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A PROLONGATION-PROJECTION ALGORITHM FOR COMPUTING THE
FINITE REAL VARIETY OF AN IDEAL

JEAN LASSERRE, MONIQUE LAURENT, AND PHILIPP ROSTALSKI

ABsTRACT. We provide a real algebraic symbolic-numeric algorithm for computing the real va-
riety V(1) of an ideal I C R[x], assuming V() is finite (while V(I) could be infinite). Our
approach uses sets of linear functionals on R[x], vanishing on a given set of polynomials generat-
ing I and their prolongations up to a given degree, as well as on polynomials of the real radical
ideal % obtained from the kernel of a suitably defined moment matrix assumed to be positive
semidefinite and of maximum rank. We formulate a condition on the dimensions of projections
of these sets of linear functionals, which serves as stopping criterion for our algorithm; this new
criterion is satisfied earlier than the previously used stopping criterion based on a rank condition
for moment matrices. This algorithm is based on standard numerical linear algebra routines and
semidefinite optimization and combines techniques from previous work of the authors together
with an existing algorithm for the complex variety.

1. INTRODUCTION

Polynomial equations play a crucial role in mathematics and are widely used in an emerging
number of modern applications. Recent years have witnessed a new trend in algebraic geometry and
polynomial system, namely numerical polynomial algebra [26] or numerical algebraic geometry [25].
Algorithms in this field deal with the problem of (approximately) computing objects of interest in
the classical area of algebraic geometry with a focus on polynomial root finding.

There is a broad literature for the problem of computing complex roots, that deals with numerical
and symbolic algorithms, ranging from numerical continuation methods as in e.g. Verschelde [2§]
to exact methods as in e.g. Rouillier [23], or more general Grobner or border bases methods; see
e.g. the monograph [9] and the references therein.

In many practical applications, one is only interested in the real solutions of a system of poly-
nomial equations, possibly satisfying additional polynomial inequality constraints. An obvious
approach for finding all real roots of a system of polynomial equations is to first compute all com-
plex solutions, i.e., the algebraic variety V(1) of the associated ideal I C R[x], and then to sort
the real variety Vg(I) = R" NV (I) from V(1) afterwards. However, in many practical instances,
the number of real roots is considerably smaller than the total number of roots and, in some cases,
it is finite while |V (I)] = 0.

The literature about algorithms tailored to the problem of real solving systems of polynomial
equations is by far not as broad as for the problem of computing complex roots. Often local Newton
type methods or subdivision methods based on Descartes rule of sign, on Sturm-Habicht sequences
or on Hermite quadratic forms are used; see e.g. [II, 20, 22] for a discussion. In [I2] we gave an
algorithm for finding Vg(I) (assumed to be finite), and a semidefinite characterization as well as
a border (or Grébner) basis of the real radical ideal v/T, by using linear algebra combined with
semidefinite programming (SDP) techniques. We exploited the fact that all information needed to
compute the above objects is contained in the so-called moment matrix (whose entries depend on
the polynomials generating the ideal I') and the geometry behind when this matrix is required to be
positive semidefinite with maximum rank. We use the name (real-root) moment-matriz algorithm
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for the algorithm proposed in [12]. This algorithm was later extended to the computation of all
complex roots in [I3]. A feature of the real-root moment-matrix algorithm is that it requires
to solve a sequence of SDP problems involving matrices of increasing size until a certain rank
condition is satisfied. Solving the SDP problem is the computationally most demanding task in
the algorithm. It is thus important to be able to terminate the algorithm at an as early as possible
stage so that the size of the matrices does not grow too much. This is the motivation for the
present paper where we present a new stopping condition, which is satisfied at least as early as the
rank condition of [I2] (and often earlier on examples). This leads to a new algorithm which we
name (real-root) prolongation-projection algorithm since its stopping condition involves computing
the dimensions of projections of certain sets of linear functionals on spaces of polynomials. This
new algorithm arises by incorporating several ideas of [12] [13] into an existing symbolic-numeric
solver dedicated to compute Ve (I) (as described e.g. in [32]). A detailed description will be given
in Section Bl but, in order to ease comparison with the moment-matrix method of [12], we now give
a brief sketch of both methods.

Sketch of the real-root moment-matrix and prolongation-projection algorithms. While
methods based on Grobner bases work with the (primal) ring of polynomials R[x], its ideals and
their associated quotient spaces, we follow a dual approach here. The algorithms proposed in [12]
and in this work manipulate specific subspaces of (R[x])*, the space of linear forms dual to the
ring of multivariate polynomials.

We denote by (R[x]¢)* the space of linear functionals on the set R[x]; of polynomials with degree
at most ¢ and use the notion of moment matriz Ms(L) := (L(x*x")) (indexed by monomials of
degree at most s) for L € (R[x]2s)*. (See Section [2 for more definitions.) Say we want to compute
the (finite) real variety V() of an ideal I given by a set of generators hi,...,h, € R[x| with
maximum degree D. A common step in both methods is to compute a maximum rank moment
matrix M) (L), where L € (R[x];)* vanishes on the set H; of all prolongations up to degree ¢ of
the polynomials h;; this step is carried out with a numerical algorithm for semidefinite optimization.
From that point on both methods use distinct strategies. In the moment-matrix method one checks
whether the rank condition: rankM,(L) = rankM;_1 (L) holds for some D < s < |t/2]; if so, then
one can conclude that /T is generated by the polynomials in the kernel of M (L) and extract
Vk(I); if not, iterate with t4 1. In the prolongation-projection algorithm, one considers G;, the set
obtained by adding to H; prolongations of the polynomials in the kernel of M\;/5|(L), its border
Q;r = Gy U; x;G;, as well as the set g# of linear functionals on R[x]; vanishing on G;, and its
projections 74(G;-) on various degrees s < t. We give conditions on the dimension of these linear
subspaces ensuring the computation of the real variety Vig(I) and generators for the real radical
ideal v/I. Namely, if dimm,(Gi) = dimm,_1(G#) = dim7,((G;")") holds for some D < s < t,
then one can compute an ideal .J nested between I and v/T so that Vi (I) = Vi(J), with equality
J = VT if dimn,(G) = |Ve(I)|; if not, iterate with  + 1.

Both algorithms are tailored to finding real roots and terminate assuming Vg (I) finite (while
Ve(I) could be infinite). However, the order ¢ at which the dimension condition holds is at most
the order at which the rank condition holds. Hence the prolongation-projection algorithm ter-
minates earlier than the moment-matrix method, which often permits to save some semidefinite
optimization step with a larger moment matrix (as shown on a few examples in Section [G).

Contents of the paper. Section [2] provides some basic background on polynomial ideals and
moment matrices whereas Section 3] presents the basic principles behind the prolongation-projection
method and Theorem Bl our main result, provides a new stopping criterion for the computation
of Vr(I). Section Ml relates the prolongation-projection algorithm to the moment-matrix method



REAL AND COMPLEX PROLONGATION-PROJECTION ALGORITHMS 3

of [12]. In particular, Proposition [[2] shows that the rank condition used as stopping criterion in
the moment-matrix method is equivalent to a strong version of the new stopping criterion; as a
consequence the new criterion is satisfied at least as early as the rank condition (Corollary [I3]).
Section [l contains a detailed description of the algorithm whose behavior is illustrated on a few
examples in Section [6}

2. PRELIMINARIES

2.1. Polynomial ideals and varieties. We briefly introduce some notation and preliminaries
for polynomials used throughout the paper and refer e.g. to [4] and [3] for more details.

