}\right)\right)$ and $u_{1} \notin N\left(V\left(\left\langle *^{k} a_{k+1}\right\rangle_{k}\right)\right)$. Also we set a_{k} with $u_{1} \in N\left(V\left(\left\langle *^{k} a_{k}\right\rangle_{k}\right)\right)$. Then, six vertices $u_{2}, v_{2} \in V\left(\left\langle *^{k} a_{2}\right\rangle_{k}\right), u_{3} \in V\left(\left\langle *^{k} a_{3}\right\rangle_{k}\right), v_{k} \in V\left(\left\langle *^{k} a_{k}\right\rangle_{k}\right)$, and $u_{k+1}, v_{k+1} \in V\left(\left\langle *^{k} a_{k+1}\right\rangle_{k}\right)$ are determined such that $\left(u_{2}, h^{\prime}\right)=e^{(k+1)}\left(h^{\prime}\right), v_{2}$ and u_{2} belong to different partite sets of $S_{k+1}, e^{(k+1)}\left(v_{2}\right) \notin F,\left(u_{k+1}, v_{2}\right)=e^{(k+1)}\left(v_{2}\right)$, v_{k+1} and u_{k+1} belong to the same partite set of $S_{k+1}, e^{(k+1)}\left(v_{k+1}\right) \notin F,\left(u_{3}, v_{k+1}\right)=e^{(k+1)}\left(v_{k+1}\right)$, and $\left(v_{k}, u_{1}\right)=e^{(k+1)}\left(u_{1}\right)$. By Lemma 1, there are a longest $u_{2}-v_{2}$ path of length $k!-1$ in $\left\langle *^{k} a_{2}\right\rangle_{k}$ and a longest $u_{k+1}-v_{k+1}$ path of length $k!-2$ in $\left\langle *^{k} a_{k+1}\right\rangle_{k}-\{t\}$. By Lemma 5, there is a longest $u_{3}-v_{k}$ path of length $(k-2) \times k!-1$ or $(k-2) \times k!-2$ in $S_{k+1}\left[V_{A}\right]-F$, where $A=\{1,2, \ldots, k+1\}-\left\{a_{1}, a_{2}, a_{k+1}\right\}$. The desired $s-t$ path has length $((k!-1)-1)+(k!-1)+(k!-2)+((k-2) \times k!-1)+4=$ $(k+1)!-1$ or $((k!-1)-1)+(k!-1)+(k!-2)+((k-2) \times k!-2)+4=(k+1)!-2$.
Case 2. $h \notin N(t)$. A desired $s-t$ path in $S_{k+1}-F$ is shown in Fig. 6(b) when $w^{\prime} \neq t$ and $\left(v_{2}, w^{\prime}\right) \notin F$, and shown in Fig. 6(c) when $w^{\prime}=t$ or $\left(v_{2}, w^{\prime}\right) \in F$. We set a_{2} such that $h^{\prime} \in N\left(V\left(\left\langle *^{k} a_{2}\right\rangle_{k}\right)\right)$. There is an additional restriction to $u_{1}: u_{1} \notin N\left(V\left(\left\langle *^{k} a_{2}\right\rangle_{k}\right)\right)$ and $u_{1} \notin N\left(V\left(\left\langle *^{k} a_{k+1}\right\rangle_{k}\right)\right)$. Also we set a_{k} with $u_{1} \in N\left(V\left(\left\langle *^{k} a_{k}\right\rangle_{k}\right)\right)$. Then, three vertices $u_{2} \in V\left(\left\langle *^{k} a_{2}\right\rangle_{k}\right), v_{k} \in V\left(\left\langle *^{k} a_{k}\right\rangle_{k}\right)$, and $w \in V\left(\left\langle *^{k} a_{k+1}\right\rangle_{k}\right)$ are first determined such that $\left(u_{2}, h^{\prime}\right)=e^{(k+1)}\left(h^{\prime}\right),(w, h)=e^{(k+1)}(h)$, and $\left(v_{k}, u_{1}\right)=e^{(k+1)}\left(u_{1}\right)$. By Lemma 3, there exist $v_{2} \in V\left(\left\langle *^{k} a_{2}\right\rangle_{k}\right)$ and $w^{\prime} \in N(w) \cap V\left(\left\langle *^{k} a_{k+1}\right\rangle_{k}\right)$ such that ($\left.v_{2}, w^{\prime}\right)=e^{(k+1)}\left(w^{\prime}\right)$ (see Fig. 6(b)).

