
ar
X

iv
:0

80
1.

25
24

v1
  [

m
at

h.
C

O
] 

 1
6 

Ja
n 

20
08

A variant of the tandem duplication - random

loss model of genome rearrangement

Mathilde Bouvel a Dominique Rossin a

aLIAFA, Université Paris Diderot, CNRS, Case 7014, 75205 Paris Cedex 13

Abstract

In (4), Chaudhuri, Chen, Mihaescu and Rao study algorithmic properties of the
tandem duplication - random loss model of genome rearrangement, well-known in
evolutionary biology. In their model, the cost of one step of duplication-loss of width
k is αk for α = 1 or α ≥ 2. In this paper, we study a variant of this model, where
the cost of one step of width k is 1 if k ≤ K and ∞ if k > K, for any value of the
parameter K ∈ N ∪ {∞}. We first show that permutations obtained after p steps
of width K define classes of pattern-avoiding permutations. We also compute the
numbers of duplication-loss steps of width K necessary and sufficient to obtain any
permutation of Sn, in the worst case and on average. In this second part, we may
also consider the case K = K(n), a function of the size n of the permutation on
which the duplication-loss operations are performed.

Key words: Sorting, Permutations, Pattern
PACS:

1 Introduction

1.1 The model

In the usual models of genome rearrangement, duplications and losses of genes
are not taken into account. There were attempts to incorporate them to the
classical models, but the consecutive combinatorial complexity of the mod-
els so obtained made their study quite difficult. Following (4), we focus on
the duplication-loss problem by considering the tandem duplication - random
loss model of genome rearrangement in which genomes are modified only by
duplications and losses of genes.

One step of tandem duplication - random loss, or duplication-loss for short,
consists in (1) the tandem duplication of a contiguous fragment of the genome,

Preprint submitted to Elsevier 4 November 2018

http://arxiv.org/abs/0801.2524v1


i.e., the duplicated fragment is inserted immediately after the original frag-
ment, and (2) the loss of one of the two copies of every duplicated gene. We
assume that the loss occurs immediately after the duplication of genes, which
is, on an evolutionary time-scale, a good approximation to reality. The width
of a step is the number of duplicated genes. See Figure 1 for an example.

1 2
︷ ︸︸ ︷
3 4 5 6 7  1 2

︷ ︸︸ ︷
3 4 5 6

︷ ︸︸ ︷
3 4 5 6 7

(tandem duplication)

 1 2 3� 4 5 6� 3 4� 5� 6 7

(random loss)

 1 2 4 5 3 6 7

Fig. 1. Example of one step of tandem duplication - random loss of width 4

From a formal point of view, a genome consisting of n genes is modelled by
a permutation π ∈ Sn of the set of integers {1, 2, . . . , n}. In (4), the authors
define the cost of a duplication-loss step of width k to be αk, α ≥ 1 being a
constant parameter. They suggest that other cost functions can be considered,
and in particular affine functions. In this paper, we consider a piecewise con-
stant cost function: the cost of a step of width k is 1 if k ≤ K and is infinite
for k > K, for some fixed parameter K ∈ N∪ {∞}. Obviously, for this model
to be meaningful, we assume that K ≥ 2. We also consider the possibility
that K = K(n) is dependent on the size n of the permutation on which the
duplication-loss operations are performed. Both models are generalizations of
the whole genome duplication - random loss model : it corresponds to the case
α = 1 in the model of (4), K =∞ or K = K(n) = n in our model.

Many models of evolution of permutations are inspired by computational bi-
ology issues: see (2), (5), (6), (7) for examples in the literature.

Our model of evolution of permutations can be viewed in the framework of
permuting machines defined in (1). Such a machine takes a permutation in
input, and transforms it into an output permutation, the transformation being
subject to satisfy the two properties of independence with respect to the values
and of stability with respect to pattern-involvement (see (1) for more details).
The important point is that the duplication-loss transformation satisfies these
two properties. Thus, one duplication-loss step (in one of the models defined
above) corresponds to running an adequate permuting machine once. When we
will consider permutations obtained after a sequence of duplication-loss steps,
it will correspond to permutations obtained in the output of a combination in
series of identical permuting machines.

For ease of exposition in some proofs, we will sometimes use a graphical rep-
resentation of permutations, as shown in Figure 2.

2



1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

Fig. 2. The graphical representation of σ = 68135427

1.2 Pattern-avoiding classes of permutations

Though not appearing clearly for the moment, there exist strong links between
the duplication-loss model and some pattern-avoiding classes of permutations.
Hence, we need to recall a few definitions concerning those classes.

A permutation σ ∈ Sn is a bijective map from [1..n] to itself. The integer n
is called the size of σ, denoted |σ|. We denote by σi the image of i under σ.
A permutation can be seen as a word σ1σ2 . . . σn containing exactly once each
letter i ∈ [1..n]. For each entry σi of a permutation σ, we call i its position
and σi its value.

Definition 1 A permutation π ∈ Sk is a pattern of a permutation σ ∈ Sn

if there is a subsequence of σ which is order-isomorphic to π; in other words,
if there is a subsequence σi1σi2 . . . σik of σ (with 1 ≤ i1 < i2 < . . . < ik ≤ n)
such that σiℓ < σim whenever πℓ < πm.
We also say that π is involved in σ and call σi1σi2 . . . σik an occurrence of π
in σ.

We write π ≺ σ to denote that π is a pattern of σ.

A permutation σ that does not contain π as a pattern is said to avoid π.
The class of all permutations avoiding the patterns π1, π2 . . . πk is denoted
S(π1, π2, . . . , πk), and Sn(π1, π2, . . . , πk) denotes the set of permutations of size
n avoiding π1, π2, . . . , πk. We say that S(π1, π2, . . . , πk) is a class of pattern-
avoiding permutations of basis {π1, π2, . . . , πk}.

Example 2 For example σ = 142563 contains the pattern 1342, and 1563,
1463, 2563 and 1453 are the occurrences of this pattern in σ. But σ ∈ S(321):
σ avoids the pattern 321 as no subsequence of size 3 of σ is isomorphic to 321,
i.e., is decreasing.