Throughout R[x| := R[z1,...,2,] is the ring of real polynomials in the n variables x =
(x1,...,2,) and R[x], is the subspace of polynomials of degree at most ¢t € N. For a € N",
x® = (" ---x% is the monomial with exponent v and degree |a| = )", ;. For an integer ¢ > 0,
the set N = {a € N" | || < t} corresponds to the set of monomials of degree at most ¢, and
T" = {x*| a € N*}, T} = {x* | a € N7} denote the set of all monomials and of all monomials
of degree at most ¢, respectively. Given S C R[x], set ;S := {z;p | p € S}. The set

StT:=SuUuzSU...Uz,S

denotes the one degree prolongation of S and, for B C T, 9B := Bt \ B is called the set of
border monomials of B. The set B is said to be connected to 1 if any m € B can be written as
m=mq---my with m; =1 and my---my € Bforall h =1,...,k. For instance, B is connected
to 1 if it is closed under taking divisions, i.e. m € B and m’ divides m implies m’ € B.

Given hy,...,hy, € R[x], I = (hy,...,hy) is the ideal generated by hq, ..., hy,, its algebraic
variety is

Ve):={veC"|hj(v)=0¥j=1,...,m)}

and its real variety is Vg(I) := R” N V(I). The ideal I is zero-dimensional when Vi (7) is finite.
The vanishing ideal of a set V' C C™ is the ideal

I(V)y:={feR[x]| f(v)=0Vv eV}

The Real Nullstellensatz (see e.g. [, §4.1]) asserts that I(Vi(I)) coincides with v/T, the real radical
of I defined as

VT = {p € R[x| ‘p2m+2q]2 € I for some ¢; € R[x|,m € N\{O}}
J

Given a vector space A on R, its dual vector space is the space A* = Hom(A,R) consisting of
all linear functionals from A to R. Given B C A, set Bt := {L € A* | L(b) = 0 ¥b € B}, and
Spang (B) = {3", \ib; | A\ € R,b; € B}. Then Spang(B) C (B*)*, with equality when A is
finite dimensional.

For an ideal I C R[x], the space D[I] := I+ = {L € (R[x])* | L(p) = 0 Vp € I}, considered
e.g. by Stetter [26], is isomorphic to (R[x]/I)* and D[I]* = I when I is zero-dimensional. Recall
that I is zero-dimensional precisely when dimR[x]/I < oo, and |V¢(I)] < dim R[x]/I with equality
precisely when I = I(Ve(1)).

The canonical basis of R[x] is the monomial set T", with D,, := {d, |€ N"} as corresponding
dual basis for (R[x])*, where

1 glel
4ul0) = Tt (Grmga) O or € Bl

Thus any L € (R[x])* can be written in the form L =" yod, (for some y € RY").
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By restricting its domain to R[x]s, any linear form L € (R[x])* gives a linear form w4 (L) in
(R[x]s)*. Throughout we let 7; denote this projection from (R[x])* (or from (R[x]:)* for any
t > s) onto (R[x]s)*.

Given a zero-dimensional ideal I C R[x], a well known method for computing Vi(I) is the
so-called eigenvalue method which relies on the following theorem relating the eigenvalues of the
multiplication operators in R[x]/I to the points in V(). See e.g. [3, Chapter 2§4].

THEOREM 1. Let I be a zero-dimensional ideal in R[x] and h € R[x]. The eigenvalues of the
multiplication operator
mp: R[x]/T — R[x]/I
p modI +— ph mod]/[
are the evaluations h(v) of the polynomial h at the points v € Ve (I). Moreover, given a basis B
of R[x]/I, the eigenvectors of the matriz of the adjoint operator of my, with respect to B are the
vectors (b(v))pes € RIBI (for all v € Vi (I)).

The extraction of the roots via the eigenvalues of the multiplication operators requires the
knowledge of a basis of R[x]/I and an algorithm for reducing a polynomial p € R[x] modulo the
ideal I in order to construct the multiplication matrices. Algorithms using Grobner bases can be
used to perform this reduction by implementing a polynomial division algorithm (see [4, Chapter
1]) or, as we will do in this paper, generalized normal form algorithms using border bases (see [13],

[21], [26] for details).

2.2. Moment matrices. Given L € (R[x])*, let 1 denote the quadratic form on R[x] defined
by Qr(p) := L(p?) for p € R[x]. Qy, is said to be positive semidefinite, written as Qr = 0, if
Qr(p) > 0 for all p € R[x]. Let M(L) denote the matrix associated with @ in the canonical
monomial basis of R[x], with («, 3)-entry L(x*x?) for o, 3 € N, so that

Qup) = > papsL(x*x”) = vec(p)" M(L)vec(p),
a,EN”

where vec(p) is the vector of coefficients of p in the monomial basis T". Then @ *= 0 if and
only if the matrix M (L) is positive semidefinite. For a polynomial p € R[x], p € Ker @y, (i.e.
Qi(p) = 0 and so L(pg) = 0 for all ¢ € R[x]) if and only if M (L)vec(p) = 0. Thus we may identify
Ker M (L) with a subset of R[x], namely we say that a polynomial p € R[x] lies in Ker M (L) if
M (L)vec(p) = 0. Then Ker M (L) is an ideal in R[x], which is real radical when M (L) = 0 (cf.
[15], [I7]). For an integer s > 0, M(L) denotes the principal submatrix of M (L) indexed by N7.
Then, in the canonical basis of R[x]s, M (L) is the matrix of the restriction of Q1 to R[x]s, and
Ker M,(L) can be viewed as a subset of R[x]s. It follows from an elementary property of positive
semidefinite matrices that

(1) M(L) = 0 = Ker My(L) NR[x]s = Ker Ms(L) for1<s<t,

(2) My(L), My(L") = 0= Ker M;(L + L") = Ker M(L) N Ker M;(L").

We now recall some results about moment matrices which played a central role in our previous
work [I2] and are used here again.

THEOREM 2. [5] Let L € (R[x]|2s)*. If rankM (L) = rankM,_1(L), then there exists (a unique)
L € (R[x])* such that mos(L) = L, rankM (L) = rankM, (L), and Ker M (L) = (Ker My(L)).

THEOREM 3. (c¢f. [I2,[15]) Let L € (R[x])*. If M(L) = 0 and rankM (L) = rankM,_1(L), then
Ker M (L) = (Ker Ms(L)) is a zero-dimensional real radical ideal and |Ve(Ker M (L))| = rankM (L).
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3. BASIC PRINCIPLES FOR THE PROLONGATION-PROJECTION ALGORITHM

We present here the results underlying the prolongation-projection algorithm for computing
Vk(I), K = R,C. The basic techniques behind this section originally stem from the treatment
of partial differential equations. Zharkov et al. [30, BI] were the first to apply these techniques
to polynomial ideals. Section Bl contains the main result (Theorem H). The complex case is
inspired from [32] and was treated in [I3]. The real case goes along the same lines, so we only
give a brief sketch of proof in Section In Section B3] we indicate a natural choice for the
polynomial system G involved in Theorem [l which is based on ideas of [12] and will be used in
the prolongation-projection algorithm.