If $w^{\prime} \neq t$ and $\left(v_{2}, w^{\prime}\right) \notin F$, then, again by Lemma 3, there exist $u_{3} \in V\left(\left\langle *^{k} a_{3}\right\rangle_{k}\right)$ and $v_{k+1} \in N(t) \cap V\left(\left\langle *^{k} a_{k+1}\right\rangle_{k}\right)$ such that $\left(u_{3}, v_{k+1}\right)=e^{(k+1)}\left(v_{k+1}\right)$. Besides, $\left(u_{3}, v_{k+1}\right) \notin F$ can be satisfied, because $\left|E^{(k+1)}\left(S_{k+1}\right) \cap F\right|=1$. By Lemma 7, there exists a Hamiltonian cycle in $\left\langle *^{k} a_{k+1}\right\rangle_{k}$ that contains $\left(t, v_{k+1}\right)$ and $\left(w, w^{\prime}\right)$. By Lemma 1 , there is a longest $u_{2}-v_{2}$ path of length $k!-1$ in $\left\langle *^{k} a_{2}\right\rangle_{k}$. By Lemma 5, there is a longest $u_{3}-v_{k}$ path of length $(k-2) \times k!-1$ or $(k-2) \times k!-2$ in $S_{k+1}\left[V_{A}\right]-F$, where $A=\{1,2, \ldots, k+1\}-\left\{a_{1}, a_{2}, a_{k+1}\right\}$. The desired $s-t$ path has length $((k!-1)-1)+(k!-1)+(k!-2)+((k-2) \times k!-1)+4=$ $(k+1)!-1$ or $((k!-1)-1)+(k!-1)+(k!-2)+((k-2) \times k!-2)+4=(k+1)!-2$.

Fig. 6. A longest $s-t$ path in $S_{k+1}-F$ when $h \in N\left(V\left(\left\langle *^{k} a_{k+1}\right\rangle_{k}\right)\right)$. (a) $h \in N(t)$. (b) $h \notin N(t)$ and ($w^{\prime} \neq t$ and $\left.\left(v_{2}, w^{\prime}\right) \notin F\right)$. (c) $h \notin N(t)$ and ($w^{\prime}=t$ or $\left(v_{2}\right.$, $\left.w^{\prime}\right) \in F$).

If $w^{\prime}=t$ or $\left(v_{2}, w^{\prime}\right) \in F$, then by Lemma 3, there exist $v_{3} \in V\left(\left\langle *^{k} a_{3}\right\rangle_{k}\right)$ and $w^{\prime \prime} \in N(w) \cap V\left(\left\langle *^{k} a_{k+1}\right\rangle_{k}\right)$ such that $\left(v_{3}, w^{\prime \prime}\right)=e^{(k+1)}\left(w^{\prime \prime}\right)$. Again by Lemma 3, there exist $u_{4} \in V\left(\left\langle *^{k} a_{4}\right\rangle_{k}\right)$ and $v_{k+1} \in N(t) \cap V\left(\left\langle *^{k} a_{k+1}\right\rangle_{k}\right)$ with $\left(u_{4}, v_{k+1}\right)=e^{(k+1)}\left(v_{k+1}\right)$. Besides, $\left(v_{3}, w^{\prime \prime}\right),\left(u_{4}, v_{k+1}\right) \notin F$ and $w^{\prime \prime} \neq t$ can be satisfied. By Lemma 7 , there exists a Hamiltonian cycle in $\left\langle *^{k} a_{k+1}\right\rangle_{k}$ that contains (t, v_{k+1}) and ($w, w^{\prime \prime}$). By Lemma 5, there is a longest $u_{2}-v_{3}$ path of length $2 \times k!-1$ in $S_{k+1}\left[V_{A}\right]-F$, where $A=\left\{a_{2}, a_{3}\right\}$. If $k=4$, Lemma 1 assures a longest $u_{4}-v_{4}$ path of length $4!-1$ or $4!-2$ in $\left\langle *^{4} a_{4}\right\rangle_{4}$. If $k>4$, Lemma 5 assures a longest $u_{4}-v_{k}$ path of length $(k-3) \times k!-1$ or $(k-3) \times k!-2$ in $S_{k+1}\left[V_{A}\right]-F$, where $A=\{1,2, \ldots, k+1\}-\left\{a_{1}, a_{2}, a_{3}, a_{k+1}\right\}$. The desired $s-t$ path has length $(k+1)!-1$ or $(k+1)!-2$.