3



1.3 Outline of the paper

In the tandem duplication - random loss model described above, we will focus
on two kinds of problems. First, as hinted before, we will consider permu-
tations obtained after a certain number of duplication-loss steps, that is to
say permutations in output of a combination in series of a certain number of
permuting machines. For this, we define the class C(K, p) as follows:

Definition 3 The class C(K, p) denotes the class of all permutations obtained
from 12 . . . n (for any n) after p duplication-loss steps of width at most K, for
some constant parameters p and K.

We do not consider the case K = K(n) here.

Be careful that the duplication-loss steps are not reversible, as noticed in (4),
and that consequently C(K, p) is not the class of permutations that can be
sorted to 12 . . . n in p steps of duplication-loss of width at most K.

Like for the various classes of permutations obtained after a combination in
series of permuting machines considered in (1), we obtained combinatorial
properties of C(K, p) in terms of pattern-avoidance. Namely, we show that
C(K, p) is a class of pattern-avoiding permutations. In the case p = 1 (Section
2.2), we give a precise description of the basis B of excluded patterns: B =
{321, 3142, 2143} ∪ D, D being the set of all permutations of SK+1 that do
not start with 1 nor end with K + 1, and containing exactly one descent. In
particular, B is of cardinality 3 + 2K−1 and contains patterns of size at most
K + 1. For the general case (Section 2.3), we cannot get such a precise result
but only a bound on the size of the excluded patterns: we show that C(K, p)
is a class of pattern-avoiding permutations whose basis contains patterns of
size at most (Kp+ 2)2 − 2.

A second point of view is to examine how many steps of a given width are
necessary to obtain any permutation of Sn starting from 12 . . . n. Namely in
Section 3 we fix a width K (constant, orK = K(n)) and a size n and search for
the number p such that any permutation of Sn can be obtained from 12 . . . n in
at most p duplication-loss steps of width at most K. We describe an algorithm
computing a possible scenario of duplications and losses for any π ∈ Sn, this
scenario involving Θ( n

K
logK + n2

K2 ) duplication-loss steps in the worst case

and on average. We also show that Ω(log n + n2

K2 ) steps are necessary (in the
worst case and on average) to obtain any permutation of Sn from 12 . . . n.
These upper and lower bounds coincide in most cases.

4



2 Characterization with excluded patterns

Before focusing on the classes C(K, 1) and C(K, p) defined for our model, we
will get back to the simpler whole genome duplication - random loss model
(corresponding to K = ∞ in our model, but defined previously by other
authors). We will not prove new theorems, but will interprete the existing
results from the pattern-avoidance point of view.

2.1 The whole genome duplication - random loss model through the pattern-
avoidance prism

Let us recall that in the whole genome duplication - random loss model, any
duplication-loss step has cost 1, so that we can consider w.l.o.g that the du-
plicated fragment is the whole permutation at any step. The cost of obtaining
a permutation σ ∈ Sn from the identity is just the minimal number of steps
of a duplication-loss scenario transforming 12 . . . n into σ.

A statistics of permutations that matters for our purpose is their number of
descents.

Definition 4 Given a permutation σ of size n, we say that there is a descent
(resp. ascent) at position i, 1 ≤ i ≤ n− 1, if σi > σi+1 (resp. σi < σi+1 ). We
write desc(σ) the number of descents of the permutation σ.

Example 5 For example, σ = 524316 has 3 descents, namely at positions 1,
3 and 4.

A permutation σ of size n has at most n−1 descents, the case of n−1 descents
exactly corresponding to the reversed identity permutation n(n− 1) . . . 21. It
is also of common knowledge that the average number of descents among
permutations of size n is n−1

2
.

In (4), the authors prove the following theorem.

Theorem 6 Let σ ∈ Sn. In the whole genome duplication - random loss
model, ⌈log2(desc(σ) + 1)⌉ steps are necessary and sufficient to obtain σ from
12 . . . n.

It is equivalent to say that the permutations that can be obtained in at most p
steps in the whole genome duplication - random loss model are exactly those
whose number of descents is at most 2p − 1.

Now, we can notice that the property of being obtainable in at most p steps is

5



stable for the pattern-involvement relation ≺: if σ can be obtained in at most
p steps, and if π ≺ σ, then π can also be obtained in at most p steps. Indeed,
it is enough to perform the same duplication-loss scenario on σ, keeping track
only of the elements of σ that form an occurrence of π. This stability for ≺
implies that the class of permutations obtainable in at most p steps is a class
of pattern-avoiding permutations, whose excluded patterns are the minimal
(again in the sense of ≺) permutations that cannot be obtained in p steps.

Then, by Theorem 6, the excluded patterns are the minimal permutations
with 2p descents. We initiated a study of the minimal permutations with d
descents in (3). However, it is simple to notice that a permutation with d
descents and minimal for this criterion has size at most 2d, since it does not
contain to consecutive ascents by minimality. An immediate consequence is
that the number of excluded patterns is finite.

This allows us to state the following version of Theorem 6:

Theorem 7 The permutations that can be obtained in at most p steps in the
whole genome duplication - random loss model form a class of pattern-avoiding
permutations. The excluded patterns are the permutations with exactly 2p de-
scents that are minimal (in the sense of ≺) for this criterion. These excluded
patterns are in finite number.

In (3), we will give a simpler description and some properties of these minimal
permutations with d descents.

2.2 Permutations obtained in one step of width K

As an introduction to the study of C(K, p), we deal in this section with the sim-
pler case of the class C(K) = C(K, 1) of permutations obtained from 12 . . . n
in one duplication-loss step of width at most K. Assume in this section that
the parameter K ≥ 2 is fixed. Throughout this section, when referring to a
duplication-loss step, we always mean duplication-loss step of width K, except
when otherwise explicitly stated.

It is easily noticed that any permutation of C(K) cannot have more than one
descent. Conversly, any permutation of size at most K having exactly one
descent belongs to C(K).

Although it is a technical point of importance in the proof of Theorem 9, the
following proposition comes straightforward:

Proposition 8 The permutations of size K + 1 that do not belong to C(K)
and having exactly one descent are exactly those of SK+1 with one descent that

6



do not start with 1 nor end with K + 1.