3.1. New stopping criterion based on prolongation/projection dimension conditions.
We state the main result on which the prolongation-projection algorithm is based. We give a
unified formulation for both complex/real cases.

THEOREM 4. Let I = (hq,...,hy) be an ideal in R[x|, D = max; deg(h;) and s,t be integers with
1<s<t. Let G CR[x]¢ satisfying h1,...,hm €G and G C I (resp., G C \R/T) If dim 7, (G+) =0
then Ve(I) =0 (resp., Ve(I) = 0). Assume now that s > D and

(3a) dim ws(gL) = dimﬂ's,l(gj‘),
(3b) dim 7, (G1) = dim 7, ((G1)4).

Then there exists a set B C T?_ closed under taking divisions (and thus connected to 1) for which
the following direct sum decomposition holds:

(4) R[x]s = Spang(B) & (R[x]s N Spang(G)).

Let B C T7_, be any set connected to 1 for which ([J)) holds, let ¢ be the projection from R[x]s onto
Spang (B) along R[x]s N Spang(G), and let Fy := {@(m) | m € OB}, J := (Fy). Then B is a basis
of R[x]/J and Fy is a border basis of J. Moreover:

o IfGCI then J=1.

o IfGC VI then

Ve(I) = Ve(J)NR™;  JNR[x], = Spang(G) NR[x],; 7s(D[J]) = 74(GF),
and in addition, J = /T if dim 7, (G*) = |Ve(I)).
This result is proved in [13] in the case when G = H; C I, where
(5) Hy = {xhy | || + deg(hy) <t, j = 1,...,m}

consists of all prolongations to degree ¢ of the generators h; of I. Note however that in [I3] we did
not prove the existence of B closed under taking divisions; we include a proof in Section below.
The proof for arbitrary G C I is identical to the case G = H;. In the case G C v/1, the prooﬂ
is essentially analogous (except for the last claim J = V/T which is specific to the real case). We
give a brief sketch of proof in the next section, since this enables us to point out the impact of the
various assumptions and, moreover, some technical details are needed later in the presentation.

INote that if we would apply the previous result to the ideal J := (I U G) and the set G, then we would reach
the desired conclusion, but under the stronger assumption s > max(D, D’), where D’ is the maximum degree of a
generating set for G.
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3.2. Sketch of proof for Theorem [4l We begin with a lemma used to show the existence of B
closed by division in Theorem @l

LEMMA 5. Let Y be a matriz whose columns are indexed by T?. Assume

(6) VAERT 3" AV, =0= > AYia=0,
a€T?_, a€T?_,

where Y, denotes the a-th column of Y. Then there exists B C T which is closed under taking
divisions and indexes a mazimum linearly independent set of columns of Y .

Proof. Order the monomials in T? according to a total degree monomial ordering <. Let B C T?
index a maximum linearly independent set of columns of Y, which is constructed using the greedy
algorithm applied to the ordering < of the columns. Then, setting B,, := {m' € B | m' < m},
m € B precisely when B,, U {m} indexes a linearly independent set of columns of Y. We claim
that B is closed under taking divisions. For this assume m € B and m = x;m; with m; € B. As
m1 & B, we deduce that

Y, = Z AoY, for some scalars \,.

a€Bm,
For a € B,,,, a < my implies z,a < x;m; = m, i.e., x;a € By,. Applying (@) we deduce that
Ym - Z Aa}/m,;a;
a667n1

which gives a linear dependency of Y,,, with the columns indexed by B,,, contradicting m € B. O

We now sketch the proof of Theorem ll Set N := dim7,_1(G1). If N = 0 then Vi(I) = 0
(for otherwise the evaluation at v € Vi (I) would give a nonzero element of ms_1(G1)). Let
{Li,...,Ly} C G* for which {ms_1(L1),...,ms_1(Ln)} is a basis of m,_1(G*). Let Y be the
N x|T?_;| matrix with (j, m)-th entry L;(m) for j < N and m € T?_;. We verify that ¥ satisfies
the condition (@) of Lemma[d (replacing s by s—1). For this note that Zaew% XY, = 0if and only
itp:= Zaewﬁ At € (ms—2(G1))* = Spang(G) N R[x]s_2 and thus z;p € Spang(G+) N R[x]s_1;
in view of (B), this implies 2;p € Spang(G) NR[x]s—1 and thus Y7, pn
apply Lemma Bt There exists a set B indexing a maximum linearly independent set of columns of
Y which is closed by division. This amounts to having the direct sum decomposition:

(7) R[x]s—1 = Spang (B) @ (Spang(9) N R[x]s-1)).

As N = dim7s(G1), the set {ms(L1),...,ms(Ly)} is a basis of 75(G1), and thus @) holds. Set
F:={m—e(m)|m e T} Obviously, Fy C F C Spang(G,) NR[x]s. Moreover, one can verify (cf.

[13]) that

2 AaYz,a = 0. Thus we can

() Spang (F') = Spang (G) NR[x]s,
(9) (Fo)=(F), IC(F) if s> D,
(10) o(zip(zym)) = p(xzjo(z;m)) formeBandi=1,...,n.

Note that (B38) is used to show (@)-(IT).

The ideal J := (Fp) satisfies I € .J (by @)) and J C I or J C +/T depending on the assumption
on G. As B is connected to 1 and we have the commutativity property (I0)), we can apply [18]
Theorem 3.1] and deduce that B is a basis of R[x]/J. The inclusion: Spang(G) NR[x]s € J N
R([x]s follows from (§)-(@), while the reverse inclusion follows from the fact that ¢(p) = 0 for
all p € JNR[x]s since B is a basis of R[x|/J. Thus Spang(G) N R[x], = J N R[x]s, implying
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75(G1) = (JNR[x]s)*. The inclusion 75(J+) C (J NR[x]s)* is obvious, and the reverse inclusion
follows from (74(J4))* C (J5)* NR[x]s = JNR[x],, since J is zero-dimensional. Hence 7,(G+) =
7s(J+) = 7s(D[J]). Finally note that

dim 7, (G*) = |B] = dimR[x]/J > [Vc(J)| > [Ve(I)|.
Hence, if dim 74(G*) = |Vk(I)|, then equality holds throughout, which implies that .J is real radical
and thus J = v/I. This concludes the proof of Theorem [l

REMARK 6. We indicate here what happens if we weaken some assumptions in Theorem [4]

(i) The condition s > D is used only in (9) to show I C (F'). Hence if we omit the condition s > D
in Theorem[4), then we get the same conclusion except that we cannot claim I C J.

(ii) Consider now the case where we assume only that [3d) holds (and not (38)). As we use (38) to
show the ezistence of B connected to 1 and to prove (@)-{I0), we cannot prove the commutativity
property [IQ), neither the equality (F) = (Fy). Nevertheless, what we can do is test whether B is
connected to 1 and whether (I0) holds. If this is the case, then we can conclude that B is a basis
of R[x]/J where J = (Fy) C VI and extract the variety Ve (J) which satisfies Vie(I) C Ve(J) NR™
and |Ve(J)| < dimR[x]/J = |B|. Then it suffices to sort Vg(I) out of Ve(J). The additional
information that condition (38) gives us is the guarantee that the commutativity property (I0)
holds and the equality J = (F), thus implying J 2 I and Ve(I) = Ve(J)NR™ if s > D.