4.2.2. $s, t \notin V\left(\left\langle *^{k} \alpha\right\rangle_{k}\right)$

Suppose that $s \in V\left(\left\langle *^{k} \beta\right\rangle_{k}\right)$ and $t \in V\left(\left\langle *^{k} \gamma\right\rangle_{k}\right)$, where $\beta, \gamma \in\{1,2, \ldots, k+1\}-\{\alpha\}$. We first consider the situation of $\beta=\gamma$. A link fault $\left(h, h^{\prime}\right)$ is chosen from $E\left(\left(*^{k} \alpha\right\rangle_{k}\right) \cap F$ such that $e^{(k+1)}(h), e^{(k+1)}\left(h^{\prime}\right) \notin F$. Set $a_{1}=\beta=\gamma$, and set $a_{3}=\alpha$ if $h, h^{\prime} \notin N\left(V\left(\left\langle *^{k} a_{1}\right\rangle_{k}\right)\right)$, and $a_{2}=\alpha$ else. A desired $s-t$ path in $S_{k+1}-F$ can be constructed in a way similar to Fig. 3 . We only explain below the construction for $\alpha=a_{3}$. The construction for $\alpha=a_{2}$ is similar.

Refer to Fig. 3 again. For the purpose of our construction, we let $A=\{1,2, \ldots, k+1\},\left(x_{3}, y_{3}\right)=\left(h, h^{\prime}\right)\left(\in E\left(\left(*^{k} a_{3}\right\rangle_{k}\right)\right)$, and select $\left(w, w^{\prime}\right)\left(\in E\left(\left\langle *^{k} a_{1}\right\rangle_{k}\right)\right)$ such that $\left\{w, w^{\prime}\right\} \neq\{s, t\}, w, w^{\prime} \notin N\left(V\left(\left\langle *^{k} a_{3}\right\rangle_{k}\right)\right), w$ and y_{3} belong to different partite sets of S_{k+1}, and $e^{(k+1)}(w), e^{(k+1)}\left(w^{\prime}\right) \notin F$. Four vertices $z, x_{2} \in V\left(\left\langle *^{k} a_{2}\right\rangle_{k}\right), y_{4} \in V\left(\left\langle *^{k} a_{4}\right\rangle_{k}\right)$, and $z^{\prime} \in V\left(\left\langle *^{k} a_{k+1}\right\rangle_{k}\right)$ are determined such that $(z, w)=e^{(k+1)}(w),\left(x_{2}, y_{3}\right)=e^{(k+1)}\left(y_{3}\right),\left(y_{4}, x_{3}\right)=e^{(k+1)}\left(x_{3}\right)$, and $\left(z^{\prime}, w^{\prime}\right)=e^{(k+1)}\left(w^{\prime}\right)$.

There is a longest $z-x_{2}$ path of length $k!-1$ in $\left\langle *^{k} a_{2}\right\rangle_{k}$. By Lemma 6 , there exists a longest $s-t$ path of length k ! -1 or $k!-2$ in $\left\langle *^{k} a_{1}\right\rangle_{k}$ that contains (w, w^{\prime}). Imagine that (x_{3}, y_{3}) is fault-free. The induction hypothesis assures a longest $y_{3}-x_{3}$ path of length k ! -1 in $\left\langle *^{k} a_{3}\right\rangle_{k}-\left(F-\left\{\left(x_{3}, y_{3}\right)\right\}\right)$. By Lemma 5 , there is a longest $y_{4}-z^{\prime}$ path of length $(k-2) \times k!-1$ in $S_{k+1}\left[V_{A}\right]-F$, where $A=\{1,2, \ldots, k+1\}-\left\{a_{1}, a_{2}, a_{3}\right\}$. The desired $s-t$ path has length $(k!-1)+((k!-1)-1)+(k!-$ $1)+((k-2) \times k!-1)+4=(k+1)!-1$ or $(k!-1)+((k!-1)-2)+(k!-1)+((k-2) \times k!-1)+4=(k+1)!-2$.

Then we consider the situation of $\beta \neq \gamma$. Set $a_{1}=\beta$ and $a_{k+1}=\gamma$. A link fault $\left(h, h^{\prime}\right)$ is chosen from $E\left(\left\langle *^{k} \alpha\right\rangle_{k}\right) \cap F$ such that $e^{(k+1)}(h), e^{(k+1)}\left(h^{\prime}\right) \notin F$. Three cases are further discussed below.
Case 1. Neither of h and h^{\prime} belongs to $N\left(V\left(\left\langle *^{k} a_{1}\right\rangle_{k}\right)\right) \cup N\left(V\left(\left\langle *^{k} a_{k+1}\right\rangle_{k}\right)\right)$. Set $a_{3}=\alpha$. A desired $s-t$ path in $S_{k+1}-F$ can be constructed in a way similar to Fig. 2. Refer to Fig. 2 again. For the purpose of our construction, we let $A=\{1,2, \ldots, k+1\}$ and $\left(x_{3}, y_{3}\right)=\left(h, h^{\prime}\right)\left(\in E\left(\left\langle *^{k} a_{3}\right\rangle_{k}\right)\right)$. We assume that s and y_{3} belong to the same partite set of S_{k+1}. In case s and y_{3} belong to different partite sets of S_{k+1}, we have s and x_{3} in the same partite set of S_{k+1} and exchange x_{3} and y_{3} in Fig. 2 .