PROOF. Let σ = σ1σ2 . . . σK+1 be a permutation of size K + 1 that does
not belong to C(K) but has exactly one descent. Now, if σ1 = 1, then σ =
σ2 . . . σK+1 is a permutation (of {2, 3, . . . , K+1}) of sizeK having one descent,
and therefore σ can be obtained from 23 . . .K + 1 in one duplication-loss
step. Applying the same transformation to 123 . . .K + 1 will then produce σ,
contradicting that σ /∈ C(K). The same reasoning holds when σK+1 = K + 1.
So σ does not start with 1 nor end with K + 1.

Now if σ is a permutation of size K +1 having exactly one descent, that does
not start with 1 nor end with K+1, we claim that σ cannot be obtained from
12 . . .K + 1 in one duplication-loss step. This is because no duplication-loss
step of width K can move both 1 and K + 1 in 12 . . .K + 1.

Theorem 9 The class C(K) of permutations obtained from 12 . . . n (for some
n ≥ 1) in one duplication-loss step of width K is a class S(B) of pattern-
avoiding permutations whose basis B is composed of 3 + 2K−1 patterns of
size at most K + 1. Namely B = {321, 3142, 2143} ∪ D, D being the set of
all permutations of SK+1 that do not start with 1 nor end with K + 1, and
containing exactly one descent.

Example 10 C(4) =
S(321, 3142, 2143, 23451, 23514, 24513, 34512, 25134, 35124, 45123, 51234)

PROOF. We prove the reversed statement: σ /∈ S(B) if and only if σ cannot
be obtained from an identity permutation in one duplication-loss step of width
K.

Assume σ /∈ S(B). Then there exists b ∈ B such that b ≺ σ. If b = 321,
3142 or 2143, then σ has at least 2 descents and cannot be obtained in one
duplication-loss step. Otherwise, using Proposition 8, there exists ρ ∈ SK+1

such that ρ ≺ σ and ρ /∈ C(K). Now if σ could be obtained in one duplication-
loss step, then so would be ρ, yielding a contradiction. So σ /∈ C(K).

Conversly, assume that σ /∈ C(K). If σ contains at least 2 descents, then
σ contains an occurrence of 321 or 3142 or 2143, since these three are the
minimal permutations (in the sense of the relation ≺) with 2 descents. And
consequently, σ /∈ S(B). Thus we may assume that σ has exactly one descent.
We decompose σ ∈ Sn into σ = 12 . . . p1σ̂p2(p2 + 1) . . . n, where σ̂ is a per-
mutation of the set {p1 + 1, p1 + 2 . . . , p2 − 1} that does not start with p1 + 1
nor end with p2 − 1, and contains exactly one descent. This decomposition is
shown in Figure 3. We denote by K̂ the size of σ̂. Since σ /∈ C(K), necessarily
K̂ ≥ K + 1 or we would get a contradiction. If K̂ = K + 1, we get that σ̂ is

7



an occurrence of some pattern of D ⊂ B in σ. As a consequence, σ /∈ S(B).
What is left to prove is that this extends to the case K̂ > K + 1. We just
need to show that we can remove elements in σ̂ without violating any of the
properties below:

• the permutation does not start with its smallest element
• the permutation does not end with its greatest element
• the permutation has exactly one descent

until we get a permutation of sizeK+1. At that point σ̂ contains an occurrence
of a pattern in D, and so does σ, and we get that σ /∈ S(B). Now, because of
the conditions on σ̂, the only descent in σ̂ necessarily goes from the greatest
to the smallest element in σ̂, ensuring that it is possible to remove elements
without violating any of the properties above (see Figure 3).

Decomposition of σ

..
.

12. . . p1 σ̂

..

p2. . .n

Shape of σ̂

Fig. 3. Decomposition σ = 12 . . . p1σ̂p2(p2 +1) . . . n on the graphical representation
of σ, and shape of σ̂

2.3 Permutations obtained in p steps of width K

As for the case of C(K, 1) in Section 2.2, we prove (Theorem 19) in this section
that the class C(K, p) of all permutations obtained from an identity permu-
tation after p duplication-loss steps of width at most K is a class of pattern-
avoiding permutations. However, we do not get a precise description of the
basis of this class, but only an upper bound on the size of the excluded pat-
terns. As in the previous section, when referring to a duplication-loss step,
we always mean duplication-loss step of width K, except when otherwise ex-
plicitely stated.

To prove the announced result, we will need a few more notations and technical
lemmas.

The vector from i to j in a permutation σ consists of all elements whose
positions lie between the positions of i and j, i and j being included. The size
of a vector is the number of elements in it. For example, the vector from 7 to
2 in the permutation 4123576 is

←−−
2357, and has size 4.

8



Definition 11 Let σ be a permutation of Sn. The value-position vector asso-
ciated with i ∈ [1..n] ( vp-vector for short) is the vector of σ going from i to
σi, if i is not a fixpoint of σ. In the case i = σi, the vp-vector associated with
i is empty.

It should appear in this definition that the vp-vector associated with i, going
from the element of σ which has value i to the element of σ at position i,
represents the necessary move for i to reach its position in the sorted permu-
tation 12 . . . n. As it can be seen on Figure 4, on the graphical representation
of permutations used throughout the paper, the vp-vector associated with i is
an arrow going horizontally from the element at ordinate i to the diagonal.

We can also notice that a non-empty vp-vector contains at least two elements.

To take into account all the moves necessary to sort σ to 12 . . . n, it is conve-
nient to introduce the value-position domain:

Definition 12 Let σ be a permutation of Sn. The value-position domain of
σ ( vp-domain for short) is composed of all elements of σ appearing in at least
one vp-vector.

These two definitions are illustrated on Figure 4.

σ = 4 1 2 3 5 7 6

vp-domain of σ
= {1, 2, 3, 4, 6, 7}

Fig. 4. vp-vectors and vp-domain for σ = 4123576, in the usual and in the graphical
representations

Now, observe that for any permutation, the vp-vectors are reversible in the
sense that reversing all the arrows will give a set of vectors that represent the
moves of elements that are necessary to ”unsort” 12 . . . n into σ. It is easily
seen from Definitions 11 and 12 and this remark that for any permutation σ ∈
C(K, p), any element belonging to the vp-domain of σ also belongs to at least
one of the duplication-loss steps used to obtain σ from 12 . . . n. Consequently,
the vp-domain of σ contains at most Kp elements.