3.3. A concrete choice for the polynomial system G in Theorem M4l For the task of com-
puting Vi (I), one can choose as indicated in [13] the set G = H; from ([B) and thus consider the
linear subspace K; := Hi of (R[x];)*. For the task of computing Vi(I), as inspired by [12], we
augment H; with a set W, of polynomials in v/ obtained from the kernel of a suitable positive
element in H;-. For this, consider the convex cone

K- :={L¢€ Hi- | M 4y2)(L) = 0},

consisting of the elements of K; that are positive, i.e. satisfy L(p?) > 0 whenever deg(p?) < t.
Generic elements of K~ (defined in Lemma [7] below) play a central role; geometrically these are
the elements lying in the relative interior of the cone K¢ i-.

LEMMA 7. The following assertions are equivalent for L* € Ky .
(1) rankMLt/QJ (L*) = maxLe;ct’t rankMLt/QJ (L)
(ii) rankM,(L*) = maxrex, ., rankM,(L) for all 1 < s < [t/2].
<l

(iii) Ker M(L*) C Ker My(L) for all L € Ky » and 1 < s < [t/2].

Then L* is said to be generic.
Proof. Direct verification using ({{)-(2]). O

Hence any two generic elements Li, Ly € K; - have the same kernel, denoted by N; (=
Ker M\;/5)(L1) = Ker M|;/2)(L2)), which satisfies

(11) Ne SNy ift <t

(easy verification), as well as

(12) N; € VT

(cf. [I2l Lemma 3.1]). Define the set

(13) Wy = {x%g | a € NJ} 5,9 € Ni},
whose definition is motivated by the fact that, for L € (R[x];)*,
(14) Ny € Ker My /5 (L) <= L € W;-.
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Therefore, W, C V/I. For the task of computing Vi (I), our choice for the set G in Theorem @ is
(15) G :=H, UW,.

Note also that

(16) Ky CHENWE = (HUW,) .

In fact, as we now show, both sets in ([f]) have the same dimension, i.e. (H;UW;)"T is the smallest
linear space containing the cone K .

LEMMA 8. dim K; » = dim(H, UW;)*.
Proof. Pick L* lying in the relative interior of ; -, i.e. L* is generic, and define
Pr:={Le (Rx];)"|L*teL € K;» for some e > 0},

the linear space consisting of all possible perturbations at L*. Then, dim ;- = dimP;. One
can verify that there exists an € > 0 such that L* + €L € K;» if and only if L € H} and
Ker M4/, (L*) € Ker M|;)9)(L) (cf. e.g. [8 Thm. 31.5.3]). As the latter condition is equivalent
to L € Wit by (), we find P, = (H; UW;)*, which concludes the proof. O

We conclude with a characterization of /T and of its dual space D[v/T], using the sets G; from

(@)
PROPOSITION 9. With Gy = H, UW;, VI = J, Spang(G;) and D[VI| =, Gi-.

Proof. The inclusion |J, Spang(G;) C /T follows from (IZ). Next, for some order (¢,s) we have

VI = (Ker M,(L*)). The proof, which relies on the existence of a finite basis for the ideal /T
can be found in [12]. This fact, combined with Ker M (L*) C N; C Spang(G;), implies the reverse

inclusion VT C \U; Spang (G;). Now the equality IT = \U; Spang G, implies in turn D[W] = gti.
O

When [Vi(I)| < oo, the dual of the real radical ideal coincides in fact with the vector space
spanned by the evaluations at all v € Vg(I). Proposition [@ shows how to obtain it directly from
the quadratic forms @, (or its matrix representation M|, 5| (L)) for a generic L € Ky without a
priori knowledge of Vg (I).

4. LINKS WITH THE MOMENT-MATRIX METHOD

In this section we explore the links with the moment-matrix method of [I2] for finding V(1) as
well as the real radical ideal v/I. We recall the main result of [I2], underlying this method.

THEOREM 10. [12] Let L* be a generic element of Ky ». Assume that
(17) rank M (L") = rankM,_1 (L")

for some D < s < |t/2]. Then (Ker My(L*)) = /I and any set B C T?_, indexing a mazimum
linearly independent set of columns of M,_1(L*) is a basis of R[x]/V/T.
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4.1. Relating the rank condition and the prolongation-projection dimension condi-
tions. We now present some links between the rank condition (I7)) and the conditions (Bd)—(34).
First we show that the condition ([Bd) suffices to ensure that the rank condition () holds at some
later order.

PROPOSITION 11. Let 1 < s < t. If (3d) holds with G := H;UW,, then rank M (L) = rankM,_1(L)
for all L € Kiq04,-.

Proof. Let L € Kyyos>. We show that rankM (L) = rankM,_1(L). For this, pick m,m’ €
T?. As in the proof of Theorem l (@) holds and thus we can write m = >,z A\yb + f, where
X € R, f € Spang(G), and B C T?_,. (Note that (3H) was not used to derive this.) Then,
mm' = Y7, g \em'b 4+ m'f. It suffices now to show that L(m'f) = 0. Indeed this will imply
M(L)mm = L(mm') =37, g M L(m'b) = >, c g AeM (L) 5, that is, the mth column of M (L) is
a linear combination of its columns indexed by b € B, thus giving the desired result.

We now show that L(m'g) = 0 for all g € H;UW,. By assumption, L € Kt C Hitos Wi,
(recall ([I6). If g € Hy, then m'g € Hits € Hiyos and thus L(m/g) = 0. If g € Wy, then g = x“h,
where h € N} and |a| < [t/2]. Hence, m'g = m’x*h, where deg(m’x*) < s+ [t/2] < [(2s+1)/2]
and h € Ny C Niias (by (), implying m’g € Wii2s and thus L(m'g) = 0. O

We now show that the rank condition (7)) is in fact equivalent to the following stronger version
of the conditions [Bd)-(BH) with G = G; = H, UW;:
(18a) dim ma4(GH) = dim 7,1 (G,
(18b) dim a4 (Gi) = dim ma5((G;5) ).
PROPOSITION 12. Let L* be a generic element of K= and 1 < s < [t/2].

(i) Assume (I7) holds. Then ([I8d) holds, and (I8) holds as well if s > D.

(i) Assume ([I8d)-({I8H) hold. Then, ([I7) holds, the ideal J obtained in Theorem [{] is real
radical and satisfies J = (Ker My (L*)) C I(Vk(I)) and, given B C T%_,, B satisfies (7))
if and only if B indexes a column basis of M,_1(L*). Furthermore, J = /T if s > D.

The proof being a bit technical is postponed to Section[Z2l An immediate consequence of Propo-
sition is that the rank condition at order (t,s) implies the prolongation-projection dimension
conditions ([Bd)-([BH) at the same order (¢, s).