Four vertices $x_{1} \in V\left(\left\langle *^{k} a_{1}\right\rangle_{k}\right)-\{s\}, y_{2}, x_{2} \in V\left(\left\langle *^{k} a_{2}\right\rangle_{k}\right)$, and $y_{4} \in V\left(\left\langle *^{k} a_{4}\right\rangle_{k}\right)$ are determined such that $\left(x_{2}, y_{3}\right)=$ $e^{(k+1)}\left(y_{3}\right), y_{2}$ and x_{2} belong to different partite sets of $S_{k+1}, e^{(k+1)}\left(y_{2}\right) \notin F,\left(x_{1}, y_{2}\right)=e^{(k+1)}\left(y_{2}\right)$, and $\left(y_{4}, x_{3}\right)=e^{(k+1)}\left(x_{3}\right)$. There are a longest $s-x_{1}$ path in $\left\langle *^{k} a_{1}\right\rangle_{k}$ and a longest $y_{2}-x_{2}$ path in $\left\langle *^{k} a_{2}\right\rangle_{k}$, each of length k ! -1 . Imagine that $\left(x_{3}, y_{3}\right)$ is faultfree. The induction hypothesis assures a longest $y_{3}-x_{3}$ path of length $k!-1$ in $\left\langle *^{k} a_{3}\right\rangle_{k}-\left(F-\left\{\left(x_{3}, y_{3}\right)\right\}\right)$. By Lemma 5 , there is

Fig. 7. A longest $s-t$ path in $S_{k+1}-F$ when $\beta \neq \gamma, h \in N\left(V\left(\left\langle *^{k} a_{1}\right\rangle_{k}\right)\right)$, and $h^{\prime} \notin N\left(V\left(\left\langle *^{k} a_{1}\right\rangle_{k}\right)\right) \cup N\left(V\left(\left\langle *^{k} a_{k+1}\right\rangle_{k}\right)\right)$.

Fig. 8. A longest $s-t$ path in $S_{k+1}-F$ when $\beta \neq \gamma, h \in N\left(V\left(\left\langle *^{k} a_{1}\right\rangle_{k}\right)\right)$, and $h^{\prime} \in N\left(V\left(\left\langle *^{k} a_{k+1}\right\rangle_{k}\right)\right)$. (a) $z \neq t$. (b) $z=t$.
a longest $y_{4}-t$ path of length $(k-2) \times k!-1$ or $(k-2) \times k!-2$ in $S_{k+1}\left[V_{A}\right]-F$, where $A=\{1,2, \ldots, k+1\}-\left\{a_{1}, a_{2}, a_{3}\right\}$. The desired $s-t$ path has length $3 \times(k!-1)+((k-2) \times k!-1)+3=(k+1)!-1$ or $3 \times(k!-1)+((k-2) \times k!-2)+3=(k+1)!-2$. Case 2. One of h and h^{\prime} belongs to $N\left(V\left(\left\langle *^{k} a_{1}\right\rangle_{k}\right)\right) \cup N\left(V\left(\left\langle *^{k} a_{k+1}\right\rangle_{k}\right)\right)$. Without loss of generality, we assume that $h \in$ $N\left(V\left(\left\langle *^{k} a_{1}\right\rangle_{k}\right)\right)$ and $h^{\prime} \notin N\left(V\left(\left\langle *^{k} a_{1}\right\rangle_{k}\right)\right) \cup N\left(V\left(\left\langle *^{k} a_{k+1}\right\rangle_{k}\right)\right)$. A desired $s-t$ path in $S_{k+1}-F$ can be constructed as shown in Fig. 7. Set $a_{2}=\alpha$ and $\left(u_{2}, v_{2}\right)=\left(h, h^{\prime}\right) \in E\left(\left\langle *^{k} a_{2}\right\rangle_{k}\right)$. Six vertices $v_{1} \in V\left(\left\langle *^{k} a_{1}\right\rangle_{k}\right), u_{1} \in N\left(v_{1}\right) \cap V\left(\left\langle *^{k} a_{1}\right\rangle_{k}\right)-\{s\}, w \in V\left(\left\langle *^{k} a_{1}\right\rangle_{k}\right)$, $u_{3} \in V\left(\left\langle *^{k} a_{3}\right\rangle_{k}\right), v_{k} \in V\left(\left\langle *^{k} a_{k}\right\rangle_{k}\right)$, and $u_{k+1} \in V\left(\left\langle *^{k} a_{k+1}\right\rangle_{k}\right)-\{t\}$ are determined such that $\left(v_{1}, u_{2}\right)=e^{(k+1)}\left(u_{2}\right)$, $\left(u_{3}, v_{2}\right)=e^{(k+1)}\left(v_{2}\right), e^{(k+1)}\left(u_{1}\right) \notin F,\left(v_{k}, u_{1}\right)=e^{(k+1)}\left(u_{1}\right), w$ and s belong to different partite sets of $S_{k+1}, e^{(k+1)}(w) \notin F$, and $\left(u_{k+1}, w\right)=e^{(k+1)}(w)$.