Lemma 13 Consider a permutation σ, and the permutation τ obtained from
σ by the removal of some element j. Then for any element i 6= j such that
i 6= σi, either this element becomes a fixpoint in τ or the size of the vp-vector
associated with this element in τ remains constant, is increased of 1 or is
diminished of 1 with respect to the size of the vp-vector associated with i in σ.

9



PROOF. It is easily seen on the graphical representation of σ. Any element
that does not lie just above or just below the diagonal cannot become a fix-
point when removing an element j. For elements that do not becom fixpoints,
the horizontal distance to the diagonal can only change of 0, 1 or −1 when
removing some element j (see Figure 5).

j

j

Diagonal

Candidate fixpoints
Changes
in the vp-vectors

Variation of the distance
to the diagonal
0 +1 −1

Fig. 5. Variation of the size of vp-vectors due to the removal of an element j above
or below the diagonal.

Lemma 14 For any permutation σ, there is at least one element j such that
the permutation τ obtained from σ by the removal of j contains at most one
more fixpoint than σ.

PROOF. It is convenient to introduce the quasi-diagonal elements of σ, de-
fined as follows. i is a quasi-diagonal element of σ if σi−1 = i or σi+1 = i.
These two cases correspond respectively to elements of σ lying just above or
just below the diagonal in the graphical representation of σ. Any element of
σ that may become a fixpoint in τ is necessarily a quasi-diagonal element.

If there is no quasi-diagonal element, then we can remove any element j to
obtain a permutation τ that does not have more fixpoints than σ. If there are
some, then we pick j among the quasi-diagonal elements. We claim that at
most one fixpoint is create while removing j. The argument is simple. Suppose
j is such that σj−1 = j, the other case being similar. Then the only fixpoint
that may appear is j − 1, if σj = j − 1. This should appear clearly on Figure
6.

Diagonal

Removed element
Candidate fixpoint

Fig. 6. The only fixpoint that can appear when removing a quasi-diagonal element.

10



Lemma 15 Consider a permutation σ /∈ C(K, p) such that for any strict
pattern τ of σ, τ ∈ C(K, p). Then the vp-domain of σ is of size at most
2Kp+ 2.

PROOF. By Lemma 14, we can choose some τ ≺ σ with |τ | + 1 = |σ| and
such that τ has at most one more fixpoint than σ. Call j the element deleted
in σ to obtain τ . By a previous remark, since τ ∈ C(K, p), the vp-domain of
τ is of size at most Kp, and is therefore composed of at most Kp vp-vectors.
Each of these vp-vectors in τ yields a vp-vector in σ, whose size is smaller or

equal or possibly increased by 1. Let us denote by
−→
V the set of vp-vectors of σ

obtained from a vp-vector of τ . Then the number of elements of σ that belong

to a vp-vector of
−→
V is at most 2Kp. However

−→
V is not yet the vp-domain of σ.

We must complete it with up to two vp-vectors: the one associated with the
element j deleted, and the one associated with the fixpoint of τ that was not a
fixpoint in σ, if such a point exists. If such an element exists, then it is a quasi-
diagonal element in σ and its vp-vector (denoted −→v ) in σ is necessarily of size

2, so that
−→
V ∪ {−→v } has total size at most 2Kp+ 2. Now it is easily observed

that any element of σ belonging to one vp-vector necessarily belongs to at least
two vp-vectors (this can be seen as a “balance condition”). Consequently, all
the elements of the vp-vector associated with j are already covered by a vector

of
−→
V ∪{−→v }, so that the vp-domain of σ is exactly the set of elements covered

by
−→
V ∪ {−→v }. Therefore, its size is at most 2Kp+ 2.

Lemma 16 Consider a permutation σ /∈ C(K, p) of size n > (Kp + 2)2 − 2
such that for any strict pattern τ of σ, τ ∈ C(K, p). Then σ is of the form
σ = Ii(i+1) . . . (i+Kp)J with I a permutation of [1..i−1] and J a permutation
of [i+Kp+ 1..n]. It is possible that I or J is empty.

PROOF. By Lemma 15, the vp-domain of σ is of size at most 2Kp+ 2. We
can decompose σ into free windows of consecutive elements outside the vp-
domain of σ, separated by windows of consecutive elements of the vp-domain.
Now, there are at most Kp + 1 windows of consecutive elements of the vp-
domain, and consequently, there are at most Kp+ 2 free windows in σ. Since
σ is of size n > (Kp+2)2−2 = (Kp+2)Kp+2Kp+2, at least one of the free
windows of σ has size strictly greater than Kp, i.e., contains at least Kp + 1
elements. By definition, these elements do not belong to the vp-domain of σ,
and hence they allow the decomposition of σ into σ = Ii(i+ 1) . . . (i+Kp)J
with I a permutation of [1..i − 1] and J a permutation of [i + Kp + 1..n].
Figure 7 represent the decomposition of σ used in this proof.

Lemma 17 Consider a permutation σ = σ′(j + 1)(j + 2) . . . n where σ′ is a
permutation of [1 . . . j]. If σ is obtainable after p duplication steps of size at

11



σ =

at most Kp+ 1 vp-windows

at most Kp+ 2 free-windows

Fig. 7. Proof of Lemma 16

most K then σ is obtainable after p duplication steps of size at most K such
that the duplicated window for each step does not intersect

PROOF. The key idea is to consider the first sequence s1, s2, . . . , sp of duplication-
loss steps and create a new sequence s′1, s

′
2, . . . , s

′
p such that :

• Each step s′i concerns only elements of [1..j].
• After every step s′i, the elements 1, 2, . . . , j are in the same order than after
performing steps s1, s2, . . . , si.