COROLLARY 13. Assume D < s < [t/2] and let G = Gy = H; UW,. Then,
() = ([18d)-[(180) — (3d)-(3L).
Proof. Indeed, 75(G;i-) = 75((G;")* follows directly from mas(GiH) = m2s((G;1)1). O

It is shown in [I2] that the rank condition (I7)) holds at order (s,t) large enough with D < s <
|t/2]. Hence the same holds for the conditions (I8d)-(I84) (and thus for ([Bd)-([BH)), which will
imply the termination of the prolongation-projection algorithm based on Theorem @l

4.2. Proof of Proposition First we note that the rank condition (I7) is in fact a property
of the whole cone K¢~ and its superset G- = Hi- N Wit

LEMMA 14. If (I7) holds for some generic L* € Kt -, then (I7) holds for all L* € G;-.
Proof. Let L € gf. We have
(19) Ker M (L*) = Ker M|;2)(L*) NR[x]s = Ny NR[x]s € Ker M\;9)(L) NR[x], € Ker M,(L),



10 JEAN LASSERRE, MONIQUE LAURENT, AND PHILIPP ROSTALSKI

where the first equality holds by (), the first inclusion holds by (I4)), and the second one holds
since M,(L) is a principal submatrix of M|, o (L). This implies directly that rankM,(L) =
rankM;_1(L). O

We now give the proof for Proposition[I2l Let L* be a generic element of C; »-.
(i) Assume that (7)) holds. First we show (I8d), i.e. we show that dim 72, (G;") = dim 7s_1(Gi).
For this, consider the linear mapping

1/}: 7725(9#) — stl(g#)
mos(L) = we_1(L).

As 1) is onto, it suffices to show that v is one-to-one. For this assume mg_1(L) = 0 for some
L € Gi*. We show that mas(L) = 0, i.e. L(x?) =0 for all |y| < 2s by induction on |y| < 2s. The
case |y| < s — 1 holds by assumption. Let s < |y| < 2s and write v as 7 = a + 8 where |a| = s
and |B| < s. By Lemma [[4] rankM (L) = rankM;_1(L). Hence the ath column of M,(L) can be
written as a linear combination of the columns indexed by T%_;. This gives

My(L)g,a = 32 |51<5—1 AsMs(L)p,s for some As € R. As [B+ 6] < |y[ — 1, we have M(L)g,s =
L(x%*+%) = 0 by the induction assumption, implying L(x?) = M(L)s o = 0.

We now assume moreover s > D. We show the inclusion ma5(Gi) C m2,((G;7)*1), which implies
(8D). Let L € Gi-. As rankM,(L) = rankM;_1(L), we can apply Theorem B and deduce the
existence of L € (R[x])* for which mas(L) = mas (L) and Ker M (L) = (Ker M,(L)). It suffices now to
show that L € (G;")*. We show a stronger result, namely that L € I(Vg(I))*. As s > D, we know
from Theorem [0 that I(Vk(I)) = (Ker M (L*)). Pick p € I(Vk(I)) and write it as p = Y, wgi,
where u; € R[x] and g; € Ker My (L*); we show that L(p) = 0. By @), g; € Ker M,(L) and thus,
as M(L) = M,(L), g1 € Ker M (L). Therefore, p lies in (Ker M,(L)) = Ker M(L), which gives
L(p) =0.

(ii) Assume now that (I8d)-(I83) hold. Then, [Bd)-([BH) holds for the pair (¢,2s) (and G = G;).
Although we do not assume 2s > D, the conclusion of Theorem M partially holds, as observed in
Remark [Al (i). Namely, we can find an ideal J satisfying J C I(Vk(I)), J NR[x]2s = Spang(G:) N
R[x]2s, 725 (D[J]) = m2s(Gi-), and I C J if 2s > D. Moreover, there exists a set B C T? ; which
is a basis of R[x]/.J and satisfies the following analogue of ({@]):

(20) R[x]2s = Spang(B) @ (Spang (Gr) N R[x]2).
We show that rankM (L") = rankM,_1(L*). As L* € Gi, there exists L € D[J] for which

Tos(L*) = mas(L). Thus M,(L*) = M,(L), and J C Ker M(L) since L € D[J]. Tt suffices to show

that rankM,(L) = rankM,_1(L). For this, as in the proof of Proposition [[I] pick m,m’ € T}.
Using [20), we can write m = Y 7,3 \pb+f, where \y € R, f € Spang (G;)NR[x]2s € J C Ker M (L),
so that L(m'm) = > beB Ay L(m'b), which gives the desired result: rankM,(L) = rankM,_;(L).

Let By, By C T?_,, where By satisfies (@) and Bs indexes a column basis of Ms_1(L*). Then
(21) |B1| = dimR[x]/J < rankM,_1 (L") (= |Bz|)

since the columns of M_;(L*) indexed by B; are linearly independent (direct verification, using
([@ and the fact that Ker M,_(L*) C Ker M|;2(L*) = N; C Spang(G;)). Moreover,

(22) |82| = rankMS_l(L*) < dimws_l(gf) (Z |81|)
Indeed, as Spang(G;) NR[x]s-1 € J NR[x]s_1 C Ker M, (L) = Ker M,_,(L*), we obtain

Spang (G¢) N Spang (B2) = {0}, which implies |Bs| < dim(Spang(G;) NR[x]s_1)* = dim7,_1(G}").
Hence, equality holds in 21]) and ([22]). Therefore, B; indexes a column basis of Ms_1(L*), Bs
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satisfies (), and
rankM,_1(L*) = dim7,_1(Gj") = dimR[x]/J.
As J C Ker M(L), we deduce

dim R[x]/Ker M (L) < dimR[x]/.J.
On the other hand,
dimR[x]/J = rankM,_;(L*) = rankM,_,(L) < rankM (L) = dim R[x]/Ker M(L).
Hence equality holds throughout. In particular, J = Ker M (L) and rankM (L) = rankM,_;(L).

As M, (L) = M,_1(L*) = 0, we deduce that M (L) = 0 and J = Ker M (L) = (Ker M,(L))
(Ker Ms(L*)) is a real radical ideal (using Theorem[). Finally, if s > D, then J = (Ker M (L*)) =

V/T by Theorem This concludes the proof of Proposition

4.3. Two illustrative examples. We discuss two simple examples to illustrate the various no-
tions just introduced and the role of moment matrices; the second one has infinitely many complex
roots.

EXAMPLE 15. Let I = (22,23, 2122) C Rlxy,x2], considered in [13] as an example with a non-
Gorenstein algebra R[x]/I. Any L € K, (t > 2) satisfies L(x*) =0 if |a] > 2 and thus

a b ¢ 0
b 0 0 0
M) (L) = c 000 for some scalars a, b, c,
0 0 0 0
where entries are indexed by 1,x1,x2,... Hence, dimma(K2) = dim w1 (K3) = dim 7o (K3) = 3 and

the rank stabilizes at order (t,s) = (4,2), i.e. rankMo(L*) = rankM;(L*) = 2 for generic L* € K4.
When L € Ky, the condition M|;/2)(L) = 0 implies b = ¢ = 0. Hence, for generic L* € Ky -,
Ny = Ker My(L*) is spanned by the polynomials x1 and x2, and the rank condition (I7) holds
at order (t,s) = (2,1), d.e. rankM;(L*) = rankMy(L*) = 1. As Spang(Gz) is spanned by the
polynomials 1,2, 3, 122,23, the conditions (I8d)-([I8Y) hold at the same order (t,s) = (2,1),
i.e. dimm(Gy) = dimmo(Gy ) = dimm2((G5)*F) = 1, as predicted by Proposition [12.