Imagine that $\left(u_{2}, v_{2}\right)$ is fault-free. The induction hypothesis assures a longest $u_{2}-v_{2}$ path of length $k!-1$ in $\left\langle *^{k} a_{2}\right\rangle_{k}-(F-$ $\left\{\left(u_{2}, v_{2}\right)\right\}$). By Lemma 6, there exists a longest $s-w$ path of length $k!-1$ in $\left\langle *^{k} a_{1}\right\rangle_{k}$ that contains $\left(u_{1}, v_{1}\right)$. By Lemma 1 , there is a longest $u_{k+1}-t$ path of length $k!-1$ or $k!-2$ in $\left\langle *^{k} a_{k+1}\right\rangle_{k}$. By Lemma 5 , there is a longest $u_{3}-v_{k}$ path of length $(k-2) \times k!-1$ in $S_{k+1}\left[V_{A}\right]-F$, where $A=\{1,2, \ldots, k+1\}-\left\{a_{1}, a_{2}, a_{k+1}\right\}$. The desired $s-t$ path has length $(k!-1)+((k!-1)-1)+(k!-1)+((k-2) \times k!-1)+4=(k+1)!-1$ or $(k!-1)+((k!-1)-1)+(k!-2)+((k-2) \times k!-1)+4=$ $(k+1)!-2$.
Case 3. Both of h^{\prime} and h belong to $N\left(V\left(\left\langle *^{k} a_{1}\right\rangle_{k}\right)\right) \cup N\left(V\left(\left\langle *^{k} a_{k+1}\right\rangle_{k}\right)\right)$. If $h \in N\left(V\left(\left\langle *^{k} a_{1}\right\rangle_{k}\right)\right)\left(\in N\left(V\left(\left\langle *^{k} a_{k+1}\right\rangle_{k}\right)\right)\right)$, then $h^{\prime} \in$ $N\left(V\left(\left\langle *^{k} a_{k+1}\right\rangle_{k}\right)\right)\left(\in N\left(V\left(\left\langle *^{k} a_{1}\right\rangle_{k}\right)\right)\right)$. Without loss of generality, we assume that $h \in N\left(V\left(\left\langle *^{k} a_{1}\right\rangle_{k}\right)\right)$ and $h^{\prime} \in N\left(V\left(\left\langle *^{k} a_{k+1}\right\rangle_{k}\right)\right)$. Set $a_{2}=\alpha$. Two vertices $w \in V\left(\left\langle *^{k} a_{1}\right\rangle_{k}\right)$ and $z \in V\left(\left\langle *^{k} a_{k+1}\right\rangle_{k}\right)$ are determined such that $(w, h)=e^{(k+1)}(h)$ and $\left(z, h^{\prime}\right)=e^{(k+1)}\left(h^{\prime}\right)$. A desired $s-t$ path in $S_{k+1}-F$ can be constructed as shown in Fig. 8(a) if $z \neq t$, and as shown in Fig. 8(b) if $z=t$.

If $z \neq t$, then ten vertices $u_{1} \in N(w) \cap V\left(\left\langle *^{k} a_{1}\right\rangle_{k}\right)-\{s\}, v_{1} \in V\left(\left\langle *^{k} a_{1}\right\rangle_{k}\right)-\{s\}, u_{2}, v_{2} \in V\left(\left\langle *^{k} a_{2}\right\rangle_{k}\right), u_{3}, v_{3} \in V\left(\left\langle *^{k} a_{3}\right\rangle_{k}\right)$, $u_{4} \in V\left(\left\langle *^{k} a_{4}\right\rangle_{k}\right), v_{k} \in V\left(\left\langle *^{k} a_{k}\right\rangle_{k}\right), u_{k+1} \in V\left(\left\langle *^{k} a_{k+1}\right\rangle_{k}\right)$, and $v_{k+1} \in N(z) \cap V\left(\left\langle *^{k} a_{k+1}\right\rangle_{k}\right)-\{t\}$ are further determined such that $e^{(k+1)}\left(u_{1}\right) \notin F,\left(v_{3}, u_{1}\right)=e^{(k+1)}\left(u_{1}\right), u_{3}$ and v_{3} belong to different partite sets of $S_{k+1}, e^{(k+1)}\left(u_{3}\right) \notin F$, $\left(v_{2}, u_{3}\right)=e^{(k+1)}\left(u_{3}\right), u_{2}$ and v_{2} belong to different partite sets of $S_{k+1}, e^{(k+1)}\left(u_{2}\right) \notin F,\left(v_{k}, u_{2}\right)=e^{(k+1)}\left(u_{2}\right), v_{1}$ and t belong to the same partite set of $S_{k+1}, e^{(k+1)}\left(v_{1}\right) \notin F,\left(u_{k+1}, v_{1}\right)=e^{(k+1)}\left(v_{1}\right), e^{(k+1)}\left(v_{k+1}\right) \notin F$, and $\left(u_{4}, v_{k+1}\right)=e^{(k+1)}\left(v_{k+1}\right)$.