Then the proof is by induction on the number of steps. If there is only one
step then the proof is straighforward. Suppose now that the above statement
is true until p−1 steps. Then for the last step, we use our hypothesis for p−1
so that we have operations s′1, s

′
2, . . . , s

′
p−1 respecting the above conditions. For

s′n, only notice that the elements of [1 . . . j] involved in sn are also in a window
of size K in the permutation obtained after s′j−1 and in the same relative order
by our induction hypothesis which proves the existence of s′n.

Using these lemmas, we state and prove a key proposition:

Proposition 18 Consider a permutation σ /∈ C(K, p). Then either σ is of
size at most (Kp+2)2− 2, or there exists a strict pattern τ of σ that does not
belong to C(K, p).

PROOF. Consider a permutation σ /∈ C(K, p) such that any strict pattern τ
of σ belongs to C(K, p). We want to show that σ is of size n ≤ (Kp+2)2−2. Let
us assume the contrary. By Lemma 16, there exist i ∈ [1..n], I a permutation
of [1..i − 1] and J a permutation of [i + Kp + 1..n] such that σ = Ii(i +
1) . . . (i+Kp)J . Let us denote σ̂ the permutation σ̂ = Ii(i+ 1) . . . (i+Kp−
1)(J − 1), where (J − 1) is the permutation of [i+Kp..n− 1] obtained from
J by subtracting 1 to every element of J . σ̂ is a strict pattern of σ, hence
σ̂ ∈ C(K, p). Consider a shortest sequence of duplication-loss steps of width
at most K that produces σ̂ from 12 . . . (n − 1). This sequence has at most
p steps, each of width at most K. It implies that the total distance crossed
by the elements that are duplicated is at most Kp. Consequently, it is not
possible to bring an element of I and an element of J − 1 in two consecutive
positions. So it is necessary that the duplication-loss steps of the scenario we

12



consider are internal to I and J − 1. We can reproduce these steps in I and J
to obtain σ from 12 . . . n in at most p duplication-loss steps of width at most
K, contradicting that σ /∈ C(K, p).

It is then quite easy to prove Theorem 19:

Theorem 19 The class C(K, p) of all permutations obtained from an identity
permutation after p duplication-loss steps of width at most K is a class of
pattern-avoiding permutations whose basis is finite and contains only patterns
of size at most (Kp+ 2)2 − 2.

PROOF. We set B = {π : π /∈ C(K, p) and |π| ≤ (Kp + 2)2 − 2} and show
that S(B) = C(K, p).

Consider σ /∈ C(K, p). If |σ| ≤ (Kp + 2)2 − 2, then σ ∈ B and σ /∈ S(B).
Otherwise, if |σ| > (Kp+2)2− 2, then by Proposition 18, there exists a strict
pattern τ of σ that does not belong to C(K, p). Reasoning by induction on the
size of the permutations, we deduce from τ /∈ C(K, p) that τ /∈ S(B). A direct
consequence is that σ /∈ S(B). This proves that S(B) ⊆ C(K, p).

Conversely, consider σ ∈ C(K, p). Then any pattern τ of σ is also obtainable
from an identity permutation in at most p steps of width at most K (using
the sequence of duplication-loss steps associated with σ), i.e., τ ∈ C(K, p).
Then σ does not contain an occurrence of any pattern of B, i.e., σ ∈ S(B).
This shows that C(K, p) ⊆ S(B), ending the proof of the theorem.

3 Number of steps of width K to obtain any permutation of size n

The whole genome duplication - random loss model is studied in (4), and the
authors describe a method to compute an optimal duplication-loss scenario,
i.e., a scenario of duplications (of the whole genome in this case) and losses
whose number of steps is minimal.

Our model with bounded size duplication operations reduces to the whole
genome duplication - random loss case when K = n and thus to a radix-sort
algorithm as shown in (4) and to a bubble-sort when K = 2. Thus we give
some algorithm whose complexity matches the two extremal cases and shows
some continuity between the two sorting algorithms.

It is worth noticing that any scenario in our model can be viewed as a whole
genome duplication - random loss scenario. Consequently, the number of steps
of an optimal whole genome duplication - random loss scenario is a lower

13



bound to the number of steps of an optimal scenario in our duplication-loss
model.

It is also easy to see that, when considering permutations of size at mostK, our
model and the whole genome duplication - random loss model coincide. Indeed,
we will use for our purpose the procedure of (4), which is given in Algorithm
1. We omit the proof of correctness and optimality of this algorithm. See (4)
for details.

Algorithm 1 An optimal whole genome duplication - random loss scenario
from 12 . . .K to σ ∈ SK

1: π = 12 . . .K
2: Partition σ into maximal increasing substrings, from left to right
3: Each element of [1..K] appearing in the ith maximal increasing substring

gets as a label the binary representation of i
4: for j = 1 to ⌈log2(desc(σ) + 1)⌉ do
5: Perform a duplication-loss step on π that keeps in the first copy of π

exactly the elements whose label has a 0 in its jth least significant bit
6: end for

In order to examine every bit of the labels given to the elements of [1..K], the
number of steps in the loop on line 4 is ⌈log2(number of maximal increasing
substrings of σ)⌉ = ⌈log2(desc(σ) + 1)⌉. A consequence is that the number
of steps in an optimal whole genome duplication - random loss scenario from
12 . . . n to σ is Θ(log n) in the worst case and on average (see equation (1) for
the average case).

Note that the same algorithm can be used to compute an optimal whole
genome duplication - random loss scenario from i1i2 . . . ik, with k ≤ K and
i1 < i2 < . . . < ik, to any permutation of {i1, i2, . . . , ik}.

3.1 Upper bound

In this section, we provide an algorithm that computes, for any permutation
σ ∈ Sn in input, a possible scenario of duplications and losses to obtain σ from
12 . . . n. We will restrict ourselves to duplication-loss steps of width at most
K, so that the number of duplication-loss steps corresponds to the cost of the
scenario in our cost model. We are interested in the number of duplication-
loss steps of the scenario produced by the algorithm, in the worst case, and on
average. It provides an upper bound on the number of duplication-loss steps
that are necessary to obtain a permutation. The algorithm we use is described
in Algorithm 2.

A few keys to understand Algorithm 2 are the following remarks.