EXAMPLE 16. Consider the ideal I = (23 + 23) C Rlx1, 23] with Vi(I) = {0} and |Vc(I)| = <.
As dim7s(Ky) = dimms_1(K¢) + 2 for any t > s > 2, the conditions (3d)-(30) never hold in the
case G = Hy. On the other hand, any L € Ko~ satisfies L(z3) = L(z3) = 0, which follows from
L(2? + 23) = 0 combined with My(L) = 0, giving L(z%), L(x3) > 0. Moreover, L(z1) = L(z2) =
L(z1z2) = 0. Thus Ny is spanned by the polynomials x1 and x2, and the conditions {I7) and

(I8d)-[I8H) hold at order (t,s) = (2,1).

ExamplesI8 and 20 in Section @ are cases where the prolongation-projection method terminates
earlier than the moment-matrix method.

5. A PROLONGATION-PROJECTION ALGORITHM

Let us now give a brief description of our algorithm for computing Vk(I) (K = R, C) based on
the results of the previous section. A simple adjustment in the proposed prolongation-projection
algorithm allows the computation of all complex vs. real roots. The general structure is shown in
Algorithm[Il If T is an ideal given by a set of generators and |V (I)| < oo, this algorithm computes
the multiplication matrices in R[x]/.J, which thus allows the immediate computation of Vi (J) (by
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Theorem [), where J is a zero-dimensional ideal satisfying J = I if K= C and I C J C VT if
K =R, so that Vk(J) = Vk(I). We then comment on the key steps involved in the algorithm.

Algorithm 1 Unified prolongation-projection algorithm for computing Vi (I):

Require: A set {h1,...,h;,} of generators of I and ¢t > D.
Ensure: The multiplication matrices in R[x]/J, where J = if K=Cand I C J C VTif K =R,
thus enabling the computation of Vi (I).

1: Compute the matrix representation G; of G; and G of G, .

2: Compute Ker Gy and Ker G} .

3: Compute dim 74 (Ker G¢) (= dim 74((G¢)*)) and dim 74(Ker G} (= dim 74 ((G;7)*4)) for s < ¢.

4: Check if @d)—(@3) holds for some D < s < [t/2].

5: if yes then

6: return a basis B C R[x]s_; connected to 1 and satisfying (), and the multiplication
matrices &; in R[x]/.J represented in the basis B.

7: else

8: Iterate (go to 1) replacing ¢ by t 4 1.

9: end if

REMARK 17. Here, Gy = H; (see [A)) for the task of computing Ve(I), and Gy = Hy UW, (see
(I3)) for the task of computing Vr(I). See below for details about the matriz representations Gy
and G

Characterizing G, and g# via the matriz G¢. In the real case, the set G; is defined as Gy = H,; UW,
where W, is the linear space defined in (I3)). As we are interested in the orthogonal space G;-, it
suffices to compute a basis C; of the linear space A; and to define the set

(23) Sii={x"g[lal < [t/2],9 € Ci}.

Then, N; = Spang(C;), Wi = Spang(S;), and Gi* = (H: U Si)*. Let S; (vesp., H;) be the matrix
with columns indexed by T} and whose rows are the coefficient vectors of the polynomials in S;
(resp., in H;). In the case K = C, the set G; = H; is represented by the matrix Gy := H; and, in
the case K = R, the set G; = H; U W, is represented by the matrix

H
Gt:|:5::|

Then the vectors in Ker G are precisely the coordinate vectors in the canonical basis of (R[x];)*
of the linear forms in gti, i.e.

(24) L€ G <= (L(x%))|a|<t € Ker Gh.

Analogously, G} is the matrix representation of (H; US;)™, so that (G;")* corresponds to Ker G} .

To compute the space N; we need a generic element L* € K; . How to find such a generic
element has been discussed in detail in [12] Section 4.4.1]. Let us only mention here that this task
can be performed numerically using a standard semidefinite programming solver implementing a
self-dual embedding strategy, see e.g. [7, Chapter 4]. For our computations we use the SDP solver
SeDuMi [27].
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Computing ms(Gi-) and its dimension. As shown in ([24)), the dual space G;- can be characterized in
the canonical dual basis as the kernel of the matrix G, see e.g. [32] for details using an algorithm
based on singular value decomposition. Faster implementations can be obtained e.g. using Gauss
elimination. Once we have a basis of Ker Gy, denoted say by {z1,..., 2z}, then, for any s < ¢, we
construct the matrix Z, whose rows are the vectors ms(z1), ..., ms(zar), the projections onto R” of
21, .., 2y Then dim 7y (Gi) = dim 74 (Ker Gy) is equal to the rank of the matrix Z,.

Eztracting solutions. In order to extract the variety Vi (I), we apply Theorem [l which thus requires
a basis B of the quotient space and the corresponding multiplication matrices. In the setting of
Theorem [l rankZ; = rankZ;_; =: N and B is chosen such that B C T?_, indexes N linearly
independent columns of Zs_;. A first possibility to construct B is to use a greedy algorithm
as explained in the proof of Lemma Another possibility is to use Gauss-Jordan elimination
with partial pivoting on Z, (see [10]) such that each column corresponding to a monomial of
degree s is expressed as a linear combination of N monomials of degree at most s — 1. The
pivot variables form a set B C T?_; indexing a maximum set of linearly independent columns
of Zs and their corresponding monomials serve as a (monomial) basis B of the quotient space
(provided B is connected to 1). The reduced row echelon form of Zs, interpreted as coefficient
vector for some polynomials, gives the desired rewriting family, which thus enables the construction
of multiplication matrices and provides a border (or Grobner) basis (cf. [12] for details).

A second alternative proposed in [32] is to use singular value decomposition once more to obtain
a basis of Ker Z; and therefore a polynomial basis B for the quotient ring (see [32] for details). All
examples presented in the next section are computed using singular value decomposition.

6. NUMERICAL EXAMPLES

We now illustrate the prolongation-projection algorithm on some simple examples. The algo-
rithm has been implemented in Matlab using the Yalmip toolbox [I6]. For the real-root prolongation-
projection algorithm, we show the dimensions of 7,(G;*) and m((G;")*), the projections of the or-
thogonal complement of the set G; = H; UW, and of its one degree prolongation. For comparison,
we also sometimes show the dimension table for the complex-root version of this algorithm, and we
show the values rankM,(L*) (s < |t/2]) for a generic element L* € K; - used in the real moment-
matrix method. To illustrate the potential savings, and at the same time facilitate the comparison
between the various methods, we sometimes give more data than needed for the real root com-
putation (then displayed in color gray). We also provide the extracted roots v € Vk(I) and, as a
measure of accuracy, the maximum evaluation e(v) = max; |h;(v)| taken over all input polynomials
h; at the extracted root v, as well as the commutativity error ¢(X) := max7 ;_, abs(X;X; — &; ;)
of the computed multiplication matrices A;.

EXAMPLE 18. Consider the ideal I = (h1,ha, h3) C Rlxy, x2, 23], where
hy ::c% —2x123+ 5,
ho = xlxg + zox3 + 1,
hs = 3:0% — 8x173,

with D = 3, |Ve(I)| = 8 and [VR(I)| = 2, taken from [3] Ex. 4, p.57]. We illustrate and compare
the various algorithms on this example.
Table[dl shows the dimensions of the sets w4 (Kt) for various prolongation-projection orders (t, s).