There is a longest $u_{3}-v_{3}$ path of length $k!-1$ in $\left\langle *^{k} a_{3}\right\rangle_{k}$. Imagine that $\left(h, h^{\prime}\right)$ is fault-free. The induction hypothesis assures a longest $u_{2}-v_{2}$ path of length $k!-1$ in $\left\langle *^{k} a_{2}\right\rangle_{k}-\left(F-\left\{\left(h, h^{\prime}\right)\right\}\right)$. By Lemma 6 , there exist a longest $u_{k+1^{-}} t$ path of length $k!-1$ in $\left\langle *^{k} a_{k+1}\right\rangle_{k}$ that contains $\left(z, v_{k+1}\right)$ and a longest $s-v_{1}$ path of length $k!-1$ or $k!-2$ in $\left\langle *^{k} a_{1}\right\rangle_{k}$ that contains $\left(u_{1}, w\right)$. Since u_{4} and v_{k}
belong to different partite sets of S_{k+1}, Lemma 1 assures a longest $u_{4}-v_{4}$ path of length $4!-1$ in $\left\langle *^{4} a_{4}\right\rangle_{4}$ if $k=4$, and Lemma 5 assures a longest $u_{4}-v_{k}$ path of length $(k-3) \times k!-1$ in $S_{k+1}\left[V_{A}\right]-F$ if $k>4$, where $A=\{1,2, \ldots, k+1\}-\left\{a_{1}, a_{2}, a_{3}, a_{k+1}\right\}$. The desired s-t path has length $(k!-1)+2 \times((k!-1)-1)+((k!-1)-1)+((k-3) \times k!-1)+7=(k+1)!-1$ or $(k!-1)+2 \times((k!-1)-1)+((k!-2)-1)+((k-3) \times k!-1)+7=(k+1)!-2$.

If $z=t$, then vertices $u_{1}, v_{1}, u_{2}, v_{2}, u_{3}, v_{3}, v_{k}$, and u_{k+1} are determined all the same as above. Differently, $v_{k+1} \in$ $V\left(\left\langle *^{k} a_{k+1}\right\rangle_{k}\right)$ and $u_{4} \in V\left(\left\langle *^{k} a_{4}\right\rangle_{k}\right)$ are determined such that v_{k+1} and u_{k+1} belong to the same partite set of S_{k+1}, $e^{(k+1)}\left(v_{k+1}\right) \notin F$, and $\left(u_{4}, v_{k+1}\right)=e^{(k+1)}\left(v_{k+1}\right)$. With the same arguments as the situation of $z \neq t$, there are a longest $u_{3}-v_{3}$ path of length $k!-1$ in $\left\langle *^{k} a_{3}\right\rangle_{k}$, a longest $u_{2}-v_{2}$ path of length $k!-1$ in $\left\langle *^{k} a_{2}\right\rangle_{k}-\left(F-\left\{\left(h, h^{\prime}\right)\right\}\right)$, a longest $s-v_{1}$ path of length $k!-1$ or $k!-2$ in $\left\langle *^{k} a_{1}\right\rangle_{k}$ that contains $\left(u_{1}, w\right)$, and a longest $u_{4}-v_{k}$ path of length $(k-3) \times k!-1$ in $S_{k+1}\left[V_{A}\right]-F$, where $A=\{1,2, \ldots, k+1\}-\left\{a_{1}, a_{2}, a_{3}, a_{k+1}\right\}$. By Lemma 1 , there is a longest $u_{k+1}-v_{k+1}$ path of length $k!-2$ in $\left\langle *^{k} a_{k+1}\right\rangle_{k}-\{t\}\left(u_{k+1}\right.$ and t belong to different partite sets of $\left.S_{k+1}\right)$. The desired $s-t$ path has length $(k!-1)+((k!-1)-1)+((k!-1)-1)+((k-$ $3) \times k!-1)+(k!-2)+7=(k+1)!-1$ or $(k!-1)+((k!-1)-1)+((k!-2)-1)+((k-3) \times k!-1)+(k!-2)+7=(k+1)!-2$.