14



Algorithm 2 A duplication-loss scenario from 12 . . . n to σ ∈ Sn

1: π ← 12 . . . n
2: for i = 1 to ⌈ n−K

⌊K/2⌋
⌉ do

3: Let Li = {σj : n− i⌊K/2⌋+ 1 ≤ j ≤ n− (i− 1)⌊K/2⌋}
4: Perform duplication-loss steps on π to move from left to right the ele-

ments of Li to the positions n − i⌊K/2⌋ + 1 to n − (i − 1)⌊K/2⌋ of π,
without changing their respective order

5: end for

6: for i = 1 to ⌈ n−K
⌊K/2⌋

⌉ do
7: Perform Algorithm 1 on the window of π between the indices n −

i⌊K/2⌋ + 1 and n− (i− 1)⌊K/2⌋
8: end for

9: Perform Algorithm 1 on the window of π between the indices 1 and n −
⌈ n−K
⌊K/2⌋

⌉⌊K/2⌋

The set Li of values defined at line 3 represents the rightmost ⌊K/2⌋ elements
of σ not yet examined. The algorithm consists in two different loops, the
first one corresponding to lines 2 to 5 of the algorithm and the second one
from line 6 to 8. At the end of the first loop (line 5), π is decomposed into
windows of width ⌊K/2⌋ (except the leftmost one which is of width at most
K) ; and each of these windows is an increasing sequence containing exactly
the same elements as the window of σ corresponding to the same indices. In
the second loop, we consider these windows from right to left and since there
are of width less than K, we can call Algorithm 1 (that implements whole
genome duplication-random loss) on each window successively to transform π
into σ.

An example is given with σ = 2 10 1 7 6 5 8 9 3 4 and K = 6. We first cut σ
in chunks of size ⌊K/2⌋ = 3 and obtain 2 10 1 | 7 6 5 | 8 9 3 | 4. Then the first
loop of the algorithm (step 2 to 5) starts from 1 2 3 4 5 6 7 8 9 10 and takes
the elements in increasing order to the same chunk the belong to in σ. This
gives 1 2 10 | 5 6 7 | 3 8 9 | 4. Then the second loop sorts each chunk separately
to obtain σ using the radix sort Algorithm 1 introduced in (4).

Notice here that we use in the second loop (except for the leftmost window)
only duplication-loss steps of width ⌊K/2⌋. An improvement we considered is
to use whole genome duplication - random loss scenarios on windows of width
K, that are nonetheless increasing sequences. Unfortunately, we were not able
to analyse how many duplication-loss steps there are in a scenario produced
by such an algorithm.

We now analyse the number of steps of the scenario produced by Algorithm
2.

Proposition 20 The number of duplication-loss steps of a scenario produced

15



by Algorithm 2 on a permutation of size n is at most Θ( n
K
logK+ n2

K2 ) asymp-
totically.

PROOF. Suppose we are at iteration i of the first loop. We have to move the
⌊K/2⌋ elements of Li to their positions (from n−i⌊K/2⌋+1 to n−(i−1)⌊K/2⌋)
by duplication-loss steps of width at most K. The worst situation is when the
elements of Li are at the begining of π. But in this case, we can move to the
right the elements of Li by ⌈K/2⌉ positions at every duplication-loss step,
until they reach their position. The total number of duplication-loss steps in
this first process is then at most

⌈ n−K
⌊K/2⌋

⌉∑

i=1

⌈
n− i⌊K/2⌋

⌈K/2⌉

⌉
= Θ(

n2

K2
).

Consider now the second loop of Algorithm 2. In each window of size ⌊K/2⌋, it
performs at most ⌈log⌊K/2⌋⌉ duplication-loss steps (line 7) and in the leftmost
window (line 9), at most ⌈logK⌉ by the result of (4). Consequently the number
of duplication-loss steps produced by the second loop is

⌈
n−K

⌊K/2⌋

⌉
⌈log⌊K/2⌋⌉+ ⌈logK⌉ = Θ(

n

K
logK).

We finally get that the total number of duplication-loss steps in a scenario
produced by Algorithm 2 is at most Θ( n

K
logK + n2

K2 ) asymptotically in the
worst case.

It is easily noticed that this worst case corresponds to the reversed identity
permutation n(n− 1) . . . 21. This corresponds to our intuition of a worst case
situation in this context. We can also notice that Θ( n

K
logK + n2

K2 ) = Θ( n2

K2 )
for “small” values of K, namely as long as K = o( n

logn
). If on the contrary

n
logn

= o(K) then Θ( n
K
logK + n2

K2 ) = Θ( n
K
logK). When K = Θ( n

logn
), the

two terms are of the same order.

We can also compute the average number of duplication-loss steps of a scenario
produced by Algorithm 2.

Proposition 21 The number of duplication-loss steps of a scenario produced
by Algorithm 2 on a permutation of size n is on average Θ( n

K
logK + n2

K2 )
asymptotically.

PROOF. First, we introduce a few notations. Consider σ a permutation of

size n, and decompose it from right to left into p =
⌈

n−K
⌊K/2⌋

⌉
+ 1 windows of

16



width ⌊K/2⌋, except the leftmost one, whose width is n−
⌈

n−K
⌊K/2⌋

⌉
⌊K/2⌋ ≤ K.

We denote σ = σ1σ2 . . . σp this decomposition.

Now, let us denote c(σ) the number of duplication-loss steps produced in the
first loop of Algorithm 2 on σ. And in particular, we denote cp(σ) the number
of such steps produced by the first iteration of this loop, i.e., the number of
steps to move the elements of L1 at the end of the permutation. For computing
the average number of such steps, we consider un =

∑
σ∈Sn

c(σ). It is simple
to conceive that

un=
∑

σ∈Sn

cp(σ) + c(σ1 . . . σp−1)

=
∑

σ∈Sn

cp(σ) + n(n− 1) . . . (n− ⌊K/2⌋+ 1)
∑

σ∈Sn−⌊K/2⌋

c(σ)

=
∑

σ∈Sn

cp(σ) +
n!

(n− ⌊K/2⌋)!
un−⌊K/2⌋.