Note that the conditions (3d)-([38) hold at order (t,s) = (6,3), i.e.
dimw?,(ng) = dimTrg(ICG) = dimﬂ'g(IC7).
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s 01 2 8 4 &5 6 7 8 9
dlmws(ng) 1 4 8 11— — — — — —
dmm, (K1) |1 4 8 10 12— — — — —
dimn,(Ks) |1 4 8 9 10 12 — — — —
dmns(Kg) |1 4 8 8 9 10 12 — — —
dimns(K7) |1 4 8 8 & 9 10 12 — —
dimm,(Kg) |1 4 8 8§ & 8§ 9 10 12 —
dimns(Ko) |21 4 8 8 8 8 8 9 10 12

TABLE 1. Dimension table for m4(K;) in Example [[§

With the complez-root prolongation-projection algorithm we can compute the following eight com-
plex roots:

~1.10 —2.88 -2.82 ],

0.0767 +2.243i  0.461 + 0.497i 0.0764 + 0.00834i | |,

0.0767 — 2.243i  0.461 — 0.497i 0.0764 — 0.00834i | ,
—0.0815 — 0.9317  2.35+0.0431i —0.274 + 2.209 | ,
—0.0815 + 0.931i  2.35 — 0.0431i —0.274—2.20i | ,

0.0725 + 2.24i —0.466 — 0.464i 0.0724 + 0.00210i |

0.0725 — 2.24i —0.466 + 0.464i 0.0724 — 0.00210; |

0.966 —2.81 3.07 ],

)

)

[
[
[
[
[
[
[
[

with a mazimum error of max; €(v;) < 8e-13 and commutativity error ¢(X) < Ge-13.

s= 01 2 38 4 b5 6 7

dim7,(G3) |1 4 8 11 — —
dimm,(GHH) |1 4 8 10 12 — —
dim7s(GL) |1 4 8 10 12 — —
dim7s(GH)H) |1 4 8 9 10 12 — —
dim7,(G+) |1 2 2 2 3 5 — —
dim7s((GH)H) |1 2 2 2 o5 , 6 —
dim ws(gg) 12 2 2 2 2 838 —
dimm,((GHH) |1 2 2 2 2 2 2 3

TABLE 2. Dimension table for 75(Gi) and 74((G;")*) in Example I8

Table @ shows the dimensions of the sets T4(Gi-) and 7s((G;)*) for various prolongation-
projection orders (t,s). Note that the conditions [Bd)-BH) hold at order (t,s) = (5,2), i.e

dim 2 (G3") = dim 7, (G5) = dim m2((G5)™F).
With the real-root prolongation-projection algorithm we can extract the two real solutions:
v = [ —1.101 —-2.878 —2.821 } ,
= [ 0.966 —2.813 3.072 ] ,
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with max; €(v;) < 2e-8 and commutativity error ¢(X) < 3.3e-9. Note that, since 2 =s < D =3, we
cannot directly apply Theorem[g to claim Vi(I) = Ve (J)NR™. Instead, as indicated in Remarkl[d (i),
we can only claim Ve (J) NR™ D Vr(I). However, equality can be verified by evaluating the input
polynomials hj at the points v € Ve(J) NR™. Anyway, one can also observe that the conditions
Bd)-BD) hold at order (t,s) = (5,3), in which case one can directly conclude Vg(I) = Ve (J)NR™.
Finally, we can even conclude J = /T since dim 74(G) = |Ve(I)| (using the last claim in Theorem

The ranks of the moment matrices involved in the computation are shown in Table[d Observe
that the rank condition [I7) holds at order (t,s) = (6,2), i.e.

rankMs(L*) = rankM;(L*)  for generic L* € K¢ .
(To be precise, as 2 = s < D = 3, we use [12, Prop. 4.1] and check whether the extracted roots
belong to Vi (I) afterwards.)

||s:() s=1 s=2 s=3

t=3 1 7 —

t=4]| 1 ] 8 -
t=5]| 1 2 8 —
t=6]| 1 2 2 10

TABLE 3. Showing rankM,(L*) for generic L* € K; - in Example I8

In this small example, we see that we can improve efficiency over the general complex-root
algorithm if we are only interested in computing the real roots. Indeed the prolongation-projection
algorithm terminates at order (t,s) = (5,2) in the real case while it terminates at order (6,3) in
the complex case, however at the price of solving an SDP in the real case. Moreover, compared to
the real-root moment-matriz algorithm of [12], we save the computation of the last moment matriz
Mg(L*) for L* € K¢ .

Modifying the above example by replacing each polynomial h; by h;-(1+Y_, 23) yields an ezample
with a positive dimenstonal complex variety, while the real variety is unchanged. The proposed
algorithm still converges, this time at order (t,s) = (7,2) and allows the extraction of the two real
T00tS.

ExaMPLE 19. Consider the ideal I = (hy,ha, hs) C Rlxy,xs|, where
hy = x5y + 323 — x5 — 322,
hy = x3xe — 2272,
hs = 2z3x1 — x5 — 225 + 22,

and D =5, taken from [3, p.40]. The corresponding variety consists of two (real) points, one of
which has multiplicity 8.

Table[7) shows the dimensions of the projections of the sets Gi- and (G;")*. The conditions [Bd)—(B1)
hold at order (t,s) = (6,s) with 2 < s <5, i.e.

dim 7,(Gg) = dimm,_1(Gg) = dim 7, (G )")  for2 <s <5,
the conditions (I8d)-(I8Y) hold at order (t,s) = (6,2), i.e.
dlmm(gé) = d1m7r4(gé) = dimm;((QéF)l),
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s= 01 2 8 4 5 6 7
dim7,(G&) [1 3 5 6 8 10 —
dimm,(GHYH |1 8 5 6 6 8 10 —
dim7s(Gg) [1 2 2 2 2 2 | —
dim7 (GHH) |1 2 2 2 2 2 2

TABLE 4. Dimension table for 75(G;i) and 74((G;")*) in Example [0

and the extracted roots are
v1 = [ —6.17e-6 1.10e-5 |
Vg = [ 0.9988 1.9998 }

with an accuracy of €(v1) < 2e-10 and €(v2) < 4e-3 and mazimum commutativity error ¢(X) < 3e-5.
The ranks of the moment matrices involved in the computations are shown in Table[d. As predicted
by Proposition[I2, condition (I7) holds at order (t,s) = (6,2), i.e.

rankMs(L*) = rankM;(L*)  for generic L* € Kg -
Moreover, the returned ideal J satisfies J = (Ker My (L*)) = ~/I. Table[d shows the dimensions of

||s:() s=1 s=2 s=3
t=5 1 3 5
t=6 1 2 2 4
TABLE 5. Showing rankM(L*) for generic L* € K; » in Example [[9

the projections 7s(ICt) for the complex-root prolongation-projection algorithm. The conditions [Bd)—
B are satisfied at order (t,s) = (7,5), allowing (in principle) to extract the two roots with
their corresponding multiplicities. The appearance of multiple roots requires a careful choice of the
extraction procedure using multiplication operators. We employ the approach described in [6] using
reordered Schur factorization. At order (t,s) = (7,5), numerical problems prevent a successful
extraction despite this algorithm. However, at order (t,s) = (8,5), the multiplication matrices (on
which the reordered Schur factorization method is applied) have a commutativity error of ¢(X) <
6.25e-16. Thus, we can extract the root

v:[l 2]

with accuracy €(v) < 1.38e-14 and the 8-fold root at the origin with an even higher accuracy of
€(v;) < 1.75e-32.