5. Concluding remarks

Since processor faults and/or link faults may occur to multiprocessor systems, it is both practically significant and theoretically interesting to study the fault tolerance of multiprocessor systems. Most of previous works used the random fault model, which assumed that the faults might occur everywhere without any restriction. There was another fault model, i.e., the conditional fault model, which assumed that the fault distribution must be subject to some constraint.

In this paper, adopting the conditional fault model and assuming that there were two or more fault-free links incident to each node, we constructed a longest fault-free path between two arbitrary nodes of an n-dimensional star network with up to $2 n-7$ link faults. The result is optimal with respect to the number of link faults tolerated. The longest path has length $n!-1(n!-2)$ if the two end nodes belong to different partite sets (the same partite set) of the star network. Two fundamental construction methods were demonstrated in Figs. 2 and 3. When additional restrictions were imposed, the two construction methods must be adapted. The modified construction methods were demonstrated in Figs. 5-8.

Usually, the problem of embedding fault-free paths in faulty networks under the conditional fault model is more difficult than the same problem under the random fault model. Although the problem of embedding fault-free paths in faulty star networks were solved in [24] under the random fault model, the properties derived in [24] were not sufficient for our purpose. Instead, we need to develop more properties, i.e., Lemmas 3-7, when the conditional fault model is used. These lemmas are useful to those people who are interested in star networks and/or fault-tolerant embedding under the conditional fault model.

Apparently, as a consequence of this paper, there is a fault-free Hamiltonian cycle in an n-dimensional star network with up to $2 n-7$ link faults under the conditional fault model and our assumption. For a faulty star network, finding a fault-free Hamiltonian cycle is much easier than finding a longest fault-free path between every two distinct nodes. It is very likely that embedding a fault-free Hamiltonian cycle in a faulty star network may tolerate more than $2 n-7$ link faults under the conditional fault model and the same assumption.

Finally, it should be mentioned that the assumption we made in this paper about the conditional fault model is meaningful in practice. Let p_{n} be the probability that each node of an n-dimensional star network with $2 n-7$ link faults is incident with two or more fault-free links. The value of p_{n} is very close to 1 , even if n is small. A formula for estimating a lower bound on p_{n} was derived in [14]. Based on this formula, we have, for example, $p_{5}>0.999736296, p_{10}>1-3 \times 10^{-43}$, $p_{15}>1-4 \times 10^{-140}$, and $p_{20}>1-9 \times 10^{-305}$.

Acknowledgement

The authors would like to thank the National Science Council of the Republic of China, Taiwan for financially supporting this research under Contract No. NSC 95-2221-E-239-002-.