Let us focus on
∑

σ∈Sn
cp(σ). Figure 8 should convince the reader that

n+ 1− ⌊K/2⌋ −min(σp)

K
≤ cp(σ) ≤

n + 1− ⌊K/2⌋ −min(σp)

⌊K/2⌋
.

σ =

vp-vectors

positions:12 . . .min(σp) . . . n
⌊K/2⌋ rightmost positions

n+ 1−min(σp) elements

Fig. 8. Bounding cp(σ)

Now, we can notice that the number of permutations σ of size n such that
min(σp) = i is

(
n−i

⌊K/2⌋−1

)
(n− ⌊K/2⌋)!⌊K/2⌋!. This yields

17



∑

σ∈Sn

n+ 1− ⌊K/2⌋ −min(σp)

=
n−⌊K/2⌋+1∑

i=1

(n+ 1− ⌊K/2⌋ − i)

(
n− i

⌊K/2⌋ − 1

)
(n− ⌊K/2⌋)!⌊K/2⌋!

= (n− ⌊K/2⌋)!⌊K/2⌋!
n−1∑

i=⌊K/2⌋−1

(i+ 1− ⌊K/2⌋)

(
i

⌊K/2⌋ − 1

)

=(n− ⌊K/2⌋)!⌊K/2⌋!⌊K/2⌋
n−1∑

i=⌊K/2⌋

(
i

⌊K/2⌋

)

=(n− ⌊K/2⌋)!⌊K/2⌋!⌊K/2⌋

(
n

⌊K/2⌋+ 1

)
.

Consequently,

∑

σ∈Sn

cp(σ)≤ (n− ⌊K/2⌋)!⌊K/2⌋!

(
n

⌊K/2⌋+ 1

)

∑

σ∈Sn

cp(σ)≥
⌊K/2⌋

K
(n− ⌊K/2⌋)!⌊K/2⌋!

(
n

⌊K/2⌋+ 1

)

≥
1

3
(n− ⌊K/2⌋)!⌊K/2⌋!

(
n

⌊K/2⌋+ 1

)
,

giving after a few computations

1

3

n− ⌊K/2⌋

⌊K/2⌋+ 1
+

un−⌊K/2⌋

(n− ⌊K/2⌋)!
≤

un

n!
≤

n− ⌊K/2⌋

⌊K/2⌋+ 1
+

un−⌊K/2⌋

(n− ⌊K/2⌋)!
.

Therefore, we consider two sequences (vn) and (wn) satisfying the relations

vn = 1
3
n−⌊K/2⌋
⌊K/2⌋+1

+ vn−⌊K/2⌋ and wn = n−⌊K/2⌋
⌊K/2⌋+1

+ wn−⌊K/2⌋ respectively if n > K,
and vn = wn = un

n!
for any n ≤ K. Then we have vn ≤

un

n!
≤ wn∀n ∈ N.

We can solve the recurrence equations for vn and wn; and if we write n =
⌈ n−K
⌊K/2⌋

⌉⌊K/2⌋+ r (then ⌊K/2⌋ ≤ r ≤ K), we get:

vn =
1

3

⌈ n−K
⌊K/2⌋

⌉∑

i=1

n− i⌊K/2⌋

⌊K/2⌋+ 1
+ vr

=
1

3(⌊K/2⌋+ 1)

⌈
n−K

⌊K/2⌋

⌉(
n− ⌊K/2⌋

⌈ n−K
⌊K/2⌋

⌉+ 1

2

)
+ vr

=Θ(
n2

K2
)

18



and

wn =

⌈ n−K
⌊K/2⌋

⌉∑

i=1

n− i⌊K/2⌋

⌊K/2⌋+ 1
+ wr = Θ(

n2

K2
)

Consequently, the average number of duplication-loss steps produced by the
first loop of Algorithm 2 on permutations of size n is un

n!
= Θ( n2

K2 ).

What is left to compute is the average number of duplication-loss steps pro-
duced by the second loop of Algorithm 2 on permutations of size n. This
number is given by

1

n!

∑

σ∈Sn

p∑

i=1

⌈log(desc(σi) + 1)⌉

=
1

n!

( p∑

i=2

∑

σ∈Sn

⌈log(desc(σi) + 1)⌉+
∑

σ∈Sn

⌈log(desc(σ1) + 1)⌉
)

=
1

n!

( p∑

i=2

(n− ⌊K/2⌋)!

(
n

⌊K/2⌋

) ∑

σ∈S⌊K/2⌋

⌈log(desc(σ) + 1)⌉

+(n− |σ1|)!

(
n

|σ1|

) ∑

σ∈S|σ1|

⌈log(desc(σ) + 1)⌉
)

=
1

⌊K/2⌋!
(p− 1)

∑

σ∈S⌊K/2⌋

⌈log(desc(σ) + 1)⌉

+
1

|σ1|!

∑

σ∈S|σ1|

⌈log(desc(σ) + 1)⌉.

Since p =
⌈

n−K
⌊K/2⌋

⌉
+ 1, we deduce that the average number of duplication-loss

steps produced by the second loop of Algorithm 2 on permutations of size n

is Θ( 1
⌊K/2⌋!

(⌈
n−K
⌊K/2⌋

⌉
+ 1

)∑
σ∈S⌊K/2⌋

⌈log(desc(σ) + 1)⌉). Hence we focus on the

computation of 1
k!

∑
σ∈Sk
⌈log(desc(σ) + 1)⌉) for k = ⌊K/2⌋. By concavity of

the log function, since 1
k!

∑
σ∈Sk

desc(σ) + 1 = k+1
2
, we get that

1

k!

∑

σ∈Sk

⌈log(desc(σ) + 1)⌉ ≥
1

k!

∑

σ∈Sk

log(desc(σ) + 1) ≥ log(
k + 1

2
).

Moreover, it is clear that

1

k!

∑

σ∈Sk

⌈log(desc(σ) + 1)⌉ ≤ ⌈log(k)⌉,

19



so that we deduce that

1

k!

∑

σ∈Sk

⌈log(desc(σ) + 1)⌉ = Θ(log(k)). (1)

Consequently, the average number of duplication-loss steps produced by the
second loop of Algorithm 2 on permutations of size n is Θ(⌈ n−K

⌊K/2⌋
⌉ log(⌊K/2⌋)) =

Θ( n
K
logK).