Note that the real version of this algorithm, working directly with the real radical of the ideal,
does not require these considerations as it eliminates multiplicities.

EXAMPLE 20. This example is taken from [29] and represents a Gaussian quadrature formula with
two weights and two knots, namely, I = (hq, ..., hy), where
hi=x14+290—2,

he = z123 + 2274 ,

2 2

hs = x123 + T27] — 3
3 3

hy = x125 + T277,
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s= 0128 4 5 6 7 8 9 10
dimn,(Ks) |1 8 6 8 11 13 — — — — —
dim7,(Ke) |1 3 6 8 9 11 183 — — — —
dmn.(K7) |1 3 6 8 9 9 11 13 — — —
dm7,(Ks) |1 3 6 8 9 9 0 11 17 — —
dimn,(Ko) | I 7 6 8 0 0 0 0 11 15 —
dimns(K10) |/ & 6 & 0 0 0 0 0 11 13

TABLE 6. Dimension table for 74(K;) in Example

with D =4 and |Va(I)| = |Vc(I)| = 2. Table[7] shows the dimensions for the projections of the sets
G- and (G;")* and Table[8 shows the ranks of the moment matrices Ms(L*) for generic L* € Ky .
The conditions [Bd)-BH) hold at order (t,s) = (5,2) and the extracted roots are

vi=[1 1 —05774 0.5774 |
vp=[1 1 05774 —0.5774 ].

with an accuracy of €(v1) < 2e-11 and €(vy) < 2e-11 and mazimum commutativity error c¢(X) <
4e-14. Here again the algorithm returns the ideal J = VI, since dimm(Gs-) = |[Ve(I)| = 2. On
the other hand, the moment-matriz algorithm of [12] terminates at order (t,s) = (6,2), thus later
than the prolongation-projection algorithm.

s= 01 2 8 4 &5 6 7
dimm,(GLH) [1 & 7 11 20 — — —
dimm(GHH |1 3 4 8§ 12 28 — —
dimns(Gs) |1 2 2 2 5 16 — —
dimm,(GHH |1 2 2 2 5 9 22 —
dimns(Gg) |7 2 2 2 2 16 18 —
dimm,(GHH |7 2 2 2 2 2

) )
TABLE 7. Dimension table for 7, (G;") and 7s((G;")*) in Example

||s=0 s=1 s=2 s=3

t=4] 1 4 9
t=5| 1 2 5 =
t=6| I 2 2 9

TABLE 8. Showing rankM,(L*) for generic L* € K; - in Example 20

EXAMPLE 21. The following 6-dimensional system is taken from

http://www.mat.univie.ac.at/ neum/glopt/coconut/Benchmark/Library3/katsurab.mod
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and is known under the name Katsura 5:
hy = 2x% + 222 + 225 + 223 + 223 + 23 — 21,
ho = xgxs + T524 + 20423 + 22329 + 20007 — X9,
hy = 2xgxy + 22513 + 20429 + x% + 2x311 — 23,
hy = 2x6x3 + 20519 + 223209 + 22421 — X4,
hs = x% + 2xgx1 + 2x571 + 22471 — T35,
he = 2x6 + 225 + 224 + 223 + 222 + 21 — 1,
with D = 2, |[Ve(I)] = 32, and |Vr(I)| = 12. The projection dimensions are shown in Table[Q

s= 01 2 3 4 5 6 7
dimns(G3) [1 6 16 — — — — —
dim7s((Gy)H) |1 6 16 26 — — — —
dim7,(G$) |1 6 16 26 — — — —
dimms((GH)H) |1 6 16 26 31 — — —
dimnms(Gf) |1 6 16 26 31 — — —
dim7,(GH*) |1 6 16 26 31 32 — —
dim7,(G&) |1 6 16 26 31 32 — —
dimms((GH)*Y) |1 6 16 26 31 32 32 —
dimns(Gg) |1 6 12 12 12 12 12 —
dim7s(GH)H) |1 6 12 12 12 12 12 12

TABLE 9. Dimension table for 75(G;) and 75((G;")*) in Example 211

The extracted solution points
= (1,8.73¢-7,2.14¢-6,2.48¢-7,2.23¢-6, —1.29¢-6) ,
= (0.277,0.226,0.162,0.0858,0.0115, —0.124) ,
= (0.136,0.0428,0.0417,0.0404, 0.0964, 0.211) ,
vg = (0.462,0.309,0.0553, —0.102, —0.0844,0.0917) ,
= (0.441,0.151,0.0225,0.219, 0.0935, —0.207) ,
= (0.239,0.0608, —0.0622, —0.0233,0.186,0.219) ,
vy = (0.753,0.0532,0.191, —0.114, —0.146,0.139) ,
= (0.726, —0.0503,0.122,0.164,0.109, —0.208) ,
= (0.409, —0.0732,0.0657, —0.127,0.252,0.178) ,
v10 = (0.292,—0.101,0.181, —0.0591,0.193,0.141) ,
v11 = (0.590,0.0422,0.327, —0.0642, —0.0874, —0.0132) ,
(0.68,0.266, —0.154,0.0323,0.0897, —0.0735) ,

V12 =

were extracted at order (t,s) = (6,3), when conditions [Bd)—-[BH) were first satisfied. The maximum
evaluation error was found to be max; €(v;) < 2.4e-4 and the commutativity error ¢(X) < 6.2e-6.
Again the algorithm returns the ideal J = /T as dimms3(Gg) = |Ve(I)| = 12. In this example the
moment-matriz method [12] also extracts the 12 real solutions at order (t,s) = (6,3).
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7. CONCLUSION

This work was motivated by the great success of numerical-algebraic methods in recent years.
Incorporating features specific to real root finding into efficient symbolic-numeric methods may
lead to more efficient algorithms for numerically computing all real roots of a given system of
polynomials. The contribution of this paper is a first attempt in this direction as it implements
real-algebraic features into the existing symbolic-numeric algorithm described in [32]. Concretely,
the resulting algorithm uses semidefinite programming techniques in addition to standard numerical
linear algebra techniques. It is not only applicable to zero-dimensional ideals, but to all problems
for which the real variety is finite. An extension to zero-dimensional basic semi-algebraic subsets
is also possible, along the same lines as in [12].

The new approach relies on a dual space characterization of (an approximation of) the real
radical ideal, obtained by combining ideas of [12] and [32], but the new prolongation-projection
algorithm may terminate earlier than the moment-matrix method of [I2]. Although preliminary
computational results are encouraging, whether the characterization at hand can lead to a new
treatment of real-algebraic problems is still to be demonstrated on a larger sample of problems.
An important computational issue is how to efficiently solve the underlying semidefinite program
for large problems involving high degree polynomials with many variables. Exploiting sparsity in
order to decrease the size of the semidefinite program is a promising direction and the work of
Kojima et al. [I1] and Lasserre [14] is a first important step in this direction. Strategies similar to
those used in Grobner /border basis computations can be employed to further increase efficiency of
the proposed method, particularly in view of the linear algebra steps involved, e.g. the dimension
tests.
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