References

[1] S.B. Akers, D. Horel, B. Krishnamurthy, The star graph: An attractive alternative to the n-cube, in: Proc. Int. Conference on Parallel Processing, 1987, pp. 393-400.
[2] S.B. Akers, B. Krishnamurthy, A group-theoretic model for symmetric interconnection networks, IEEE Transactions on Computers 38 (4) (1989) 555-566.
[3] N. Ascheuer, Hamiltonian path problems in the on-line optimization of flexible manufacturing systems, Ph.D. Thesis, University of Technology, Berlin, Germany, 1995. Also available at: ftp://ftp.zib.de/pub/zib-publications/reports/TR-96-03.ps.
[4] Y.A. Ashir, I.A. Stewart, Fault-tolerant embedding of Hamiltonian circuits in k-ary n-cube, SIAM Journal on Discrete Mathematics 15 (3)(2002) 317-328.
[5] N. Bagherzadeh, N. Nassif, S. Latifi, A routing and broadcasting scheme on faulty star graphs, IEEE Transactions on Computers 42 (11)(1993) $1398-1403$.
[6] M.Y. Chan, S.J. Lee, On the existence of Hamiltonian circuits in faulty hypercubes, SIAM Journal on Discrete Mathematics 4 (4) (1991) $511-527$.
[7] K. Day, The conditional node connectivity of the k-ary n-cube, Journal of Interconnection Networks 5 (1) (2004) 13-26.
[8] K. Day, A.E. Al-Ayyoub, Fault diameter of k-ary n-cube networks, IEEE Transactions on Parallel and Distributed Systems 8 (9) (1997) 903-907.
[9] K. Day, A.R. Tripathi, A comparative study of topological properties of hypercubes and star graphs, IEEE Transactions on Parallel and Distributed Systems 5 (1) (1994) 31-38.
[10] K. Diks, A. Pele, Efficient gossiping by packets in networks with random faults, SIAM Journal on Discrete Mathematics 9 (1) (1996) 7-18.
[11] A.H. Esfahanian, Generalized measures of fault tolerance with application to N-cube networks, IEEE Transactions on Computers 38 (11) (1989) 1586-1591.
[12] A.H. Esfahanian, S.L. Hakimi, Fault-tolerant routing in de Bruijn communication networks, IEEE Transactions on Computers C-34 (9) (1985) $777-788$.
[13] P. Fragopoulou, S.G. Akl, Optimal communication algorithms on star graphs using spanning tree constructions, Journal of Parallel and Distributed Computing 24 (1) (1995) 55-71.
[14] J.S. Fu, Conditional fault-tolerant hamiltonicity of star graphs, Parallel Computing 33 (7-8) (2007) 488-496.
[15] S.Y. Hsieh, G.H. Chen, C.W. Ho, Hamiltonian-laceability of star graphs, Networks 36 (4) (2000) 225-232.
[16] S.Y. Hsieh, G.H. Chen, C.W. Ho, Longest fault-free paths in star graphs with vertex faults, Theoretical Computer Science 262 (1-2) (2001) $215-227$.
[17] H.C. Hsu, T.K. Li, J.M. Tan, L.H. Hsu, Fault hamiltonicity and fault Hamiltonian connectivity of the arrangement graphs, IEEE Transactions on Computers 53 (1) (2004) 39-53.
[18] J.S. Jwo, S. Lakshmivarahan, S.K. Dhall, Embedding of cycles and grids in star graphs, Journal of Circuits, Systems, and Computers 1 (1) (1991) 43-74.
[19] S. Latifi, Combinatorial analysis of the fault-diameter of the n-cube, IEEE Transactions on Computers 42 (1) (1993) 27-33.
[20] S. Latifi, M. Hegde, M. Naraghi-Pour, Conditional connectivity measures for large multiprocessor systems, IEEE Transactions on Computers 43 (2) (1994) 218-222.
[21] F.T. Leighton, Introduction to Parallel Algorithms and Architectures: Arrays, Trees, Hypercubes, Morgan Kaufmann, CA, 1991.
[22] M. Lewinter, W. Widulski, Hyper-hamilton laceable and caterpillar-spannable product graphs, Computers \& Mathematics with Applications 34 (11) (1997) 99-104.
[23] L. Qiao, Z. Yi, Restricted connectivity and restricted fault diameter of some interconnection networks, DIMACS Series in Discrete Mathematics and Theoretical Computer Science 21 (1995) 267-273.
[24] T.K. Li, J.M. Tan, L.H. Hsu, Hyper Hamiltonian laceability on the edge fault star graph, Information Sciences 165 (2004) 59-71.
[25] A.C. Liang, S. Bhattacharya, W.T. Tsai, Fault-tolerant multicasting on hypercubes, Journal of Parallel and Distributed Computing 23 (1994) $418-428$.
[26] V.E. Mendia, D. Sarkar, Optimal broadcasting on the star graph, IEEE Transactions on Parallel and Distributed Systems 3 (4) (1992) $389-396$.
[27] Z. Miller, D. Pritikin, I.H. Sudborough, Near embeddings of hypercubes into Cayley graphs on the symmetrical group, IEEE Transactions on Computers 43 (1) (1994) 13-22.
[28] K. Qiu, S.G. Akl, H. Meijer, On some properties and algorithms for the star and pancake interconnection networks, Journal of Parallel and Distributed Computing 22 (1) (1994) 16-25.
[29] Y. Rouskov, S. Latifi, P.K. Srimani, Conditional fault diameter of star graph networks, Journal of Parallel and Distributed Computing 33 (1) (1996) $91-97$.
[30] C.H. Tsai, Linear array and ring embeddings in conditional faulty hypercubes, Theoretical Computer Science 314 (2004) 431-443.
[31] S.A. Wong, Hamiltonian cycles and paths in butterfly graphs, Networks 26 (1995) 145-150.
[32] J. Wu, Safety levels - an efficient mechanism for achieving reliable broadcasting in hypercubes, IEEE Transactions on Computers 44(5)(1995)702-706.
[33] J. Wu, Fault tolerance measures for m-ary n-dimensional hypercubes based on forbidden faulty sets, IEEE Transactions on Computers 47 (8) (1998) 888-893.
[34] http://inrg.csie.ntu.edu.tw/~bytsai/.

[^0]: * Corresponding author. Fax: +886 223628167.

 E-mail address: ghchen@csie.ntu.edu.tw (G.-H. Chen).