Finally, we end the proof concluding that the total number of duplication-loss
steps in a scenario produced by Algorithm 2 on a permutation of size n is
Θ( n

K
logK + n2

K2 ) on average.

3.2 Lower bound

It is possible to provide very simple lower bounds on the number of duplication-
loss steps necessary to obtain a permutation. These lower bounds are given
and proved in Propositions 22 and 23 below. They are tight in most cases,
however not in any case. Indeed the upper and lower bounds coincide up to a
constant factor whenever K is a constant, or when K = K(n), except when
n

logn
≪ K(n)≪ n.

Proposition 22 In the worst case, Ω(log n + n2

K2 ) duplication-loss steps of
width K are necessary to obtain a permutation of Sn from 123 . . . n.

PROOF. Let us consider first the number of inversions in a permutation that
can create a duplication-loss step s of width K. It is easily seen that these new
inversions can only involve two elements of s. Call i the number of elements of
s that are kept in the first copy. Then the maximum number of inversions that
can be created by s is i(K − i) ≤ K2

4
. Now, a permutation σ ∈ Sn has up to

n(n−1)
2

inversions, so that at least 2n(n−1)
K2 duplication-loss steps are necessary

to transform 123 . . . n into σ.

To get the other term of the lower bound, we just refer to the result of (4)
recalled at the beginning of this section, namely that logn steps are necessary
in the worst case in the whole genome duplication - random loss model, in
which duplication-loss operation are less restricted.

Finally, we get a lower bound of Ω(log n+ n2

K2 ) necessary duplication-loss steps
to obtain a permutation of Sn from 123 . . . n in the worst case.

20



Proposition 23 On average, Ω(log n+ n2

K2 ) duplication-loss steps of width K
are necessary to obtain a permutation of Sn from 123 . . . n.

PROOF. As before, a duplication-loss step can create at most K2

4
inversions

in a permutation. But the average number of inversions in a permutation of Sn

is n(n−1)
4

, so that on average at least n(n−1)
K2 duplication-loss steps are necessary

to transform 123 . . . n into σ ∈ Sn.

Again, (4) provides use with the Ω(log n) lower bound, referring to the whole
genome duplication - random loss model which is more general than ours, so
that this bound applies in our context.

We conclude that a lower bound on the average number of duplication-loss
steps necessary to obtain a permutation of Sn from 123 . . . n is Ω(log n+ n2

K2 ).

4 Conclusion

We discuss the results of Section 3 on the average (or worst case) number
of steps of width K to obtain a permutation of size n. It appears that we
could not provide lower bounds that coincide with the upper bounds given
by our algorithm, but we claim that they are tight in many cases. Indeed,
whenever K = o( n

logn
), we get that n

K
logK = o( n2

K2 ), and consequently the

upper bound can be rewritten as Θ( n
K
logK + n2

K2 ) = Θ( n2

K2 ), which coincide

up to a constant factor with the lower bound Ω(log n+ n2

K2 ) = Ω( n2

K2 ). For the
case K = Θ( n

logn
), the same argument holds, but the constant factor between

the lower and the upper bound might be much greater. Finally, if K = Θ(n),
then Θ( n

K
logK+ n2

K2 ) = Θ(logn) and Ω(log n+ n2

K2 ) = Ω(log n), so that upper
and lower bounds coincide again.

On the contrary, when n
logn
≪ K ≪ n, the upper and lower bounds provided

do not coincide. We leave as an open question the problem of finding an
algorithm that computes a duplication-loss scenario whose number of steps is
optimal (on average and in the worst case) up to a constant factor, when the
width K of the duplicated windows satisfies n

logn
≪ K ≪ n.

Several other questions are still open. First of all neither of our algorithms is
optimal for a specific permutation and our results are only optimal asymptot-
ically in average and/or in the worst case. It could be interesting to provide
algorithms that produce optimal duplication-loss scenarios on any permuta-
tion σ, for K = K(n) in order to provide some continuity between the bubble
sort (corresponding toK = 2) and the radix sort (corresponding toK(n) = n).

21



References

[1] M.H. Albert, R.E.L. Aldred, M.D. Atkinson, H.P. Van Ditmarsch, C.C.
Handley, D.A. Hotlon, and D.J. McCaughan. Compositions of pattern
restricted sets of permutations. Technical report, University of Otago,
2004. Technical report number OUCS-2004-12.

[2] S. Bérard, A. Bergeron, C. Chauve, and C. Paul. Perfect sorting by rever-
sals is not always difficult. IEEE/ACM Transactions on Computational
Biology and Bioinformatics, 4(1), 2007.

[3] M. Bouvel and E. Pergola. Permutations arising in the duplication-loss
model. In preparation.

[4] K. Chaudhuri, K. Chen, R. Mihaescu, and S. Rao. On the tandem
duplication-random loss model of genome rearrangement. In SODA,
SODA, pages 564 – 570, 2006.

[5] M.C. Chen and R.C.T. Lee. Sorting by transpositions based on the first
increasing substring concept. In BIBE ’04: Proceedings of the 4th IEEE
Symposium on Bioinformatics and Bioengineering, page 553, Washington,
DC, USA, 2004. IEEE Computer Society.

[6] Anthony Labarre. A new tight upper bound on the transposition distance.
In Rita Casadio and Gene Myers, editors, Algorithms in Bioinformatics,
5th International Workshop, WABI 2005, Mallorca, Spain, October 3-6,
2005, Proceedings, volume 3692 of Lecture Notes in Computer Science,
pages 216–227. Springer, 2005.

[7] Anthony Labarre. New bounds and tractable instances for the transposi-
tion distance. IEEE/ACM Trans. Comput. Biology Bioinform, 3(4):380–
394, 2006.

22


	Introduction
	The model
	Pattern-avoiding classes of permutations
	Outline of the paper

	Characterization with excluded patterns
	The whole genome duplication - random loss model through the pattern-avoidance prism
	Permutations obtained in one step of width K
	Permutations obtained in p steps of width K

	Number of steps of width K to obtain any permutation of size n
	Upper bound
	Lower bound

	Conclusion

